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ASYMPTOTIC BEHAVIOUR FOR LOGARITHMIC
DIFFUSION

F. SALVARANI

Abstract. In this paper we prove, via the entropy dissipation
method, that the solutions of the d-dimensional logarithmic diffu-
sion equation, with non-homogeneous Dirichlet boundary data, de-
cay exponentially in time towards its own steady state. The result
is valid not only in L1-norm (as customary when applying entropy
dissipation methods), but also in any Lp-norm with p ∈ [1, +∞).
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1. Introduction

In this paper, we suggest a very compact strategy to study the long-
time asymptotics of the following initial-boundary value problem

ut(t, x) = ∆ log u(t, x) (t, x) ∈ (0,+∞)× Ω(1)

u(t, x)|∂Ω = ϕ(x)(2)

u(0, x) = u0(x)(3)

where Ω ⊂ Rd is a bounded and connected open set, with boundary
∂Ω of class C1, and d ∈ N.

The initial data u0 and the boundary conditions ϕ are non-negative
real functions which satisfy the prescriptions of the following definition:

Definition 1.1. The initial and boundary conditions of Problem (1)-
(3) are said to be admissible if

(1) ϕ = ϕ(x) is a continuous, strictly positive function of class
W 1,∞(∂Ω);

(2) u0(x) ∈ H1(Ω) ∩ L∞(Ω) and is non-negative a.e..

Equation (1) has many concrete applications: in particular, it arises
in the dynamics of thin liquid films (see, for example, [5] and [26]).
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Moreover, this equation is popular in the mathematical literature be-
cause of its connection with Ricci flow for surfaces [18].

Logarithmic diffusion equations are challenging from a mathematical
point of view, and many authors have studied different kinds of prob-
lems for Equation (1), mainly in the context of the Cauchy problem
or the initial-boundary value problems with homogeneous boundary
conditions.

As a result of this collective research, many features of Equation
(1) are now well understood. In particular, we point out the papers
[2, 3, 4, 10, 11, 15, 16, 20, 23, 25] that consider many questions about
existence, uniqueness, regularity, Harnack inequalities and finite blow-
down.

For further results, we refer to the books of Vázquez [22, 24], that
give the state-of-the-art, up to the time of their writing, on nonlinear
diffusion equations of porous media type.

Our result, whose precise statement is given in Theorem 4.1, provides
an explicit exponential rate of convergence towards the stationary so-
lution of Problem (1)-(2) by using the entropy dissipation method.
This is a powerful strategy which has been successfully employed to
obtain explicit decay rates towards equilibrium of weak solutions to
Cauchy problems for dissipative or hypocoercive equations and sys-
tems [1, 6, 7, 8, 9, 12, 13, 14].

Basically, the key point of the method is the choice of a Lyapunov
functional for the problem, sometimes called entropy. Once proved that
this (convex) functional is monotone decreasing in time (this property
justifies the name given to the functional, on the analogy of the phys-
ical entropy), if some norm of the difference between the solution and
the stationary state is controlled by the entropy, the method allows
to deduce that the solutions decay in time towards equilibrium with
explicit rate.

The entropy dissipation method has been mainly applied to study
Cauchy problems or initial-boundary value problems with homogeneous
(or periodic) boundary conditions. The use of such a procedure in the
framework of initial-boundary value problems with non-homogeneous
or non-periodic boundary conditions is less common.

Indeed, the presence of non-vanishing boundary conditions makes
difficult to obtain convex functionals of the solution which are decreas-
ing in time, since the source terms do not disappear easily when per-
forming integrations by parts. Moreover, all the estimates based on
mass conservation are no more valid.

We point out that a method suitable to handle non-homogeneous
Dirichlet boundary conditions for the nonlinear diffusion ut = (um)xx,
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m > 0, has been developed in [21]. The strategy of that paper –
which does not cover the case of logarithmic diffusion and is limited
to the 1-dimensional case – consists in considering convex functionals
based not only on the solution of the equation, but involving also the
stationary solution of the same problem. Then, by means of Poincaré-
type inequalities, the decay of the entropy allows to obtain exponential
decay for the L1-estimate of the difference between the solution of the
problem and its stationary state.

Our result provides an exponential rate which, though explicit, is not
optimal: it depends indeed on the constant of a Poincaré inequality on
domains and on the maximum and minimum of the initial and bound-
ary data. This feature is not surprising, since the entropy production
method usually is not enough, by itself, to prove the optimality of the
decay rate.

The main novelty of our proof with respect to previous results is the
use of the entropy production method also for a d-dimensional prob-
lem, with d ≥ 1, without knowing the explicit form of the stationary
state and in the presence of non-homogeneous boundary data. More-
over, we show that the method can be extended to prove exponential
convergence for any Lp-norm, with p ∈ [1,+∞).

The structure of this article is the following: some basic results for
Problem (1)-(3) are recalled in Section 2.

Section 3 introduces and studies an entropy functional of the prob-
lem: this is the fundamental tool used for proving exponential decay
in time.

Finally, in Section 4, we obtain an explicit rate of convergence of the
solution towards the steady state.

2. Preliminary results on the problem

Many interesting features of the non-homogeneous Dirichlet problem
(1)-(3), with strictly positive boundary data, are well known.

We only recall here that the precise characterization of a weak solu-
tion to Problem (1)-(3) is given by the following definition:

Definition 2.1. A function u = u(t, x) defined on [0, T ]× Ω̄ is an ad-
missible weak solution of the Dirichlet problem (1)-(3) with admissible
initial and boundary conditions if and only if:

(1) u is real, non-negative and of class L2((0, T )× Ω);

(2) u|∂Ω = ϕ for all t ∈ (0, T ], where ϕ satisfies the properties
prescribed by Definition 1.1;

(3) ∇ log u ∈ L2(((0, T )× Ω)n);
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(4) u satisfies the identity∫ T

0

∫
Ω

[
u(t, x)

∂φ

∂t
−∇ log(u(t, x)) · ∇φ

]
dxdt+

∫
Ω

u0(x)φ(0, x)dxdt = 0,

for all φ ∈ C([0, T ] × Ω̄) ∩H1((0, T ) × Ω) which vanish in ∂Ω
and for t = T , provided that u0 satisfies the properties required
by Definition 1.1.

We note that, under the assumptions of the data prescribed by Defi-
nition 1.1, any degeneracy of the solution due to the singular character
of the logarithmic diffusion is avoided: the problem is therefore stan-
dard parabolic.

The following theorem is classical:

Theorem 2.1. Let us consider the initial-boundary value problem (1)-
(3) with admissible (in the sense of Definition 1.1) non-negative initial
data u(0, x) = u0(x) and boundary conditions u(t, x)|∂Ω = ϕ(x). Then
Problem (1)-(3) admits a non-negative weak solution u = u(t, x) of
class C([0, T ];H1(Ω)).

Moreover, let

N = max{sup
x∈Ω

u0(x) , sup
x∈∂Ω

ϕ(x)}.

Then, u ≤ N a.e. in (0, T )× Ω.

Indeed, for admissible initial data bounded from below by a strictly
positive constant, the existence and the uniqueness of the solution fol-
low from the standard theory of non-degenerate quasilinear parabolic
equations; see for example [19].

If the initial condition vanishes somewhere in Ω a lifting argument
can be used in order to prove the theorem.

We recall moreover that a non-standard approach to logarithmic dif-
fusion, which permits to obtain the existence of solutions to the Dirich-
let problem (1)-(3) as by-product of an asymptotic limit procedure is
described in [17], but only in one space dimension.

In what follows, it will be useful to known that the stationary state
of Problem (1)-(2) enjoys all the nice properties of the solution of the
non-homogeneous Dirichlet problem for the Laplace equation. We have
indeed the following result:

Lemma 2.1. Problem (1)-(2) admits one and only one stationary so-
lution ū ∈ H1(Ω). Moreover, ū satisfies the maximum principle, i.e.
m ≤ ū ≤M a.e. in Ω, where

m = inf
x∈∂Ω

ϕ(x) and M = sup
x∈∂Ω

ϕ(x)
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respectively.

Proof. We only note that ū = ev, where v solves, for x ∈ Ω, the Laplace
equation:

∆v = 0

v|∂Ω = logϕ.

The thesis is hence immediate. �

3. The entropy functional

In this section we define the main tool of the proof: a functional
which, on the analogy of the monotone functionals of kinetic theory, is
customary called entropy.

As explained in the introduction, the presence of non-homogeneous
or non periodic boundary conditions does not allow the mass conser-
vation and could introduce surface terms in the integrations by part,
which are not easy to treat.

A way to overcome this problem is to define an auxiliary function
f = u/ū. Thanks to the positive lower bound imposed to the boundary
condition ϕ, we deduce that ū(x) > 0 for almost every x ∈ Ω. Hence
f is well defined and non-negative.

It is straightforward to prove that the function f satisfies the follow-
ing initial-boundary value problem:

(4) ū ft = ∆ log f

(5) f(t, x)|∂Ω = 1,

(6) f(0, x) = f0(x) = u0(x)/ū(x)

in Ω. We then consider the convex function Φn given by

(7) Φn(f) = [(n+3)f(f−1)n+2−2(f−1)n+3] = (f−1)n+2[(n+1)f+2],

where n ≥ 0 and even. It is easy to deduce the first and second
derivative of Φn: they are given by

Φ′n(f) = (n+ 3)[(n+ 2)f(f − 1)n+1 − (f − 1)n+2]

and

Φ′′n(f) = (n+ 1)(n+ 2)(n+ 3)f(f − 1)n.

Note that Φn is convex and non-negative definite for f ≥ 0. Moreover
Φn(1) = Φ′n(1) = 0.
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In this section, in order to make the computations more readable, we
will assume that the solutions are smooth so that the different computa-
tions are valid. This assumption is then eliminated by approximation,
which is justified according to known theory (see, for example, [4, 6]).

The following lemma characterises the time evolution of the entropy
of the system:

Lemma 3.1. Let u0 and ϕ be admissible initial-boundary conditions.
Then the functional

(8) Hn(f) =

∫
Ω

ūΦn(f) dx

with Φn(f) given by (7), is an entropy for Problem (4)-(6), that is

(9)
dHn(f)

dt
= −In(f),

where the (nonnegative) entropy production In(f) is

(10) In(f) = (n+ 1)(n+ 2)(n+ 3)

∫
Ω

(f − 1)n|∇f |2 dx.

Proof. We multiply both sides of Equation (4) by Φ′n(f). Integrating
over Ω with respect to x, we obtain∫

Ω

ūΦ′n(f)
∂f

∂t
dx =

∫
Ω

Φ′n(f)∆ log f dx.

We integrate now by parts the right-hand side:∫
Ω

ūΦ′n(f)
∂f

∂t
dx =

∫
∂Ω

Φ′n(f)∇ log f · ν dS −
∫

Ω

Φ′′n(f)∇f · ∇ log f dx,

where ν is the outward pointing unit normal vector field along ∂Ω.
Thanks to the boundary conditions (5) and to the property Φ′n(1) = 0

we obtain

d

dt

∫
Ω

ūΦn(f)dx = −
∫

Ω

Φ′′n(f)∇f · ∇ log f dx.

Since Φn
′′(f) = (n+ 1)(n+ 2)(n+ 3)f(f − 1)n, we deduce that

d

dt

∫
Ω

ūΦn(f)dx = −(n+ 1)(n+ 2)(n+ 3)

∫
Ω

(f − 1)n|∇f |2 dx.

Hence the lemma is fully proven. �
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4. Convergence towards equilibrium

This section is devoted to the proof of the exponential convergence in
time towards equilibrium for solutions of the non-homogeneous Dirich-
let problem (1)-(3).

The previous results are the basis of the following theorem:

Theorem 4.1. Let u ∈ C([0, T ];H1(Ω)) be the solution of Problem
(1)-(3), with admissible initial and boundary conditions u0 and ϕ re-
spectively. Then u decays exponentially fast towards the stationary so-
lution ū in Lp-norm, for any p ∈ [1,+∞). Moreover the following
bounds hold:

‖u− ū‖Lp(Ω) ≤ X(u0, ϕ, p,Ω) exp

(
− Cd,Ωm(p2 − 1)

Mp2[(p− 1)N + 2m]
t

)
,

where

X(u0, ϕ, p,Ω) = M (p−1)/p

(
1

2

∫
Ω

ū
(u0

ū
− 1
)p [

(p− 1)
u0

ū
+ 2
]
dx

)1/p

,

when p is an even natural number and

‖u− ū‖Lp(Ω) ≤ meas (Ω)(r−p)/rp‖u− ū‖Lr(Ω)

otherwise, where r is any even natural number greater than p.

Proof. As a first step in investigating the entropy decay rate, we note
that a lower bound to the entropy production functional In(f) can
be easily obtained by means of the Poincaré inequality. Indeed, if f
belongs to H1(Ω), there exists a strictly positive constant Cd,Ω, which
does not depend on x nor on f , such that∫

Ω

(f − 1)n|∇f |2 dx ≥ Cd,Ω
(n+ 2)2

∫
Ω

(f − 1)n+2 dx.

In order to obtain a proof of the exponential convergence of the solution
u(t, x) to Problem (1)-(3) towards its stationary state ū(x), it remains
to show that the relative entropy is bounded from above an from be-
low by the entropy production, modulo multiplication by a positive
constant.

Thanks to the maximum principle, we deduce easily that∫
Ω

Φn(f)ū dx ≤
[
(n+ 1)

N

m
+ 2

] ∫
Ω

(f − 1)n+2ū dx.

On the other hand, by using the elementary inequality

(f − 1)n+2[(n+ 1)f + 2] ≥ 2(f − 1)n+2,
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valid for any f ≥ 0 and n ≥ −1, we obtain that∫
Ω

Φn(f)ū dx ≥ 2

∫
Ω

(f − 1)n+2ū dx.

As a consequence of the previous bounds for the entropy, we deduce
from Equation (9) that Hn satisfies the differential inequality

dHn

dt
≤ −Cd,Ω

m(n+ 1)(n+ 3)

M(n+ 2)[(n+ 1)N + 2m]
Hn(t),

hence, for all n ≥ 0 and even,

‖u− ū‖n+2 ≤M (n+1)/(n+2)

(
1

2

∫
Ω

ūΦn(u0) dx

)1/(n+2)

e−γt,

where

γ = γ(u0, ϕ, n,Ω) =
Cd,Ω(n+ 1)(n+ 3)m

M(n+ 2)2[(n+ 1)N + 2m]
.

For non-even values of p ∈ [1,+∞), we use the standard interpolation
inequality

‖g‖Lp(Ω) ≤ meas (Ω)(r−p)/rp‖g‖Lr(Ω),

where r is any even natural number greater than p.
The previous computations imply the thesis of the theorem. �
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[16] J. R. Esteban, A. Rodŕıguez, and J. L. Vázquez. A nonlinear heat equation
with singular diffusivity. Comm. Partial Differential Equations, 13(8):985–
1039, 1988.

[17] F. Golse and F. Salvarani. The nonlinear diffusion limit for generalized Carle-
man models: the initial-boundary value problem. Nonlinearity, 20(4):927–942,
2007.

[18] R. S. Hamilton. The Ricci flow on surfaces. In Mathematics and general rela-
tivity (Santa Cruz, CA, 1986), volume 71 of Contemp. Math., pages 237–262.
Amer. Math. Soc., Providence, RI, 1988.
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