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Liquid Nanofilms.

A Mechanical Model for the Disjoining Pressure

Henri Gouin

University of Aix-Marseille & M2P2, C.N.R.S. U.M.R. 6181,
Case 322, Av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France

Abstract

Liquids in contact with solids are submitted to intermolecular forces making liquids
heterogeneous and, in a mechanical model, the stress tensor is not any more spherical
as in homogeneous bulks. The aim of this article is to show that a square-gradient
functional taking into account the volume liquid free energy corrected with two
surface liquid density functionals is a mean field approximation allowing to study
structures of very thin liquid nanofilms near plane solid walls. The model determines
analytically the concept of disjoining pressure for liquid films of thicknesses of a very
few number of nanometers and yields a behavior in good agreement with the shapes
of experimental curves carried out by Derjaguin and his successors.
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1 Introduction

The technical development of sciences allows us to observe phenomena at
length scales of a very few number of nanometers. This nanomechanics infers
applications in numerous fields, including medicine and biology. It reveals
new behaviors, often surprising and essentially different from those that are
usually observed at macroscopic and also at microscopic scales [1]. Currently
simple models proposing realistic qualitative behaviors need to be developed
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in different fields of nanosciences even if their comparison with experimental
data may be criticized at a quantitative level.
As pointed out in experiments with water, the density of liquid water is found
to be changed in narrow pores [2]. The first reliable evidence of this effect
was reported by V.V. Karasev, B.V. Derjaguin and E.N. Efremova in 1962
and found after by many others ([3], pages 240-244). In order to evaluate
the structure of thin interlayers of water and other liquids, Green-Kelly and
Derjaguin employed a method based on measuring changes in birefringence
[4]; they found significant anisotropy of water interlayers.
In a recent article, the equations of motion of thin films were considered by
taking into account the variation of the disjoining pressure along the layer
[5]. The aim of this paper is to study, by means of a continuous mechanical
model, the disjoining pressure and the behavior for very thin liquid films at
the mesoscopic scale of a few number of nanometers.

Since van der Waals at the end of the nineteenth century, the fluid inhomo-
geneities in liquid-vapor interfaces were represented in continuous models by
taking into account a volume energy depending on space density derivative
[6,7,8,9,10]. Nevertheless, the corresponding square-gradient functional is un-
able to model repulsive force contributions and misses the dominant damped
oscillatory packing structure of liquid interlayers near a substrate wall [11,12].
Furthermore, the decay lengths are correct only close to the liquid-vapor criti-
cal point where the damped oscillatory structure is subdominant [13]. In mean
field theory, weighted density-functional has been used to explicitly demon-
strate the dominance of this structural contribution in van der Waals thin films
and to take into account long-wavelength capillary-wave fluctuations as in pa-
pers that renormalize the square-gradient functional to include capillary wave
fluctuations [14]. In contrast, fluctuations strongly damp oscillatory structure
and it is mainly for this reason that van der Waals’ original prediction of a
hyperbolic tangent is so close to simulations and experiments [15].
To propose an analytic expression in density-functional theory for liquid film
of a very few nanometer thickness near a solid wall, we add a liquid density-
functional at the solid surface and a surface density functional at the liquid-
vapor interface to the square-gradient functional representing the volume free
energy of the fluid. This kind of functional is well-known in the literature
[16]. It was used by Cahn in a phenomenological form, in a well-known pa-
per studying wetting near a critical point [17]. An asymptotic expression is
obtained in [18] with an approximation of hard sphere molecules and London
potentials for liquid-liquid and solid-liquid interactions: in this way, we took
into account the power-law behavior which is dominant in a thin liquid film
in contact with a solid.
The disjoining pressure Π is a well adapted tool for a very thin liquid film of
thickness h. In cases of Lifshitz analysis [19] and van der Waals theory, the
disjoining pressure behaviors are respectively as Π ∼ h−3 and Π ∼ exp(−h).
None of them represents correctly experimental results for a film with a thick-
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ness ranging over a few nanometers.
Then, the gradient expansion missing the physically dominant damped oscilla-
tory packing structure of the liquid near a substrate wall and only working up a
smooth exponential decay is corrected by surface energies issued from London
forces which model power-law dispersion interaction: since the only structure
that the square gradient functional can yield is monotonic exponential, the
surface energies take account of the eventual dominance of attractive power-
law dispersion interactions. In fact power-law wings are physically present for
liquid film of several nanometers and it is the reason we propose a study only
for films in a range of few nanometers.

2 The density-functional

In our model, the free energy density-functional of an inhomogeneous liquid
in a domain O of boundary ∂O is taken in the general form

F =
∫ ∫ ∫

O
ε dv +

∫ ∫

∂O
ϕ ds, (1)

where ε is the specific free energy and ϕ is a generic surface free energy of ∂O.
In our problem, we consider a horizontal plane liquid layer (L) contiguous
to its vapor bulk and in contact with a plane solid wall (S); the z-axis is
perpendicular to the solid surface (S). The liquid film thickness is denoted
by h. Far from its critical point, the liquid at level z = h is situated at a
distance order of two molecular diameters from the vapor bulk and the liquid-
vapor interface is assimilated to a surface (Σ) at z = h. Then, the free energy
density-functional (1) gets the particular form

F =
∫ ∫ ∫

(L)
ε dv +

∫ ∫

(S)
φ ds+

∫ ∫

(Σ)
ψ ds. (2)

where ϕ is shared in two parts φ and ψ respectively associated with (S) and
(Σ).

• In Rel. (2), the first integral (energy of volume (L)) is associated with
square-gradient approximation when we introduce a specific free energy of the
fluid

ε = ε(ρ, β)

at a given temperature θ as a function of density ρ and β = (grad ρ)2. Spe-
cific free energy ε characterizes both fluid properties of compressibility and
molecular capillarity of liquid-vapor interfaces. In accordance with gas kinetic
theory [20], scalar λ = 2ρ ε,β(ρ, β) (where ε,β denotes the partial derivative
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with respect to β) is assumed to be constant at a given temperature and

ρ ε = ρα(ρ) +
λ

2
(grad ρ)2, (3)

where the term (λ/2) (grad ρ)2 is added to the volume free energy ρα(ρ) of a
compressible homogeneous fluid. We denote the pressure term associated with
specific free energy α(ρ) by

P (ρ) = ρ2α ′(ρ). (4)

• In Rel. (2), the second integral (energy of surface (Σ)) is defined through
a model of molecular interactions between the fluid and the solid wall. In
fact, near a solid wall, the London potentials of liquid-liquid and liquid-solid
interactions are















ϕll = −
cll
r6
, when r > σl and ϕll = ∞ when r ≤ σl ,

ϕls = −
cls
r6

, when r > δ and ϕls = ∞ when r ≤ δ ,

where cll and cls are two positive constants, σl and σs denote liquid (fluid)
and solid molecular diameters, δ = 1

2
(σl + σs) is the minimal distance be-

tween centers of liquid and solid molecules [21]. In the theory of additive
and non-retarded molecular interactions, coefficients cll and cls are connected
with Hamaker constants All and Als through the relations All = π2cllρ

2
l and

Als = π2clsρlρs, where ρl and ρs respectively denote liquid bulk and solid
densities [22]. Forces between liquid and solid have short range and can be
simply described by adding a special energy at the surface. This is not the
entire interfacial energy: another contribution comes from the distortions in
the liquid density profile near the wall [18,23]. Finally, for a plane solid wall
(at a molecular scale), this surface free energy is obtained in the form

φ(ρ) = −γ1ρ+
1

2
γ2 ρ

2. (5)

Here ρ denotes the liquid density value at the wall. The constants γ1, γ2 are

positive and given by the relations γ1 =
πcls

12δ2mlms

ρs, γ2 =
πcll

12δ2m2
l

, where

ml et ms respectively denote the masses of liquid (fluid) and solid molecules

[18]. Moreover, we have λ =
2πcll

3σl m2
l

.

• In Rel. (2), let us consider the third integral. The conditions in the vapor
bulk are grad ρ = 0 and ∆ρ = 0 with ∆ denoting the Laplace operator. Far
from the critical point, a way to compute the total free energy of the complete
liquid-vapor layer is to add the energy of the liquid layer (L) located between
z = 0 and z = h (first integral of Rel. (2)), the surface energy of the solid
wall (S) at z = 0 (second integral of Rel. (2)), the energy of the liquid-vapor
interface of a few Angström thickness assimilated to a surface (Σ) at z = h
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and the energy of the vapor layer located between z = h and z = +∞ [24].
The liquid at level z = h is situated at a distance order of two molecular
diameters from the vapor bulk and the vapor has a negligible density with
respect to the liquid density [25]. In our model, these two last energies can
be expressed by writing a unique energy ψ per unit surface located on the
mathematical surface (Σ) at z = h : by a calculation like in [18], we can write
ψ in a form analogous to expression (5) and also expressed in [23] in the form
ψ(ρ) = −γ5ρ+ 1

2
γ4 ρ

2; but with a wall corresponding to a negligible density,
γ5 ≃ 0 and the surface free energy ψ is reduced to

ψ(ρ) =
γ4

2
ρ2, (6)

where ρ is the liquid density at level z = h and γ4 is associated with a distance
of the order of the fluid molecular diameter (when σl ≃ δ, then γ4 ≃ γ2).
Consequently, due to the small vapor density, the surface free energy ψ is the
same as the one of a liquid in contact with a vacuum and expressed by the
third integral of Rel. (2).

Such a form of density functional restricted to the first two integrals was pri-
mary expressed by Cahn; Cahn’s study used a graphic representation where
energy integrals were presented as different areas in an energy-density plane
[17]. Analytical computations were also tested in [24] but without taking ac-
count of a complete volume free energy in form (3).
With our previous functional approximation, we obtain the equations of equi-
librium (or motion) and boundary conditions for a thin liquid film damping
a solid wall. We can compute the liquid layer thickness. The normal stress
vector acting on the wall remains constant through the layer and corresponds
to the gas-vapor bulk pressure which is usually the atmospheric pressure.
We obtain analytical results expressing the profile of density of very thin layer
at a mesoscopic scale. We deduce an analytic expression of the disjoining pres-
sure computed for different solid materials in contact with nanometer scale
liquid layers. For all I know, such results have not been obtained in the litera-
ture by using both a continuous mechanical model and a differential equation
system.
It is wondering to observe that the density-functional theory expressed by a
simple model correcting van der Waals’ one with surface density-functionals
at the wall and the interface, enables to obtain a representation of the disjoin-
ing pressure for very thin films which fits in with experiments by Derjaguin
and others. This result is obtained without too complex weighted density-
functionals and without taking account of quantum effects corresponding to
an Angström length scale. So, this kind of functional may be a good tool
to analytically study liquids in contact with solids at a very small nanoscale
range.
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3 Equation of motion and boundary conditions

In case of equilibrium, functional F is minimal with respect to the vector fields
of virtual displacement classically defined (as in [26]) and yields the equation of

equilibrium of the inhomogeneous liquid and the boundary conditions between
liquid, vapor and solid wall. In case of motions we simply add the inertial
forces and the dissipative stresses in the equation of equilibrium (to refer to
the well-known explicit calculations, see for example [5,27,28]).

3.1 Equation of motion

The equation of motion is

ρ Γ = div (σ + σv) − ρ grad Ω, (7)

where Γ is the acceleration vector, Ω the body force potential, σ the stress
tensor generalization and σv the viscous stress tensor,

σ = − p 1 − λ grad ρ ⊗ grad ρ,

where p = ρ2ε,ρ−ρ div (λ grad ρ) is different from the pressure term P defined
in (4).
For a horizontal layer, in an orthogonal system of coordinates such that the
third coordinate z is the vertical direction, all physical quantities in the layer
depend only on z and the stress tensor σ of the thin film gets the form

σ =















a1 0 0

0 a2 0

0 0 a3















, with























a1 = a2 = −p, p = P (ρ) −
λ

2

(

dρ

dz

)2

− λ ρ
d2ρ

dz2
,

a3 = −p− λ

(

dρ

dz

)2

.

Let us consider a thin film of liquid at equilibrium (gravity forces are ne-
glected). The equation of equilibrium is

div σ = 0 . (8)

Equation (8) yields a constant value for the eigenvalue a3,

p+ λ

(

dρ

dz

)2

= Pvb
,

or

P +
λ

2

(

dρ

dz

)2

− λρ
d2ρ

dz2
= Pvb

,
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where Pvb
denotes the pressure P (ρvb

) in the vapor bulk, where ρvb
is the den-

sity of the vapor mother bulk bounding the liquid layer. Eigenvalues a1, a2 are
not constant and depend on the distance z to the solid wall [3]. At equilibrium,
general Eq. (7) is equivalent to

grad (µ (ρ) − λ∆ρ ) = 0, (9)

where µ is the chemical potential at temperature θ defined to an unknown
additive constant [5,27]. The chemical potential is a function of P (and θ) but
can be also expressed as a function of ρ (and θ). At temperature θ, we choose as
reference chemical potential µo = µo(ρ), null for the bulks of densities ρl and ρv

of phase equilibrium. Due to Maxwell rule, the volume free energy associated
with µo is go(ρ) − Po where Po = P (ρl) = P (ρv) is the bulk pressure and
go(ρ) =

∫ ρ
ρv
µo(ρ) dρ is null for the liquid and vapor bulks of phase equilibrium.

The pressure P is
P (ρ) = ρ µo(ρ) − go(ρ) + Po. (10)

Thanks to Eq. (9), we obtain in all the fluid and not only in the liquid layer,

µo(ρ) − λ∆ρ = µo(ρb),

where µo(ρb) is the chemical potential value of a liquid mother bulk of density
ρb such that µo(ρb) = µo(ρvb

). We must emphasis that P (ρb) and P (ρvb
) are

unequal as for drop or bubble bulk pressures. The density ρb is not a fluid
density in the layer but the density in the liquid bulk from which the layer
can extend (this is why Derjaguin used the term mother liquid [3], page 32).
In the liquid layer (L),

λ
d2ρ

dz2
= µb(ρ), with µb(ρ) = µo(ρ) − µo(ρb). (11)

3.2 Boundary conditions

Condition at the solid wall (S) associated with the free surface energy (5)
yields [28]

λ

(

dρ

dn

)

|S

+ φ′(ρ)|S = 0, (12)

where n is the external normal direction to the fluid. Equation (12) yields

λ

(

dρ

dz

)

|z=0

= −γ1 + γ2 ρ|z=0
. (13)

The sign of −γ1 + γ2 ρ|z=0
determines the wettability of the fluid on the wall:

the fluid damps the solid wall when γ1 − γ2ρ|z=0
> 0 and does not damp the

solid wall when γ1 − γ2ρ|z=0
< 0 [28,29].
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Condition at the liquid-vapor interface (Σ) associated with the free surface
energy (6) yields

λ

(

dρ

dz

)

|z=h

= −γ4 ρ|z=h
. (14)

Equation (14) defines a film thickness by introducing a reference point inside
the liquid-vapor interface bordering the liquid layer with a convenient density
at z = h [24].
We notice that to study the stress tensor in the layer, we must also add to
conditions (13,14) on density, the classical surface conditions on the stress
vector associated with the total stress tensor σ + σv [28].

4 The disjoining pressure for horizontal liquid films

We consider fluids and solids at a given temperature θ. The hydrostatic pres-
sure in a thin liquid layer located between a solid wall and a vapor bulk differs
from the pressure in the contiguous liquid phase. At equilibrium, the addi-
tional pressure in the layer is called the disjoining pressure [3]. Clearly, the

Fig. 1. Diagram of the technique for determining the disjoining pressure isotherms
of wetting films on a solid substrate: a circular wetting film is formed on a flat
substrate to which a microporous filter with a cylindrical hole is clamped. A pipe
connects the filter filled with the liquid to a reservoir containing the liquid mother
bulk that can be moved by a micrometric device. The disjoining pressure is equal to
Π = (ρb − ρvb

) gH (From Ref. [3], page 332).

disjoining pressure could be measured by applying an external pressure to
keep the layer in equilibrium. The measure of the disjoining pressure is either
the additional pressure on the surface or the drop in the pressure within the
mother bulks that produce the layer. In both cases, the forces arising during
the thinning of a film of uniform thickness h produce the disjoining pressure
Π(h) of the layer with the surrounding phases; the disjoining pressure is equal
to the difference between the pressure Pvb

on the interfacial surface (which is
the pressure of the vapor mother bulk of density ρvb

) and the pressure Pb in
the liquid mother bulk (density ρb) from which the layer extends:

Π(h) = Pvb
− Pb .
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Fig. 2. Experimental curves of the disjoining pressure (issued from Ref. [31]): the
h-axis unit is the nanometer; the Π-axis unit is about some atmospheres. The rectan-
gle area corresponds to a domain where the curves of the disjoining pressure (which
depends on the quality of the wall) do not have a behavior as h−3 like in classical
theory of thin films [19]. This experimental behavior corresponds to nanofilms of a
very few number of nanometers. This behavior is similar to the one obtained from
our model of functional which takes into account both wall and liquid-vapor interface
effects.

The most classical apparatus to measure the disjoining pressure is due to She-
ludko [30] and is described on Fig. (1). The film is so thin that the gravity
effect is neglected across the layer. Experimental curves of the disjoining pres-
sure were first obtained by Derjaguin. The behavior of the disjoining pressure
for a nanofilm in [31] seems strongly different from the one obtained for thin
liquid film in [19] (see Fig. 2).
If gb(ρ) = go(ρ) − go(ρb) − µo(ρb)(ρ − ρb) denotes the primitive of µb(ρ), null
for ρb, we get from Eq. (10)

Π(ρb) = −gb(ρvb
), (15)

and an integration of Eq. (11) yields

λ

2

(

dρ

dz

)2

= gb(ρ) + Π(ρb). (16)

The reference chemical potential linearized near ρl (respectively ρv) is µo(ρ) =
c2l
ρl

(ρ− ρl)

(

respectively µo(ρ) =
c2v
ρv

(ρ− ρv)

)

where cl (respectively cv) is the

isothermal sound velocity in liquid bulk ρl (respectively vapor bulk ρv) at
temperature θ [32]. In the liquid and vapor parts of the liquid-vapor film, Eq.
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(11) yields

λ
d2ρ

dz2
=
c2l
ρl

(ρ− ρb) (liquid) and λ
d2ρ

dz2
=
c2v
ρv

(ρ− ρvb
) (vapor).

The values of µo(ρ) are equal for the mother densities ρvb
and ρb,

c2l
ρl

(ρb − ρl) = µo(ρb) = µo(ρvb
) =

c2v
ρv

(ρvb
− ρv), and consequently,

ρvb
= ρv

(

1 +
c2l
c2v

(ρb − ρl)

ρl

)

.

In the liquid and vapor parts of the complete liquid-vapor layer we get the
first expansion of the free energy, null when ρ = ρl and ρ = ρv respectively,

go(ρ) =
c2l
2ρl

(ρ− ρl)
2 (liquid) and go(ρ) =

c2v
2ρv

(ρ− ρv)
2 (vapor).

From definition of gb(ρ) and Eq. (15) we deduce the disjoining pressure

Π(ρb) =
c2l
2ρl

(ρl − ρb)

[

ρl + ρb − ρv

(

2 +
c2l
c2v

(ρb − ρl)

ρl

)]

. (17)

Far from the critical point, due to ρv

(

2 +
c2l
c2v

(ρb − ρl)

ρl

)

≪ ρl + ρb, we get

Π(ρb) ≈
c2l
2ρl

(ρ2
l − ρ2

b). Now, we consider a film of thickness h; the density

profile in the liquid part of the liquid-vapor film is solution of the differential
equation,

λ
d2ρ

dz2
=
c2l
ρl

(ρ− ρb) (18)

with λ
dρ

dz |z=0

= −γ1 + γ2 ρ|z=0
and λ

dρ

dz |z=h

= −γ4 ρ|z=h
.

With defining τ such that τ = cl/
√

λρl , where d = 1/τ is a reference length
and γ3 = λτ , the solution of Eq. (18) is

ρ = ρb + ρ1 e
−τz + ρ2 e

τz, (19)

where the boundary conditions at z = 0 and z = h yield the values of ρ1 and
ρ2 satisfying











(γ2 + γ3)ρ1 + (γ2 − γ3)ρ2 = γ1 − γ2ρb,

−e−hτ (γ3 − γ4)ρ1 + ehτ (γ3 + γ4)ρ2 = −γ4ρb .

The liquid density profile is a consequence of Eq. (19) when z ∈ [0, h],
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ρ= ρb +
(γ1 − γ2ρb)(γ3 + γ4)e

hτ + (γ2 − γ3)γ4ρb

(γ2 + γ3)(γ3 + γ4)e
hτ + (γ3 − γ4)(γ2 − γ3)e

−hτ
e−τz +

−(γ2 + γ3)γ4ρb + (γ1 − γ2ρb)(γ3 − γ4)e
−hτ

(γ2 + γ3)(γ3 + γ4)e
hτ + (γ3 − γ4)(γ2 − γ3)e

−hτ
eτz. (20)

Equations (16,19) together with gb(ρ) = (c2l /2 ρl)(ρ − ρb)
2 for the liquid part

of the layer yield

Π(ρb) = −
2 c2l
ρl

ρ1 ρ2. (21)

The disjoining pressure is an invariant through the liquid film and its value is
function of both ρb and h,

Π(ρb)=
2c2l
ρl

[

(γ1 − γ2ρb)(γ3 + γ4)e
hτ + (γ2 − γ3)γ4ρb

]

×

[

(γ2 + γ3)γ4ρb − (γ1 − γ2ρb)(γ3 − γ4)e
−hτ

]

[(γ2 + γ3)(γ3 + γ4)e
hτ + (γ3 − γ4)(γ2 − γ3)e

−hτ ]2
. (22)

By identification of expressions (17) and (22), we get a relation between h and
ρb. Consequently, we get a relation between the disjoining pressure Π(ρb) and
the thickness h of the liquid film. For the sake of simplicity, we denote the
disjoining pressure as a function of h at temperature θ by Π = Π(h).
In experiments, for liquid in equilibrium with bubbles - even with a bubble
diameter of a few number of nanometers - we have ρb ≃ ρl [33]. Consequently,
the disjoining pressure is expressed as a function of h in the approximative
form

Π(h) =
2 c2l
ρl

[

(γ1 − γ2ρl)(γ3 + γ4)e
hτ + (γ2 − γ3)γ4ρl

]

×

[

(γ2 + γ3)γ4ρl − (γ1 − γ2ρl)(γ3 − γ4)e
−hτ

]

[(γ2 + γ3)(γ3 + γ4)e
hτ + (γ3 − γ4)(γ2 − γ3)e

−hτ ]2
.

Let us notice an important property of the mixture of a fluid far under its
critical point and a perfect gas, where the total pressure is the sum of the
partial pressures of the components [32]: at equilibrium, the partial pressure
of the perfect gas is constant through the liquid-vapor-gas layer where the
perfect gas is dissolved in the liquid. The disjoining pressure of the mixture
is the same as for a single fluid and calculations and results are identical to
those previously obtained.
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Physical constants cll σl ml ρl cl

Water 1.4 × 10−58 2.8 × 10−8 2.99 × 10−23 0.998 1.478 × 105

Physical constants cls σs ms ρs δ

Silicon 1.4 × 10−58 2.7 × 10−8 4.65 × 10−23 2.33 2.75 × 10−8

Deduced constants λ γ1 γ2 = γ4 γ3 d

Results (water-silicon) 1.17 × 10−5 81.2 54.2 506 2.31 × 10−8

Table 1
The physical values associated with water and silicon are obtained in references

[21,34] and expressed in c.g.s. units (centimeter, gramme, second). No information
is available for water-silicon interactions; we assume that cll = cls. The deduced con-
stants are obtained from physical values by means of formulae obtained in sections
2-4.

5 A comparison of the model with experiments

Our aim is not to propose an exhaustive study of the disjoining pressure
for all physicochemical conditions associated with different fluids bounded
by different walls, but to point out an example such that previous modeling
appropriately fits with experimental data. At θ = 20◦ Celsius, we successively
consider water wetting walls (a wall of silicon is the reference material) and
water not wetting a wall.

Due to Eq. (20), Fig. 3 represents water liquid density profiles in the nanolayer.
We verify the consistency of the model:
• The density gradient is large at a few nanometer range from the solid wall
and consequently in this domain, the liquid is inhomogeneous,
• The boundary condition (14) is well adapted to our model of functional
and determines the position where the phase transition between liquid and
vapor occurs: condition (14) yields a density value of the fluid corresponding
to an intermediate density which can be associated with a dividing surface
separating liquid and vapor in the liquid-vapor interface. Due to the film
instability, we will see further down that graph (b) in Fig. 3 is unphysical.

We have drawn disjoining pressure profiles deduced from analytical expressions
given in section 4; the graphs relate to Rel. (22).
Graphs are associated with several cases when water damps the solid wall (at
the wall, the water density is closely ρl and γ1 − γ2ρl > 0) and a case when
water does not damp the solid wall (γ1 − γ2ρl < 0).

According to different physical values, graphs (a), (b) and (c) of Fig. (4)
represent the disjoining pressure profiles for water in contact with a plane
solid wall at 20◦ Celsius.
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Fig. 3. Graphs of liquid density profiles in a nanofilm. Results are given in two cases:
Graph (a) corresponds to the case of a liquid damping a solid wall (γ1 − γ2ρl < 0);
wetting data are associated with liquid water on silicon (cf. graph (b) in Fig. 4).
Graph (b) corresponds to the unphysical case of non-wetting liquid (γ1 − γ2ρl > 0);
non-wetting data are associated with liquid water and a wall such that γ1 = 30, all
the other deduced constants λ, γ2, γ3, γ4 being unchanged (cf. graph (d) in Fig. 4).
The unit of the x−axis is δ = 2.75 × 10−8 cm (2.75 Angström), the unit of the
y−axis is the liquid water density at 20◦Celsius (approximatively 1 g/cm3).

Values of γ1 110 81.2 58 30

Corresponding graphs in Fig. 4 (a) (b) (c) (d)

Table 2
The numerical data λ, γ2, γ3, γ4 corresponding to liquid water are unchanged. They
have the values presented in Table 1. Only the values of γ1 (in c.g.s. units) depending
on the behavior of the solid walls are different following graphs (a), (b), (c), (d)
drawn in Fig. 4.

Graph (b) corresponds to a silicon solid wall. Graphs (a) and (c) respectively
correspond to water wetting more strongly the wall than a silicon wall and
water wetting less strongly the wall than a silicon wall.
In [5], we studied the stability of nanofilm. In accordance with results in [3],
Graph (a) is associated with a stable nanolayer for any liquid film thickness
because for all h, ∂Π(h, θ)/∂h < 0. In graphs (b) and (c), values of h for which
the liquid nanolayer is stable correspond to a domain where ∂Π(h, θ)/∂h < 0,
corresponding to h values greater than a particular value hs depending on γ1.
Graph (d) differs from previous ones as that liquid water does not damp the
solid wall. The graph corresponds to an unstable nanolayer and does not exist
physically. In the non-wetting case, liquid nanolayers are unstable and they
are associated with compression instead of suction in experiments by Sheludko
[30].
We notice that graphs (a), (b), (c) in Fig. 4, experimental graph in Fig. 2 and
graphs in experimental literature (as in [3,31]) exhibit quite similar behaviors.
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Fig. 4. Several graphs represent the disjoining pressure for liquid water at 20◦ C
in contact with different plane solid walls: graphs (a), (b), (c) correspond to water
damping the wall; graph (d) corresponds to an unphysical case of water not damping
the wall. The unit of the x−axis is δ, the unit of the y−axis is 106 Barye (one
atmosphere).

6 Conclusion

We have studied liquid nanofilms in contact with plane solid walls. For layer
thicknesses of some nanometers, the theoretical graphs of the disjoining pres-
sure correctly draw the behavior of experiments by Derjaguin and others [3,30].
The proposed analytical method is different from Lifschitz one in which layers
were considered with uniform density liquids [19]. In our model correspond-
ing to thin liquid nanofilms, liquids are considered as inhomogeneous near
the solid walls. The density distribution in liquid nanofilms depends on the
physicochemical characteristics of walls: when the liquid damps the wall, we
have an excess of fluid density at the wall and the fluid is denser at the wall
than in the liquid bulk; the contrary happens when the liquid does not damp
the wall.
These analytical results and the liquid density profiles are in accordance with
experimental works by Derjaguin and others [3,4,11].
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