
HAL Id: hal-00375258
https://hal.science/hal-00375258

Submitted on 3 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Implementation for Embedded DC Motor
Ethernet Control System

Lingbo Zhu, Guanzhong Dai, Li Shi, Xuefang Lin-Shi, Jean-Marie Rétif

To cite this version:
Lingbo Zhu, Guanzhong Dai, Li Shi, Xuefang Lin-Shi, Jean-Marie Rétif. Modeling and Implemen-
tation for Embedded DC Motor Ethernet Control System. CSSE, Dec 2008, Wuhan, Hubei, China.
pp.9-12, �10.1109/CSSE.2008.681�. �hal-00375258�

https://hal.science/hal-00375258
https://hal.archives-ouvertes.fr

Modeling and Implementation for Embedded DC
Motor Ethernet Control System

Lingbo Zhu, Guanzhong Dai
School of Automation

Northwestern Polytechnical University
Xi’an, 710072, China

zhulingbo.insa@gmail.com

Li Shi
China Ship Development and Design

Center
Wuhan, 430064, China

Xuefang Lin-shi, Jean-marie Rétif
Laboratory Ampère

INSA de Lyon
Villeurbanne, 69621, France

Abstract—In this paper, a model of Embedded DC Motor
Ethernet Control System is proposed with analysis on
transmission time delay and data packet dropout. Based on this
model, the ECS is described as a two-state asynchronous
dynamical system with output feedback control and then
implemented on a platform which uses a PC as a central
controller and an ARM9 kit as a remote controller. As a key part
of developments, embedded programs including client program
and Linux Module are realized on the kit. The platform is proved
to be flexible to run different control algorithms and extensibility
to add nodes. The experiments and results demonstrate the
validity of the system.

Keywords-Ethernet Control System(ECS); Embedded Linux;
Delay; DC Motor

I. INTRODUCTION
With the integration of communication networks and

distributed control in the modern manufacturing and process
industries, networked control systems (NCSs) are becoming
increasingly important due to its simplicity, scalability,
flexibility, maintainability, and cost effectiveness. However,
there are still significant challenges that result in the
application limitation of NCS technologies, such as
transmission time delay and data packet dropout [1,2].

To reveal the performance of NCSs, researchers built
various experimental platforms based on different software and
hardware environment. Chow [3] used a PC running RTLinux
working as a central controller and a Siemens C-515C
microcontroller board serving as a remote controller with RS-
232 connection. Nie [4] used ARM7TDMI with running
uCLinux to work as a remote controller and a PC with Matlab
Simulink(RTW) to work as a central controller. Hu [5]
proposed a kind of NCS simulation platform based on switched
Ethernet though using two computers to simulate actual
controller and plant by Matlab. Liu [6] designed a simulation
platform of NCS using Matlab to build models of real systems.
However, in Chow’s case, for the lack of RS-232 protocol,
distance control based on this system is impossible. And there
isn’t OS (Operation System) on the microcontroller, the
flexibility and expansibility are restricted. In Nie’s case, the
delays of the system are simulated. In Hu’s case, the plant is a
simulated one by Matlab and VB, as well as Liu’s. Therefore,
to achieve more authenticity and universality, a physical NCS

platform with advanced protocol such as Ethernet with TCP/IP
is needed.

Recently, using Ethernet to industrial field without
exorbitant requirements is becoming a hot field [7]. Industrial
Ethernet products begin to serve the communications
requirements of industrial customers, replacing or
supplementing legacy fieldbus such as Modbus, and Profibus
which are exclusive mutually and are held by different
companies with expensive prices. To solve the lacks described
above and considering the popularity, a physical platform
based on Ethernet, Samsung2410A [8] kit, DC motor is
designed as well as implemented in this paper.

The layout of this paper is as follows. In section 2,
considering transmission time delay and data packet dropout,
the system is modeled as a two-state asynchronous dynamical
system with output feedback control law. Section 3 shows
implementation of the system. In section 4 the experiment
results are illustrated. Conclusions are drawn in Section 5.

II. SYSTEM MODELING
As a type of NCSs, an ECS is shown in Fig.1. To analyze

conveniently, a model of the system with transmission time
delay and data packet dropout is proposed based on the
following assumptions,

Assumption 1 The sensor is time-driven and has identical
sampling period T .

Assumption 2 The controller and actuator are event-
driven, which means calculating the control law or output
signals as soon as which arrive.

Assumption 3 The total delay of closed-loop in the
network is k k

k sc caτ τ τ= + , where k
scτ and k

caτ denote the sensor-to-
controller and controller-to-actuator delay, respectively. If
0 k Tτ≤ < , kτ is disposed as short-delay. While if k Tτ ≥ , throw
away this packet actively, and it is disposed as data packet
dropout.

Assumption 4 Sampled data and control law of each
period are transmitted by single packet. If the kth packet is lost,
using (1)x k − to replace ˆ()x k .

Assumption 5 The probability of the network unblocked is
(0 1)r r< ≤ , which is a constant.

Supported by China Scholarship Council 2006[3074]

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.681

9

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.681

9

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 21, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

Assumption 6 The plant is assumed as a normal linear
system, which is,

() () ()
() ()

x t Ax t Bu t
y t Cx t

= +⎧
⎨ =⎩

 (1)

Where, () , () , ()n m px t R u t R y t R∈ ∈ ∈ are the state, input, and
measured output, respectively. ,A B and C are system matrices
with compatible dimensions.

() () ()
() ()

x t Ax t Bu t
y t Cx t

= +⎧
⎨ =⎩

ˆ()x k

()u k ()x k

kτ

1P
2P

Discrete Controller

K

()Hw k

Fig. 1 A typical ECS

As seen in Fig.1, ()x k is the state vector of the plant at
time instant k. ˆ()x k is the received state vector. ()u k is the
control law. ()w k is the disturbance vector, and H is constant
matrix with appropriate dimensions. Then the model consists
of a discrete-time plant,

0 1(1) () () () () (1) ()
ˆ() ()

k kx k x k u k u k w k
y k Cx k

τ τ+ = Φ + Γ + Γ − + Η⎧
⎨ =⎩

 (2)

where, ATeΦ = ， 0 0
() kT As

k e Bds
τ

τ
−

Γ = ∫ ， DTeΗ = ，

1()
k

T As
k T

e Bds
τ

τ
−

Γ = ∫ , (), unblocked
()

(1), blocked
x k

x k
x k

⎧
= ⎨ −⎩

.

The system has two states, 1S –unblocked, 2S –blocked. We
assume that the controller is output feedback
controller ˆ() () ()u k Ky k KCx k= = , K is a constant matrix with
appropriate dimensions, then (2) can be transformed as,

1S : 0 1ˆ ˆ(1) (()) () () (1) ()
ˆ() ()

k kx k KC x k KC x k w k
y k Cx k

τ τ+ = Φ + Γ + Γ − + Η⎧
⎨ =⎩

2S : 0 1ˆ ˆ(1) () (() ()) (1) (1)
ˆ() ()

k kx k x k KC x k w k
y k Cx k

τ τ+ = Φ + Γ + Γ − + Η −⎧
⎨ =⎩

Let, ˆ() [(), (1), (), (1)]T T T T Tz k x k x k w k w k= − −

(1) ()i iz k z k+ = Ω Φ , 1 2, 1r rΩ = Ω = − 1,2i = (3)

0 1

1

0
0 0 0

0 0 0
0 0 0

KC KC H
I

I
I

Φ + Γ Γ⎡ ⎤
⎢ ⎥
⎢ ⎥Φ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 1

2

() 0
0 0 0

0 0 0
0 0 0

KC
I

I
I

Φ Γ + Γ Η⎡ ⎤
⎢ ⎥
⎢ ⎥Φ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

III. IMPLEMENTATION

A. Framework of the Implementation
For implementing a general system described by (3), we

choose Ethernet with TCP/IP protocol as the network. The
system is consisted by some hardware: (1)a PC running Fedora
6(Linux2.6) works as a central controller; (2) a kit made by
Samsung 2410A(ARM9 core, running Linux2.4) serves as a
remote controller; (3) The DC motor is ESCAP(28HSL18-
219/204). Besides, an interface card realizes voltage conversion
while sampling/outputting.

In the software side, there are three programs need be
realized: a server program with control algorithm on central
controller, a client program and a Linux module (named EMD)
on ARM9.

As the most popular Embedded OS, Linux is an OS with
multi-task. Thus, the processor is shared by a series of
processes. To deduce the processing time on ARM9, we use
interrupts to realize sampling and outputting, which can cut
down the processing time from 1~1.5ms to 10~20us in each
action.

sc
kτ

ca
kτ

s
kT

a
kT

p
kt

1au
kt

2au
kt

pr
kt

ps
kt

2ak
kt

1ak
kt

cs
kT

cr
kT

Fig. 2 Process of the system

Fig. 2 describes the process of one period. Where, arrays
b[1..k], Sb[1..k], Rb[1..k] a[1..k], Sa[1..k], Ra[1..k], Oa[1..k]
are all the buffers which are assumed to have enough space to
storage the data. The process can be depicted as,

Step1: Build TCP/IP connection between Server and Client
using Linux socket which is named as sFD.

Step2: Take the kth cycle as an example. When kT time
arrives, Client produces an interrupt signal to sample data by
calling EMD. Then EMD samples the value and storages it to
b[k].

Step3: Client copies b[k] to Sb[k] from kernel to user. And
then send Sb[k] to server by calling send(Sb[k], k, &sFD).

Step4: Server receives Sb[k] using recv(Sb[k], k, &sFD).
Then send Sb[k] to control algorithm for calculating the
control law by calling Cal(a[0…k], p , g). Then put the result
to a[k*], k*=k+1. Where p is the parameter vector of the
system, and g is the external input.

Step5: Server gains Sa[k*] from a[k*]. Then send a[k*] to
Client using send(Sa[k*], k*, &sFD).

Step6: Client receives Ra[k*] by recv(Sa[k*], k*, &sFD).
If k*=k+1, then Client sends Ra[k*] to EMD by calling ioctl(),
else throws away this packet.

1010

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 21, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

Step7: EMD produces interrupt signal to output control
law to the plant.

Step8: Client waits for (1)k T+ time arriving.

The programs on central controller are realized by C
language as the same as normal Linux network coding. The
following part, delay measurements and embedded programs
are discussed.

B. Delay Measurement
As a NCS, delay measurement is a key issue of system

evaluation. Taking kT time as an example, based on Fig.2,
some remarks are listed below,

Remarks: the clock of ARM9 sampling- s
kT ;the clock of

EMD outputting- a
kT ;the clock of PC receiving - cr

kT ;the clock
of PC sending- cs

kT ; the time for processing sampling data in
EMD and Client are 1ak

kt , 1au
kt , respectively; the time for

processing control law in EMD and Client are 2ak
kt and 2au

kt .
Then,

1 1 2 2() ()sc ca a s ak au ak au cs cr
k k k k k k k k k k kT T t t t t T Tτ τ τ= + = − − + + + − − (4)

Consider the speed of ARM9 is 200MHz, thus the time of
1 1 2 2()ak au ak au

k k k kt t t t+ + + can be ignored. Then,

a s cs cr
k k k k kT T T Tτ = − − + (5)

Therefore, we just need mark the clock of these four points
of each cycle, the delay can be calculated. Because the OS of
the PC and ARM9 are both Linux system, the gettimeofday()
function can be used to get the clock of the system. The
precision of this function is 1 us, which is enough for our
application.

Because TCP/IP protocol is used in the system, in the
transmission there are no errors but long delays(k Tτ >) occur.
To satisfy Assumption 3, we put a threshold of delay.
Considering 5T ms= and except the time of outputting, we
choose the threshold as ˆ 4.9msτ = . Thus, for the implementation,

If ˆkτ τ< , the state of system is 1S .
Else, the state of system is 2S .

After this processing, the system can be described as (3).
We define MD as the max number of continuous data packet
dropout. If data packet dropout happens, the used time(ut) of k
steps will be more than kT . We define e ut t kT= − .

C. Embedded Program
The embedded program in ARM9 kit should include two

parts: one is user layer program and the other is EMD. User
layer program includes: (1) TCP/IP communication with
central controller; (2) data transmission with kernel layer
program. EMD needs realize: (1) driving A/D to sample the
voltage from motor; (2) driving GPIO to output control laws

to motor; (3) realizing interrupts with parameters to sample
and output data; (4) inter-communication with user layer
program.

Client - A function named MyConnection() is established
to implement communication with server by using Linux
socket. In order to transmit data between Client and EMD,
special functions read(), write() and ioctl() in EMD are
implemented. The process of each period is realized by a
function named promt_info() and which is listed as,

Step1: EMD samples voltage data. This step includes
setting control segments, writing the segments to EMD, and
producing interrupt signal by calling ioctl() function.

Step2: Client reads the A/D sampling value from EMD by
using read() function

Step3: Client sends the data to server via socket.

Step4: Client receives control law from server.

Step5: Client sends control law to EMD.

EMD- EMD includes file_operations like a typical Linux
module which defines some necessary functions, such as open,
read, write, ioctl, etc. In the implementation, GPIO Driver,
A/D Driver and interrupt functions should be realized.

EMD Client

Se
rv

er

In
te

rf
ac

e /A D

GPIO

Interrupt

()read

()write

_file operations

()ioctl _
in

f
()

pr
om

t
o

()
M

yC
on

ne
ct

io
n

Fig.3 Relationship between EMD, Client, Server and Interface

Fig.3 shows the relationship between EMD, client, server
and interface. The sampling data through interface are
transmitted to A/D, then EMD can read the data using read().
And the data are transmitted to client by calling ioctl(). After
that, the data reach server by socket connection. In the same
way, the control law can be transmitted from server to
interface.

D. The Plant and Controller
To decrease processing time, a simple control algorithm–

discrete PI control is chosen. The motor’s parameters can be
found from its manual [9].

As the electric time constant / 8.62 5L R e= − is very small
comparing to mechanical time / 0.1337J f = , the motor can be
described by a first order model. Thus, the transfer function
between the motor speed and the armature winding input
voltage is,

2

1

1
c

c

/ K(p)
RJU(p) s

K η

Ω =
+

 (6)

It’s determined by pole assignment by imposing a closed–
loop dynamics which corresponds to a discrete–time first
order with 15ms. The sampling period is set to 5ms. The

1111

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 21, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

discrete time controller can be expressed as,

 ()
()

1
0 1

1()
1

u z r r zK z
z z

−

−

+= =
−ε

 (7)

where. 0 10.9775, 0.7183r r= = − The corresponding margins are:
Phase margin : 73.7ΦΔ = ; Delay margin : 0.029 5.9T es TΔ = ≈ .

IV. EXPERIMENT
After developments, experiments are implemented based

on a normal office Ethernet. The central controller and the
remote controller are both connected to one port of the
Switch(3COM Baseline Switch 2024). Other ports of the
Switch are shared by the users of office for revealing the
performance of the system with stochastic load. Initial voltage
is 0 v. Set-point is 0.78125v. Sampling period is 5ms. 399
steps are done. The results of delay measurements(two
independent groups) using method described in 3.2 are shown
in Fig. 4. From it, we can get 97.24%r = and 4MD = , while in
group2 which are 97.99%r = and 3MD = .

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5
x 10

4

Steps

D
el

ay
 T

im
e

us

Delay Times with One Switch

First Group

Second Group

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.2

0.4

0.6

0.8

1

Time us

V
ol

ta
ge

 V

 Fig.4 Delays of the System Fig.5 Results of the System

Fig. 5 shows the response of the system. From the figure
the used time for 399 steps is beyond 1995000 us (the broken
upright line of Fig.5), and we can get that 150010uset = . The
reason of this phenomenon is data packet dropout occurring.

V. CONCLUSION
In this paper, we have presented a model for ECS with

transmission time delay and packet dropout. Then, in order to
reveal the dynamical performance of the system, a platform is
established based on embedded ECS applying to a DC motor.
As a key part of developments, embedded programs including
client program and Linux Module named EMD are realized on
the ARM9 kit. The experiments and results show that this
model is effective and valid for DC motor Ethernet control
systems.

REFERENCES
[1] Yu-Chu Tian, David Levy, “Compensation for control packet dropout in

networked control systems”, Information Science, 178(2008) pp:1263-
1278.

[2] Matías G. R, Antonio B, “Analysis of networked control systems with
drops and variable delays”, Automatica, 43 (2007), pp:2054-2059

[3] Mo-Yue Chow, Yodyium Tipsuwan, “Gain Adaptation of Networked
DC motor Controller Based on QoS Variations”, IEEE Transactions on
Industrial Electronics, Vol,50, October,2003

[4] Nie Xue-yuan,LIU Guo-ping, “Realization pf Embedded Networked
Control Simulation Based on Simulink”, Journal of System
Simulation,vol.17,No. 7,July 2005, 1613-1620

[5] Hu Xiaoya,Zhu Desen, and Wang Bingwen, “Simulation platform for
networked control system based on switched Ethernet”, J.Huazhong
Univ. of Sci. & Tech. (Nature Science Edition), Oct . 2005, Vol. 33 No.
10,pp:89-91.

[6] Liu Zhifei, Wang Shuqing, “Design of a Simulation Platform of
Networked Control Systems”, Chinese Journal of Scientific Instrument,
Jun. 2005, pp:597-600.

[7] Kweon S, Shin K G, Zheng Q. “Statistical Real-Time Communication
over Ethernet for Manufacturing Automation Systems”, Proceedings of
the Fifth IEEE Real-Time Technology and Application Symposium,
1999

[8] USER'S MANUAL S3C2410A – 200MHz & 266MHz 32-Bit RISC
Microprocessor Revision 1.0, 2004 Samsung Electronics.

[9] Moteur C.C escap® 28L28, Réducteur escap® R32,
http://www.portescap.com/

1212

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 21, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

