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Introduction

A proper vertex coloring of a graph G = (V, E) is an assignment of colors to the vertices of the graph such that two adjacent vertices do not use the same color. A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycles; in other words, the graph induced by every two color classes is a forest. The acyclic chromatic number of G, denoted by χ a (G), is the smallest integer k such that G is acyclically k-colorable. Acyclic colorings were introduced by Grünbaum [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] who proved that every planar graph is acyclically 9-colorable and conjectured that 5 colors are sufficient. Mitchem [START_REF] Mitchem | Every planar graph has an acyclic 8-coloring[END_REF] improved this result to 8 colors, Albertson and Berman [START_REF] Albertson | Every planar graph has an acyclic 7-coloring[END_REF] to 7 colors and Kostochka [START_REF] Kostochka | Acyclic 6-colorings of planar graphs[END_REF] to 6 colors. Finally, in 1979, Borodin [START_REF] Borodin | On acyclic colorings of planar graphs[END_REF] proved that 5 colors are sufficient. This bound is best possible since there exist 4-regular planar graphs [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] which are not acyclically colorable with four colors. Concerning graphs with bounded maximum degree, Alon et al. [START_REF] Alon | Acyclic coloring of graphs, Random structures and algorithms[END_REF] proved that asymptotically every graph with maximum degree ∆ is acyclically colorable with O(∆ 4/3 ) colors; moreover they exhibited graphs with maximum degree ∆ with acyclic chromatic number at least Ω(∆ 4/3 /(log ∆) 1/3 . For small maximum degrees, it was proved that 4 colors are sufficient to acyclically color graph with maximum degree 3 (this bound is best possible because of K 4 ). In 1979, Burstein [START_REF] Burstein | Every 4-valent graph has an acyclic 5-coloring[END_REF] proved that every graph with maximum degree 4 is acyclically 5-colorable (this bound is tight because of K 5 ). It was proved by Fertin and Raspaud [START_REF] Fertin | Acyclic coloring of graphs of maximum degree five : nine colors are enough[END_REF] that every graph of maximum degree 5 can be acyclically colored with 9 colors. In this note we improve partially this result proving that: Lemma 1 Every graph G with maximum degree at most 5 and minimum degree strictly less than 5 is acyclically 8-colorable.

Then, we will refine our approach to prove : Theorem 1 Every 5-connected graph with maximum degree five is acyclically 8-colorable.

We now introduce some notations. The following terminology was introduced in [START_REF] Fertin | Acyclic coloring of graphs of maximum degree five : nine colors are enough[END_REF]. A partial acyclic coloring of G is a coloring ϕ of a subset S of V such that ϕ is an acyclic coloring of G[S] (the subgraph induced by S). A partial acyclic coloring using at most k colors is said to be a partial acyclic k-coloring of G. Let ϕ be a partial acyclic 8-coloring of G and let v be an uncolored vertex of G. We say that a color c for v allows us to extend ϕ if the partial coloring ϕ ′ defined by ϕ ′ (u) = ϕ(u) for all colored vertex u and by ϕ ′ (v) = c is a partial acyclic 8-coloring of G. ). Finally, we denote by ∆(G) and δ(G), the maximum and the minimum degree of the graph G, respectively. We use 1; n to denote the set of integers {1, 2, . . . , n}.

Proof of Lemma 1

In this section, we prove that, if G is connected with ∆(G) ≤ 5 and δ(G) < 5, then G is acyclically 8-colorable. The proof is based on a greedy algorithm. We first define an order ≺ on the vertices of G, and then we color the vertices of G according to ≺. Let v be a vertex of degree d(v) < 5.

Let T be a spanning tree of G rooted at v. The order ≺ is defined by a post order walk on T . Let x 1 , . . . , x n be the vertices of G such that for every i, j, 1 ≤ i < j ≤ n, x i ≺ x j and x n = v.

Observe that for all i with 1 ≤ i ≤ n, x i has at most four neighbors x j with j < i. We will color the x i 's successively using Lemmas 2 and 3. The obtained coloring will be an acyclic 8-coloring of G.

We begin with an observation of [START_REF] Fertin | Acyclic coloring of graphs of maximum degree five : nine colors are enough[END_REF]:

Observation 1 [START_REF] Fertin | Acyclic coloring of graphs of maximum degree five : nine colors are enough[END_REF] Let G be a graph with maximum degree 5 and let ϕ be a partial acyclic 8coloring of G. Suppose that v is a uncolored vertex of G. If all colored neighbors of v have distinct colors, it suffices to proper color v to extend ϕ. If a color c appears n c (v) > 1 times among the neighbors of v, then, to color v, we need to forbid at most 2n c (v) colors to avoid the creation of possible bicolored cycles going through v and the vertices colored with c.

Lemma 2 Let G be a graph with ∆(G) ≤ 5 and let ϕ be a partial acyclic 8-coloring of G. Then, for any uncolored vertex u such that #cn(u) ≤ 3, there exists a color for u that allows us to extend ϕ.

Proof

First, suppose that no color is repeated among the neighbors of u, thus

L u = (1), L u = (1, 1), or L u = (1, 1 , 1) 
. By Observation 1, u only needs to avoid the colors used by its neighbors, then it remains at least five colors to color u. Now, suppose that a color appears (at least) twice among the neighbors of u. Then, since #cn(u) ≤ 3, we have exactly three cases :

L u = (2), L u = (2, 1), or L u = (3). When L u = (2), L u = (2, 1) (resp. L u = ( 3 
)), u needs to forbid four colors to avoid the creation of possible bicolored cycles by Observation 1 (resp. six colors) and at most two more colors to maintain the proper coloring (resp. one more color). In each case, at least one choice remains to color u. 2 Lemma 3 Let G be a graph with ∆(G) ≤ 5 and let ϕ be a partial acyclic 8-coloring of G. Then, for any uncolored vertex u such that #cn(u) = 4, there exists a color for u that allows us to extend ϕ.

Proof of Theorem 2

Let G be a 5-regular graph admitting a good spanning tree T * . We order the vertices of G from x 1 to x n according to a post order walk of T * rooted at r where x 1 , x 2 , x 3 , x 4 are four leaves of r and r = x n . First, we color x 1 , x 2 , x 3 , x 4 with distinct colors and then we will successively color x 5 , x 6 , . . . , x n . To color x i with 5 ≤ i ≤ n -1, we use Lemmas 2 and 3 but without never recolor the vertices x 1 , x 2 , x 3 , x 4 . In Lemma 2, no recoloring is used. In the case L u = (3, 1) of Lemma 3, v 1 cannot be x 1 , x 2 , x 3 or x 4 since v 1 has four colored neighbors and u is not x n . Similarly in the case L u = (4) of Lemma 3, v 1 cannot be x 1 , x 2 , x 3 or x 4 . In the case L u = (2, 2) of Lemma 3, we focus on v 1 . If v 1 is, say x 1 , then we just focus on v 2 instead of v 1 (since v 1 and v 2 have the same color, we are sure that v 2 is not x 2 , x 3 , x 4 ). At this point, we have an acyclic coloring of G\{x n } such that x 1 , x 2 , x 3 , x 4 use four distinct colors. Finally, to color x n we have two cases:

Case L xn = (1, 1, 1, 1, 1). By Observation 1, it suffices to proper color x n (we have three remaining colors).

Case L xn = (2, 1, 1, 1). W.l.o.g. ϕ(x 1 ) = ϕ(x n-1 ) = 1, ϕ(x 2 ) = 2, ϕ(x 3 ) = 3, ϕ(x 4 ) = 4. We choose for x n a color different from 1, 2, 3, 4 and those in SC(N c (x 1 )). If there is a choice, then we are done. Otherwise, we color x n with 1 and recolor properly x 1 and x n-1 .

That completes the proof of Theorem 2.
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We conclude with the following question:

Question 1 Is it true that every 5-regular graph admits a good spanning tree?

1 Figure 1 :

 11 Figure 1: The list L u = (2, 1, 1, 1)

Proof

Let G be a graph with ∆(G) ≤ 5, ϕ be a partial acyclic 8-coloring of G, and u be an uncolored vertex u such that #cn(u) = 4. Let v 1 , v 2 , v 3 , v 4 be its four colored neighbors, and for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4, let v j i be the four neighbors of v i disctinct from u. To extend ϕ to u, we will consider all possible L u :

Case L u = (1, 1, 1, 1). By Observation 1, it suffices to proper color u (we have four remaining colors).

Case L u = (2, 1, 1). By Observation 1, u needs to forbid four colors to avoid the possible creation of bicolored cycles and three more colors to maintain the proper coloring. Then, one choice remains to color u.

If there exists a color α ∈ 3; 8 that it is not involved in a possible bicolored cycle with colors 1, α, then we color u with α. Otherwise, this implies that each color in 3; 8 appears twice (and exactly twice) in the neighborhood of v 1 , v 2 , v 3 , and for each v i (1 ≤ i ≤ 3), we have #dcn(v i ) = 4. It suffices now to recolor v 1 with a color different from 1, 2 and those in SC(N c (v 1 )) (we have two colors to recolor v 1 ). Hence, L u becomes (2, 1, 1), a case seen previously.

then we can recolor v 1 with a color different from 1 and those in SC(N c (v 1 )). We obtain L u = (3, 1), a case seen previously. So suppose that for 1 ≤ i ≤ 4, #dcn(v i ) ≤ 3. Observe that, to avoid the possible creation of bicolored cycles, at most six colors may be forbidden for u. Hence it remains a choice to color u.

Observe that if one of the v i 's has #dcn(v i ) = 4, say v j , then we can recolor v j with a color different from 1, 2 and those in SC(N c (v j )). We obtain L u = (2, 1, 1), a case seen previously. So suppose that for 1 ≤ i ≤ 4, #dcn(v i ) ≤ 3. Now, if we cannot color u with a color in 3; 8 , this implies that for 1 ≤ i ≤ 4, #dcn(v i ) = 3, and w.l.o.g. SC(N c (v 1 )) = SC(N c (v 2 )) = {3, 4, 5}, SC(N c (v 3 )) = SC(N c (v 4 )) = {6, 7, 8}. We focus on v 1 and its neighborhood. We will try to recolor v 1 with a color different from 1: if we succeed, then we will obtain a new L u solved previously ; if not, then we will show that there exists a color for u that extends ϕ. If #cn(v 1 ) = 3, then we recolor v 1 with a color different from 1; 5 and we are done. So assume that #cn(v 1 ) = 4 and w.l.o.g set ϕ(v 1 1 ) = ϕ(v 2 1 ) = 3, ϕ(v 3 1 ) = 4, and ϕ(v 4 1 ) = 5. We try to recolor v 1 with a color different from 3, 4, 5, and those of SC(N c (v 1 1 )) \ {1}. If there is a choice different from 1, we are done. If not, then we can color u with 3 (since 3 does not appear in SC(N c (v 3 )), SC(N c (v 4 )), and v 1 1 has a unique neighbor colored with 1 (v 1 )). That completes the proof.

3 Proof of Theorem 1

In this section we prove that every 5-connected graph with maximum degree five is acyclically 8colorable. In fact we will prove that following stronger result. Let G be a 5-regular graph. A good spanning tree T * of G is a spanning tree of G having a vertex with four leaves.

Theorem 2 Let G be a 5-regular graph. If G admits a good spanning tree, then G is acyclically 8-colorable.

Theorem 1 follows from Theorem 2. Let G be a 5-connected 5-regular graph and u be a vertex adjacent to v 1 , v 2 , v 3 , v 4 , v 5 . A spanning tree of G \ v 1 , v 2 , v 3 , v 4 plus the edges uv 1 , uv 2 , uv 3 , uv 4 is a good spanning tree of G.