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Abstract

An acyclic k-coloring of a graphG is a proper vertex coloring ofG which uses at mostk
colors such that the graph induced by the union of every two color classes is a forest. In this
paper, we mainly prove that every 5-connected graph with maximum degree five is acyclically
8-colorable, improving partially [5].

1 Introduction

A proper vertex coloringof a graphG = (V, E) is an assignment of colors to the vertices of the
graph such that two adjacent vertices do not use the same color. A proper vertex coloring of a graph
G is acyclic if G contains no bicolored cycles; in other words, the graph induced by every two color
classes is a forest. Theacyclic chromatic numberof G, denoted byχa(G), is the smallest integer
k such thatG is acyclicallyk-colorable. Acyclic colorings were introduced by Grünbaum[6] who
proved that every planar graph is acyclically 9-colorable and conjectured that 5 colors are sufficient.
Mitchem [9] improved this result to 8 colors, Albertson and Berman [2] to 7 colors and Kostochka [8]
to 6 colors. Finally, in 1979, Borodin [3] proved that 5 colors are sufficient. This bound is best possi-
ble since there exist 4-regular planar graphs [6] which are not acyclically colorable with four colors.
Concerning graphs with bounded maximum degree, Alonet al. [1] proved that asymptotically every
graph with maximum degree∆ is acyclically colorable with O(∆4/3) colors; moreover they exhib-
ited graphs with maximum degree∆ with acyclic chromatic number at leastΩ(∆4/3/(log ∆)1/3.
For small maximum degrees, it was proved that 4 colors are sufficient to acyclically color graph with
maximum degree 3 (this bound is best possible because ofK4). In 1979, Burstein [4] proved that
every graph with maximum degree 4 is acyclically 5-colorable (this bound is tight because ofK5).
It was proved by Fertin and Raspaud [5] that every graph of maximum degree 5 can be acyclically
colored with 9 colors. In this note we improve partially thisresult proving that:

Lemma 1 Every graphG with maximum degree at most 5 and minimum degree strictly less than 5
is acyclically 8-colorable.

Then, we will refine our approach to prove :

Theorem 1 Every 5-connected graph with maximum degree five is acyclically 8-colorable.

We now introduce some notations. The following terminologywas introduced in [5]. A partial
acyclic coloring ofG is a coloringϕ of a subsetS of V such thatϕ is an acyclic coloring of
G[S] (the subgraph induced byS). A partial acyclic coloring using at mostk colors is said to be a
partial acyclick-coloring ofG. Let ϕ be a partial acyclic 8-coloring ofG and letv be an uncolored
vertex ofG. We say that a colorc for v allows us to extendϕ if the partial coloringϕ′ defined by
ϕ′(u) = ϕ(u) for all colored vertexu and byϕ′(v) = c is a partial acyclic 8-coloring ofG. For
a vertexu ∈ V \S, we denote the set of colored neighbors ofu by Nc(u) = N(u) ∩ S (where
N(u) is the set of the neighbors ofu) and#cn(u) = |Nc(u)|. We denote bySC(Nc(u)) the set
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Figure 1: The listLu = (2, 1, 1, 1)

of colors used by vertices inNc(u) and#dcn(u) = |SC(Nc(u))|. Given a vertexu and a color
c, let nc(u) be the number of vertices inNc(u) colored with the colorc. For each vertexu, we
set Lu = (n1, n2, . . . , n#dcn(u)) where eachni denotes the number that a color appears in the
neighborhood ofu andn1 ≥ n2 ≥ . . . ≥ n#dcn(u), and we callLu the color list ofu. For example
in Figure 1 we have : all the neighbors ofu are colored (thus#cn(u) = 5 andNc(u) = N(u)),
SC(Nc(u)) = {c1, c2, c3, c4}, #dcn(u) = 4 andLu = (2, 1, 1, 1) (two neighbors coloredc1, one
colored withc2, c3, c4). Finally, we denote by∆(G) andδ(G), the maximum and the minimum
degree of the graphG, respectively. We useJ1; nK to denote the set of integers{1, 2, . . . , n}.

2 Proof of Lemma 1

In this section, we prove that, ifG is connected with∆(G) ≤ 5 andδ(G) < 5, thenG is acyclically
8-colorable. The proof is based on a greedy algorithm. We first define an order≺ on the vertices
of G, and then we color the vertices ofG according to≺. Let v be a vertex of degreed(v) < 5.
Let T be a spanning tree ofG rooted atv. The order≺ is defined by a post order walk onT . Let
x1, . . . , xn be the vertices ofG such that for everyi, j, 1 ≤ i < j ≤ n, xi ≺ xj andxn = v.
Observe that for alli with 1 ≤ i ≤ n, xi has at most four neighborsxj with j < i. We will color the
xi’s successively using Lemmas 2 and 3. The obtained coloring will be an acyclic 8-coloring ofG.

We begin with an observation of [5]:

Observation 1 [5] Let G be a graph with maximum degree 5 and letϕ be a partial acyclic 8-
coloring ofG. Suppose thatv is a uncolored vertex ofG. If all colored neighbors ofv have distinct
colors, it suffices to proper colorv to extendϕ. If a color c appearsnc(v) > 1 times among the
neighbors ofv, then, to colorv, we need to forbid at most2nc(v) colors to avoid the creation of
possible bicolored cycles going throughv and the vertices colored withc.

Lemma 2 Let G be a graph with∆(G) ≤ 5 and letϕ be a partial acyclic 8-coloring ofG. Then,
for any uncolored vertexu such that#cn(u) ≤ 3, there exists a color foru that allows us to extend
ϕ.

Proof
First, suppose that no color is repeated among the neighborsof u, thusLu = (1), Lu = (1, 1), or
Lu = (1, 1, 1). By Observation 1,u only needs to avoid the colors used by its neighbors, then it
remains at least five colors to coloru.

Now, suppose that a color appears (at least) twice among the neighbors ofu. Then, since
#cn(u) ≤ 3, we have exactly three cases :Lu = (2), Lu = (2, 1), or Lu = (3). When
Lu = (2), Lu = (2, 1) (resp.Lu = (3)), u needs to forbid four colors to avoid the creation of pos-
sible bicolored cycles by Observation 1 (resp. six colors) and at most two more colors to maintain
the proper coloring (resp. one more color). In each case, at least one choice remains to coloru. 2

Lemma 3 Let G be a graph with∆(G) ≤ 5 and letϕ be a partial acyclic 8-coloring ofG. Then,
for any uncolored vertexu such that#cn(u) = 4, there exists a color foru that allows us to extend
ϕ.
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Proof
Let G be a graph with∆(G) ≤ 5, ϕ be a partial acyclic 8-coloring ofG, andu be an uncolored
vertexu such that#cn(u) = 4. Let v1, v2, v3, v4 be its four colored neighbors, and for1 ≤ i ≤ 4
and1 ≤ j ≤ 4, let vj

i be the four neighbors ofvi disctinct fromu.
To extendϕ to u, we will consider all possibleLu:

Case Lu = (1, 1, 1, 1). By Observation 1, it suffices to proper coloru (we have four re-
maining colors).

Case Lu = (2, 1, 1). By Observation 1,u needs to forbid four colors to avoid the possible
creation of bicolored cycles and three more colors to maintain the proper coloring. Then, one
choice remains to coloru.

Case Lu = (3, 1). W.l.o.g. suppose thatϕ(v1) = ϕ(v2) = ϕ(v3) = 1 andϕ(v4) = 2. If
there exists a colorα ∈ J3; 8K that it is not involved in a possible bicolored cycle with colors
1, α, then we coloru with α. Otherwise, this implies that each color inJ3; 8K appears twice
(and exactly twice) in the neighborhood ofv1, v2, v3, and for eachvi (1 ≤ i ≤ 3), we have
#dcn(vi) = 4. It suffices now to recolorv1 with a color different from 1, 2 and those in
SC(Nc(v1)) (we have two colors to recolorv1). Hence,Lu becomes(2, 1, 1), a case seen
previously.

Case Lu = (4). W.l.o.g. suppose thatϕ(v1) = ϕ(v2) = ϕ(v3) = ϕ(v4) = 1. Observe that
if one of thevi’s has#dcn(vi) = 4, sayv1, then we can recolorv1 with a color different from
1 and those inSC(Nc(v1)). We obtainLu = (3, 1), a case seen previously. So suppose that
for 1 ≤ i ≤ 4, #dcn(vi) ≤ 3. Observe that, to avoid the possible creation of bicolored cycles,
at most six colors may be forbidden foru. Hence it remains a choice to coloru.

Case Lu = (2, 2). W.l.o.g. suppose thatϕ(v1) = ϕ(v2) = 1 andϕ(v3) = ϕ(v4) = 2.
Observe that if one of thevi’s has#dcn(vi) = 4, sayvj , then we can recolorvj with a color
different from 1, 2 and those inSC(Nc(vj)). We obtainLu = (2, 1, 1), a case seen previously.
So suppose that for1 ≤ i ≤ 4, #dcn(vi) ≤ 3. Now, if we cannot coloru with a color inJ3; 8K,
this implies that for1 ≤ i ≤ 4, #dcn(vi) = 3, and w.l.o.g.SC(Nc(v1)) = SC(Nc(v2)) =
{3, 4, 5}, SC(Nc(v3)) = SC(Nc(v4)) = {6, 7, 8}. We focus onv1 and its neighborhood. We
will try to recolor v1 with a color different from 1: if we succeed, then we will obtain a new
Lu solved previously ; if not, then we will show that there exists a color foru that extendsϕ.
If #cn(v1) = 3, then we recolorv1 with a color different fromJ1; 5K and we are done. So
assume that#cn(v1) = 4 and w.l.o.g setϕ(v1

1) = ϕ(v2
1) = 3, ϕ(v3

1) = 4, andϕ(v4
1) = 5. We

try to recolorv1 with a color different from 3, 4, 5, and those ofSC(Nc(v
1
1)) \ {1}. If there

is a choice different from 1, we are done. If not, then we can color u with 3 (since3 does not
appear inSC(Nc(v3)), SC(Nc(v4)), andv1

1 has a unique neighbor colored with 1 (v1)). That
completes the proof.
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3 Proof of Theorem 1

In this section we prove that every 5-connected graph with maximum degree five is acyclically 8-
colorable. In fact we will prove that following stronger result. Let G be a 5-regular graph. Agood
spanning treeT ∗ of G is a spanning tree ofG having a vertex with four leaves.

Theorem 2 Let G be a 5-regular graph. IfG admits a good spanning tree, thenG is acyclically
8-colorable.

Theorem 1 follows from Theorem 2. LetG be a 5-connected 5-regular graph andu be a vertex
adjacent tov1, v2, v3, v4, v5. A spanning tree ofG \ v1, v2, v3, v4 plus the edgesuv1, uv2, uv3, uv4

is a good spanning tree ofG.
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Proof of Theorem 2
Let G be a 5-regular graph admitting a good spanning treeT ∗. We order the vertices ofG from x1

to xn according to a post order walk ofT ∗ rooted atr wherex1, x2, x3, x4 are four leaves ofr
andr = xn. First, we colorx1, x2, x3, x4 with distinct colors and then we will successively color
x5, x6, . . . , xn. To colorxi with 5 ≤ i ≤ n − 1, we use Lemmas 2 and 3 but without never recolor
the verticesx1, x2, x3, x4. In Lemma 2, no recoloring is used. In the caseLu = (3, 1) of Lemma 3,
v1 cannot bex1, x2, x3 or x4 sincev1 has four colored neighbors andu is notxn. Similarly in the
caseLu = (4) of Lemma 3,v1 cannot bex1, x2, x3 or x4. In the caseLu = (2, 2) of Lemma 3, we
focus onv1. If v1 is, sayx1, then we just focus onv2 instead ofv1 (sincev1 andv2 have the same
color, we are sure thatv2 is notx2, x3, x4). At this point, we have an acyclic coloring ofG\{xn}
such thatx1, x2, x3, x4 use four distinct colors. Finally, to colorxn we have two cases:

Case Lxn
= (1, 1, 1, 1, 1). By Observation 1, it suffices to proper colorxn (we have three

remaining colors).

Case Lxn
= (2, 1, 1, 1). W.l.o.g. ϕ(x1) = ϕ(xn−1) = 1, ϕ(x2) = 2, ϕ(x3) = 3, ϕ(x4) =

4. We choose forxn a color different from 1, 2, 3, 4 and those inSC(Nc(x1)). If there is a
choice, then we are done. Otherwise, we colorxn with 1 and recolor properlyx1 andxn−1.

That completes the proof of Theorem 2. 2

We conclude with the following question:

Question 1 Is it true that every 5-regular graph admits a good spanning tree?

References

[1] N. Alon, C. McDiarmid, B. Reed, Acyclic coloring of graphs, Random structures and algo-
rithms, 2(3):277-288, 1991.

[2] M.O Albertson and D.M. Berman. Every planar graph has an acyclic 7-coloring, Israel J.
Math.,(28):169-174, 1977.

[3] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math., (25):211-236, 1979.

[4] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soob̆sc̆. Akad. Nauk Gruzin
SSR, (93):21-24, 1979 (in Russian).

[5] Guillaume Fertin and André Raspaud, Acyclic coloring ofgraphs of maximum degree five :
nine colors are enough, Inform. Process. Lett., (105):65-72, 2008.

[6] B. Grünbaum, Acyclic colorings of planar graphs, IsraelJ. Math., 14(3):390-408, 1973.

[7] A.V. Kostochka and L.S. Mel’nikov, Note to the paper of Grünbaum on acyclic colorings,
Discrete Math., (14):403-406, 1976.

[8] A.V. Kostochka, Acyclic 6-colorings of planar graphs, Metody Diskret. Anal., (28):40-56, 1976
(in Russian).

[9] J. Mitchem, Every planar graph has an acyclic 8-coloring, Duke Math. J., (41):177-181, 1974.

4


