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Diagonal hyperboli systems withlarge and monotone dataPart I: Global ontinuous solutionsA. El Hajj1, R. Monneau2April 11, 2009AbstratIn this paper, we study diagonal hyperboli systems in one spae dimension. Based on a newgradient entropy estimate, we prove the global existene of a ontinuous solution, for large andnon-dereasing initial data. We remark that these results over the ase of systems whih arehyperboli but not stritly hyperboli. Physially, this kind of diagonal hyperboli systemsappears naturally in the modelling of the dynamis of disloation densities.AMS Classi�ation: 35L45, 35Q35, 35Q72, 74H25.Key words: Global existene, system of Burgers equations, system of non-linear transportequations, non-linear hyperboli system, dynamis of disloation densities.
1 Introdution and main result1.1 Setting of the problemIn this paper we are interested in ontinuous solutions to hyperboli systems in dimensionone. Our work will fous on solutions u(t, x) = (ui(t, x))i=1,...,d, where d is an integer, ofhyperboli systems whih are diagonal, i.e.

∂tu
i + λi(u)∂xu

i = 0 on (0, +∞) × R, for i = 1, . . . , d, (1.1)with the initial data:
ui(0, x) = ui

0(x), x ∈ R, for i = 1, . . . , d. (1.2)1Université d'Orléans, Laboratoire MAPMO, Route de Chartres, 45000 Orléans edex 2, Frane2Éole Nationale des Ponts et Chaussées, CERMICS, 6 et 8 avenue Blaise Pasal, Cité DesartesChamps-sur-Marne, 77455 Marne-la-Vallée Cedex 2, Frane1



Here ∂t =
∂

∂t
and ∂x =

∂

∂x
. Suh systems are (sometimes) alled (d × d) hyperbolisystems. Our study of system (1.1) is motivated by onsideration of models desribingthe dynamis of disloation densities (see the Appendix, Setion 5), whih is

∂tu
i +

(
∑

j=1,...,d

Aiju
j

)

∂xu
i = 0 for i = 1, . . . , d,where (Aij)i,j=1,...,d is a non-negative symmetri matrix. This model an be seen as aspeial ase of system (1.1).For real numbers αi ≤ βi, let us onsider the box

U = Πd
i=1[α

i, βi]. (1.3)We onsider a given funtion λ = (λi)i=1,...,d : U → R
d, whih satis�es the followingregularity assumption:

(H1)







the funtion λ ∈ C∞(U),there exists M0 > 0 suh that for i = 1, ..., d,
|λi(u)| ≤ M0 for all u ∈ U,there exists M1 > 0 suh that for i = 1, ..., d,
|λi(v) − λi(u)| ≤ M1|v − u| for all v, u ∈ U,where |w| =

∑

i=1,...,d

|wi|, for w = (w1, . . . , wd). Given any Banah spae (E, ‖ · ‖E), in therest of the paper we onsider the norm on Ed:
‖w‖Ed =

∑

i=1,...,d

‖wi‖E, for w = (w1, . . . , wd) ∈ Ed.We assume, for all u ∈ R
d, that the matrix
(λi

,j(u))i,j=1,...,d, where λi
,j =

∂λi

∂uj
,is non-negative in the positive one, namely

(H2)

∣
∣
∣
∣
∣
∣
∣
∣

for all u ∈ U, we have
∑

i,j=1,...,d

ξiξjλ
i
,j(u) ≥ 0 for every ξ = (ξ1, ..., ξd) ∈ [0, +∞)d.In (1.2), eah omponent ui

0 of the initial data u0 = (u1
0, . . . , u

d
0) is assumed satisfy thefollowing property: 2



(H3)







αi ≤ ui
0 ≤ βi,

ui
0 is non-dereasing,

∂xu
i
0 ∈ L log L(R),

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for i = 1, . . . , d,where L log L(R) is the following Zygmund spae:
L log L(R) =

{

f ∈ L1(R) suh that ∫
R

|f | ln (e + |f |) < +∞
}

.This spae is equipped by the following norm:
‖f‖L log L(R) = inf

{

µ > 0 :

∫

R

|f |
µ

ln

(

e +
|f |
µ

)

≤ 1

}

,This norm is due to Luxemburg (see Adams [1, (13), Page 234℄).Our purpose is to show the existene of a ontinuous solution u = (u1, . . . , ud) suh that,for i = 1, . . . , d, the funtion ui(t, ·) satis�es (H3) for all time.1.2 Main resultIt is well-known that for the lassial salar Burgers equation ∂tu + ∂x

(
u2

2

)

= 0, the so-lution stays ontinuous when the initial data is Lipshitz-ontinuous and non-dereasing.We want somehow to generalize this result to the ase of diagonal hyperboli systems. Inpartiular, we say that a funtion u0 = (u1
0, . . . , u

d
0) is non-dereasing if eah omponent

ui
0 is non-dereasing for i = 1, . . . , d.Theorem 1.1 (Global existene of a non-dereasing solution)Assume (H1), (H2) and (H3). Then, there exists a funtion u whih satis�es for all

T > 0:i) Existene of a weak solution:The funtion u is solution of (1.1)-(1.2), where
u ∈ [L∞((0, +∞) × R)]d ∩ [C([0, +∞); L logL(R))]d and ∂xu ∈ [L∞((0, T ); L logL(R))]d,suh that for a.e. t ∈ [0, T ) the funtion u(t, ·) is non-dereasing in x and satis�es thefollowing L∞ estimate:

‖ui(t, ·)‖L∞(R) ≤ ‖ui
0‖L∞(R), for i = 1, . . . , d, (1.4)
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and the gradient entropy estimate:
∫

R

∑

i=1,...,d

f
(
∂xu

i(t, x)
)
dx +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u)∂xu

i(s, x)∂xu
j(s, x) dx ds ≤ C1, (1.5)where

0 ≤ f(x) =

{
x ln(x) + 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,
(1.6)and C1

(
T, d, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

).ii) Continuity of the solution:The solution u onstruted in (i) belongs to [C([0, +∞) × R)]d and there exists a modulusof ontinuity ω(δ, h), suh that for all δ, h ≥ 0 and all (t, x) ∈ (0, T − δ) × R, we have:
|u(t + δ, x + h) − u(t, x)| ≤ C2 ω(δ, h) with ω(δ, h) =

1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)
, (1.7)where C2

(
T, d, M0, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

).The key point to establish Theorem 1.1 is the gradient entropy estimate (1.5). We �rstonsider the paraboli regularization of the system (1.1) and we show that the smoothsolution admits the L∞ bound (1.4) and the fundamental gradient entropy inequality(1.5). Then, these a priori estimates will allow us to pass to the limit when the regu-larization vanishes, whih will provide the existene of a solution. Let us mention thata similar gradient entropy inequality was introdued in Cannone et al. [5℄ to prove theexistene of a solution of a two-dimensional system of two oupled transport equations.Remark 1.2 Remark that assumption (H2) implies that the seond term on the lefthand side of (1.5) is non-negative. This will imply the L log L bound on the gradient ofthe solutions.Up to our knowledge, the result stated in Theorem 1.1 seems new. In relation with ourresult, we an ite the paper of Poupaud [24℄, where a result of existene and uniquenessof Lipshitz solutions is proven for a partiular quasi-linear hyperboli system.Hyperboli systems (1.1) in the ase d = 2 are alled stritly hyperboli if and only ifwe have:
λ1(u1, u2) < λ2(u1, u2). (1.8)In this ase, a result of Lax [19℄ implies the existene of Lipshitz monotone solutions of(1.1)-(1.2). This result was also extended by Serre [25, Vol II℄ in the ase of (d× d) rihhyperboli systems (see also Subsetion 1.4 for more related referenes). Their resultsare limited to the ase of stritly hyperboli systems. On the ontrary, in Theorem 1.1,we do not assume that the hyperboli system is stritly hyperboli. See the followingremark for a quite detailed example. 4



Remark 1.3 (Crossing eigenvalues)Condition (1.8) on the eigenvalues is not required in our framework (Theorem 1.1). Hereis a simple example of a (2×2) hyperboli but not stritly hyperboli system. We onsidersolution u = (u1, u2) of






∂tu
1 + cos(u2)∂xu

1 = 0,

∂tu
2 + u1sin(u2)∂xu

2 = 0,

∣
∣
∣
∣
∣
∣

on (0, +∞) × R. (1.9)Assume:i) u1(−∞) = 1, u1(+∞) = 2 and ∂xu
1 ≥ 0,ii) u2(−∞) = −π

2
, u2(+∞) = π

2
and ∂xu

2 ≥ 0.Here the eigenvalues λ1(u1, u2) = cos(u2) and λ2(u1, u2) = u1sin(u2) ross eah other atthe initial time (and indeed for any time). Nevertheless, we an ompute
(λi

,j(u
1, u2))i,j=1,2 =

(
0 −sin(u2)

sin(u2) u1cos(u2)

)

,whih satis�es (H2) (under assumptions (i) and (ii)). Therefore Theorem 1.1 gives theexistene of a solution to (1.9) with in partiular (i) and (ii).Remark 1.4 (A generalization of Theorem 1.1)In Theorem 1.1 we have onsidered a partiular system in order to simplify the presen-tation. Our approah an be easily extended to the following generalized system:
∂tu

i + λi(u, x, t)∂xu
i = hi(u, x, t) on (0, +∞) × R, for i = 1, ..., d, (1.10)with the following onditions:- λi ∈ W 1,∞(U × R × [0, +∞)) and the matrix (λi

,j(u, x, t))i,j=1,...,d is positive in thepositive one for all (u, x, t) ∈ U × R × [0, +∞) (i.e. a ondition analogous to (H2)).- hi ∈ W 1,∞(U × R × [0, +∞)), ∂xh
i ≥ 0 and hi

,j ≥ 0 for all j 6= i.Let us remark that our system (1.1)-(1.2) does not reate shoks beause the solution(given in Theorem 1.1) is ontinuous. In this situation, it seems very natural to expetthe uniqueness of the solution. Indeed the notion of entropy solution (in partiular de-signed to deal with the disontinuities of weak solutions) does not seem so helpful inthis ontext. Even for suh a simple system, we then ask the following:Open question: Is there uniqueness of the ontinuous solution given inTheorem 1.1 ? 5



In a ompanion paper (El Hajj, Monneau [11℄), we will provide some partial answers tothis question.1.3 Appliation to diagonalizable systemsLet us �rst onsider a smooth funtion u = (u1, . . . , ud), solution of the following non-onservative hyperboli system:






∂tu(t, x) + F (u)∂xu(t, x) = 0, u ∈ U, x ∈ R, t ∈ (0, +∞),

u(x, 0) = u0(x) x ∈ R,
(1.11)where the spae of states U is now an open subset of R

d, and for eah u, F (u) is a (d×d)-matrix and the map F is of lass C1(U). The system (1.11) is said (d× d) hyperboli, if
F (u) has d real eigenvalues and is diagonalizable for any given u on the domain underonsideration. By de�nition, suh a system is said to be diagonalizable, if there exists asmooth transformation w = (w1(u), . . . , wd(u)) with non-vanishing Jaobian suh that(1.11) an be equivalently rewritten (for smooth solutions) as the following system

∂tw
i + λi(w)∂xw

i = 0 for i = 1, . . . , d,where λi are smooth funtions of w. Suh funtions wi are alled strit i-Riemanninvariant.Our approah an give ontinuous solutions to the diagonalized system, whih providedontinuous solution to the original system (1.11).1.4 A brief review of some related literatureFor a salar onservation law, whih orresponds to system (1.11) in the ase d = 1where F (u) = h′(u) is the derivative of some �ux funtion h, the global existene anduniqueness of BV solutions has been established by Oleinik [23℄ in one spae dimension.The famous paper of Kruzhkov [18℄ overs the more general lass of L∞ solutions, inseveral spae dimensions. For an alternative approah based on the notion of entropyproess solutions, see for instane Eymard et al. [12℄. For a di�erent approah based ona kineti formulation, see also Lions et al. [22℄.We now reall some well-known results for a lass of (2 × 2) stritly hyperboli sys-tems in one spae dimension. This means that F (u) has two real, distint eigenvaluessatisfying (1.8). As mentioned above, Lax [19℄ proved the existene and uniqueness ofnon-dereasing and smooth solutions for diagonalized (2×2) stritly hyperboli systems.In the ase of some (2× 2) stritly hyperboli systems, DiPerna [6, 7℄ showed the globalexistene of a L∞ solution. The proof of DiPerna relies on a ompensated ompatnessargument, based on the representation of the weak limit in terms of Young measures,whih must redue to a Dira mass due to the presene of a large family of entropies.6



This result is based on an the idea of Tartar [27℄.For general (d × d) stritly hyperboli systems; i.e. where F (u) has d real, distinteigenvalues
λ1(u) < · · · < λd(u), (1.12)Bianhini and Bressan proved in a very omplete paper [3℄, a striking global existeneand uniqueness result of solutions to system (1.11), assuming that the initial data hassmall total variation. This approah is mainly based on a areful analysis of the vanish-ing visosity approximation. An existene result has �rst been proved by Glimm [15℄ inthe speial ase of onservative equations, i.e. F (u) = Dh(u) is the Jaobian of some �uxfuntion h. Let us mention that an existene result has been also obtained by LeFlohand Liu [20, 21℄ in the non-onservative ase.We an also mention that, our system (1.1) is related to other similar models in dimension

N ≥ 1, suh as salar transport equations based on vetor �elds with low regularity. Suhequations were for instane studied by Diperna and Lions in [8℄. They have proved the ex-istene (and uniqueness) of a solution (in the renormalized sense), for given vetor �eldsin L1((0, +∞); W 1,1
loc (RN )) whose divergene is in L1((0, +∞); L∞(RN)). This study wasgeneralized by Ambrosio [2℄, who onsidered vetor �elds in L1((0, +∞); BVloc(R

N ))with bounded divergene. In the present paper, we work in dimension N = 1 and provethe existene (and some uniqueness results) of solutions of the system (1.1)-(1.2) witha veloity vetor �eld λi(u), i = 1, . . . , d. Here, in Theorem 1.1, the divergene of ourvetor �eld is only in L∞((0, +∞), L logL(R)). In this ase we proved the existeneresult thanks to the gradient entropy estimate (1.5), whih gives a better estimate onthe solution.Let us also mention that for hyperboli and symmetri systems in dimension N ≥ 1,Ga◦rding has proved in [13℄ a loal existene and uniqueness result in C([0, T ); Hs(RN))∩
C1([0, T ); Hs−1(RN)), with s > N

2
+ 1 (see also Serre [25, Vol I, Th 3.6.1℄), this resultbeing only loal in time, even in dimension N = 1.1.5 Organization of the paperThis paper is organized as follows: in Setion 2, we approximate the system (1.1), byadding the visosity term (ε∂xxu

i). Then we show a global in time existene for thisapproximated system. Moreover, we show that these solutions are regular and non-dereasing in x for all t > 0. In Setion 3, we prove the gradient entropy inequalityand some other ε-uniform a priori estimates. In Setion 4, we prove the main result(Theorem 1.1) passing to the limit as ε goes to 0. Finally, in the appendix (Setion 5),we derive a model for the dynamis of disloation densities.7



2 Loal existene of an approximated systemThe system (1.1) an be written as:
∂tu + λ(u) ⋄ ∂xu = 0, (2.13)where u := (ui)1,...,d, λ(u) = (λi(u))1,...,d and u ⋄ v is the �omponent by omponentprodut� of the two vetors u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ R

d. This is the vetorin R
d whose oordinates are given by (u ⋄ v)i := uivi. We now onsider the followingparaboli regularization of system (2.13), for all 0 < ε ≤ 1:







∂tu
ε + λ(uε) ⋄ ∂xu

ε = ε∂xxu
ε

uε(x, 0) = uε
0(x), with uε

0(x) := u0 ∗ ηε(x), (2.14)where ∂xx =
∂2

∂x2
and ηε is a molli�er verify, ηε(·) = 1

ε
η( ·

ε
), suh that η ∈ C∞

c (R) is anon-negative funtion satisfying ∫
R

η = 1.Remark 2.1 By lassial properties of the molli�er (ηε)ε and the fat that uε
0 ∈

[L∞(R)]d, then u0 ∈ [C∞(R)]d ∩ [W 2,∞(R)]d. Moreover using the non-negativity of ηε,the seond equation of (2.14) we get that
‖uε,i

0 ‖L∞(R) ≤ ‖ui
0‖L∞(R), for i = 1, . . . , d,and (H3) also implies that uε

0 is non-dereasing.The following theorem is a global existene result for the regularized system (2.14).Theorem 2.2 (Global existene of non-dereasing smooth solutions)Assume (H1) and that the initial data uε
0 is non-dereasing and satis�es uε

0 ∈ [C∞(R)]d∩
[W 2,∞(R)]d. Then the system (2.14), admits a solution uε ∈ [C∞([0, +∞) × R)]d ∩
[W 2,∞((0, +∞) × R)]d suh that the funtion uε(t, ·) is non-dereasing for all t > 0.Moreover, for all t > 0, we have the a priori bounds:

‖uε,i(t, ·)‖L∞(R) ≤ ‖uε,i
0 ‖L∞(R), for i = 1, . . . , d, (2.15)

∥
∥∂xu

ε,i
∥
∥

L∞([0,+∞);L1(R))
≤ 2‖uε,i

0 ‖L∞(R), for i = 1, . . . , d. (2.16)The lines of the proof of this theorem are very standard (see for instane Cannone etal. [5℄ for a similar problem). For this reason, we skip the details of the proof. First ofall we remark that the estimate (2.15) is a diret appliation of the Maximum PrinipleTheorem for paraboli equations (see Gilbarg-Trudinger [14, Th.3.1℄). The regularityof the solution follows from a bootstrap argument. The monotoniity of the solutionis a onsequene of the maximum priniple for salar paraboli equations applied to
wε = ∂xu

ε satisfying 8



∂tw
ε + λ(uε) ⋄ ∂xw

ε + ∂x(λ(uε)) ⋄ wε = ε∂xxw
ε.Sine ∂xu

ε ≥ 0 this implies easily the seond estimate (2.16).3 ε-uniform a priori estimatesIn this setion, we show some ε-uniform estimates on the solutions of system (2.14).Before going into the proof of the gradient entropy inequality de�ned in (1.5), we an-noune the main idea to establish this estimate. Now, let us set for w ≥ 0 the entropyfuntion
f̄(w) = w ln w.For any non-negative test funtion ϕ ∈ C1

c ([0, +∞) × R), let us de�ne the following�gradient entropy� with wi := ∂xu
i:

S̄(t) =

∫

R

ϕ(t, ·)
(
∑

i=1,...,d

f̄(wi(t, ·))
)

dx.It is very natural to introdue suh quantity S̄(t) whih in the ase ϕ ≡ 1, appearsto be nothing else than the total entropy of the system of d type of partiles of non-negative densities wi ≥ 0. Then after two integration by parts, it is formally possibleto dedue from (1.1) the equality in the following gradient entropy inequality for all t ≥ 0

dS̄(t)

dt
+

∫

R

ϕ

(
∑

i,j=1,...,d

λi
,jw

iwj

)

dx ≤ R(t), for t ≥ 0, (3.17)with the rest
R(t) =

∫

R

{

(∂tϕ)

(
∑

i=1,...,d

f̄(wi)

)

+ (∂xϕ)

(
∑

i=1,...,d

λif̄(wi)

)}

dx,where we do not show the dependene on t in the integrals. We remark in partiularthat this rest is formally equal to zero if ϕ ≡ 1.To guarantee the existene of ontinuous solutions when ε = 0, we will assume later
(H2) whih guarantees the non-negativity on the seond term of the left hand side ofinequality (3.17).Coming bak to a rigorous statement, we will prove the following result.Proposition 3.1 (Gradient entropy inequality)Assume (H1) and onsider a funtion u0 ∈ [L∞(R)]d satisfying (H3). For any9



0 < ε ≤ 1, we onsider the solution uε of the system (2.14) given in Theorem2.2 with initial data uε
0 = u0 ∗ ηε. Then for any T > 0, there exists a onstant

C
(
T, d, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

) suh that
S(t) +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,iwε,j ≤ C, with S(t) =

∫

R

∑

i=1,...,d

f(wε,i(t, ·))dx. (3.18)where f is de�ned in (1.6) and wε = (wε,i)i=1,...,d = ∂xu
ε.For the proof of Proposition 3.1, we need the following tehnial lemma:Lemma 3.2 (L log L estimate)Let (ηε)ε∈(0,1] be a non-negative molli�er satisfying ∫

R
ηε = 1, let f be the funtion de-�ned in (1.6) and h ∈ L1(R) be a non-negative funtion. Theni) ∫

R

f(h) < +∞ if and only if h ∈ L log L(R). Moreover we have the following estimates:
∫

R

f(h) ≤ 1 + ‖h‖L log L(R) + ‖h‖L1(R) ln
(
1 + ‖h‖L log L(R)

)
, (3.19)

‖h‖L log L(R) ≤ 1 +

∫

R

f(h) + ln(1 + e2)‖h‖L1(R). (3.20)ii) If h ∈ L log L(R), then for every ε ∈ (0, 1] the funtion hε = h ∗ ηε ∈ L log L(R) andsatis�es
‖hε‖L log L(R) ≤ C‖h‖L log L(R) and ‖h − hε‖L log L(R) → 0 as ε → 0,where C is a universal onstant.Proof of Lemma 3.2:The proof of (i) is trivial. To prove estimate (3.19), we �rst remark that, for all h ≥ 0and µ ∈ (0, 1], we have

(

h ln(h) +
1

e

)

11{h≥ 1

e
} ≤ h ln(h + e) ≤ h ln(e + µh) + | ln(µ)|h.We apply this inequality with µ =

1

max(1, ‖h‖L log L(R))
and integrate, we get

∫

R

f(h) ≤ 1

µ

∫

R

µh ln(e + µh) + | ln(µ)|‖h‖L1(R)

≤ 1

µ
+ | ln(µ)|‖h‖L1(R),10



where we have used the de�nition of ‖h‖L log L(R). This gives (3.19) using the fat that
µ ≥ 1

1 + ‖h‖L log L(R)

.To prove (3.20), we remark that, for h ≥ 1
e
, we have e ≤ e2h and

h ln(e + h) ≤ h ln(h) + h ln(1 + e2) ≤ f(h) + h ln(1 + e2).However, for 0 ≤ h ≤ 1
e
, we have in partiular

h ln(e + h) ≤ h ln(1 + e2).Therefore
∫

R

h ln(e + h) ≤
∫

R

f(h) + ln(1 + e2)‖h‖L1(R).From the de�nition of ‖h‖L log L(R), we dedue in partiular (3.20). For the proof of (ii)see Adams [1, Th 8.20℄.
2Proof of Proposition 3.1:First we want to hek that S(t) is well de�ned. To this end, we remark that if w ≥ 0,then

0 ≤ f(w) ≤ 1

e
11{w≥ 1

e
} + w ln(1 + w).Whih gives that

∫

R

f(w) ≤ ‖w‖L1(R) ln
(
1 + ‖w‖L∞(R)

)
+

∫

R

1

e
11{w≥ 1

e
} ≤ ‖w‖L1(R)

(
1 + ln

(
1 + ‖w‖L∞(R)

))
.Now by Theorem 2.2, we have ∂xu

ε = wε ∈ [L∞((0, +∞); L1(R))]
d ∩ [W 2,∞((0, +∞) ×

R)]d. This implies that S ∈ L∞(0, +∞). We ompute
d

dt
S(t) =

∫

R

∑

i=1,...,d

f ′(wε,i)(∂tw
ε,i),

=

∫

R

∑

i=1,...,d

f ′(wε,i)∂x

(
−λi(uε)wε,i + ε∂xw

ε,i
)
,

=

J1

︷ ︸︸ ︷∫

R

∑

i=1,...,d

λi(uε)wε,if ′′(wε,i)∂xw
ε,i

J2

︷ ︸︸ ︷

− ε

∫

R

∑

i=1,...,d

(
∂xw

ε,i
)2

f ′′(wε,i) .11



Remark that these omputations (and the integration by parts) are justi�ed beause onthe one hand wε,i, its derivatives and λi are bounded, and on the other hand wε,i isin L∞((0, +∞); L1(R)). We know that J2 ≤ 0 beause f is onvex. To ontrol J1, werewrite it under the following form
J1 =

∫

R

∑

i=1,...,d

λi(uε)g′(wε,i)∂xw
ε,i,where

g(x) =

{
x − 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e.Then, we dedue that
J1 =

∫

R

∑

i=1,...,d

λi(uε)∂x(g(wε,i))

= −
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jg(wε,i),

=

J11

︷ ︸︸ ︷

−
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jwε,i

J12

︷ ︸︸ ︷

−
∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,j(g(wε,i) − wε,i) .We use the fat that |g(x) − x| ≤ 1
e
for all x ≥ 0 and (H1), to dedue that

|J12| ≤ 1

e
dM1 ‖wε‖[L∞((0,+∞),L1(R))]d

≤ 2

e
dM1‖u0‖[L∞(R)]d := C0(‖u0‖[L∞(R)]d , d, M1)where we have use

∥
∥wε,i

∥
∥

L∞((0,+∞),L1(R))
≤ 2‖ui

0‖L∞(R), for i = 1, . . . , d, (3.21)whih follows from Remark 2.1 and Theorem 2.2. Finally, we dedue that
d

dt
S(t) ≤ J11 + J12 + J2

≤ J11 + C0.Integrating in time on (0, t), for 0 < t < T , we get that, there exists a positive on-stant C
(
T, d, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

) whih is independent of ε by (3.19) andLemma 3.2 (ii) suh that
S(t) +

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,jwε,i ≤ C0T + S(0) ≤ C.12



2Lemma 3.3 (W−1,1 estimate on the time derivative of the solutions)Assume (H1) and that the funtion u0 ∈ [L∞(R)]d satis�es (H3). Then for any 0 < ε ≤
1, the solution uε of the system (2.14) given in Theorem 2.2 with initial data uε

0 = u0∗ηε,satis�es the following ε-uniform estimate for all T > 0:
‖∂tu

ε‖[L2((0,T );W−1,1(R))]d ≤ C‖u0‖[L∞(R)]d .where C = C(T, M0) > 0 and W−1,1(R) is the dual of the spae W 1,∞(R).Proof of Lemma 3.3:The idea to bound ∂tu
ε is simply to use the available bounds on the right hand side ofthe equation (2.14). We will give a proof by duality. We multiply the equation (2.14)by φ ∈ [L2((0, T ), W 1,∞(R))]

d and integrate on (0, T ) × R, whih gives
∫

(0,T )×R

φ · ∂tu
ε =

I1
︷ ︸︸ ︷

ε

∫

(0,T )×R

φ · ∂2
xxu

ε

I2
︷ ︸︸ ︷

−
∫

(0,T )×R

φ · (λ(uε) ⋄ ∂xu
ε).We integrate by parts the term I1, and obtain:

|I1| ≤
∣
∣
∣
∣

∫

(0,T )×R

∂xφ · ∂xu
ε

∣
∣
∣
∣

≤ ‖∂xφ‖[L2((0,T ),L∞(R))]d‖∂xu
ε‖[L2((0,T ),L1(R))]d,

≤ 2T
1

2‖φ‖[L2((0,T ),W 1,∞(R))]d‖u0‖[L∞(R)]d ,

(3.22)where we have used inequality (3.21). Similarly, for the term I2, we have:
|I2| ≤ M0‖φ‖[L2((0,T ),L∞(R))]d‖∂xu

ε‖[L2((0,T ),L1(R))]d,

≤ 2T
1

2 M0‖u0‖[L∞(R)]d‖φ‖[L2((0,T ),W 1,∞(R))]d.

(3.23)Finally, olleting (3.22) and (3.23), we get that there exists a onstant C = C(T, M0)independent of 0 < ε ≤ 1 suh that:
∣
∣
∣
∣

∫

(0,T )×R

φ · ∂tu
ε

∣
∣
∣
∣
≤ C‖u0‖[L∞(R)]d‖φ‖[L2((0,T ),W 1,∞(R))]dwhih gives the announed result. 2Corollary 3.4 (ε-uniform estimates)Assume (H1) and that the funtion u0 ∈ [L∞(R)]d satis�es (H3). Then for any 0 < ε ≤

1, the solution uε of the system (2.14) given in Theorem 2.2 with initial data uε
0 = u0∗ηε,satis�es the following ε-uniform estimate for all T > 0:

‖∂xu
ε‖[L∞((0,+∞),L1(R))]d + ‖uε‖[L∞((0,+∞)×R)]d + ‖∂tu

ε‖[L2((0,T );W−1,1(R))]d ≤ C, (3.24)where C = C(T, M0, ‖u0‖[L∞(R)]d). 13



This Corollary is a straightforward onsequene of Remark 2.1, Theorem 2.2, estimate(3.21) and Lemma 3.3.4 Passage to the limit and proof of Theorem 1.1In this setion, we prove that the system (1.1)-(1.2) admits solutions u in the distribu-tional sense. They are the limits of uε given by Theorem 2.2 when ε → 0. To do this, wewill justify the passage to the limit as ε tends to 0 in the system (2.14) by using someompatness tools that are presented in a �rst subsetion.4.1 Preliminary resultsFirst, for all open interval I of R, we denote by
L log L(I) =

{

f ∈ L1(I) suh that ∫
I

|f | ln (e + |f |) < +∞
}

.Lemma 4.1 (Simon's Lemma)Let X, B, Y be three Banah spaes, suh that we have the following injetions
X →֒ B with ompat embedding and B →֒ Y with ontinuous embedding.Let T > 0. If (uε)ε is a sequene suh that,

‖uε‖L∞((0,T );X) + ‖∂tu
ε‖Lq((0,T );Y ) ≤ C,where q > 1 and C is a onstant independent of ε, then (uε)ε is relatively ompat in

Lp((0, T ); B) for all 1 ≤ p < q.For the proof, see Simon [26, Corollary 4, Page 85℄.In order to show the existene of a solution to system (1.1) in Subsetion 4.2, we will ap-ply this lemma to eah salar omponent of uε in the partiular ase where X = W 1,1(I),
B = L1(I) and Y = W−1,1(I) := (W 1,∞

0 (I))′.We denote by Kexp(I) the lass of all measurable funtion u, de�ned on I, for whih,
∫

I

(
e|u| − 1

)
< +∞.The spae EXP (I) = {µu : µ ≥ 0 and u ∈ Kexp(I)} the linear hull of Kexp(I).This spae is supplemented with the following Luxemburg norm (see Adams [1, (13),Page 234℄ ):

‖u‖EXP (I) = inf

{

λ > 0 :

∫

I

(

e
|u|
λ − 1

)

≤ 1

}

.Let us reall some useful properties of this spae.14



Lemma 4.2 (Generalized Hölder inequality, Adams [1, 8.11, Page 234℄)Let h ∈ EXP (I) and g ∈ L log L(I). Then hg ∈ L1(I), with
‖hg‖L1(I) ≤ 2‖h‖EXP (I)‖g‖L log L(I).Lemma 4.3 (Continuity)Let T > 0. Assume that u ∈ L∞((0, +∞) × R) suh that

‖∂xu‖L∞((0,T );L log L(R)) + ‖∂tu‖L∞((0,T );L log L(R)) ≤ C2Then that for all δ, h ≥ 0 and all (t, x) ∈ (0, T − δ) × R, we have:
|u(t + δ, x + h) − u(t, x)| ≤ 6C2

(
1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)

)

.Proof of Lemma 4.3:For all h > 0 and (t, x) ∈ (0, T ) × R, we have:
|u(t, x + h) − u(t, x)| ≤

∣
∣
∣
∣

∫ x+h

x

∂xu(t, y)dy

∣
∣
∣
∣

≤ 2‖1‖EXP (x,x+h)‖∂xu(t, ·)‖L log L(x,x+h),

≤ 2
1

ln( 1
h

+ 1)
‖∂xu‖L∞((0,T );L log L(R)),

≤ 2C2
1

ln( 1
h

+ 1)
,

(4.25)
where we have used in the seond line the generalized Hölder inequality (Lemma 4.2).Now, we prove the ontinuity in time, for all δ > 0 and (t, x) ∈ (0, T − δ)× R, we have:

δ|u(t + δ, x) − u(t, x)|

=

∫ x+δ

x

|u(t + δ, x) − u(t, x)|dy,

≤

K1

︷ ︸︸ ︷
∫ x+δ

x

|u(t + δ, x) − u(t + δ, y)|dy, +

K2

︷ ︸︸ ︷
∫ x+δ

x

|u(t + δ, y) − u(t, y)|dy, +

K3

︷ ︸︸ ︷
∫ x+δ

x

|u(t, y) − u(t, x)|dy .Similarly, as in the last estimate (4.25), we get that:
15



K1 + K3 ≤ δ

∫ x+δ

x

|∂xu(t + δ, y)|dy, +δ

∫ x+δ

x

|∂xu(t, y)|dy,

≤ 4C2
δ

ln(1
δ

+ 1)
.Now, we use that ∂tu is bounded in L∞((0, T ); L logL(R)), to obtain that:

K2 ≤
∫ x+δ

x

∫ t+δ

t

|∂tu(s, y)|ds dy,

≤ 2δ‖1‖EXP (x,x+δ)‖∂tu‖L∞((0,T );L log L(R)) ≤ 2C2
δ

ln(1
δ

+ 1)
.Colleting the estimates of K1, K2 and K3, we get that:

|u(t + δ, x) − u(t, x)| ≤ 1

δ
(K1 + K2 + K3) ≤ 6C2

1

ln(1
δ

+ 1)
.This last inequality joint to (4.25) implies the result.

24.2 Proof of Theorem 1.1The authors would like to thank T. Gallouët for fruitful remarks that helped to simplifyof the proof of Theorem 1.1. Before to prove Theorem 1.1, we �rst prove the followingresult.Theorem 4.4 (Passage to the limit)Assume that uε is a solution of system (2.14) given by Theorem 2.2, with initial data
uε

0 = u0 ∗ ηε where u0 satis�es (H3). If we assume that for all T > 0, there exists aonstant C > 0 independent on ε, suh that:
‖∂xu

ε‖[L∞((0,T );L log L(R))]d ≤ C, (4.26)then up to extrat a subsequene, the funtion uε onverges, as ε goes to zero, to afuntion u weakly-⋆ in [L∞((0, +∞) × R)]d. Moreover, u is a solution of (1.1)-(1.2),and satis�es






‖u‖[L∞((0,+∞)×R)]d ≤ ‖u0‖[L∞(R)]d,

‖∂xu‖[L∞((0,T );L log L(R))]d ≤ C,

‖∂tu‖[L∞((0,T );L log L(R))]d ≤ M0C,and u(t, ·) is non-dereasing in x, for all t > 0 and satis�es16



‖ui‖L∞((0,+∞);L1(R)) ≤ 2‖ui
0‖L∞(R) for i = 1, . . . , d. (4.27)Proof of Theorem 4.4:Step 1 (u solution of (1.1)): First, we remark that by estimate (3.24) we know thatfor any T > 0, the solutions uε of the system (2.14) obtained with the help of Theorem2.2, are ε-uniformly bounded in [L∞((0, +∞) × R)]d. Hene, as ε goes to zero, we anextrat a subsequene still denoted by uε, that onverges weakly-⋆ in [L∞((0, +∞) × R)]dto some limit u. Then we want to show that u is a solution of system (1.1). Indeed, sinethe passage to the limit in the linear terms is trivial in [D′((0, +∞) × R)]d, it su�es topass to the limit in the non-linear term

λ(uε) ⋄ ∂xu
ε.Aording to estimate (3.24) we know that for all open and bounded interval I of Rthere exists a onstant C independent on ε suh that:

‖uε‖[L∞((0,T );W 1,1(I))]d + ‖∂tu
ε‖[L2((0,T );W−1,1(I))]d ≤ C.From the ompatness of W 1,1(I) →֒ L1(I), we an apply Simon's Lemma (i.e. Lemma4.1), with X = [W 1,1(I)]

d, B = [L1(I)]
d and Y = [W−1,1(I)]

d, whih shows in partiularthat
uε is relatively ompat in [L1((0, T ) × I)]

d. (4.28)Then, we an see that (up to extrat a subsequene)
λ(uε) → λ(u) a.e.Moreover, from Lemma 4.2, similarly as in (4.25), we an get, for all t ∈ (0, T ) thefollowing estimates:

∣
∣
∣
∣

∫

I

∂xu
ε(t, y)dy

∣
∣
∣
∣
≤ 2C

1

ln( 1
|I|

+ 1)
,where C is given in (4.26). By the previous estimate and the fat that λ(uε) is uniformlybounded in [L∞((0, +∞) × R)]d and onverges a.e. to λ(u), we an apply the Dunford-Pettis Theorem (see Brezis [4, Th IV.29℄) and prove that

λ(uε) ⋄ ∂xu
ε → λ(u) ⋄ ∂xuweakly in [L1((0, T ) × I)]

d. Beause this is true for any bounded open interval I, thenwe an pass to the limit in (2.14) and get that,
∂tu + λ(u) ⋄ ∂xu = 0 in D′((0, +∞) × R).17



Step 2 (A priori bounds): By weakly-⋆ onvergene and from the fat that L∞((0, T ); L log L(R))is the dual of L1((0, T ); Eexp(R)) (see Adams [1℄ for the de�nition of the Banah spae
Eexp(R)), we an hek that u satis�es the following estimates:

‖∂xu‖[L∞((0,T );L log L(R))]d ≤ lim inf
ε→0

‖∂xu
ε‖[L∞((0,T );L log L(R))]d ≤ C,

‖u‖[L∞((0,+∞)×R)]d≤ lim inf
ε→0

‖uε‖[L∞((0,+∞)×R)]d ≤ ‖u0‖[L∞(R)]d . (4.29)Thanks to these two estimates, we obtain that
‖∂tu‖[L∞((0,T );L log L(R))]d ≤ ‖λ(u) ⋄ ∂xu‖[L∞((0,T );L log L(R))]d

≤ M0‖∂xu‖[L∞((0,T );L log L(R))]d ≤ M0C.Moreover (4.27) follows from (4.29) and the fat that u(t, ·) is non-dereasing in x (as itwas the ase for uε).Step 3 (Reovering the initial data): Now we prove that the initial onditions (1.2)oinides with u(0, ·). Indeed, by the ε-uniformly estimate given in Corollary 3.4, wean prove easily that, we have
‖uε(t) − uε

0‖[W−1,1(R)]d ≤ Ct
1

2 .Then, we get
‖u(t) − u0‖[W−1,1(R)]d ≤ ‖u − u0‖[L∞((0,t);W−1,1(R))]d

≤ lim inf
ε→0

‖uε − uε
0‖[L∞((0,t);W−1,1(R))]d ≤ Ct

1

2 ,where we have used the weakly-⋆ onvergene in L∞((0, t); W−1,1(R)) in the seond line.This proves that u(0, ·) = u0 in [D′(R)]d.
2Proof of Theorem 1.1:Step 1 (Existene): Remark that by assumption (H2) and estimate (3.18), we deduefrom (3.20) joint to (3.21) that, the solution uε given by Corollary 3.4 satis�es thefollowing estimate:

‖∂xu
ε‖[L∞((0,T );L log L(R))]d ≤ C, (4.30)where C = C

(
T, d, M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L log L(R)]d

). Now, we apply Theorem 4.4 toprove that, up to extrat a subsequene, the funtion uε onverges, as ε goes to zero, toa funtion u weakly-⋆ in [L∞((0, +∞) × R)]d, with u is beeing solution to (1.1)-(1.2).Moreover, from Lemma 4.3, we dedue that the funtion u satis�es the ontinuity esti-mate (1.7). 18



Step 2 (Justi�ation of (1.5)): Let






Γij(u
ε) = 1

2

(
λi

,j(u
ε) + λj

,i(u
ε)
)
, for i, j = 1, . . . , d,

wε = ∂xu
ε.For a general matrix Γ, where tΓ = Γ ≥ 0, let us introdue the square root B =

√
Γ of

Γ, uniquely de�ned by
tB = B ≥ 0 and B2 = Γ.Remark that for non-negative symmetri matries, the map Γ 7−→

√
Γ is ontinuous.Then we an rewrite

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u

ε)wε,iwε,j =

∫ t

0

∫

R

∣
∣
∣

√

Γ(uε)wε
∣
∣
∣

2

≤ C,where C is given in (3.18). Therefore
√

Γ(uε)wε → q weakly in [L2((0, t) × R)]
d.Applying the same argument as in Step 1, of the proof of Theorem 4.4, for the onver-gene of λ(uε) ⋄ ∂xu

ε, we see that
√

Γ(uε)∂xu
ε →

√

Γ(u)∂xu = q weakly in [L1((0, t) × R)]
d.Therefore, using the weakly onvergene in L2((0, t) × R), we get

∫ t

0

∫

R

∑

i,j=1,...,d

λi
,j(u)∂xu

i∂xu
j =

∫ t

0

∫

R

q2 ≤ lim inf
ε→0

∫ t

0

∫

R

∣
∣
∣

√

Γ(uε)∂xu
ε
∣
∣
∣

2

≤ C. (4.31)Remark also that for wi = ∂xu
i, we have

sup
0≤t≤T

∫

R

f(wi) ≤ 1 + ‖wi‖L∞((0,T );L log L(R)) + ‖wi‖L∞((0,T );L1(R)) ln
(
1 + ‖wi‖L∞((0,T );L log L(R))

)

≤ 1 + ‖wi‖L∞((0,T );L log L(R)) + 2‖ui
0‖L∞(R) ln

(
1 + ‖wi‖L∞((0,T );L log L(R))

)
:= g[wi]

≤ lim inf
ε→0

g[wε,i]

≤ 1 + C + 2‖ui
0‖L∞(R) ln(1 + C) := C ′,where in the �rst line we have used (3.19), in the seond line we have used (4.27),in the third line we have used the weakly-⋆ onvergene of wε,i towards wi in

L∞((0, T ); L logL(R)) and in the fourth line, we have used (4.30). Putting this resulttogether with (4.31), we get (1.5) with C1 = C + C ′.
219



5 Appendix: Example of the dynamis of disloationdensitiesIn this setion, we present a model desribing the dynamis of disloation densities. Werefer to Hirth et al. [17℄ for a physial presentation of disloations whih are (moving)defets in rystals. Even if the problem is naturally a three-dimensional problem, wewill �rst assume that the geometry of the problem is invariant by translations in the
x3-diretion. This redues the problem to the study of disloations densities de�nedon the plane (x1, x2) and moving in a given diretion b belonging to the plane (x1, x2)(whih is alled the �Burger's vetor�).In Subsetion 5.1, we present the 2D-model with multi-slip diretions. In the partiulargeometry where the disloations densities only depend on the variable x = x1 + x2,this two-dimensional model redues to a one-dimensional model whih is presented inSubsetion 5.2. Finally in Subsetion 5.3, we explain how to reover equation (1.1) as amodel for disloation dynamis with

λi(u) =
∑

j=1,...,d

Aiju
jfor some partiular non-negative and symmetri matrix A.5.1 The 2D-modelWe now present in details the two-dimensional model. We denote by X the vetor

X = (x1, x2) ∈ R
2. We onsider a rystal �lling the whole spae R

2 and its displaement
v = (v1, v2) : R

2 → R
2, where we have not yet introdued the time dependene.We introdue the total strain ε(v) = (εij(v))i,j=1,2 whih is a symmetri matrix de�nedby

εij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)

.The total strain an be spitted in two parts:
εij(v) = εe

ij + εp
ij with εp =

∑

k=1,...,d

ε0,kuk,where εe
ij is the elasti strain and εp

ij is the plasti strain. The salar funtion uk is theplasti displaement assoiated to the k-th slip system whose matrix ε0,k
ij is de�ned by

ε0,k
ij =

1

2

(
bk
i n

k
j + nk

i b
k
j

)
,20



where (bk, nk) is a family of vetors in R
2, suh that nk is a unit vetor orthogonal tothe Burger's vetor bk (see Hirth et al. [17℄ for the de�nition of the Burger's vetor of adisloation)To simplify the presentation, we assume the simplest possible periodiity property ofthe unknowns.Assumption (H):i) The funtion v is Z

2-periodi with ∫
(0,1)2

v dX = 0.ii) For eah k = 1, . . . , d, there exists Lk ∈ R
2 suh that uk(X)−Lk ·X is a Z

2-periodi.iii) The integer d is even with d = 2N and we have for k = 1, . . . , N :
Lk+N = Lk, nk+N = nk, bk+N = −bk, ε0,k+N = −ε0,k.iv) We denote by τk ∈ R

2 a unit vetor parallel to bk suh that τk+N = τk. We requirethat Lk is hosen suh τk · Lk ≥ 0.Remark in partiular that the plasti strain εp
ij is Z

2-periodi as a onsequene of As-sumption (H). The stress matrix is then given by
σij =

∑

k,l=1,2

Λijklε
e
kl for i, j = 1, 2,where Λ = (Λijkl)i,j,k,l=1,2, are the onstant elasti oe�ients of the material, satisfyingfor some onstant m > 0:

∑

i,j,k,l=1,2

Λijklεijεkl ≥ m
∑

i,j=1,2

ε2
ij , (5.32)for all symmetri matries ε = (εij)ij

, i.e. suh that εij = εji.Then the stress is assumed to satisfy the equation of elastiity
∑

j=1,2

∂σij

∂xj

= 0 for i = 1, 2.On the other hand the plasti displaement uk is assumed to satisfy the following trans-port equation
∂tu

k = ckτk.∇uk with ck =
∑

i,j=1,2

σijε
0,k
ij .This equation an be interpreted, saying that21



θk = τk.∇uk ≥ 0, (5.33)is the density of edge disloations assoiated to the Burger's vetor bk moving in thediretion τk at the veloity ck. Here ck is also alled the resolved Peah-Koehler fore inthe physial literature. In partiular, we see that the disloation density θk satis�es thefollowing onservation law
∂tθ

k = div(ckτkθk).Finally, for k = 1, . . . , d, the funtions uk and v are then assumed to depend on (t, X) ∈
(0, +∞) × R

2 and to be solutions of the oupled system (see Ye�mov [28, h. 5.℄ andYe�mov, Van der Giessen [29℄):






∑

j=1,2

∂σij

∂xj

= 0 on (0, +∞) × R
2, for i = 1, 2,

σij =
∑

k,l=1,2

Λijkl

(

εkl(v) −
∑

k=1,...,d

ε0,k
ij uk

) on (0, +∞) × R
2,

εij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

) on (0, +∞) × R
2,

∣
∣
∣
∣
∣
∣
∣
∣
∣

for i, j = 1, 2

∂tu
k =




∑

i,j∈{1,2}

σijε
0,k
ij



 τk.∇uk on (0, +∞) × R
2, for k = 1, . . . , d, (5.34)where Λijkl, ε0,k

ij are �xed parameters previously introdued, and the unknowns of thesystem are u = (uk)k=1,...,d and the displaement v = (v1, v2). Remark also that ourequations are ompatible with our periodiity assumptions (H), (i)-(ii).For a detailed physial presentation of a model with multi-slip diretions, we refer toYe�mov, Van der Giessen [29℄ and Ye�mov [28, h. 5.℄ and to Groma, Balogh [16℄for the ase of a model with a single slip diretion. See also Cannone et al. [5℄ for amathematial analysis of the Groma, Balogh model.5.2 Derivation of the 1D-modelIn this subsetion we are interested in a partiular geometry where the disloation den-sities depend only on the variable x = x1 + x2. This will lead to a 1D-model. Morepreisely, we make the following:Assumption (H ′): 22



i) The funtions v(t, X) and uk(t, X)−Lk ·X depend only on the variable x = x1 + x2.ii) For k = 1, . . . , d, the vetor τk = (τk
1 , τk

2 ) satis�es τk
1 + τk

2 > 0 with µk =
1

τk
1 + τk

2

.iii) For k = 1, . . . , d, the vetor Lk = (Lk
1, L

k
2) satis�es Lk

1 = Lk
2 = lk.For this partiular one-dimensional geometry, we denote by an abuse of notation thefuntion v = v(t, x) whih is 1-periodi in x. By assumption (H ′), (iii), we an see(again by an abuse of notation) that u = (uk(t, x))k=1,...,d is suh that for k = 1, . . . , d,

uk(t, x) − lk · x is 1-periodi in x.Now, we an integrate the equations of elastiity, i.e. the �rst equation of (5.34). Usingthe Z
2-periodiity of the unknowns (see assumption (H), (i)-(ii)), and the fat that

ε0,k+N = −ε0,k (see assumption (H), (iii)), we an easily onlude that the strain
εe is a linear funtion of (uj − uj+N)j=1,...,N and of (∫ 1

0

(uj − uj+N) dx

)

j=1,...,N

.(5.35)This leads to the following LemmaLemma 5.1 (Stress for the 1D-model)Under assumptions (H), (i)-(ii)-(iii) and (H ′), (i)-(iii) and (5.32), we have
−σ : ε0,i =

∑

j=1,...,d

Aiju
j +

∑

j=1,...,d

Qij

∫ 1

0

uj dx, for i = 1, . . . , N, (5.36)where for i, j = 1, . . . , N







Ai,j = Aj,i and Ai+N,j = −Ai,j = Ai,j+N = −Ai+N,j+N ,
Qi,j = Qj,i and Qi+N,j = −Qi,j = Qi,j+N = −Qi+N,j+N . (5.37)Moreover the matrix A is non-negative.The proof of Lemma 5.1 will be given at the end of this subsetion.Finally using Lemma 5.1, we an eliminate the stress and redue the problem to aone-dimensional system of d transport equations only depending on the funtion ui, for

i = 1, . . . , d. Naturally, from (5.36) and (H ′), (ii) this 1D-model has the following form
23



The 1D-model of the dynamis of disloation densities:
µi∂tu

i+

(
∑

j=1,...,d

Aiju
j +

∑

j=1,...,d

Qij

∫ 1

0

uj dx

)

∂xu
i = 0, on (0, +∞) × R, for i = 1, . . . , d,(5.38)with from (5.33)

∂xu
i ≥ 0 for i = 1, . . . , d. (5.39)Now, we give the proof of Lemma 5.1.Proof of Lemma 5.1:For the 2D-model, let us onsider the elasti energy on the periodi ell (using the fatthat εe is Z

2-periodi)
E(u, v) =

1

2

∫

(0,1)2

∑

i,j,k,l=1,2

Λijklε
e
ijε

e
kl dX with εe

ij = εij(v) −
∑

k=1,...,d

ε0,k
ij uk.By de�nition of σij and εe

ij, we have for k = 1, . . . , d

∑

i,j=1,2

(σijε
0,k
ij ) = −E ′

uk(u, v). (5.40)On the other hand using (H ′), (i)-(iii), (with x = x1 + x2) we an hek that we anrewrite the elasti energy as
E =

1

2

∫ 1

0

∑

i,j,k,l=1,2

Λijklε
e
ijε

e
kldx.Replaing εe

ij by its expression (5.35), we get:
E =

1

2

∫ 1

0

∑

i,j=1,...,N

Aij(u
j − uj+N)(ui − ui+N) dx

+
1

2

∑

i,j=1,...,N

Qij

(∫ 1

0

(uj − uj+N) dx

)(∫ 1

0

(ui − ui+N) dx

)

,for some symmetri matries Aij = Aji, Qij = Qji. In partiular, joint to (5.40) thisgives exatly (5.36) with (5.37).Let us now onsider the funtions wi = ui − ui+N suh that
∫ 1

0

wi dx = 0 for i=1,. . . ,N. (5.41)24



From (5.32), we dedue that
0 ≤ E =

1

2

∫ 1

0

∑

i,j=1,...,N

Aijw
iwj dx.More preisely, for all i = 1, . . . , N and for all w̄i ∈ R, we set

wi =

{
w̄i on [0, 1

2
],

−w̄i on [1
2
, 1],whih satis�es (5.41). Finally, we obtain that

0 ≤ E =
1

2

∫ 1

0

∑

i,j=1,...,N

Aijw̄
iw̄j dx.Beause this is true for every w̄ = (w̄1, . . . , w̄N) ∈ R

N , we dedue that A a non-negativematrix.
2We refer the reader to El Hajj [9℄ and El Hajj, Foradel [10℄ for a study in the speialase of a single slip diretion, i.e. in the ase N = 1.5.3 Heuristi derivation of the non-periodi modelStarting from the model (5.38)-(5.39) where for i = 1, . . . , d, the funtion ui(t, x)−li ·x is

1-periodi in x, we now want to resale the unknowns to make the periodiity disappear.More preisely, we have the following Lemma:Lemma 5.2 (Non-periodi model)Let u be a solution of (5.38)-(5.39) assuming Lemma 5.1 and ui(t, x)− li ·x is 1-periodiin x. Let
uj

δ(t, x) = uj(δt, δx), for a small δ > 0 and for j = 1, . . . , d,suh that, for all j = 1, . . . , d

uj
δ(0, ·) → ūj(0, ·), as δ → 0, and ūj(0,±∞) = ūj+N(0,±∞). (5.42)Then ū = (ūj)j=1,...,d is formally a solution of

µi∂tū
i +

(
∑

j=1,...,d

Aij ū
j

)

∂xū
i = 0, on (0, +∞) × R, (5.43)where the symmetri matrix A is non-negative and ∂xū

i ≥ 0 for i = 1, . . . , d.25



We remark that the limit problem (5.43) is of type (1.1) when µi = 1. In partiular, thereare no reasons to assume that this system is stritly hyperboli in general. Neverthe-less, the general ase µi > 0 an be treated with our approah developed in Theorem 1.1onsidering the entropy ∫
R

∑

i=1,...,d

µif
(
∂xū

i(t, x)
)
dx instead of ∫

R

∑

i=1,...,d

f
(
∂xū

i(t, x)
)
dx.Formal proof of Lemma 5.2:Here, we know that ui

δ − δli · x is 1

δ
-periodi in x, and satis�es for i = 1, . . . , d

µi∂tu
i
δ +

(
∑

j=1,...,d

Aiju
j
δ + δ

∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx

)

∂xu
i
δ = 0, on (0, +∞) × R. (5.44)To simplify, assume that the initial data uδ(0, ·) onverge to a funtion ū(0, ·) suh thatthe funtion ∂xuδ(0, ·) inside the interval (−1

2δ
,

1

2δ

) has a support in (−R, R), uniformlyin δ, where R a positive onstant. Beause of the antisymmetry property of the matrix
Q (see assumption (5.37)), and beause of assumption (5.42), we expet heuristiallythat the veloity in (5.44) remains uniformly bounded as δ → 0.Therefore, using the �nite propagation speed, we see that, there exists a onstant Cindependent in δ, suh that ∂xuδ(t, ·) has a support on (−R − Ct, R + Ct) ⊂

(−1

2δ
,

1

2δ

).Moreover, from (5.42) and the fat that
∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx =

∑

j=1,...,N

Qij

∫ 1

δ

0

(uj
δ − uj+N

δ ) dx,we dedue that
∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx,remains bounded uniformly in δ. Then formally the non-loal term vanishes and we getfor i = 1, . . . , d

∑

j=1,...,d

Aiju
j
δ + δ

∑

j=1,...,d

Qij

∫ 1

δ

0

uj
δ dx →

∑

j=1,...,d

Aijū
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