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Abstract

An acyclic k-coloring of a graph’ is a proper vertex coloring aff which uses at most
colors such that the graph induced by the union of every tworadasses is a forest. In this
paper, we mainly prove that every 5-connected graph withimax degree five is acyclically
8-colorable, improving partially [5].

1 Introduction

A proper vertex coloringdf a graphG = (V, E) is an assignment of colors to the vertices of the
graph such that two adjacent vertices do not use the same Agbwoper vertex coloring of a graph
G is acyclicif G contains no bicolored cycles; in other words, the graphdediby every two color
classes is a forest. Thaeeyclic chromatic numbeof G, denoted byy,(G), is the smallest integer
k such that7 is acyclicallyk-colorable. Acyclic colorings were introduced by Griinbajiwho
proved that every planar graph is acyclically 9-coloralnle eonjectured that 5 colors are sufficient.
Mitchem [9] improved this result to 8 colors, Albertson anetBian [2] to 7 colors and Kostochka [8]
to 6 colors. Finally, in 1979, Borodin [3] proved that 5 cd@re sufficient. This bound is best possi-
ble since there exist 4-regular planar graphs [6] which ateyclically colorable with four colors.
Concerning graphs with bounded maximum degree, &loal. [1] proved that asymptotically every
graph with maximum degred is acyclically colorable with Q&*/3) colors; moreover they exhib-
ited graphs with maximum degre® with acyclic chromatic number at lea@ A*/3 /(log A)'/3.
For small maximum degrees, it was proved that 4 colors afegudt to acyclically color graph with
maximum degree 3 (this bound is best possible becaugg pfIn 1979, Burstein [4] proved that
every graph with maximum degree 4 is acyclically 5-coloea(this bound is tight because &f;).

It was proved by Fertin and Raspaud [5] that every graph ofimam degree 5 can be acyclically
colored with 9 colors. In this note we improve partially thésult proving that:

Lemmal Every graphG with maximum degree at most 5 and minimum degree strictiythem 5
is acyclically 8-colorable.

Then, we will refine our approach to prove :

Theorem 1 Every 5-connected graph with maximum degree five is acyigli@ecolorable.

We now introduce some notations. The following terminolegs introduced in [5]. A partial
acyclic coloring ofG is a coloringy of a subsetS of V' such thaty is an acyclic coloring of
G|S] (the subgraph induced by). A partial acyclic coloring using at mostcolors is said to be a
partial acyclick-coloring of G. Let ¢ be a partial acyclic 8-coloring @ and letv be an uncolored
vertex of G. We say that a colof for v allows us to exteng if the partial coloringy’ defined by
¢’ (u) = o(u) for all colored vertex: and byy’(v) = ¢ is a partial acyclic 8-coloring of7. For
a vertexu € V\S, we denote the set of colored neighborsuoby N.(u) = N(u) NS (where
N(u) is the set of the neighbors aff and#cn(u) = |N.(u)|. We denote bySC'(N.(u)) the set
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Figure 1: The list.,, = (2,1,1,1)

of colors used by vertices iV.(u) and#den(u) = |SC(N.(u))|. Given a vertex: and a color

¢, let n.(u) be the number of vertices iV.(u) colored with the coloe. For each vertex, we
setL, = (ni,n2,...,Nuden(w)) Where eachn; denotes the number that a color appears in the
neighborhood of: andn; > nz > ... > nygen(a), and we callL,, the color list ofu. For example

in Figure 1 we have : all the neighborsofare colored (thugtcn(u) = 5 andN.(u) = N(u)),
SC(N¢(u)) = {c1,c2,¢3,¢4}, #den(u) =4 andL,, = (2,1, 1,1) (two neighbors colored,, one
colored withea, ¢3, ¢4). Finally, we denote byA(G) andd(G), the maximum and the minimum
degree of the grap@, respectively. We usfl; n] to denote the set of intege{s, 2, ..., n}.

2 Proof of Lemmal

In this section, we prove that, @ is connected wittA(G) < 5 andd(G) < 5, thenG is acyclically
8-colorable. The proof is based on a greedy algorithm. Wedefine an ordex on the vertices
of G, and then we color the vertices 6f according to<. Letwv be a vertex of degreé(v) < 5.
Let T" be a spanning tree @ rooted atv. The order< is defined by a post order walk i Let
x1,...,%, be the vertices off such that for every, j, 1 < i < j < n, z; < z; andz, = v.
Observe that for all with 1 < ¢ < n, z; has at most four neighbozg with j < . We will color the
x;'s successively using Lemmas 2 and 3. The obtained colorilipevan acyclic 8-coloring ot5.

We begin with an observation of [5]:

Observation 1 [5] Let G be a graph with maximum degree 5 and {etbe a partial acyclic 8-

coloring of G. Suppose that is a uncolored vertex af. If all colored neighbors of: have distinct

colors, it suffices to proper colar to extendp. If a color ¢ appearsn.(v) > 1 times among the
neighbors ofv, then, to colorv, we need to forbid at mo&in.(v) colors to avoid the creation of
possible bicolored cycles going througland the vertices colored with

Lemma?2 Let G be a graph wittA(G) < 5 and lety be a partial acyclic 8-coloring ofy. Then,
for any uncolored vertex such that#cn(u) < 3, there exists a color fot that allows us to extend

@Y.

Pr oof
First, suppose that no color is repeated among the neiglobarsthusZ,, = (1), L, = (1,1), or
L, = (1,1,1). By Observation 1 only needs to avoid the colors used by its neighbors, then it
remains at least five colors to coler

Now, suppose that a color appears (at least) twice amongdlghlvors ofu. Then, since
#cen(u) < 3, we have exactly three casesL,, = (2), L, = (2,1), or L, = (3). When
L, =(2), L, = (2,1) (resp.L,, = (3)), u needs to forbid four colors to avoid the creation of pos-
sible bicolored cycles by Observation 1 (resp. six colong) at most two more colors to maintain
the proper coloring (resp. one more color). In each caseaat bne choice remains to cotar O

Lemma3 LetG be a graph withA(G) < 5 and lety be a partial acyclic 8-coloring of7. Then,
for any uncolored vertex such that#cn(u) = 4, there exists a color fot that allows us to extend

@.



Proof
Let G be a graph withA(G) < 5, ¢ be a partial acyclic 8-coloring a7, andu be an uncolored
vertexu such that#cn(u) = 4. Letwv, vz, v3, v4 be its four colored neighbors, and for< i < 4
andl < j < 4, letv! be the four neighbors af; disctinct fromu.

To extendy to u, we will consider all possiblé.,,:

Case L, = (1,1,1,1). By Observation 1, it suffices to proper coler(we have four re-
maining colors).

Case L, = (2,1,1). By Observation 1y needs to forbid four colors to avoid the possible
creation of bicolored cycles and three more colors to mairkee proper coloring. Then, one
choice remains to colar.

Case L,, = (3,1). W.l.o.g. suppose that(vi) = ¢(v2) = p(vs) = 1 andep(vy) = 2. If
there exists a colar € [3; 8] that it is not involved in a possible bicolored cycle with e
1, «, then we colon: with «.. Otherwise, this implies that each color[js; 8] appears twice
(and exactly twice) in the neighborhoodef, v5, v3, and for each; (1 < ¢ < 3), we have
#den(v;) = 4. It suffices now to recolop; with a color different from 1, 2 and those in
SC(N.(v1)) (we have two colors to recolar). Hence,L,, becomeg2,1,1), a case seen
previously.

Case L,, = (4). W.L.o.g. suppose that(vi) = ¢(v2) = p(vs) = ¢(vs) = 1. Observe that

if one of thev;’s has#dcn(v;) = 4, sayvr, then we can recolar, with a color different from

1 and those il6C'(N.(v1)). We obtainZ,, = (3,1), a case seen previously. So suppose that
for1 <i <4, #den(v;) < 3. Observe that, to avoid the possible creation of bicoloyetkes,

at most six colors may be forbidden for Hence it remains a choice to coler

Case L,, = (2,2). W.l.o.g. suppose that(vi) = p(v2) = 1 andp(vs) = p(vg) = 2.
Observe that if one of the;'s has#dcn(v;) = 4, sayv;, then we can recolar; with a color
differentfrom 1, 2 and those iSiC(N.(v;)). We obtainL,, = (2,1, 1), a case seen previously.
So suppose that fdr< i < 4, #dcen(v;) < 3. Now, if we cannot color with a color in[3; 8],
this implies that forl < ¢ < 4, #den(v;) = 3, and w.l.0.g.SC(N.(v1)) = SC(N.(v2)) =
{3,4,5}, SC(N,(v3)) = SC(N.(vs)) = {6,7,8}. We focus on; and its neighborhood. We
will try to recolor v, with a color different from 1: if we succeed, then we will olota new
L,, solved previously ; if not, then we will show that there exiatcolor foru that extendsp.

If #cn(v1) = 3, then we recolow; with a color different from[1; 5] and we are done. So
assume thatcen(vy) = 4 and w.l.o.g sep(vl) = p(v?) = 3, p(v3) = 4, andp(v}) = 5. We
try to recolorv; with a color different from 3, 4, 5, and those 8§C(N.(v1)) \ {1}. If there
is a choice different from 1, we are done. If not, then we cdarcowith 3 (since3 does not
appear inSC(N.(vs)), SC(N.(v4)), andvi has a unique neighbor colored with4; )). That
completes the proof.

O

3 Proof of Theorem 1

In this section we prove that every 5-connected graph witkimam degree five is acyclically 8-
colorable. In fact we will prove that following stronger udts Let G be a 5-regular graph. good
spanning treel”* of GG is a spanning tree @ having a vertex with four leaves.

Theorem 2 Let G be a 5-regular graph. {5 admits a good spanning tree, théhis acyclically
8-colorable.

Theorem 1 follows from Theorem 2. Lét be a 5-connected 5-regular graph ande a vertex
adjacent tan, va, vs, v4, v5. A Spanning tree of7 \ vy, ve, v3, v4 plus the edgesuv;, uve, uvs, uvy
is a good spanning tree 6f.



Proof of Theorem 2

Let G be a 5-regular graph admitting a good spanning frfeeWe order the vertices a¥ from

to x,, according to a post order walk @f* rooted atr wherez;, x2, z3, x4 are four leaves of
andr = z,,. First, we colorzy, x5, x3, x4 With distinct colors and then we will successively color
s, X6, ..., Ty. TOCOlOrz; with 5 < i <n — 1, we use Lemmas 2 and 3 but without never recolor
the verticesey, xo, 23, 24. In Lemma 2, no recoloring is used. In the cdse= (3,1) of Lemma 3,

v, cannot bery, xo, x3 Or 24 Sincev; has four colored neighbors amds notz,,. Similarly in the
caseL, = (4) of Lemma 3,; cannot bery, xo, x5 Or z4. In the casd.,, = (2,2) of Lemma 3, we
focus onv;. If vy is, sayzq, then we just focus on, instead ofv; (sincev; andv, have the same
color, we are sure that is notxs, 23, x4). At this point, we have an acyclic coloring 6\ {z,, }
such thatry, xo, x3, x4 use four distinct colors. Finally, to colar, we have two cases:

Case L, = (1,1,1,1,1). By Observation 1, it suffices to proper coloy (we have three
remaining colors).

Case L., = (2,1,1,1). Wl.o.g. o(21) = p(xn-1) = 1,0(x2) = 2,0(x3) = 3, p(x4) =
4. We choose for,, a color different from 1, 2, 3, 4 and those $tC'(N.(x1)). If thereis a
choice, then we are done. Otherwise, we calpwith 1 and recolor properly, andz,,_;.

That completes the proof of Theorem 2. ]

We conclude with the following question:

Question 1 Is it true that every 5-regular graph admits a good spannieg?
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