
HAL Id: hal-00375232
https://hal.science/hal-00375232v1

Preprint submitted on 14 Apr 2009 (v1), last revised 9 Jun 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On stratified regions
Roberto Amadio

To cite this version:

Roberto Amadio. On stratified regions. 2009. �hal-00375232v1�

https://hal.science/hal-00375232v1
https://hal.archives-ouvertes.fr

On stratified regions

Roberto M. Amadio
Université Paris Diderot (Paris 7)∗

April 14, 2009

Abstract

Type and effect systems are a tool to analyse statically the behaviour of programs with
effects. We present a proof based on the so called reducibility candidates that a suitable
stratification of the type and effect system entails the termination of the typable programs.
The proof technique covers a simply typed, multi-threaded, call-by-value lambda-calculus,
equipped with a variety of scheduling (preemptive, cooperative) and interaction mecha-
nisms (references, channels, signals).
Keywords Types and effects. Termination. Reducibility candidates.

1 Introduction

In the framework of functional programs, the relationship between type systems and termi-
nation has been extensively studied through the Curry-Howard correspondence. It would
be interesting to extend these techniques to programs with effects. By effect we mean the
possibility of executing operations that modify the state of a system such as reading/writing
a reference or sending/receiving a message.

Usual type systems as available, e.g., in various dialects of the ML programming language,
are too poor to account for the behaviour of programs with effects. A better approximation
is possible if one abstracts the state of a system in a certain number of regions and if the
types account for the way programs act on such regions. So-called type and effect systems
[5] are an interesting formalisation of this idea and have been successfully used to analyse
statically the problem of heap-memory deallocation [6]. On the other hand, the proof-theoretic
foundations of such systems are largely unexplored. Only recently, it has been shown [1] that
a stratification of the regions entails termination in a certain higher-order language with
cooperative threads and references. Our purpose here is to revisit this result trying to clarify
and extend both its scope and its proof technique (a more technical comparison is delayed to
section 4).

In section 2, we introduce a λ-calculus with regions. Regions are an abstraction of dy-
namically generated values such as references, channels, and signals, and the reduction rules
of the calculus are given in such a way that the reduction rules for references, channels, and
signals arise as a particular case of those given for regions.

In section 3, we describe a simple type and effect system along the lines of [5]. In this
discipline, types carry information on the regions on which the evaluated expressions may

∗PPS, UMR-CNRS 7126. Work partially supported by ANR-06-SETI-010-02.

1

read or write. The discipline allows to write in a region r values that have an effect on the
region r itself. In turn, this allows to simulate recursive definitions and thus to produce non
terminating behaviours.

In section 4, following [1], we describe a stratification of the regions. The idea is that
regions are ordered and that a value written in a region may only produce effects in smaller
regions. We then propose a new reducibility candidates interpretation (see, e.g., [3] for a good
survey) entailing the termination of typable programs.

In section 5, we enrich the language with an operator for reacting to the termination of
the computation. The language we consider is then timed in the sense that a computation
is regarded as a possibly infinite sequence of instants. An instant ends when the calculus
cannot progress anymore (cf. synchronous/timed languages such as Esterel [2] and Timed
CCS [4]). We extend the stratified typing rules to this language and show by means of a
translation into the core language that typable programs terminate. Recursive calls in the
resulting language are still typable as long as they arise at a later instant of the computation.

Appendix A contains the main proofs and appendix B summarizes the type and effect
systems considered.

2 A λ-calculus with regions

We consider a λ-calculus with regions. Regions are abstractions of dynamically generated
‘pointers’ which, depending on the context, are called references, channels, or signals. Of
course, one may consider more concrete calculi where such pointers are explicitly represented,
but since the main arguments can be carried on at the level of regions, we prefer to avoid
pointers to keep the notation simple.

2.1 Syntax

We consider the following syntactic categories:

x, y, . . . (variables)
r, s, . . . (regions)
e, e′, . . . (finite sets of regions)

A ::= 1 || RegrA || (A
e
−→ A) (types)

Γ ::= x1 : A1, . . . , xn : An (context)
R ::= r1 : A1, . . . , rn : An (region context)
M ::= x || r || ∗ || λx.M ||MM ||!M ||M := M (terms)
V ::= r || ∗ || λx.M (values)
v, v′, . . . (sets of value)
S ::= (r ← v) || S, S (stores)
X ::= M || S (stores or terms)
P ::= X || X,P (programs)

We briefly comment the notation: 1 is the terminal (unit) type with value ∗; RegrA is the
type of a region r containing values of type A; A

e
−→ B is the type of functions that when

given a value of type A may produce a value of type B and an effect on the regions in e; !
is the operator to read some value in a region and := is the operator to insert a value in a
region.

2

We write [N/x]M for the substitution of N for x in M . If R = r1 : A1, . . . , rn : An then
dom(R) = {r1, . . . , rn}. We also define the term regrM as an abbreviation for (λx.r)(r := M).
Thus the difference between r := M and regrM is that in the first case we return ∗ while in
the second we return r. When writing a program P = X1, . . . ,Xn we regard the symbol ‘,’
as associative and commutative, or equivalently we regard a program as a multi-set of terms
and stores. We write (r ← V) for (r ← {V }). We shall identify the store (r ← v1), (r ← v1)
with the store (r ← v1 ∪ v2). We denote with dom(S) the set of regions r such that (r ← v)
occurs in S and with S(r) = {V | (r ← V) occurs in S}.

2.2 Reduction

A call-by value evaluation context E is defined as:

E ::= [] || EM || V E ||!E || E := M || V := E

An elementary evaluation context is defined as:

El ::= []M || V [] ||![] || [] := M || V := []

An evaluation context can be regarded as the finite composition (possibly empty) of elemen-
tary evaluation contexts. The reduction on programs is defined as follows:

E[(λx.M)V]→ E[[V/x]M] E[!r], (r ← V)→ E[V], (r ← V)

E[r := V]→ E[∗], (r ← V)

P → P ′

P,P ′′ → P ′, P ′′

Note that the semantics of assignment amounts to add rather than to update a binding between
a region and a value. Hence a region can be bound at the same time to several values (possibly
infinitely many) and when we dereference a region we select non-deterministically one of them.

As already mentioned, the notion of region is intended to abstract some familiar pro-
gramming concepts such as references, channels, or signals. Specifically: (i) when writing a
reference, we replace the previously written value (if any), (ii) when reading a (unordered,
unbounded) channel we consume (remove from the store) the value read, and finally (iii) the
values written in a signal persist within an instant and disappear at the end of it.1

One can easily formalise the reduction rules for references, channels, and signals, and
check that (within an instant) each reduction step is simulated by at least one reduction
step in the calculus with regions. Thus, typing disciplines that guarantee termination for the
calculus with regions will guarantee the same property when adapted to references, channels,
or signals.

3 Types and effects: unstratified case

We introduce a simple type and effect system along the lines of [5]. The following rules define
when a region context R is compatible with a type A (judgement R ↓ A):

R ↓ 1

R ↓ A R ↓ B e ⊆ dom(R)

R ↓ (A
e
−→ B)

r : A ∈ R

R ↓ RegrA

1Signals arise in synchronous/timed models where the computation is regulated by a notion of instant or
phase (see section 5).

3

The following rules define when a region context is well formed (judgement R ⊢) and when
a type and effect is well-formed with respect to a region context (judgements R ⊢ A and
R ⊢ (A, e)).

∀ r ∈ dom(R) R ↓ R(r)

R ⊢
R ⊢ R ↓ A

R ⊢ A

R ⊢ A e ⊆ dom(R)

R ⊢ (A, e)

A more informal way to express the condition is to say that a judgement r1 : A1, . . . , rn : An ⊢
B is well formed provided that: (1) all the region names occurring in the types A1, . . . , An, B
belong to the set {r1, . . . , rn} and (2) all subtypes of the shape Regri

C with i ∈ {1, . . . , n}
and contained in the types A1, . . . , An, B are such that C = Ai. It is easily checked that the
following properties hold:

R ⊢ 1 iff R ⊢
R ⊢ RegrA iff R ⊢ and R(r) = A

R ⊢ A
e
−→ B iff R ⊢, R ⊢ A,R ⊢ B, and e ⊆ dom(R)

R ⊢ iff ∀ r ∈ dom(R) R ⊢ R(r)

The subset relation on effects induces a subtyping relation on types and on pairs of types and
effects which is defined as follows (judgements R ⊢ A ≤ A′, R ⊢ (A, e) ≤ (A′, e′)):

R ⊢ A

R ⊢ A ≤ A

R ⊢ A′ ≤ A R ⊢ B ≤ B′

e ⊆ e′ ⊆ dom(R)

R ⊢ (A
e
−→ B) ≤ (A′ e′

−→ B′)

R ⊢ A ≤ A′

e ⊆ e′ ⊆ dom(R)

R ⊢ (A, e) ≤ (A′, e′)

We notice that the transitivity rule:

R ⊢ A ≤ B R ⊢ B ≤ C

R ⊢ A ≤ C

can be derived via a simple induction on the height of the proofs.
We now turn to the typing rules for the terms. We shall write R ⊢ x1 : A1, . . . , x : An if

R ⊢ and R ⊢ Ai for i = 1, . . . , n. Note that in the following rules we always refer to the same
region context R.

R ⊢ Γ x : A ∈ Γ

R; Γ ⊢ x : (A, ∅)
R ⊢ Γ r : A ∈ R

R; Γ ⊢ r : (RegrA, ∅)
R ⊢ Γ

R; Γ ⊢ ∗ : (1, ∅)

R; Γ, x : A ⊢M : (B, e)

R; Γ ⊢ λx.M : (A
e
−→ B, ∅)

R; Γ ⊢M : (A
e2−→ B, e1) R; Γ ⊢ N : (A, e3)

R; Γ ⊢MN : (B, e1 ∪ e2 ∪ e3)

R; Γ ⊢M : (RegrA, e)

R; Γ ⊢!M : (A, e ∪ {r})
R; Γ ⊢M : (RegrA, e1) R; Γ ⊢ N : (A, e2)

R; Γ ⊢M := N : (1, e1 ∪ e2 ∪ {r})

R; Γ ⊢M : (A, e) R ⊢ (A, e) ≤ (A′, e′)

R; Γ ⊢M : (A′, e′)

Finally, the typing rules are extended to stores, and general multi-threaded programs as

4

follows.2

r : A ∈ R ∀V ∈ v R; Γ ⊢ V : (A, ∅)
R; Γ ⊢ (r ← v) : (1, ∅)

R; Γ ⊢ Xi : (Ai, ei) i = 1, . . . , n ≥ 1

R; Γ ⊢ X1, . . . ,Xn : e1 ∪ · · · ∪ en

Remark 1 The derived typing rule for regrM is as follows:

r : A ∈ R R; Γ ⊢M : (A, e)

R; Γ ⊢ regrM : (RegrA, e ∪ {r})

One can derive a more traditional ‘effect-free’ type system by erasing all the effects from
the types and the typing judgements. Note that in the resulting system the subtyping rules
are useless. We shall write ⊢ef for provability in this system. This ‘weaker’ type system
suffices to state a decomposition property of the terms which is proven by induction on the
structure of the term.

Proposition 2 (decomposition) If R;⊢ef M : A is a well-typed closed term then exactly
one of the following situations arises where E is an evaluation context:

1. M is a value.

2. M = E[∆] and ∆ has the shape (λx.N)V , r := V , or !r.

3.1 Basic properties of typing and evaluation

We observe some basic properties: (i) one can weaken both the type and region contexts, (ii)
typing is preserved when we replace a variable with an effect-free term of the same type, and
(iii) typing is preserved by reduction. If S is a store and e is a set of regions then S|e is the
store S restricted to the regions in e.

Proposition 3 (basic properties, unstratified) The following properties hold:

weakening If R; Γ ⊢M : (A, e) and R,R′ ⊢ Γ,Γ′ then R,R′; Γ,Γ′ ⊢M : (A, e).

substitution If R; Γ, x : A ⊢M : (B, e) and R; Γ ⊢ N : (A, ∅) then R; Γ ⊢ [N/x]M : (B, e).

subject-reduction Let M denote a sequence M1, . . . ,Mn. If R,R′;⊢ M, S : e, R ⊢ e,
and M, S → M′, S′ then R,R′;⊢ M′, S′ : e, S|dom(R′) = S′

|dom(R′), and M, S|dom(R) →

M′, S′
|dom(R). Moreover, if M = M and R,R′ ⊢ M : (A, e) then M′ = M ′ and R,R′ ⊢

M ′ : (A, e).

The weakening and substitution properties are shown directly by induction on the proof
height. Concerning subject reduction, it is useful to notice that that if a term M , of type and
effect (A, e), is ready to read/write the region r then r ∈ e. This follows from an analysis of
the evaluation context. Then we prove the assertion by case analysis on the reduction rule
applied, relying on the substitution property.

2The fact that we attribute the type 1 to a store is a mere convention which allows for a uniform notation
for the typing of stores and terms.

5

Remark 4 The subject reduction property is formulated so as to make clear that the type
and effect system indeed delimits the interactions a term may have with the store. Note that
a term may refer to regions which are not explicitly mentioned in its type and effect. For

instance, consider M = (λf.∗)(λx.!rx) and let R = r : 1
∅
−→ 1. Then R;⊢M : (1, ∅), ∅ ⊢ (1, ∅)

but ∅; ∅ 6⊢ M : (1, ∅). The subject reduction property guarantees that such a term will only
read/write regions included in the region context needed to type its type and effect.

3.2 Recursion

In our (unstratified) calculus, we can write in a region r a functional value λx.M where M
reads from the region r itself. For instance, regr(λx.(!r)x).

This kind of circularity leads to diverging computations such as:

(!(regrλx.(!r)x))∗ → (!r)∗, (r ← λx.(!r)x) →
(λx.(!r)x)∗, (r ← λx.(!r)x) → (!r)∗, (r ← λx.(!r)x) → · · ·

It is well known that this phenomena can be exploited to simulate recursive definitions.
Specifically, we define:

fixrf.M = λx.(!(regr(λx.[λx.(!r)x/f]M x))) x (1)

By a direct application of the typing rules and proposition 3(substitution), one can derive a
rule to type fixrf.M .

Proposition 5 (type fixed-point) The following typing rule for the fixed point combinator
is derived:

r : A
e
−→ B ∈ R r ∈ e

R; Γ, f : A
e
−→ B ⊢M : (A

e
−→ B, ∅)

R; Γ ⊢ fixrf.M : (A
e
−→ B, ∅)

(2)

For a concrete example, assume basic operators on the integer type and let M be the
factorial function:

M = λx.if x = 0 then 1 else x ∗ f(x− 1) .

Then compute (fixrf.M)1. In this case we have e = {r} and r : int
r
−→ int ∈ R.

4 Types and effects: stratified case

As we have seen, an unstratified simply typed calculus with effects may produce diverging
computations. To avoid this, a natural idea proposed by G. Boudol in [1] is to stratify regions.

Intuitively, we fix a well-founded order on regions and we make sure that values stored
in a region r can only produce effects on smaller regions. For instance, suppose V is a value

with type (1
{r}
−−→ 1). Intuitively, this means that when applied to an argument U : 1, V may

produce an effect on region {r}. Then the value V can only be stored in regions larger than
r. We shall see that this stratification allows for an inductive definition of the values that can
be stored in a given region.

6

The only change in the type system concerns the judgements R ⊢, R ⊢ A, and R ⊢ (A, e)
whose rules are redefined as follows:

∅ ⊢
R ⊢ A r /∈ dom(R)

R, r : A ⊢
R ⊢

R ⊢ 1

R ⊢ r : A ∈ R

R ⊢ RegrA

R ⊢ A R ⊢ B e ⊆ dom(R)

R ⊢ A
e
−→ B

R ⊢ A e ⊆ dom(R)

R ⊢ (A, e)
.

Proviso Henceforth we shall use ⊢ to refer to provability in the stratified system and ⊢u

for provability in the unstratified one. The former implies the latter since R ⊢ implies R ⊢u

and R ⊢ A implies R ⊢u A, while the other rules are unchanged.

4.1 Basic properties revisited

The main properties we have proven for the unstratified system can be specialised to the
stratified one.

Proposition 6 (basic properties, stratified) The following properties hold in the strati-
fied system.

weakening If R; Γ ⊢M : (A, e) and R,R′ ⊢ Γ,Γ′ then R,R′; Γ,Γ′ ⊢M : (A, e).

substitution If R; Γ, x : A ⊢M : (B, e) and R; Γ ⊢ N : (A, ∅) then R; Γ ⊢ [N/x]M : (B, e).

subject reduction If R,R′;⊢M, S : e, R ⊢ e, and M, S →M′, S′ then R,R′;⊢M′, S′ : e,
S|dom(R′) = S′

|dom(R′), and M, S|dom(R) → M′, S′
|dom(R). Moreover, if M = M and

R,R′;⊢M : (A, e) then M′ = M ′ and R,R′;⊢M ′ : (A, e).

4.2 Interpretation

We describe a reducibility candidates interpretation that entails that typed programs termi-
nate. We denote with SN the collection of strongly normalising single-threaded programs,
i.e., the programs of the shape M,S such that all reduction sequences terminate. We write
(M,S) ⇓ (N,S′) if M,S

∗
−→ N,S′ and N,S′ 6→. We write R′ ≥ R, and say that R′ extends R,

if R′ ⊢ and R′ = R,R′′ for some R′′.
The starting idea is that the interpretation of R ⊢ is a set of stores and the interpretation

of R ⊢ (A, e) is a set of terms. One difficulty is that the stores and the terms may depend on
a region context R′ which extends R. We get around this problem, by making the context R′

explicit in the interpretation. Then the interpretation can be given directly by induction on
the provability of the judgements R ⊢ and R ⊢ (A, e). This seems an interesting simplification
with respect to the the approach taken in [1], where the interpretation is given with respect
to a rather technical well-founded order.

A second characteristic of our approach is that the properties a thread must satisfy are
specified with respect to a ‘saturated’ store which intuitively already contains all the values
the thread may write into it. This approach provides a simple argument to extend the
termination argument from single-threaded to multi-threaded programs. Indeed, if we a have
a set of threads which are guaranteed to terminate with respect to a saturated store then
their parallel composition will terminate too. To see this, one can reason by contradiction:

7

if the parallel composition diverges then one thread must run infinitely often and, since the
threads cannot modify the saturated store (what they write is already there), this contradicts
the hypothesis that all the threads taken alone with the saturated store terminate.

Region-context Let R = r1 : A1, . . . , rn : An and Rri
= r1 : A1, . . . , ri−1 : Ai−1, for

i = 1, . . . , n. We interpret a region-context R as a set of pairs R′ ⊢ S where R′ is a
region-context which extends R and a S is a ‘saturated’ store whose domain coincides
with R:

R = { R′ ⊢ S | R′ ≥ R, dom(S) = dom(R), and for i = 1, . . . , n
S(ri) = {V | R′ ⊢ V ∈ Rri

⊢ (Ai, ∅)} }

If R′ ≥ R then R(R′) is defined as the store S such that R′ ⊢ S ∈ R. Note that, for
r ∈ dom(R) and R = R1, r : A,R2, V ∈ R(R′)(r) means R′ ⊢ V ∈ R1 ⊢ (A, ∅).

Type and effect We interpret a type and effect R ⊢ (A, e) as the set of pairs R′ ⊢M such
that R′ extends R, and M is a closed term typable with respect to R′ and satisfying
suitable properties (1-3 below):

R ⊢ (A, e) = {R′ ⊢M | (1) R′ ≥ R, R′; ∅ ⊢M : (A, e),

(2) for all R′′ ≥ R′ M,R(R′′) ∈ SN , and
(3) for all M ′, S′, R′′ ≥ R′ (M,R(R′′)) ⇓ (M ′, S′)

implies S′ = R(R′′) and C(A,R,R′′,M ′) }

where: C(A,R,R′′,M ′) ≡
(A = 1 ⊃ M ′ = ∗) ∧
(A = RegrB ⊃ M ′ = r) ∧

(A = A1
e′
−→ A2 ⊃ M ′ = λx.N ∧

for all R1 ≥ R′′, R1 ⊢ V ∈ R ⊢ (A1, ∅)

implies R1 ⊢M ′V ∈ R ⊢ (A2, e
′)) .

Suppose R = r1 : A1, . . . , rn : An. We note that the interpretation of R depends on
the interpretation of r1 : A1, . . . , ri−1 : Ai−1 ⊢ Ai for i = 1, . . . , n and the interpretation of

R ⊢ (A, e) depends on the interpretation of R and, when A = A1
e′
−→ A2, on the interpretation

of R ⊢ (A1, ∅) and R ⊢ (A2, e
′). It is easily verified that the definition of the interpretation is

well founded by considering as measure the height of the proof of the interpreted judgement.
We also note that such a well-founded definition would not be possible in the unstratified
system. For instance, the interpretation of r : A ⊢ (A, ∅) where A = 1

r
−→ 1 should refer

to a store containing values of type A. Finally, we stress that the interpretations of R and
R ⊢ (A, e) actually contain terms typable in an extension R′ of R but that their properties
are stated with respect to a store whose domain is dom(R). This is possible because the type
and effect system does indeed delimit the effects a term may have when it is executed (cf.
remark 4).

4.3 Basic properties of the interpretation

We say that a term M is neutral if it is not a λ-abstraction. The following proposition
lists some basic properties of the interpretation. Similar properties arise in the reducibility

8

candidates interpretations used for ‘pure’ functional languages, but the main point here is that
we have to state them relatively to suitable stores. In particular, the extension/restriction
property, which is perhaps less familiar, is crucial to prove the following soundness theorem
9.

Proposition 7 (properties interpretation) The following properties hold.

Weakening If R′′ ≥ R′ ≥ R, R ⊢ (A, e), and R′ ⊢ M ∈ R ⊢ (A, e) then R′′ ⊢ M ∈
R ⊢ (A, e).

Extension/Restriction Suppose R′′ ≥ R′ ≥ R and R ⊢ (A, e). Then R′′ ⊢M ∈ R ⊢ (A, e)
if and only if R′′ ⊢M ∈ R′ ⊢ (A, e).

Subtyping If R ⊢ (A, e) ≤ (A′, e′) then R ⊢ (A, e) ⊆ R ⊢ (A′, e′).

Strong normalisation If R′ ⊢M ∈ R ⊢ (A, e) and R′′ ≥ R′ then M,R(R′′) ∈ SN .

Reduction closure If R′ ⊢ M ∈ R ⊢ (A, e), R′′ ≥ R′, and M,R(R′′) → M ′, S′ then R′′ ⊢
M ′ ∈ R ⊢ (A, e) and S′ = R(R′′).

Non-emptiness If R ⊢ A then there is a value V such that for all R′ ≥ R and e ⊆ dom(R),
R′ ⊢ V ∈ R ⊢ (A, e).

Expansion closure Suppose R ⊢ (A, e), R′ ≥ R, R′; ∅ ⊢M : (A, e), and M is neutral. Then
R′ ⊢M ∈ R ⊢ (A, e) provided that for all R′′ ≥ R′,M ′, S′ such that M,R(R′′)→M ′, S′

we have that R′′ ⊢M ′ ∈ R ⊢ (A, e) and S′ = R(R′′).

Proof hint.

Weakening We rely on proposition 6((syntactic) weakening) and the fact that, the properties
the pairs R′ ⊢M must satisfy to belong to R ⊢ (A, e), must hold for all the extensions
R′′ ≥ R′.

Extension/Restriction By definition, R(R′′) coincides with R′(R′′) on dom(R). On the
other hand, the proposition 6(subject reduction) guarantees that the reduction of a
term of type and effect (A, e) will not depend and will not affect the part of the store
whose domain is dom(R′)\dom(R). We then prove the property by induction on the
structure of the type A.

Subtyping This is proven by induction on the the proof of R ⊢ A ≤ A′.

Strong normalisation This follows immediately from the definition of the interpretation.

Reduction closure We know that M,R(R′′) must normalise to a value satisfying suitable
properties and the same saturated store R(R′′). Moreover, we know that the store can
only grow during the reduction. We conclude applying the weakening property.

Non-emptiness/Expansion closure These two properties are proven at once, by induc-
tion on the proof height of R ⊢ (A, e). We take as values: ∗ for the type 1, r for a type

of the shape RegrB, and the ‘constant function’ λx.V2 for a type of the shape A1
e1−→ A2

where V2 is the value inductively built for A2. To prove λx.V2 ∈ R ⊢ (A1
e1−→ A2, e), we

use the inductive hypothesis of expansion closure of R ⊢ (A2, e1). 2

9

4.4 Soundness of the interpretation

By definition, if R ⊢ M ∈ R ⊢ (A, e) then R;⊢ M : (A, e). We are going to show that the
converse holds too. First we need to generalise the notion of reducibility to open terms.

Definition 8 (term interpretation) We write R;x1 : A1, . . . , xn : An |= M : (B, e) if
whenever R′ ≥ R and R′ ⊢ Vi ∈ R ⊢ (Ai, ∅) for i = 1, . . . , n we have that
R′ ⊢ [V1/x1, . . . , Vn/xn]M ∈ R ⊢ (B, e).

As usual, the main result can be stated as the soundness of the interpretation with respect
to the typing rules. Since terms in the interpretation are strongly normalising relatively to
a saturated store (cf. proposition 7), it follows that typable (closed) terms are strongly
normalising.

Theorem 9 (soundness) If R; Γ ⊢M : (B, e) then R; Γ |= M : (B, e).

Proof hint. The proof goes by induction on the typing of the the terms and exploits the
properties of the interpretation stated in proposition 7. As usual, the case of the abstraction
is proven by appealing to expansion closure and the case of application follows from the very
interpretation of the functional types and reduction closure. The cases where we write or
read from the store have to be handled with some care. We discuss a simplified situation.
Suppose R′ ≥ R = R1, r : A,R2.

write Suppose R;⊢ r := V : (1, {r}) is derived from R;⊢ V : (A, ∅). Then, by induction
hypothesis, we know that R′ ⊢ V ∈ R ⊢ (A, ∅). However, for maintaining the invariant
that the saturated store is unchanged, we need to show that R′ ⊢ V ∈ R1 ⊢ (A, ∅), and
this is indeed the case thanks to proposition 7(restriction).

read Suppose we have R′;⊢!r : (A, {r}). Now notice that proposition 7(non-emptiness)
guarantees that R(R′)(r) is not empty. Thus !r,R(R′) will reduce to V,R(R′) for some
value V such that R′ ⊢ V ∈ R1 ⊢ (A, ∅). However, what we need to show is that
R′ ⊢ V ∈ R ⊢ (A, ∅) and this is indeed the case thanks to proposition 7(extension). 2

Corollary 10 (1) The judgement R;⊢ M : (A, e) is provable if and only if R ⊢ M ∈
R ⊢ (A, e).

(2) Every typable multi-threaded program R;⊢M1, . . . ,Mn : e terminates.

Corollary 10(1), follows from theorem 9 taking the context Γ to be empty. Corollary 10(2)
follows from the fact that each thread strongly normalizes with respect to a saturated store.
Then its execution is not affected by the execution of other threads in parallel: all these
parallel threads could do is to write in the saturated store values which are already there.

5 A timed extension

We consider a synchronous/timed extension of our language. Following an established tra-
dition, we consider that the computation is divided into instants and that an instant ends
when the computation cannot progress. Then we need at least an additional operator that
allows to write programs that react to the end of the instant by changing their state in the
following instant. We shall see that the termination of the typable programs can be obtained
by mapping reductions in the extended language into reductions in the core language.

10

Syntax and Reduction We extend the collection of terms as follows: M ::= · · · ||M ⊲ M ,
where the operator else-next, written M ⊲ N , tries to run M and, if it fails, runs N in the
following instant (cf. [4]). We extend the evaluation contexts assuming: E ::= · · · || E ⊲ M ,
and the elementary evaluation contexts assuming: El ::= · · · || [] ⊲ M .

We define a simplification operator red that removes from a context all pending branches
else-next:

red(E) =

[] if E = []
red(E′) if E = E′ ⊲ N
El [red(E′)] otherwise, if E = El [E′]

We say that an evaluation context E is time insensitive if red(E) = E. We adapt the reduction
rules defined in section 2 as follows:

E[(λx.M)V]→ red(E)[[V/x]M] E[!r], (r ← V)→ red(E)[V], (r ← V)

E[r := V]→ red(E)[∗], (r ← V)
.

Further, we have to describe how a program reacts to the end of the computation. This is

specified by the relation
tick
−−→ below:

V
tick
−−→ V

M = E[!r] E time insensitive

M
tick
−−→M

M = E[E′[∆] ⊲ N] E time insensitive ∆ ::= V ||!r

M
tick
−−→ E[N]

S
tick
−−→ S

P1, P2 6→ Pi
tick
−−→ P ′

i i = 1, 2

P1, P2
tick
−−→ P ′

1, P
′
2

.

For instance, we can write (λx.M)!r ⊲ N for a thread that tries to read a value from the
region r in the first instant and if it fails it resumes the computation with N in the following
instant. We can also write ∗ ⊲ N for a thread that (unconditionally) stops its computation
for the current instant and resumes it with N in the following instant.

Note that P
tick
−−→ only if P 6→. The converse is in general false, but it will be true

for well-typed closed programs (cf. proposition 11). Thus for well-typed closed programs

the principle is that time passes (a
tick
−−→ transition is possible) exactly when the computation

cannot progress (a→ transition is impossible). Then termination is obviously a very desirable
property of timed/synchronous programs.

Typing The typing rules for the terms are extended as follows:

R; Γ ⊢M : (A, e) R; Γ ⊢ N : (A, e′)

R; Γ ⊢M ⊲ N : (A, e)
.

Note that in typing M ⊲ N we only record the effect of the term M , that is we focus on the
effects a term may produce in the first instant while neglecting those that may be produced
at later instants.

11

Reduction The decomposition proposition 2 can be lifted to the extended language.

Proposition 11 (decomposition extended) If ⊢ef M : A is a well-typed closed thread
then exactly one of the following situations arises where E is a time insensitive evaluation
context:

1. M is a value.

2. M = E[∆] and ∆ has the shape (λx.N)V , r := V , or !r.

3. M = E[E′[∆] ⊲ N] and ∆ has the shape V , (λx.N)V , r := V , or !r.

The third case in proposition 11 corresponds to the situation where the redex ∆ is under
the scope of an else-next.

We can adapt the weakening, substitution, and subject reduction properties; we focus
here on the stratified case.

Proposition 12 (basic properties, stratified extended) The following properties hold
in the stratified system.

weakening If R; Γ ⊢M : (A, e) and R,R′ ⊢ Γ,Γ′ then R,R′; Γ,Γ′ ⊢M : (A, e).

substitution If R; Γ, x : A ⊢M : (B, e) and R; Γ ⊢ N : (A, ∅) then R; Γ ⊢ [N/x]M : (B, e).

context substitution If R; Γ, x : A ⊢ E[x] : (B, e) where x is not free in the evaluation
context E and R; Γ ⊢ N : (A, e′) then R; Γ ⊢ E[N] : (B, e ∪ e′).

subject reduction If R,R′; Γ ⊢M, S : e, R ⊢ e, and M, S →M′, S′ then R,R′; Γ ⊢M′, S′ :
e, S|dom(R′) = S′

|dom(R′), and M, S|dom(R) → M′, S′
|dom(R). Moreover, if M = M and

R,R′ ⊢M : (A, e) then M′ = M ′ and R,R′;⊢M ′ : (A, e).

tick reduction If R;⊢M, S : e, and M, S
tick
−−→M′, S′ then S = S′ and there is an effect e′

such that R;⊢M′, S : e′.

The proofs of weakening and substitution proceed as in proposition 6. The proof of
context substitution requires an analysis of the shape of the evaluation context. The reader
will notice that now we need to prove that typing is preserved both by ordinary reduction
(subject reduction) and by the passage of time (tick reduction). Concerning subject reduction,
we have to verify that the operator red that removes the pending branches preserves the
typing. Concerning the tick reduction, notice that the effect of the reduced term might be
incomparable with the effect of the term to be reduced. Still the context substitution property
allows to conclude that the resulting term is well-typed.

Translation We consider a translation that removes the else-next operator while preserving
typing and reduction. Namely, we define a function 〈 〉 on terms such that 〈M ⊲ N〉 = 〈M〉,
〈x〉 = x, 〈∗〉 = ∗, 〈r〉 = r, and which commutes with the other operators (abstraction,
application, reading, and writing). Also the translation is extended to stores and programs
in the obvious way: 〈(r ← V)〉 = (r ← 〈V 〉), 〈X1, . . . ,Xn〉 = 〈X1〉, . . . , 〈Xn〉.

12

Proposition 13 (1) If R; Γ ⊢M : (A, e) then R; Γ ⊢ 〈M〉 : (A, e).

(2) If R; Γ ⊢ P : e then R; Γ ⊢ 〈P 〉 : e.

(3) If R;⊢ P : e and P → P ′ then 〈P 〉 → 〈P ′〉.

(4) A program P terminates if 〈P 〉 terminates.

The proof of this proposition is direct. In particular, to prove (3) we show that the
translation commutes with the substitution and that the translation of an evaluation context
is again an evaluation context.

Fixed-point, revisited The typing rule (2) proposed for the fixed-point combinator cannot
be applied in the stratified system as the condition r : A

e
−→ B ∈ R and r ∈ e cannot be

satisfied. However, we can still type recursive calls that happen in a later instant.

Proposition 14 (type fixed-point, revisited) The following typing rule for the fixed point
combinator is derived in the stratified system

r : A
e
−→ B ∈ R

R; Γ, f : A
e∪{r}
−−−→ B ⊢M : (A

e
−→ B, ∅)

R; Γ ⊢ fixrf.M : (A
e∪{r}
−−−→ B, ∅)

(3)

We prove this proposition by a direct application of the typing rules and the proposition
12(substitution). To see a concrete example where the rule can be applied, consider a thread
that at each instant writes an integer in a region r′ (we assume a basic type int of integers):

M = λx.(λz. ∗ ⊲f(x + 1))(r′ := x)

Then, e.g., (fixrf.M)1 is the infinite behaviour that at the i-th instant writes i in region r′.
One can check the typability of fixrf.M taking as (stratified) region context R = r′ : int , r :

int
{r′}
−−→ 1.

6 Conclusion

We have introduced a λ-calculus with regions which is intended to abstract a variety of
concrete higher-order concurrent languages with specific scheduling and interaction mecha-
nisms. We have described a stratified type and effect system and provided a new reducibility
candidates interpretation for it which entails that typable programs terminate. We have high-
lighted some relevant properties of the interpretation (proposition 7) which could be taken
as the basis for an abstract definition of reducibility candidate. The latter is needed to in-
terpret second-order (polymorphic) types (see, e.g., [3]). We have also lifted our approach to
a timed/synchronous framework and derived a form of recursive definition which is useful to
define behaviours spanning infinitely many instants. In another direction, one could refine
the type and effect system to include linear information (in the sense of linear logic) which
is relevant both to define deterministic fragments of the calculus and to control better the
complexity of the definable programs.

Acknowledgements Thanks to Gérard Boudol for several discussions on [1].

13

References

[1] G. Boudol. Typing termination in a higher-order concurrent imperative language. In
Proc. CONCUR, Springer LNCS 4703:272-286, 2007.

[2] G. Berry and G. Gonthier. The Esterel synchronous programming language. Science of
computer programming, 19(2):87–152, 1992.

[3] J. Gallier. On Girard’s Candidats de Reductibilité. In Logic and Computer Science,
Odifreddi (ed.), Academic Press, 123-203, 1990.

[4] M. Hennessy, T. Regan. A process algebra of timed systems. Information and Compu-
tation, 117(2):221-239, 1995.

[5] J. Lucassen and D. Gifford. Polymorphic effect systems. In Proc. ACM-POPL, 1988.

[6] M. Tofte and J.-P. Talpin. Region-based memory management. Information and Com-
putation, 132(2): 109-176, 1997.

14

A Proofs

A.1 Proof of proposition 2

By induction on the structure of M . By the typing hypothesis, M cannot be a variable. If
M is a value we are in case 1. Otherwise, M can have exactly one of the following shapes:
M1M2, !M1, M1 := M2. We consider in some detail the case for application.

The typing rules force M1 and M2 to be typable in an empty context. Moreover M1

must have a functional type. Because of this, if M1 is a value then it must be of the shape
λx.M ′

1. Moreover, we can apply the inductive hypothesis to M2 and suitably compose with
the evaluation context M1[]. If M1 is not a value then we apply the inductive hypothesis to
M1 and suitably compose with the evaluation context []M2. 2

A.2 Proof of proposition 3

Weakening First prove by induction on the proof height that if R,R′ ⊢ and R ⊢ A, (R ⊢
(A, e), R ⊢ A ≤ B) then R,R′ ⊢ A (R,R′ ⊢ (A, e), R,R′ ⊢ A ≤ B). Next, by induction
on the proof height, we show how to transform a proof R; Γ ⊢M : (A, e) into a proof of
R,R′; Γ,Γ′ ⊢M : (A, e). 2

Substitution By induction on the proof height of R; Γ, x : A ⊢M : (B, e).

Subject reduction First we notice that if a term M , of type and effect (A, e), is ready to
interact with the store then the region on which the interaction takes place belongs to
e. More formally, if R;⊢M : (A, e), M ≡ E[∆] and ∆ has the shape !r or r := V then
r ∈ e. To prove these facts we proceed by induction on the structure of the evaluation
context E. Then we prove the assertion by case analysis on the reduction rule applied
relying on the substitution property. 2

A.3 Proof of proposition 5

Suppose r : A
e
−→ B ∈ R and r ∈ e. Then R;⊢ λx.!rx : (A

e
−→ B, ∅). By proposition

3(substitution), R; Γ ⊢ M ′ : (A
e
−→ B, ∅) where M ′ = [λx.!rx/f]M . From this we derive:

R; Γ ⊢ M ′′ : (A
e
−→ B, {r}) where M ′′ =!(regrλx.M ′x). This judgement can be weakened

to R; Γ, x : A ⊢ M ′′ : (A
e
−→ B, {r}) which combined with R; Γ, x : A ⊢ x : (A, ∅) leads to

R; Γ ⊢ λx.M ′′x : (A
e
−→ B, ∅) where λx.M ′′x = fixrf.M , as required. 2

A.4 Proof of proposition 7

Weakening Suppose R′′ ≥ R′ ≥ R and R′ ⊢ M ∈ R ⊢ (A, e). Then R′; ∅ ⊢ M : (A, e) and
by proposition 6(weakening) we know that R′′; ∅ ⊢M : (A, e). Moreover, an inspection
of the definition of R ⊢ (A, e) reveals that if we take a R′′′ ≥ R′′ then the required
properties are automatically satisfied because R′′′ ≥ R′ and R′ ⊢M ∈ R ⊢ (A, e).

Extension/Restriction Suppose R′′ ≥ R′ ≥ R and R ⊢ (A, e). We want to show that:

R′′ ⊢M ∈ R ⊢ (A, e) iff R′′ ⊢M ∈ R′ ⊢ (A, e) .

Note that R′(R′′) coincides with R(R′′) on dom(R). On the other hand, the proposition
6(subject reduction) guarantees that the reduction of a term of type and effect (A, e) will
not depend and will not affect the part of the store whose domain is dom(R′)\dom(R).

15

We proceed by induction on the structure of the type A.

Suppose A = 1. If R′′ ⊢ M ∈ R ⊢ (A, e) then we know that for any R1 ≥ R′′ we have
that M,R(R1) strongly normalizes to ∗, R(R1). By applying subject reduction, we can
conclude that M,R′(R1) will also strongly normalize to ∗, R′(R1). A similar argument
applies if we start with R′′ ⊢M ∈ R′ ⊢ (A, e). Also, this proof schema can be repeated
if A = RegrB.

Suppose now A = A1
e1−→ A2. If R′′ ⊢M ∈ R ⊢ (A, e) then we know that for any R1 ≥

R′′, M,R(R1) strongly normalizes to λx.N,R(R1), for some λx.N . Moreover for any
R2 ≥ R1, we have that R2 ⊢ V ∈ R ⊢ (A1, ∅) implies R2 ⊢ (λx.N)V ∈ R ⊢ (A2, e1). By
applying subject reduction, we can conclude that M,R′(R1) will also strongly normalize
to (λx.N), R′(R1), for some value λx.N . Further, by induction hypothesis on A, if
R2 ≥ R1 and R2 ⊢ V ∈ R′ ⊢ (A1, ∅) then R2 ⊢ (λx.N)V ∈ R′ ⊢ (A2, e1).

Again, a similar argument applies if we start with R′′ ⊢M ∈ R′ ⊢ (A, e).

Subtyping Suppose R ⊢ (A, e) ≤ (A′, e′). We proceed by induction on the proof of R ⊢ A ≤
A′.

Suppose we use the axiom R ⊢ A ≤ A and R′ ⊢ M ∈ R ⊢ (A, e). Then we check
that R′ ⊢ M ∈ R ⊢ (A, e′) since R′; ∅ ⊢ M : (A, e′) using the subtyping rule, and the
remaining conditions do not depend on e or e′.

Suppose we have A = A1
e1−→ A2, A′ = A′

1

e′
1−→ A′

2, and we derive R ⊢ A ≤ A′ from
R ⊢ A′

1 ≤ A1, R ⊢ A2 ≤ A′
2, and e1 ⊆ e′1. Moreover, suppose R′ ⊢ M ∈ R ⊢ (A, e).

Then R′; ∅ ⊢ M : (A′, e′), by the subtyping rule. Moreover, if R′′ ≥ R′ and M,R(R′)
reduces to λx.N,R(R′′), we can use the induction hypothesis to show that if R1 ≥ R′′

and R1 ⊢ V ∈ R ⊢ (A′
1, ∅) then R1 ⊢ (λx.N)V ∈ R ⊢ (A′

2, e
′
1).

Strong normalisation This follows immediately from the definition of R ⊢ (A, e).

Reduction closure Suppose R′ ⊢ M ∈ R ⊢ (A, e) and R′′ ≥ R′. We know that M,R(R′′)
strongly normalizes to programs of the shape M ′′, R(R′′) where M ′′ has suitable prop-
erties. Then if M,R(R′′) reduces to M ′, S′ it must be that S′ = R(R′′) since the
store can only grow. Moreover, by proposition 6(subject reduction), we know that
R′′; ∅ ⊢ M ′ : (A, e). It remains to check conditions (2) and (3) of the interpreta-
tion on R′′ ⊢ M ′. Let R′′′ ≥ R′′. We claim M,R(R′′′) reduces to M ′, R(R′′′) so
that M ′ inherits from M the conditions (2) and (3). To check the claim, recall that
M,R(R′′) reduces to M ′, R(R′′). Then we analyse the type of reduction performed.
The interesting case arises when M reads a value V from the store R(R′′) where, say,
R′′ ⊢ V ∈ R1 ⊢ (B, ∅) and R = R1, r : B,R2. But then we can apply weakening to
conclude that R′′′ ⊢ V ∈ R1 ⊢ (B, ∅).

Non-emptiness/Expansion closure We prove the two properties at once, by induction
on the proof height of R ⊢ (A, e).

• Suppose R ⊢ (1, e). We take V = ∗. Then for R′ ≥ R we have R′; ∅ ⊢ ∗ : (1, e).
Also, for any R′′ ≥ R′, ∗, R(R′′) converges to itself and satisfies the required
properties. Therefore R′ ⊢ ∗ ∈ R ⊢ (1, e).

16

This settles non-emptiness. To check expansion closure, suppose R′ ≥ R, R′; ∅ ⊢
M : (1, e), and R′′ ≥ R′. By the decomposition proposition 2, M is either a value
or a term of the shape E[∆] where ∆ is a redex.

If M,R(R′′) does not reduce then M must be the value ∗. Indeed, by the typing
hypothesis it cannot be a region or an abstraction. Also, it cannot be of the
shape E[!r]. Indeed, suppose R = R1, r : B,R2, then by induction hypothesis on
R1 ⊢ (B, ∅), we know that the store R(R′′) contains at least a value in the region
r .

If M,R(R′′) does reduce then, by hypothesis, for all M ′, S′ such that M,R(R′′)→
M ′, S′ we have that R′′ ⊢ M ′ belongs to R ⊢ (A, e) and S′ = R(R′′). This is
enough to check the conditions (2) and (3) of the interpretation and conclude that
R′ ⊢M belongs to R ⊢ (A, e).

• The other basic case is R ⊢ (RegrB, e). Then we take as value V = r and we
reason as in the previous case.

• Finally, suppose R ⊢ (A1
e1−→ A2, e). By induction hypothesis on R ⊢ (A2, e1),

we know that there is a value V2 such that for any R′ ≥ R we have R′ ⊢ V2 ∈
R ⊢ (A2, e1). Then we claim that:

R′ ⊢ λx.V2 ∈ R ⊢ (A1
e1−→ A2, e) .

First, R′;⊢ λx.V2 : (A1
e1−→ A2, e) is easily derived from the hypothesis that R′;⊢

V2 : (A2, e1). The second property of the interpretation is trivially fulfilled since
λx.V2 cannot reduce. For the third property, suppose R1 ≥ R′′ ≥ R′ and R1 ⊢
V ∈ R ⊢ (A1, ∅). We have to check that R1 ⊢ (λx.V2)V belongs to R ⊢ (A2, e1).
We observe that R1;⊢ (λx.V2)V : (A2, e1), and the term (λx.V2)V is neutral.
Moreover, for R2 ≥ R1, (λx.V2)V,R(R2)→ V2, R(R2). Thus we are in the situation
to apply the inductive hypothesis of expansion closure on R ⊢ (A2, e1).

This settles non-emptiness at higher-order. To check expansion closure, suppose
R′ ≥ R, R′;⊢ M : (A1

e1−→ A2, e), and M neutral. Then M cannot be a value
and for any R′′ ≥ R′ the program M,R(R′′) must reduce. Indeed, M cannot be
stuck on a read because if r ∈ dom(R) then we know, by inductive hypothesis,
that R(R′′)(r) is not-empty. Then we conclude that R′ ⊢ M satisfies properties
(2) and (3) of the interpretation because all the terms it reduces to satisfy them.
2

A.5 Proof of theorem 9

We proceed by induction on the proof of R; Γ ⊢ M : (B, e). We shall write [V/x] for
[V1/x1, . . . , Vn/xn]. Suppose Γ = x1 : A1, . . . , xn : An, R ⊢ Γ and R′ ≥ R. We let R′ ⊢ V ∈
R ⊢ Γ stand for R′ ⊢ Vi ∈ R ⊢ (Ai, ∅) for i = 1, . . . , n, where V = V1, . . . , Vn.

• Suppose Γ = x1 : A1, . . . , xi : Ai, . . . , xn : An, R; Γ ⊢ xi : (Ai, ∅), R′ ≥ R, and
R′ ⊢ V ∈ R ⊢ Γ. Then [V/x]xi = Vi and, by hypothesis, R′ ⊢ Vi ∈ R ⊢ (Ai, ∅).

• Suppose R; Γ ⊢ ∗ : (1, ∅), R′ ≥ R, and R′ ⊢ V ∈ R ⊢ Γ. Then [V/x]∗ = ∗ and we know
that R′ ⊢ ∗ ∈ R ⊢ (1, ∅).

17

• Suppose R; Γ ⊢ r : (RegrB, ∅), R′ ≥ R, and R′ ⊢ V ∈ R ⊢ Γ. Then [V/x]r = r and we
know that R′ ⊢ r ∈ R ⊢ (RegrB, ∅).

• Suppose R; Γ ⊢ M : (A′, e′) is derived from R; Γ ⊢ M : (A, e) and R ⊢ (A, e) ≤ (A′, e′).
Moreover, suppose R′ ≥ R, and R′ ⊢ V ∈ R ⊢ Γ. By induction hypothesis, R′ ⊢
[V/x]M ∈ R ⊢ (A, e). By proposition 7(subtyping), we conclude that R′ ⊢ [V/x]M ∈
R ⊢ (A′, e′).

• Suppose R; Γ ⊢ λx.M : (A
e
−→ B, ∅) is derived from R; Γ, x : A ⊢ M : (B, e). Moreover,

suppose R′ ≥ R, and R′ ⊢ V ∈ R ⊢ Γ. We need to check that R′ ⊢ λx.[V/x]M belongs
to R ⊢ (A

e
−→ B, ∅). Namely, assuming R1 ≥ R′′ ≥ R′ and R1 ⊢ V ∈ R ⊢ (A, ∅), we have

to show that R1 ⊢ [V/x](λx.M)V ∈ R ⊢ (B, e). We observe that R1;⊢ [V/x](λx.M)V :
(B, e) and that, by weakening R′ to R1 and induction hypothesis, we know that R1 ⊢
[V/x, V/x]M ∈ R ⊢ (B, e). Then we conclude by applying proposition 7(expansion
closure).

• Suppose R; Γ ⊢MN : (B, e1∪e2∪e3) is derived from R; Γ ⊢M : (A
e1−→ B, e2) and R; Γ ⊢

N : (A, e3). Moreover, suppose R′ ≥ R, and R′ ⊢ V ∈ R ⊢ Γ. By induction hypothesis,

we know that R′ ⊢ [V/x]M ∈ R ⊢ (A
e1−→ B, e2) and R′ ⊢ [V/x]N ∈ R ⊢ (A, e3). We

have to show that: R′ ⊢ [V/x](MN) ∈ R ⊢ (B, e1 ∪ e2 ∪ e3). Suppose R′′ ≥ R′. Then
[V/x]M,R(R′′) normalizes to λx.M ′, R(R′′) for some value λx.M ′ and [V/x]N,R(R′′)
normalizes to V,R(R′′) for some value V . Further, by reduction closure, we know that

R′′ ⊢ λx.M ′ ∈ (A
e1−→ B, e2) and R′′ ⊢ V ∈ (A, e3). It is easily checked that the

latter implies R′′ ⊢ V ∈ (A, ∅). By condition (3) of the interpretation, we derive that
R′′ ⊢ (λx.M ′)V ∈ R ⊢ (B, e1) which suffices to conclude.

• Suppose R; Γ ⊢ M := N : (1, e1 ∪ e2 ∪ {r}) is derived from R; Γ ⊢ M : (RegrA, e1) and
R; Γ ⊢ N : (A, e2). Moreover, suppose R′ ≥ R, and R′ ⊢ V ∈ R ⊢ Γ. By induction hy-
pothesis, we know that R′ ⊢ [V/x]M ∈ R ⊢ (RegrA, e1) and R′ ⊢ [V/x]N ∈ R ⊢ (A, e2).
Then for any R′′ ≥ R′, [V/x]M,R(R′′) normalizes to r,R(R′′) and [V/x]N,R(R′′) nor-
malizes to V,R(R′′) where R′′ ⊢ V ∈ R ⊢ (A, ∅). Suppose R = R1, r : A,R2. By
definition, R(R′′)(r) = {V ′ | R′′ ⊢ V ′ ∈ R1 ⊢ (A, ∅)}. By proposition 7(restriction), we
know that if R′′ ⊢ V ∈ R ⊢ (A, ∅) then R′′ ⊢ V ∈ R1 ⊢ (A, ∅). Therefore, V ∈ R(R′′)(r),
and the assignment normalizes to ∗, R(R′′)(r). It follows that R′′ ⊢ [V/x](M = N) be-
longs to R ⊢ (1, e1 ∪ e2 ∪ {r}).

• Suppose R; Γ ⊢!M : (A, e ∪ {r}) is derived from R; Γ ⊢ M : (RegrA, e). Moreover,
suppose R′ ≥ R, and R′ ⊢ V ∈ R ⊢ Γ. By induction hypothesis, we know that
R′ ⊢ [V/x]M ∈ R ⊢ (RegrA, e). Then for any R′′ ≥ R′, [V/x]M,R(R′′) normal-
izes to r,R(R′′). Thus ![V/x]M,R(R′′) will reduce to V,R(R′′) where V ∈ R(R′′)(r)
which is not empty by proposition 7(not-emptiness). Suppose R = R1, r : A,R2. We
know that R′′ ⊢ V ∈ R1 ⊢ (A, ∅) and by proposition 7(extension) we conclude that
R′′ ⊢ V ∈ R ⊢ (A, ∅). 2

A.6 Proof of corollary 10

(1) By definition, if R ⊢ M ∈ R ⊢ (A, e) then R;⊢ M : (A, e). On the other hand, as a
special case of theorem 9, if R;⊢M : (A, e) is derivable then R ⊢M ∈ R ⊢ (A, e).

18

(2) Suppose we have R;⊢ M1, . . . ,Mn : e. Then we have R;Mi : (Ai, ei) for i = 1, . . . , n.
By theorem 9, the evaluation of Mi, R(R) is guaranteed to terminate in Vi, R(R), for some
value Vi. Now any reduction starting from M1, . . . ,Mn can be simulated step by step by a
reduction of M1, . . . ,Mn, R(R) and therefore it must terminate. 2

A.7 Proof of proposition 11

By induction on the structure of M . We consider in some detail the case for the else-next (cf.
proof A.1 for other cases).

M1 ⊲ M2 We apply the inductive hypothesis to M1, and we have three cases: (1) M1 is a
value, (2) M1 = E1[∆1] with E1 time insensitive, and (3) M1 = E1[E2[∆1] ⊲ N] with E1

time insensitive. We note that in each case we fall in case 3 where the insensitive evaluation
context is []. 2

A.8 Proof of proposition 12

weakening/substitution The proofs of weakening and substitution proceed as in the proof
A.2.

context substitution We note that a proof of R; Γ ⊢ M : (A, e) consists of a proof of
R; Γ ⊢ M : (A′, e′), where R ⊢ (A′, e′) ≤ (A, e), followed by a sequence of subtyping
rules. To prove context substitution, we proceed by induction on the proof R; Γ, x : A ⊢
E[x] : (B, e) and by case analysis on the shape of E.

subject reduction To prove subject reduction, we start by noting that if R;x : A ⊢ E[x] :
(B, e) then R;x : A ⊢ red(E)[x] : (B, e). In other terms, the elimination of the pending
else-next branches from the evaluation context preserves the typing. Then we proceed
by analysing the redexes as in proof A.2.

tick reduction The interesting case is when M = E[E′[∆] ⊲ N], E is time insensitive, ∆

has the shape V or !r, and M
tick
−−→ E[N]. Suppose R;⊢M : (A, e). Then the typing of

the else-next guarantees that R;⊢ E′[∆] : (B, e1) and R;⊢ N : (B, e2) for some B, e1, e2

where e1 and e2 may be incomparable. Then we can conclude R;⊢ E[N] : (A, e′) where
the effect e′ is contained in dom(R) but may be incomparable with e. 2

A.9 Proof of proposition 13

(1) A straightforward induction on the typing.

(2) Immediate extension of step (1).

(3) First we check that the translation commutes with the substitution. Also, we extend
the translation to evaluation contexts, assuming 〈[]〉 = [], and check that 〈E〉 is again an
evaluation context. Then we proceed by case analysis on the reduction rule.

(4) Every reduction in P corresponds to a reduction in 〈P 〉. 2

19

Syntactic categories

x, y, . . . (variables)
r, s, . . . (regions)
e, e′, . . . (finite sets of regions)

A ::= 1 || Reg
r
A || (A

e

−→ A) (types)
R ::= r1 : A1, . . . , rn : An (region context)
Γ ::= x1 : A1, . . . , xn : An (context)
M ::= x || r || ∗ || λx.M ||MM ||!M || M := M || M ⊲ M (terms)
V ::= r || ∗ || λx.M (values)
v, v′, . . . (sets of value)
S ::= (r ← v) || S, S (stores)
X ::= M || S (stores or terms)
P ::= X || X, P (programs)
E ::= [] || EM || V E ||!E || E := M || r := E || E ⊲ M (evaluation contexts)

Evaluation rules within an instant

E[(λx.M)V]→ red(E)[[V/x]M] E[!r], (r ← V)→ red(E)[V], (r ← V)

E[r := V]→ red(E)[∗], (r ← V)

P → P ′

P, P ′′ → P ′, P ′′

Rules for the passage of time

V
tick
−−→ V

M = E[!r] E time insensitive

M
tick
−−→M

M = E[E′[∆] ⊲ N] E time insensitive ∆ ::= V ||!r

M
tick
−−→ E[N]

S
tick
−−→ S

P1, P2 6→ Pi

tick
−−→ P ′

i i = 1, 2

P1, P2

tick
−−→ P ′

1, P
′

2

Table 1: Syntactic categories and operational semantics

A.10 Proof of proposition 14

The proof is a variation of the one for proposition 5. Suppose r : A
e
−→ B ∈ R (hence r /∈ e).

Then R;⊢ λx.!rx : (A
e∪{r}
−−−→ B, ∅). By proposition 12(substitution), R; Γ ⊢ M ′ : (A

e
−→

B, ∅) where M ′ = [λx.!rx/f]M . From this we derive: R; Γ ⊢ M ′′ : (A
e
−→ B, {r}) where

M ′′ =!(regrλx.M ′x). This judgement can be weakened to R; Γ, x : A ⊢ M ′′ : (A
e
−→ B, {r})

which combined with R; Γ, x : A ⊢ x : (A, ∅) leads to R; Γ ⊢ λx.M ′′x : (A
e∪{r}
−−−→ B, ∅) where

λx.M ′′x = fixrf.M , as required. 2

B Summary of syntax, operational semantics, and typing rules

Table 1 summarizes the main syntactic categories, the evaluation rules for the computation

within an instant (relation →), and the rules for the passage of time (relation
tick
−−→). Table

2 summarizes the typing rules for the unstratified and stratified systems which differ just in
the judgements for region contexts and types.

20

Unstratified region contexts and types

R ↓ 1

R ↓ A R ↓ B e ⊆ dom(R)

R ↓ A
e

−→ B

r : A ∈ R

R ↓ Reg
r
A

∀ r ∈ dom(R) R ↓ R(r)

R ⊢
R ⊢ R ↓ A

R ⊢ A

R ⊢ A e ⊆ dom(R)

R ⊢ (A, e)

Stratified region contexts and types

∅ ⊢
R ⊢ A r /∈ dom(R)

R, r : A ⊢
R ⊢

R ⊢ 1

R ⊢ r : A ∈ R

R ⊢ Reg
r
A

R ⊢ A R ⊢ B e ⊆ dom(R)

R ⊢ A
e

−→ B

R ⊢ A e ⊆ dom(R)

R ⊢ (A, e)

Subtyping rules

R ⊢ A

R ⊢ A ≤ A

R ⊢ A′ ≤ A R ⊢ B ≤ B′

e ⊆ e′ ⊆ dom(R)

R ⊢ (A
e

−→ B) ≤ (A′ e
′

−→ B′)

R ⊢ A ≤ A′

e ⊆ e′ ⊆ dom(R)

R ⊢ (A, e) ≤ (A′, e′)

Terms, stores, and programs

R ⊢ Γ x : A ∈ Γ

R; Γ ⊢ x : (A, ∅)
R ⊢ Γ r : A ∈ R

R; Γ ⊢ r : (Reg
r
A, ∅)

R ⊢ Γ

R; Γ ⊢ ∗ : (1, ∅)

R; Γ, x : A ⊢M : (B, e)

R; Γ ⊢ λx.M : (A
e

−→ B, ∅)
R; Γ ⊢M : (A

e2−→ B, e1) R; Γ ⊢ N : (A, e3)

R; Γ ⊢MN : (B, e1 ∪ e2 ∪ e3)

R; Γ ⊢M : (Reg
r
A, e)

R; Γ ⊢!M : (A, e ∪ {r})
R; Γ ⊢M : (Reg

r
A, e1) R; Γ ⊢ N : (A, e2)

R; Γ ⊢M := N : (1, e1 ∪ e2 ∪ {r})

R; Γ ⊢M : (A, e) R; Γ ⊢ N : (A, e′)

R; Γ ⊢M ⊲ N : (A, e)

R; Γ ⊢M : (A, e) R ⊢ (A, e) ≤ (A′, e′)

R; Γ ⊢M : (A′, e′)

r : A ∈ R ∀V ∈ v R; Γ ⊢ V : (A, ∅)
R; Γ ⊢ (r ← v) : (1, ∅)

R; Γ ⊢ Xi : (Ai, ei) i = 1, . . . , n ≥ 1

R; Γ ⊢ X1, . . . , Xn : e1 ∪ · · · ∪ en

Table 2: Typing systems

21

