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Local energy decay and Strichartz estimates for the wave equat ion with time periodic perturbations

Introduction

In this talk we present a survey of some recent results concerning two problems for the wave equation with time-periodic perturbations. The first one is the Cauchy problem with time-periodic potential

∂ 2 t u -∆u + V (t, x)u = F (t, x), (t, x) ∈ R × R n , u(τ, x) = f 0 (x), u t (τ, x) = f 1 (x), x ∈ R n , (1) 
where the potential V (t, x) ∈ C ∞ (R n+1 ), n ≥ 2, satisfies the conditions:

(H 1 ) there exists R 0 > 0 such that V (t, x) = 0 for |x| ≥ R 0 , ∀t ∈ R,

(H 2 ) V (t + T, x) = V (t, x), ∀(t, x) ∈ R n+1 with T > 0.
Consider the homogeneous Sobolev spaces Ḣγ (R n ) = Λ -γ L 2 (R n ), where Λ = √ -∆ and -∆ is the Laplacian in R n and set Ḣγ (R n ) = Ḣγ (R n ) ⊕ Ḣγ-1 (R n ) The solution of [START_REF] Bachelot | Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps[END_REF] with F = 0 is given by the propagator U (t, τ ) : Ḣγ (R n ) ∋ (f 0 , f 1 ) -→ U (t, τ )(f 0 , f 1 ) = (u(t, x), u t (t, x)) ∈ Ḣγ (R n ).

Let U 0 (t) = e itG0 be the unitary group in Ḣγ (R n ) related to the Cauchy problem [START_REF] Bachelot | Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps[END_REF] with V = 0, F = 0, τ = 0 and let U (T ) = U (T, 0). Let χ, ψ 1 be functions in C ∞ 0 (R n ) such that χ(x) = ψ 1 (x) = 1 for |x| ≤ R 0 + T. We suppose also that

(1 -ψ 1 )U (0, s)Q(s) = 0, 0 ≤ s ≤ T, (2) 
where

Q(s) = 0 0 V (s, x) 0 .
Consider the cut-off resolvent

R χ (θ) = χ(U (T ) -e -iθ I) -1 ψ 1 : Ḣ1 (R n ) → Ḣ1 (R n ),
where Im θ ≥ A > 0, -π < Re θ ≤ π and ψ 1 is fixed. We show that R χ (θ) admits a meromorphic extension in C for n ≥ 3, n odd, and to

C ′ = {θ ∈ C : θ = 2πk -iµ, µ > 0, k ∈ Z}
for n ≥ 2, n even. The poles of R χ (θ) play an essential role in the problems of local energy decay, global Strichartz estimates, trace formulae and blow up of the local energy (see [START_REF] Cooper | Scattering of waves by periodically moving bodies[END_REF], [START_REF] Bachelot | Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps[END_REF], [START_REF] Bony | Resonances for non-trapping time-periodic perturbations[END_REF], [START_REF] Petkov | Global Strichartz estimates for the wave equation with time-periodic potentials[END_REF], [START_REF] Vainberg | On the local energy of solutions of exterior mixed problems that are periodic with respect to t[END_REF]).

The second problem we deal with is the Dirichlet problem for the wave equation outside a time-periodic moving obstacle. Let Q ⊂ R n+1 , n ≥ 3, be an open domain with C ∞ smooth boundary ∂Q. Set

Ω(t) = {x ∈ R n : (t, x) ∈ Q}, ∅ ≡ K(t) = {x ∈ R n : (t, x) / ∈ Q} ⊂ {x : |x| ≤ R 0 }.
We suppose that the obstacle is periodically moving

K(t + T ) = K(t), ∀t ∈ R, T > 0
and for each (t, x) ∈ ∂Q the exterior unit normal (ν t , ν x ) to ∂Q at (t, x)

satisfies |ν t | < |ν x |.
We study the problem

     (∂ 2 t -∆ x )u = 0 in Q, u = 0 on ∂Q, u(τ, x) = f 0 (x), u t (τ, x) = f 1 (x). ( 3 
)
The solution is given by a propagator U (t, τ ) : H(τ ) -→ H(t), where H(t) is the energy space related to Ω(t) (see [START_REF] Cooper | Scattering of waves by periodically moving bodies[END_REF], [START_REF] Petkov | Scattering Theory for Hyperbolic Operators[END_REF] for a precise definition). As above we introduce the monodromy operator U (T ) = U (T, 0) and the cut-off resolvent R χ (θ) = χ(U (T )e -iθ I) -1 χ with χ = 1 on {x : |x| ≤ R 0 + T }.

We examine the problem of the meromorphic continuation of the cut-off resolvents R χ (θ) for time-periodic potentials and non-trapping moving obstacles. In contrast to stationary perturbations, the absence of trapping rays is not sufficient to guarantee an uniform local energy decay. To obtain the last property, we must exclude the existence of poles of R χ (θ) with Im θ ≥ 0 and for this purpose we introduce the condition (R) in Section 2. In Section 3 we show that the local energy decay of solutions with initial data having compact support leads to a L 2 -integrability of the local energy of solutions with data in the energy space. This is the crucial point in the proof of global Strichartz estimates for time-periodic non-trapping perturbations.

The investigation of trapping moving obstacles is more complicated and many problems are still open. In some recent works (see [START_REF] Bony | Resolvent estimates and local energy decay of hyperbolic equations[END_REF], [START_REF] Bony | Estimates for the cut-off resolvent of the Laplacian for trapping obstacles[END_REF]) it was proved that for stationary trapping obstacles the cut-off resolvent χ(U (t)z) -1 χ has a singularity as z → z 0 , |z| > 1, for every z 0 ∈ S and almost all t ∈ R + (see Theorem 3). Thus we have not a meromorphic extension across the unit circle S as in the case of non-trapping perturbations. Moreover, it is not known if for trapping moving obstacles χ(U (T )z) -1 χ has a meromorphic continuation from {z ∈ C : |z| ≥ A ≫ 1} to {z ∈ C : e ǫT ≤ |z| ≤ A}, ǫ > 0. We conjecture that for obstacles having at least one δ-trapping bicharacteristic the cut-off resolvent χ(U (T )-z) -1 χ is not meromorphic in {z ∈ C : e ǫT ≤ |z|}, 0 < ǫ < δ (see Section 5 for the notations).

Resonances for time-periodic potentials

In this section we study the problem (1) and U (t, s) denotes the corresponding propagator. Let ψ ∈ C ∞ 0 (R n ) be a fixed cut-off such that ψ(x) = 1 for |x| ≤ R 0 + T. By a finite speed of propagation argument we get

(1 -ψ)U (T, s)Q(s) = 0, Q(s)U 0 (s)(1 -ψ) = 0, 0 ≤ s ≤ T. (4) 
For A > 0 large enough and Im θ ≥ A the resolvents (U 0 (T )-e -iθ I) -1 , (U (T )e -iθ I) -1 exist, we have the equality

U (T )-zI = I-ψ T 0 U (T, s)Q(s)U 0 (s)dsψ(U 0 (T )-zI) -1 (U 0 (T )-zI), z = e -iθ
and 2) and let ψ 1 (x) = 1 on supp ψ. We take an arbitrary cut-off function χ ∈ C ∞ 0 (R n ) so that χ = 1 on supp ψ and multiply the above equality by χ and ψ 1 to get

(U 0 (T )-zI) -1 = (U (T )-zI) -1 I-ψ T 0 U (T, s)Q(s)U 0 (s)dsψ(U 0 (T )-zI) -1 . Assume that ψ 1 ∈ C ∞ 0 (R n ) satisfies (
χ(U 0 (T )-zI) -1 ψ 1 = χ(U (T )-zI) -1 ψ 1 I-ψ T 0 U (T, s)Q(s)U 0 (s)dsψ(U 0 (T )-zI) -1 ψ 1 .
Introduce the operator

K(z) = ψ T 0 U (T, s)Q(s)U 0 (s)dsψ(U 0 (T ) -zI) -1 ψ 1 .
For n ≥ 3, n odd, the operator ψ(U 0 (T )e -iθ I) -1 ψ 1 admits an analytic continuation with respect to θ in C and this follows immediately from the Huygens principle and the expansion

ψ(U 0 (T ) -e -iθ I) -1 ψ 1 = - N (ψ,ψ1) k=0 ψU 0 (kT )ψ 1 e i(k+1)θ
which holds for Im θ ≥ A > 0. On the other hand, the operator K(z) is compact in Ḣ1 (R n ) and an application of the analytic Fredholm theorem leads to a meromorphic continuation of R χ (θ) in C. For n even a similar argument leads to a meromorphic continuation of R χ (θ) in

C ′ = {z ∈ C : z = 2πk -iµ, µ ≥ 0, k ∈ Z},
but the analysis of the analytic extension of ψ(U 0 (T )e -iθ I) -1 ψ 1 in C ′ is more complicated (see [START_REF] Vainberg | Asymptotic methods in equations of mathematical physics, Gordon and Breach[END_REF], [START_REF] Vainberg | On the local energy of solutions of exterior mixed problems that are periodic with respect to t[END_REF], [START_REF] Petkov | Global Strichartz estimates for the wave equation with time-periodic potentials[END_REF]). Thus we have the following Proposition 1 The cut-off resolvent R χ (θ) admits a meromorphic continuation in C for n odd and in C

′ for n even.

The time-periodic potentials are non-trapping perturbations. Nevertheless, some exponentially growing modes could exist. To establish a local energy decay, we introduce the following condition (R) The operator R χ (θ) admits a holomorphic extension from {θ ∈ C : Im θ ≥ A > 0} to {θ ∈ C : Im θ ≥ 0}, for n ≥ 3, odd, and to {θ ∈ C : Im θ ≥ 0, θ = 2πk, k ∈ Z} for n ≥ 2, even . Moreover, for n even we have

lim λ→0, λ>0 R χ (iλ) Ḣ1→ Ḣ1 < ∞. This condition is independent of the choice of χ, ψ 1 . Let ϕ ∈ C ∞ 0 (R n ), f ∈ Ḣ1 , f = 0 for |x| ≤ R.
We denote the norm in Ḣ1 (R n ) by . and we use the same notation for the norm of bounded operators in Ḣ1 (R n ).

Theorem 1 ( [START_REF] Petkov | Global Strichartz estimates for the wave equation with time-periodic potentials[END_REF]) Assume the condition (R) fulfilled. Then for 0 ≤ s ≤ t, ts ≥ t 0 > 1 we have

ϕU (t, s)f ≤ C(n, ϕ, R)p(t -s) f , where p(t) = e -δt , δ > 0, n ≥ 3, odd, t -1 (ln t) -2 , n ≥ 2, even.
The local energy decay has been established for n odd, by Bachelot and Petkov [START_REF] Bachelot | Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps[END_REF] assuming that the Lax-Phillips operator Section 4 for the definition of the projectors P b ± ) and by Vainberg [START_REF] Vainberg | On the local energy of solutions of exterior mixed problems that are periodic with respect to t[END_REF] for n ≥ 2 assuming a similar condition for an operator R(θ) having complicated form. The novelty of our approach is the role of the cut-off resolvent R χ (θ). It is worth remarking that the resolvent of the monodromy operator plays an essential role in the analysis of time-periodic perturbations of the Schrödinger operator (see for example, [START_REF] Galtabayar | Local time-decay of solutions to Schrödinger equations with time-periodic potentials[END_REF]). On the other hand, the link between the poles of R χ (θ) and the spectrum of Z b (T ) has been established in [START_REF] Bony | Resonances for non-trapping time-periodic perturbations[END_REF].

Z b (T ) = P b + U (T )P b -, b > R 0 + T has no eigenvalues z ∈ C, |z| ≥ 1, (see
Sketch of the proof. We have the representation

U (t, 0)f = U 0 (t)f - t 0 U (t, s)Q(s)U 0 (s)f ds,
and we will deal with

I(ϕ, f ) = t -∞ ϕU (t, s)Q(s)U 0 (s)f ds extending U 0 (s)f as 0 for s < 0. Introduce the Fourier-Block-Gelfand trans- form g(θ, s) = F (U 0 (s)f )(θ, s) = ∞ k=-∞ U 0 (kT + s)e ikθ f which is well defined for Im θ ≥ α > 0.
Applying the inverse transform of F , we are going to examine

J(t) = 1 2π t -∞ ϕU (t, s)Q(s) dα g(θ, s)dθds,
where d α = [iαπ, iα + π] and α > 0 will be chosen large enough below.

Choose an integer m ∈ Z so that

t ′ = t -mT ∈ [0, T [. Then J(t) has the form 1 2π t ′ 0 ϕU (t ′ , s ′ )Q(s ′ )U 0 (s ′ ) dα e -imθ g(θ, 0)dθds ′ + 1 2π ∞ k=0 -kT -kT -T ϕU (t ′ , s ′ )Q(s ′ ) dα e -imθ g(θ, s ′ )dθds ′ = I 1 (t) + I 2 (t).
We write I 2 (t) as follows

dα T 0 ϕU (t ′ + T, 0)χ(e -iθ I -U (T )) -1 ψ 1 ×U (0, ξ)Q(ξ)U 0 (ξ)e -imθ ψg(θ, 0)dξdθ,
where χ = 1 on supp ψ and ϕU (t

′ + T, 0)(1 -χ) = 0. Assume n ≥ 3, n odd. Then (R) implies that R χ (θ) has no poles θ with Im θ ≥ 0 and we can choose δ > 0 so that R χ (θ) has no poles θ with Im θ ≥ -δT, -π < Re θ ≤ π. Let d -δT = [-iδT -π, -iδT +π].
Recall that t = mT +t ′ , so e -mδT ≤ Ce -δt with C > 0 independent of m and t. On the other hand, ψg(θ, 0) = e -iθ ψ(e -iθ -U 0 (T )) -1 f, Im θ > 0 and we conclude that ψg(θ, 0) admits an analytic continuation in C. We shift the contour of the integration from d α to d -δT (see Figure 1) and we obtain

I 2 (t) ≤ C 1 e -δt f , t ≥ 0. iα -π iα + π -iδT -π -iδT + π Figure 1
By the same argument we get an estimate for I 1 (t) and we conclude that

ϕU (t, s)f ≤ C(n, ϕ, f )e -δ(t-s) f , t -s ≥ 1.
For n even we apply a similar argument by shifting the contour of integration to a curve γ going around 0 (see [START_REF] Petkov | Global Strichartz estimates for the wave equation with time-periodic potentials[END_REF]). For the analysis of the integral in a neighborhood of 0 we use the hypothesis on the behavior of R χ (θ) and a result of Vainberg [START_REF] Vainberg | Asymptotic methods in equations of mathematical physics, Gordon and Breach[END_REF], to obtain

I k (t) ≤ C 2 t -1 (ln t) -2 f , t ≥ t 0 > 1, k = 1, 2.
We refer to [START_REF] Petkov | Global Strichartz estimates for the wave equation with time-periodic potentials[END_REF] for more details.

Strichartz estimates

We say that the real numbers

1 ≤ p, q ≤ 2 ≤ p, q ≤ +∞, 0 ≤ γ ≤ 1
are admissible for the free wave equation if the following estimate holds:

For data (f 0 , f 1 ) ∈ Ḣγ (R n ), F ∈ L r t (R; L s x (R n ))
and u(t, x) solution of (1) with τ = 0, V = 0 we have

u L p t (R; L q x (R n )) + u(t, x) Ḣγ x + ∂ t u(t, x) Ḣγ-1 x ≤ C f 0 Ḣγ + f 1 Ḣγ-1 + F L p t (R; L q x (R n )) (5) 
with a constant C = C(n, p, q, p, q, γ) > 0 independent of t ∈ R. We refer to Lindblad-Sogge [START_REF] Lindblad | On existence and scattering with minimal regularity for semilinear wave equation[END_REF] and Keel-Tao [START_REF] Keel | Endpoint Strichartz Estimates[END_REF] and to the references given there for global Strichartz estimates for the free wave equation and to [START_REF] Reissig | Lp -Lq estimates for the solutions of strictly hyperbolic equations of second order with increasing in time coefficients[END_REF] for some results for perturbations depending only of t.

Notice that if q, q′ < 2(n-1) n-3 , then p, q, p, q, γ are admissible if the following conditions hold:

1 p + n q = n 2 -γ = 1 p + n q -2, 1 p ≤ n -1 2 1 2 - 1 q , 1 p′ ≤ n -1 2 1 2 - 1 q′ .
Theorem 2 ( [START_REF] Petkov | Global Strichartz estimates for the wave equation with time-periodic potentials[END_REF]) Let the condition (R) be fulfilled and let 1 ≤ p, q ≤ 2 ≤ p, q ≤ +∞, 0 ≤ γ ≤ min{1, (n -1)/2}, p > 2 be admissible for the free wave equation. Moreover, if n is even assume that p < 2. Then for data

(f 0 , f 1 ) ∈ Ḣγ (R n ), F ∈ L p t (R; L q x (R n ))
and u(t, x) solution of (1) with τ = 0 we have the estimate

u L p t (R; L q x (R n )) + u(t, x) Ḣγ x + ∂ t u(t, x) Ḣγ-1 x ≤ C f 0 Ḣγ + f 1 Ḣγ-1 + F L p t (R; L q x (R n )) (6) 
with a constant C = C(n, p, q, p, q, γ) > 0 independent of t ∈ R.

Sketch of the proof. The proof is based on the following propositions.

Proposition 2 ([15]) Assume (R) fulfilled and 0 ≤ γ ≤ min{1, (n-1)/2}. Let (f 0 , f 1 ) ∈ Ḣγ (R n ) and let F ∈ L 2 t (R; Ḣγ x (R n )) be supported in {x : |x| ≤ R}. Then for every fixed ϕ ∈ C ∞ 0 (R n ) the solution u(t, x) of (1) with τ = 0 satisfies the estimate ∞ -∞ (ϕu(t, x), ϕ∂ t u(t, x)) 2 Ḣγ (R n ) dt ≤ C(n, ϕ, R) f 0 Ḣγ (R n ) + f 1 Ḣγ-1 (R n ) + F L 2 t (R; Ḣγ x (R n )) 2 .
Proposition 3 ([19], [START_REF] Petkov | Global Strichartz estimates for the wave equation with time-periodic potentials[END_REF]) Let (p, q, p, q, γ), f 0 , f 1 , F be as in Theorem 2. Let u 0 (t, x) be the solution of (1)

with τ = 0, V = 0. Then for every ϕ ∈ C ∞ 0 (R n ) we have ∞ -∞ (ϕu 0 (t, x), ϕ∂ t u 0 (t, x)) 2 Ḣγ (R n ) dt ≤ C(n, ϕ) f 0 Ḣγ + f 1 Ḣγ-1 + F L p t (R;L q x (R n )) 2 .
For n odd and 1 ≤ p ≤ 2 Proposition 3 has been established in [START_REF] Smith | Global Strichartz estimates for non-trapping perturbations of the Laplacian[END_REF]. To obtain the L 2 -integrability of the local energy in Proposition 2, we use the local energy decay given by Theorem 1 and for this purpose we need the condition (R). To prove the estimate (6), we write the solution of (1) as a sum u = u 0 + v, where u 0 is the solution of the problem

(∂ 2 t -∆)u 0 = F, u 0 | t=0 = f 0 , ∂ t u 0 | t=0 = f 1 , while v is the solution of the problem (∂ 2 t -∆ + V )v = -V u 0 , v| t=0 = ∂ t v| t=0 = 0.
Applying Proposition 3 for V u 0 , we obtain the estimate

V u 0 L 2 t (R; Ḣγ x (R n )) ≤ C 0 f 0 Ḣγ + f 1 Ḣγ-1 + F L p t (R; L q x (R n )) . (7) 
In fact, choosing a function

β ∈ C ∞ 0 (R n ) such that β = 1 on supp x V (t, x), we have V (t, x)u 0 Ḣγ x (R n ) ≤ C γ,V βu 0 Ḣγ x (R n ) . The estimate of u 0 L p t (R; L q x (R n )) follows form (5). Next we have v(t, x) = - t 0 sin((t -s)Λ) Λ (V u 0 + V v)(s, x)ds.
The function V u 0 satisfies the estimate [START_REF] Cooper | Scattering of waves by periodically moving bodies[END_REF] and by Proposition 2 applied to the equation (

∂ 2 t -∆ + V )v = -V u 0 we deduce V u 0 + V v L 2 t (R; Ḣγ x (R n )) ≤ C 1 f 0 Ḣγ + f 1 Ḣγ-1 + F L p t (R; L q x (R n )) . (8) We wish to show that t 0 sin((t -s)Λ) Λ (V u 0 +V v)(s, x)ds L p t (R + ; L q x (R n )) ≤ C 2 V u 0 +V v L 2 t (R + ; Ḣγ x (R n )) . (9)
Following the argument of [START_REF] Smith | Global Strichartz estimates for non-trapping perturbations of the Laplacian[END_REF], we conclude that the operator

T : Ḣ-γ (R n ) ∋ g → βe ±itΛ g ∈ L 2 t (R + ; Ḣ-γ x (R n ))
is bounded. The adjoint operator

(T * G)(x) = ∞ 0 e ∓isΛ βG(s, x))ds
is bounded as an operator from

L 2 t (R + ; Ḣγ x (R n )) to Ḣγ x (R n ) and this yields ∞ 0 e ±isΛ βh(s, x)(s, x)ds Ḣγ (R n ) ≤ C 2 h L 2 t (R + ; Ḣγ x (R n )) . (10) 
Consider the integral operators

J : L 2 t (R + ; Ḣγ x (R n )) ∋ h(t, x) -→ t 0 K(s, t)h(s, x)ds ∈ L p t (R + ; L q x (R n )),
where K(s, t) = Λ -1 sin((ts)Λ)β. To apply Christ-Kiselev lemma [START_REF] Christ | Maximal functions associated to filtrations[END_REF], it is sufficient to have an estimate for

∞ 0 sin((t -s)Λ) Λ βh(s, x)ds L p t (R + ;L q x (R n ))
.

By ( 5) and [START_REF] Lax | Scattering Theory[END_REF], we get

e ±itΛ Λ -1
∞ 0 e ±isΛ βh(s, x)ds

L p t (R + ; L q x (R n )) ≤ C 3 ∞ 0 e ±isΛ βh(s, x)ds Ḣγ-1 (R n ) ≤ C 2 C 3 h L 2 t (R + ; Ḣγ x (R n ))
. We take h = V u 0 + V v and we use the addition formula for sin((ts)Λ) to conclude that

∞ 0 sin((t -s)Λ) Λ (V u 0 +V v)ds L p t (R + ;L q x (R n )) ≤ C 4 V u 0 +V v L 2 t (R + ; Ḣγ x (R n )) . (11 
) By hypothesis p > 2, so an application of Christ-Kiselev lemma [START_REF] Christ | Maximal functions associated to filtrations[END_REF] yields immediately [START_REF] Herbst | Contraction semigroups and the spectrum of A1 ⊗ I + I ⊗ A2[END_REF]. Consequently, (8) implies an estimate for v L p t (R + ;L q x (R n )) and, similarly, we deal with the norm v

L p t (R -;L q x (R n )) . To estimate v(t 0 , x) Ḣγ (R n x )
uniformly with respect to t 0 , notice that

e ±itΛ Λ -1 t0 0 e ±isΛ (V u 0 + V v)(s, x)ds Ḣγ (R n ) ≤ C 5 t0 0 e ±isΛ (V u 0 + V v)(s, x)ds Ḣγ-1 (R n )
with a constant C 5 > 0 independent of t 0 . As above, we can estimate the right hand part by

V u 0 + V v L 2 t (R; Ḣγ x (R n ))
uniformly with respect to t 0 and apply [START_REF] Galtabayar | Local time-decay of solutions to Schrödinger equations with time-periodic potentials[END_REF]. A similar argument works for ∂ t v(t 0 , x) Ḣγ-1 (R n x ) and the proof of Theorem 2 is complete.

Non-trapping moving obstacles

Throughout this and the following sections we assume that n is odd. To make a precise definition of non-trapping obstacles we must consider the generalized bicharacteristics of the wave operator = ∂ 2 t -∆ x determined as the trajectories of the generalized Hamiltonian flow F σ in Q related to the symbol n i=1 ξ 2 iτ 2 of (see [START_REF] Melrose | Singularities of boundary value problems[END_REF] for a precise definition). In general, F σ is not smooth and in some cases there may exist two different integral curves issued from the same point in the phase space. To avoid this situation, we assume that for every (t, x, τ, ξ) ∈ T * (Q) \ {0} the flow F σ is uniquely determined. To deal with a continuous flow, following [START_REF] Melrose | Singularities of boundary value problems[END_REF] we consider the compressed cotangent bundle T * (Q) which for (t, x) ∈ ∂Q can be identified with

T * t,x (Q)/N t,x (∂Q),
N t,x (∂Q) being the fiber of the formers vanishing on T t,x (∂Q).

Thus given ρ = (t, x, τ, ξ) ∈ T * (Q) \ {0} = Ṫ * (Q), there exists a unique generalized (compressed) bicharacteristic γ(σ) = (t(σ), x(σ), τ (σ), ξ(σ)) ∈ Ṫ * (Q) such that γ(0) = ρ and we define F σ (ρ) = γ(σ) for all σ ∈ R (see [START_REF] Melrose | Singularities of boundary value problems[END_REF]). We obtain a flow F σ : Ṫ * (Q) -→ Ṫ * (Q) which is called also generalized geodesic flow on Ṫ * (Q). The projections of the compressed generalized bicharacteristics on Q are called generalized geodesics.

Definition. The obstacle Q is called non-trapping if for each R > R 0 there exists T (R) > 0 such that there are no generalized geodesics of with length T R lying entirely in Q ∩ {(t, x) : |x| ≤ R}.

Let P b

± be the orthogonal projections on the orthogonal complements of the Lax-Phillips spaces

D b ± = {f ∈ Ḣ1 : U 0 (t)f = 0, |x| < ±t + b, ±t > 0},
where U 0 (t) is the unitary group introduced in Section 1. Set

Z b (T ) = P b + U (T, 0)P b -.
Following the general results of propagation of singularities (see [START_REF] Melrose | Singularities of boundary value problems[END_REF]), it is not difficult to show that if Q is non-trapping, given a function ϕ ∈ C ∞ 0 (R n x ) with supp ϕ ⊂ {x : |x| ≤ a}, a ≥ R 0 , the operator ϕU (t, 0)P a -: H(0) -→ H(t) for t > 4a + T 4a is compact (see [START_REF] Cooper | Scattering of waves by periodically moving bodies[END_REF], [START_REF] Petkov | Scattering Theory for Hyperbolic Operators[END_REF]). In fact, set M (t, s) = U (t, s) -U 0 (ts) and let Φ ∈ C ∞ 0 (R n ) be a cut-off such that Φ = 1 for |x| ≤ 3a, Φ = 0 for |x| ≥ 4a. Then for t > 4a + T 4a we have ϕU (t, 0)P a -= ϕM (t, t -2a)ΦU (t -2a, 2a)ΦM (2a, 0)P a and the operator at the right hand side is compact. Next we take a = R 0 and by a similar argument choosing kT > 4a + T 4a , we deduce that the operator (Z a (T )) k is compact. This implies that the spectrum of the operator Z a (T ) is discrete with finite multiplicity. For b ≥ a we can use the same argument and show that (Z b (T )) m(b) is compact with some integer m(b) ∈ N depending of b. Consequently, the spectrum of Z b (T ) is also discrete and with finite multiplicity. According to [START_REF] Cooper | Scattering of waves by periodically moving bodies[END_REF], the eigenvalues of Z b (T ) and their multiplicities are independent of b.

Next given a cut-off χ ∈ C ∞ 0 (R n ) such that χ = 1 for |x| ≤ R 0 , supp χ ⊂ {x : |x| ≤ b}, b > a, we deduce P b ± χ = χ = χP b ± . It is clear that for |z| ≥ A ≫ 1 we have χ(Z b (T ) -z) -1 χ = χ(U (T ) -z) -1 χ.
The left hand side admits a meromorphic continuation for |z| ≤ A and the same is true for the cut-off resolvent χ(U (T )z) -1 χ, hence the poles of χ(U (T )z) -1 χ are between the poles of (Z b (T )z) -1 which are independent of b.

To prove that the poles of χ(U (T )z) -1 χ coincide with those of (Z b (T )z) -1 , we apply with some modification an argument used in [START_REF] Bony | Resolvent estimates and local energy decay of hyperbolic equations[END_REF] for stationary obstacles. Choose a function ψ ∈ C ∞ 0 (R n ) so that ψ = 1 for |x| ≤ R 0 +1, ψ = 0 for |x| ≥ R 0 + 2 and consider the operator

L ψ (g, h) = 0, ∇ x ψ, ∇ x g + (∆ψ)g .
In particular, we define L ψ (U (t, s)f ) and L ψ (U 0 (t)f ) and will write simply L ψ U (t, s) and L ψ U 0 (t). It is easy to see that we have

(1 -ψ)U (t, 0) = U 0 (t)(1 -ψ) + t 0 U 0 (t)L ψ U (t, s)ds, (12) 
U (t, 0)(1 -ψ) = (1 -ψ)U 0 (t) + t 0 U (t, s)L ψ U 0 (s)ds. ( 13 
)
An application of these equalities yields

U (t, 0) =U (t, 0)ψ + (1 -ψ)U 0 (t) + t 0 ψU (t, s)L ψ U 0 (s)ds + t 0 U 0 (t -s)(1 -ψ)L ψ U 0 (s)ds + t 0 t-s 0 U 0 (τ )L ψ U (t -s, τ )L ψ U 0 (s)dτ ds = ψU (t, 0)ψ + U 0 (t)ψ(1 -ψ) + (1 -ψ)U 0 (t) + t 0 ψU (t, s)L ψ U 0 (s)ds + t 0 U 0 (s)L ψ U (t, s)ψds + t 0 U 0 (t -s)(1 -ψ)L ψ U 0 (s)ds + t 0 t-s 0 U 0 (τ )L ψ U (t -s, τ )L ψ U 0 (s)dτ ds. Let g ∈ C ∞ 0 (B R0+3
) be a cut-off function equal to 1 on B R0+2 . We choose the projectors P b ± so that

P b ± ψ = ψ = ψP b ± , P b ± g = g = gP b ± .
Next we fix b > 0 and the projectors P b ± with these properties and will write P ± , Z(T ) instead of P b ± , Z b (T ). Note that gL ψ = L ψ = L ψ g and let T 0 > 0 be chosen so that P + U 0 (t)P -= 0 for t ≥ T 0 . For A large enough and z ∈ C, |z| ≥ A, we have

(Z(T ) -z) -1 = - ∞ j=0 z -j-1 P + U (jT, 0)P -.
Now we apply the above representation of U (jT, 0) for P + U (jT, 0)P -, j ∈ N, and write

(Z(T ) -z) -1 = ψ(U (T ) -z) -1 ψ - jt≤T0 z -j-1 P + U 0 (jT )ψ(1 -ψ)P - - jT ≤T0 z -j-1 P + (1 -ψ)U 0 (jT )P - + T0 0 P + U 0 (s)L ψ (U (T ) -z) -1 ΦU (0, s)ψP -ds + T0 0 P + ψ(U (T ) -z) -1 ΦU (0, s)L ψ U 0 (s)P -ds - jT ≤T1 min(jT,T0) 0 z -j-1 P + U 0 (jT -s)(1 -ψ)L ψ U 0 (s)P -ds + T0 0 T0 0 P + U 0 (τ )L ψ U (-s, 0)Φ(U (T ) -z) -1 Φ × U (0, τ )L ψ U 0 (s)P -dτ ds + G(z)
with an operator G(z) holomorphic for z = 0. Here Φ is a cut-off function with compact support determined by the finite speed of propagation so that

(1 -Φ)U 0 (t)g = 0 and (1 -Φ)U (t, τ )g = gU (t, τ )(1 -Φ) = 0 for |t| ≤ 2T 0 , 0 ≤ τ ≤ T 0 .
The terms given by finite sums are holomorphic operators with respect to z = 0. Choose a function Ψ ∈ C ∞ 0 (|x| ≤ c + 1) equal to 1 for |x| ≤ c and fix c > b large enough. Thus we conclude that if Ψ (U (T )z) -1 Ψ is analytic in a neighborhood of z 0 , 0 < |z 0 | < A, the same is true for (Z(T )z) -1 , hence Ψ (U (T )z) -1 Ψ and (Z(T )z) -1 have the same poles. The analysis of the multiplicities of the corresponding poles is more difficult and we refer to [START_REF] Bony | Resonances for non-trapping time-periodic perturbations[END_REF] for the results in this direction.

To study the local energy decay for non-trapping obstacles, we can follow the approach in [START_REF] Cooper | Scattering of waves by periodically moving bodies[END_REF] (see also Chapter 6 in [START_REF] Petkov | Scattering Theory for Hyperbolic Operators[END_REF]). In fact, assume that Ψ (U (T )z) -1 Ψ has no poles z ∈ C, |z| ≥ 1, for a cut-off function Ψ given above. Then choosing b > R 0 large enough, we get

σ(Z b (T )) ∩ {z ∈ C : |z| ≥ 1} = ∅,
where σ(L) denotes the spectrum of the operator L. The same property of σ(Z a (T )) holds for all a ≥ R 0 and we deduce

Z a (t, s) ≤ C a e -δa(t-s) , t ≥ s (14) 
with C a > 0, δ a > 0 independent of t and s. Thus given a function f ∈ H(s)

with supp f ∈ {|x| ≤ R} and ϕ ∈ C ∞ 0 (R n ), ϕ = 1 for |x| ≤ R 0 , we conclude that ϕU (t, s)f H(t) ≤ C(ϕ, R)e -γ(t-s) f H(s) , t ≥ s
with γ > 0 independent of t and s. For this purpose we choose suitably b and apply ( 14) with a = b.

Finally, to establish the L 2 -integrability of the local energy, we exploit (13) and using the notations in (13), we write

U (t, 0)f = U (t, 0)ψf + (1 -ψ)U 0 (t)f + t 0 U (t, s)L ψ u 0 (s)ds. The estimate of ∞ 0 ϕU (t, 0)ψf 2 H(t) dt is trivial, while for ∞ 0 t 0 ϕU (t, s)L ψ u 0 (s)ds 2 H(t)
dt we apply Young's inequality. Thus we obtain

∞ 0 ϕU (t, 0)f 2 H(t) dt ≤ C(ϕ) f 2 H(0) .
Under the condition that we have no poles z ∈ C with |z| ≥ 1 of the cutoff resolvent, we can obtain Strichartz estimates modifying the arguments of Section 3.

Trapping moving obstacles

First let us consider a stationary obstacle K(t) = K, ∀t ∈ R and set Ω = R n \ K. Let U (t) = e itG be the unitary group related to the Dirichlet problem (2) in R × Ω and let H = H D (Ω) ⊕ L 2 (Ω) be the energy space (see [START_REF] Lax | Scattering Theory[END_REF]). Let χ ∈ C ∞ 0 (R n ) be a cut-off function equal to 1 on K and let R χ (λ) = χ(-∆ Dλ 2 ) -1 χ be the cut-off resolvent of the Dirichlet Laplacian ∆ D in Ω which is bounded in L 2 (Ω) for Im λ > 0. For non-trapping obstacles K we have the estimate (see for instance, [START_REF] Vainberg | Asymptotic methods in equations of mathematical physics, Gordon and Breach[END_REF])

λR χ (λ) L 2 (Ω)→L 2 (Ω) ≤ C, ∀λ ∈ R. ( 15 
)
On the other hand, the existence of at least one trapped ray leads to the following Proposition 4 ( [START_REF] Bony | Estimates for the cut-off resolvent of the Laplacian for trapping obstacles[END_REF]) If the generalized compressed Hamiltonian flow F σ in R × Ω is continuous and if we have at least one (generalized) trapping ray in Ω, then sup

λ∈R λR χ (λ) L 2 (Ω)→L 2 (Ω) = +∞. ( 16 
)
Proof. Our hypothesis imply the existence of a sequence of ordinary reflecting rays γ n with sojourn times T γn → ∞ (see for instance, [START_REF] Melrose | Singularities of boundary value problems[END_REF]) and we may apply the result of Ralston [START_REF] Ralston | Solutions of the wave equation with localized energy[END_REF] which says that we have not an uniform decay of local energy. On the other hand, according to the results in [START_REF] Vodev | On the uniform decay of local energy[END_REF], the uniform decay of the local energy is equivalent to [START_REF] Petkov | Global Strichartz estimates for the wave equation with time-periodic potentials[END_REF] and we deduce that the estimate (15) fails. Consequently, we get [START_REF] Popov | Exponential growth of the local energy for moving obstacles[END_REF].

The existence of one trapping ray γ leads to several results (see [START_REF] Bony | Resolvent estimates and local energy decay of hyperbolic equations[END_REF], [START_REF] Bony | Estimates for the cut-off resolvent of the Laplacian for trapping obstacles[END_REF]) which hold without having any knowledge of the geometry of K outside a small neighborhood of γ. In particular, we are interested on the analytic properties of the cut-off resolvent of the monodromy operator U (T ) introduced in Section 1. Since a stationary obstacle K is periodic with period every t > 0, it is natural to study the analytic properties of the cut-off resolvent Ψ (U (t)z) -1 Ψ with Ψ ∈ C ∞ 0 (|x| ≤ c + 1), Ψ = 1 for |x| ≤ c, where c > R 0 is large and fixed. For trapping obstacles we cannot obtain a meromorphic continuation across the unit circle S 1 and we have the following We fix b with the above property and for simplicity of the notations we write Z(t) instead of Z b (t). Let B be the generator of Z(t), that is Z(t) = e tB . Therefore, it is easy to see that the condition (16) implies sup λ∈R (iBλ) -1 H→H = +∞.

By applying a result of I. Herbst [START_REF] Herbst | Contraction semigroups and the spectrum of A1 ⊗ I + I ⊗ A2[END_REF], we deduce that for almost all t ∈ R + we have the inclusion

S 1 ⊂ σ(Z(t)). (17) 
Next we obtain a representation of (Z(t)z) -1 , |z| > 1, as a sum of terms involving the cut-off resolvent

Ψ ∞ j=0 z -j-1 U (jt)Ψ = -Ψ (U (t) -z) -1 Ψ
as we have done this for the operator Z(T ) and the propagator U (T, 0) in the previous section. Consequently, if the norm of Ψ (U (t)z) -1 Ψ has a limit as z → z 0 ∈ S 1 , |z| > 1, we obtain a contradiction with [START_REF] Ralston | Solutions of the wave equation with localized energy[END_REF].

Passing to trapping moving obstacles, introduce the normal speed of ∂Q by

v(z) = ν t (z) |ν x (z)| ν x (z) |ν x (z)| .
Given a point z = (t, x) ∈ ∂Q, and a bicharacteristic

γ = (t(σ), x(σ), τ (σ), ξ(σ)) ∈ T * (Q)
reflecting at z, denote the incident direction of γ by -ξi τi and the reflecting direction by -ξr τr with

|ξ i | 2 = τ 2 i , |ξ r | 2 = τ 2 r . Then τ r = µ(z)τ i and µ(z) = (1 -2|v(z)| cos ϕ + |v(z)| 2 ) (1 -|v(z)| 2 ) -1 > 0,
where 0 ≤ ϕ ≤ π is the angle between -ξi τi and v(z). We say that a bicharacteristic (ray) γ issued from (s, y, τ, η) ∈ Ṫ * (Q) with infinite number of reflection points z j ∈ ∂Q, j ∈ N, at times

t j → ∞ is δ-trapping if 0≤tj ≤t µ(z j ) ≥ Ce δt , t ∈ [0, ∞], δ > 0. (18) 
It turns out that for stationary obstacles we have always µ(z) = 1 and the existence of δ-trapping rays is possible only for trapping moving obstacles. Next we consider a example examined by Popov and Rangelov.

Example. (see [START_REF] Popov | Exponential growth of the local energy for moving obstacles[END_REF]) Let

K(t) = O 1 ∪ O 2 (t), O 1 ∩ O 2 (t) = ∅, O 2 (t + T ) = O 2 (t), ∀t ∈ R.
Suppose that for all t the obstacles O 1 and O 2 (t) are strictly convex and set

d(t) = dist O 1 , O 2 (t) , d 1 = min d(t), d 2 = max d(t).
Assume that the obstacle K(t) and its exterior normal satisfy the hypothesis in Section 1 and the conditions:

(i) d 1 < T /2 < d 2 ,
(ii) there exists y 1 ∈ ∂O 1 and y 2 (t) ∈ ∂O 2 (t) so that

d(t) = |y 1 -y 2 (t)|, ∀t ∈ R, (iii) the normal speed v(t, y 2 (t)) of O 2 (t) vanishes only if d(t) = d i , i = 1, 2.
We have |d ′ (t)| < 1 and by our assumptions there exists s 0 > 0 so that d(s 0 ) = T /2, d ′ (s 0 ) < 0. We choose s < s 0 and set y = y 2 (s 0 ) + (ss 0 )ω, ω = The following general result of Popov and Rangelov leading to solutions with exponentially growing local energy can be considered as a generalization of that of Ralston [START_REF] Ralston | Solutions of the wave equation with localized energy[END_REF] for stationary obstacles.

Theorem 4 ( [START_REF] Popov | Exponential growth of the local energy for moving obstacles[END_REF]) Assume that there exists a δ-trapping bicharacteristic γ(σ) issued from (s, y, τ, η) ∈ Ṫ * (Q). Then for every neighborhood W of y in Ω(s) and every 0 < ǫ < δ there exists f = (f 0 , f 1 ) ∈ H(s) with supp f ⊂ W so that for R ≥ R 0 + T we have

U (t + s, s)f H Ω(t+s)∩{|x|≤R} ≥ C(ǫ, s, f )e ǫt , t ∈ [s, ∞[, (19) 
. H Ω(t+s)∩{|x|≤R} being the energy norm over Ω(t + s) ∩ {|x| ≤ R}.

In particular, the above result shows that if we have a δ-trapping bicharacteristic γ(σ), then the spectral radius of Z b (T ) = P b + U (T, 0)P b -for b > R 0 + T is greater or equal to e δT .

Following the argument of the previous section, we may compare the analytic singularities of (Z b (T )z) -1 and those of the cut-off resolvent Ψ (U (T )z) -1 Ψ, where Ψ ∈ C ∞ 0 (|x| ≤ c + 1) and c > R 0 is large enough and fixed. More precisely, we expect that the continuous spectrum of the operator Z(T ) is not empty. In this direction it is interesting to note that for two strictly convex disjoint stationary obstacles K i , i = 1, 2, for almost all t ∈ R + we have the inclusion [START_REF] Ralston | Solutions of the wave equation with localized energy[END_REF]. In fact, a more stronger result holds. (20)

Theorem 3 (

 3 [START_REF] Bony | Resolvent estimates and local energy decay of hyperbolic equations[END_REF]) Assume the obstacle K stationary and the condition (16) fulfilled. Then for almost all t ∈ R + and all z 0 ∈ S 1 we havelim z→z0, |z|>1 Ψ (U (t)z) -1 Ψ H→H = +∞.The proof is based on the following idea. Taking b ≥ c+1, we have P b ± Ψ = Ψ = Ψ P b ± , where P b ± have been introduced in the previous section. Consider the Lax-Phillips semigroup Z b (t) = P b + U (t)P b -.

  y2(t)-y1 |y2(t)-y1| . The bichracteristic γ(σ) = (t(σ), x(σ), τ (σ), ξ(σ)) issued from (s, y, 1ω) has an infinite number of reflections at z k = (t k , x k ), k ∈ N, with t k = s 0 + (k -1)T /2, x 2k-1 = y 2 (s 0 ), x 2k = y 1 and µ(z 2k ) = 1, µ(z 2k+1 ) = 1 + |d ′ (s 0 )| 1 -|d ′ (s 0 )| > 1. Moreover, γ(σ) is δ-trapping with δ = 1 T ln(1 + |d ′ (s 0 )|)ln(1 -|d ′ (s 0 )|) > 0.

Theorem 5

 5 Under the hypothesis of Theorem 4 for every 0 < ǫ < δ the cut-off resolvent of the monodromy operatorΨ (U (T )z) -1 Ψ has not an analytic continuation from {z ∈ C : |z| ≥ A ≫ 1} to {z ∈ C : e ǫT ≤ |z| ≤ A}.The analysis of the spectrum of Z(T ) = Z b (T ) for |z| > 1 is an open problem. We conjecture that the existence of a δ-trapping bicharacteristic implies that (Z(T )z) -1 has not a meromorphic continuation in {z ∈ C : e ǫT ≤ |z| ≤ A}, 0 < ǫ < δ.

Theorem 6 (

 6 [START_REF] Bony | Estimates for the cut-off resolvent of the Laplacian for trapping obstacles[END_REF]) Let K = K 1 ∪K 2 , where K i , i = 1, 2, are strictly convex and disjoint and letΩ = R n \ K. Consider the semigroup Z b (t) = P b + U (t)P b -, b > R 0 , where U (t)is the unitary group related to the Dirichlet problem (3) in R × Ω. Then for almost all t ∈ R + we have {z ∈ C : |z| ≤ 1} = σ(Z b (t)).