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THE INDEX OF CENTRALIZERS OF ELEMENTS OF REDUCTIVE LIE
ALGEBRAS

JEAN-YVES CHARBONNEL, ANNE MOREAU, AND ANNE MOREAU

ABSTRACT. For a finite dimensional complex Lie algebra, its index is the minimal dimension of stabilizers
for the coadjoint action. A famous conjecture due to A.G. Elashvili says that the index of the centralizer
of an element of a reductive Lie algebra is equal to the rank. That conjecture caught attention of

|§a03;} and EaOBH]7
D.I. Panyushev proved the conjecture for some classes of nilpotent elements (e.g. regular, subregular

several Lie theorists for years. It reduces to the case of nilpotent elements. In

and spherical nilpotent elements). Then the conjecture has been proven for the classical Lie algebras

in [ and checked with a computer programme for the exceptional ones } In this paper we
give an almost general proof of that conjecture.

1. INTRODUCTION

In this note k is an algebraically closed field of characteristic 0.

1.1. Let g be a finite dimensional Lie algebra over k and consider the coadjoint representation
of g. By definition, the index of g is the minimal dimension of stabilizers g%, x € g*, for the
coadjoint representation:
indg := min{dimg"; x € g*}.

The definition of the index goes back to Dixmier [Di74]. It is a very important notion in rep-
resentation theory and in invariant theory. By Rosenlicht’s theorem [Ro63], generic orbits of
an arbitrary algebraic action of a linear algebraic group on an irreducible algebraic variety are
separated by rational invariants; in particular, if g is an algebraic Lie algebra,

indg = deg trk(g*)?,

where k(g*)? is the field of g-invariant rational functions on g*. The index of a reductive al-
gebra equals its rank. For an arbitrary Lie algebra, computing its index seems to be a wild
problem. However, there is a large number of interesting results for several classes of nonre-
ductive subalgebras of reductive Lie algebras. For instance, parabolic subalgebras and their
relatives as nilpotent radicals, seaweeds, are considered in [Pa03d], [TY04], [J07]. The central-
izers, or normalizers of centralizers, of elements form another interesting class of such subal-
gebras, [E85d|, [Pa034], [Mo06H]. The last topic is closely related to the theory of integrable

Hamiltonian systems B |. Let us precise this link.
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From now on, g is supposed to be reductive. Denote by G the adjoint group of g. The symmetric
algebra S(g) carries a natural Poisson structure. By the so-called argument shift method, for x in
g*, we can construct a Poisson-commutative family F, in S(g) = k[g*]; see [MF7§] or Remark [[.4.
It is generated by the derivatives of all orders in the direction x € g* of all elements of the algebra

S(g)? of g-invariants of S(g). Moreover, if G.z denotes the coadjoint orbit of z € g*:

Theorem 1.1 ([Bol91l], Theorems 2.1 and 3.2). There is a Poisson-commutative family of poly-
nomial functions on g*, constructed by the argument shift method, such that its restriction to G.x
contains %dim(G.m) algebraically independent functions if and only if indg® = ind g.

Denote by rkg the rank of g. Motivated by the preceding result of Bolsinov, A.G. Elashvili
formulated a conjecture:

Conjecture 1.2 (Elashvili). Let g be a reductive Lie algebra. Then indg® = rkg for all x € g*.

Elashvili’s conjecture also appears in the following problem: Is the algebra S(g®)®" of invari-
ants in S(g*) under the adjoint action a polynomial algebra? This question was formulated by
A. Premet in [PPY07, Conjecture 0.1]. After that, O. Yakimova discovered a counterexam-
ple [YO7], but the question remains very interesting. As an example, under certain hypothesis
and under the condition that Elashvili’s conjecture holds, the algebra of invariants S(g%)¢" is
polynomial in rkg variables, [PPY07, Theorem 0.3].

During the last decade, Elashvili’s conjecture caught attention of many invariant theorists
[Pa034d]], [Ch04], [Y064], [HeGOJ]. To begin with, describe some easy but useful reductions. Since
the g-modules g and g* are isomorphic, it is equivalent to prove Conjecture [[.9 for centralizers
of elements of g. On the other hand, by a result due to E.B. Vinberg [Pa03d], the inequality
indg® > rkg holds for all x € g. So it only remains to prove the opposite one. Given z € g, let

x = xs + xy be its Jordan decomposition. Then g* = (g% )*. The subalgebra g*s is reductive of
rank rkg. Thus, the verification of Conjecture reduces to the case of nilpotent elements. At
last, one can clearly restrict oneself to the case of simple g.

Review now the main results obtained so far on Elashvili’s conjecture. If x is regular, then

* is a commutative Lie algebra of dimension rkg. So, Conjecture [[.] is obviously true in that

g
case. Further, the conjecture is known for subregular nilpotent elements and nilpotent elements
of height 2 and 3, [Pa034)], [Pa03H]. Remind that the height of a nilpotent element e is the
maximal integer m such that (ade)™ # 0. More recently, O. Yakimova proved the conjecture in
the classical case [Y064]. To valid the conjecture in the exceptional types, W. de Graaf used the
computer programme GAP, see [deG0g. Since there are many nilpotent orbits in the Lie algebras

of exceptional type, it is difficult to present the results of such computations in a concise way. In

2004, the first author published a case-free proof of Conjecture [.3 applicable to all simple Lie
algebras; see [[Ch04]. Unfortunately, the argument in [ChO4] has a gap in the final part of the
proof which was pointed out by L. Rybnikov.

To summarize, so far, there is no conceptual proof of Conjecture [.4. Nevertheless, according
to Yakimova’s works and de Graaf’s works, we can claim:
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Theorem 1.3 ([Y06d], [deG0q]). Let g be a reductive Lie algebra. Then indg® = rkg for all
T € g*.

Because of the importance of Elashvili’s conjecture in invariant theory, it would be very ap-
preciated to find a general proof of Theorem applicable to all finite-dimensional simple Lie
algebras. The proof we propose in this paper is fresh and almost general. More precisely, it
remains 7 isolated cases; one nilpotent orbit in type E; and six nilpotent orbits in type Eg have
to be considered separately. For these 7 orbits, the use of GAP is unfortunately necessary. In
order to provide a complete proof of Theorem [l.3, we include in this paper the computations
using GAP we made to deal with these remaining seven cases.

1.2. Description of the paper. Let us briefly explain our approach. Denote by N(g) the
nilpotent cone of g. As noticed previously, it suffices to prove indg® = rkg for all e in N(g). If the
equality holds for e, it does for all elements of G.e; we shortly say that G.e satisfies Elashvili’s
conjecture.

From a nilpotent orbit O; of a reductive factor [ of a parabolic subalgebra of g, we can construct
a nilpotent orbit of g having the same codimension in g as Oy in [ and having other remarkable
properties. The nilpotent orbits obtained in such a way are called induced; the other ones are
called rigid. We refer the reader to Subsection R.d for more precisions about this topic. Using
Bolsinov’s criterion of Theorem [L.1], we first prove Theorem [L.3 for all induced nilpotent orbits
and so the conjecture reduces to the case of rigid nilpotent orbits. To deal with rigid nilpotent
orbits, we use methods developed in [[Ch04] by the first author, and resumed in [Mo06d] by the
second author, based on nice properties of Slodowy slices of nilpotent orbits.

In more details, the paper is organized as follows:

We state in Section B the necessary preliminary results. In particular, we investigate in Sub-
section P.9 extensions of Bolsinov’s criterion and we establish an important result (Theorem P.7)
which will be used repeatedly in the sequel. We prove in Section ] the conjecture for all induced
nilpotent orbits (Theorem B.J) so that Elashvili’s conjecture reduces to the case of rigid nilpotent
orbits (Theorem B.3). From Section [, we handle the rigid nilpotent orbits: we introduce and
study in Section | a property (P) given by Definition .3, Then, in Section [, we are able to
deal with almost all rigid nilpotent orbits. Still in Section [, the remaining cases are dealt with
set-apart by using a different approach.

1.3. Notations. e If E is a subset of a vector space V', we denote by span(E) the vector subspace
of V generated by E. The grassmanian of all d-dimensional subspaces of V' is denoted by Gry(V).
By a cone of V', we mean a subset of V' invariant under the natural action of k* := k \ {0} and
by a bicone of V' x V we mean a subset of V' x V invariant under the natural action of k* x k*
onV x V.

e From now on, we assume that g is semisimple of rank ¢ and we denote by (., .) the Killing form
of g. We identify g to g* through (.,.). Unless otherwise specified, the notion of orthogonality
refers to the bilinear form (., .).
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e Denote by S(g)? the algebra of g-invariant elements of S(g). Let f1,..., fr be homogeneous
generators of S(g)? of degrees d, ... ,dy respectively. We choose the polynomials f1,...,f, so that
di<---<dy. Fori=1,...,0 and (z,y) € g X g, we may consider a shift of f; in direction y:
fi(x + ty) where t € k. Expanding f,(x + ty) as a polynomial in ¢, we obtain

(1) filzx +ty) = Zf V(t,z,y) ek xgxg

where y — (m!)fi( )(x,y) is the differential at = of f; of the order m in the direction y. The
elements fi(m) as defined by ([]) are invariant elements of S(g) ®x S(g) under the diagonal action

of G on g x g. Note that fi(o) (z,y) = fi(x) while fi(di)(:v,y) = fi(y) for all (z,y) € g x g.

Remark 1.4. The family F, := {fi(m)(x,.); 1<i<?1<m<d} forxz € g, is a Poisson-
commutative family of S(g) by Mishchenko-Fomenko [ME7§]. One says that the family F, is
constructed by the argument shift method.

e Let i € {1,...,4}. For = in g, we denote by ¢;(z) the element of g satisfying (df;).(y) =
fi(l)(m,y) = (pi(x),y), for all y in g. Thereby, ¢; is an invariant element of S(g) ®x g under the

canonical action of G. We denote by gpgm), for 0 < m < d; — 1, the elements of S(g) ®k S(g) Rk ¢
defined by the equality:

(2) pi(x +ty) = Zso (z, y)t V(t,z,y) €k x g xg.

e For x € g, we denote by g = {y € g | [y,z] = 0} the centralizer of x in g and by 3(g*) the
center of g”. The set of regular elements of g is

Oreg = {r €g|dimg® =/¢}
and we denote by gregss the set of regular semisimple elements of g. Both greg and gregss are
G-invariant dense open subsets of g.

We denote by C(z) the G-invariant cone generated by x and we denote by zs and x, the
semisimple and nilpotent components of x respectively.

e The nilpotent cone of g is N(g). As a rule, for e € N(g), we choose an sla-triple (e, h, f) in g
given by the Jacobson-Morozov theorem [[CMa93, Theorem 3.3.1]. In particular, it satisfies the
equalities:

[h7 6] = 2e, [67 f] =h, [h7 f] =-2f
The action of adh on g induces a Z—grading'
a=Po(0), o) ={z € g | [ha] = ix}.
1€EZ
Recall that e, or G.e, is said to be even if g(i) = 0 for odd i. Note that e € g(2), f € g(—2) and
that g¢, 3(g°) and g/ are all adh-stable.

e All topological terms refer to the Zariski topology. If Y is a subset of a topological space X,

we denote by Y the closure of Y in X.
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2. PRELIMINARY RESULTS

We start in this section by reviewing some facts about the differentials of generators of S(g)®.
Then, the goal of Subsection P.3 is Theorem P.7. We collect in Subsection P.J basic facts about
induced nilpotent orbits.

2.1. Differentials of generators of S(g)?. According to subsection [[.d, the elements 1, ... @y
of S(g) ®k g are the differentials of fi,...,f, respectively. Since f;(g(x)) = fi(x) for all (z,g) €
g X G, the element @;(x) centralizes x for all x € g. Moreover:

Lemma 2.1. (i)[Ri87, Lemma 2.1] The elements @1(x),. .. pe(x) belong to 3(g¢).
(i) [Ko6d, Theorem 9] The elements p1(x), ... pi(z) are linearly independent elements of g if
and only if x is reqular. Moreover, if so, p1(x),... pi(x) is a basis of g*.

We turn now to the elements cpgm), fori=1,...,£and 0 < m < d;—1, defined in Subsection
by (B). Recall that d; is the degree of the homogeneous polynomial f;, for i = 1,...,¢. The
integers d; — 1,...,dy — 1 are thus the exponents of g. By a classical result [Bou03, Ch. V, §5,
Proposition 3], we have ) d; = by where by is the dimension of Borel subalgebras of g. For (z,y)
in g X g, we set:

(3) Vi = span{gpﬁm)(aﬂ,y) ; 1<i<0,0<m<d;—1}.
The subspaces V., will play a central role throughout the note.

Remark 2.2. (1) For (z,y) € gx g, the dimension of V, , is at most by since ) d; = bg. Moreover,
for all (x,y) in a nonempty open subset of g x g, the equality holds [Bol91]. Actually, in this
note, we do not need this observation.

(2) By Lemma P.(ii), if = is regular, then g* is contained in V; , for all y € g. In particular,
if so, dim [z, V, ] = dimV, , — £.
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The subspaces V, ,, were introduced and studied by Bolsinov in [Bol91]], motivated by the max-
imality of Poisson-commutative families in S(g). These subspaces have been recently exploited
in [PY0]] and [[CMo0g]. The following results are mostly due to Bosinov, [Bol9]]. We refer
to for a more recent account about this topic. We present them in a slightly different
way:

Lemma 2.3. Let (x,y) be in greg X g.

(i) The subspace Vy, of g is the sum of the subspaces g*+**™¥ where t runs through any nonempty
open subset of k such that x + ty is regular for all t in this subset.

(ii) The subspace g¥ + Vy, is a totally isotropic subspace of g with respect to the Kirillov form
K, ongxg, (v,w)— (y,[v,w]). Furthermore, dim (g¥ + Vi )= > 2dim G.y.

(iii) The subspaces [x,Vy,] and [y, Vy ] are equal.

Proof. (i) Let O be a nonempty open subset of k such that x 4ty is regular for all ¢ in O. Such an
open subset does exist since z is regular. Denote by V the sum of all the subspaces g* ™% where ¢
runs through O. For all ¢ in O, g**% is generated by 1 (z+ty), ... ,oi(z+ty), cf. Lemma RJ(ii).
As a consequence, Vp is contained in V; ,. Conversely, for i = 1,...,¢ and for t1,... t4, pairwise

(m)

different elements of O, ¢

%(m) (x,y) belongs to Vo. Thus V., is equal to Vo, whence the assertion.

(ii) results from [PY0§, Proposition A4]. Notice that in (ii) the inequality is an easy conse-

(x,y) is a linear combination of y;(z + t1y), ..., pi(z + tq,y); hence

quence of the first statement.

At last, [PY0§, Lemma A2] gives us (iii). O
Let 0 and oy, for : = 1,...,¢, be the maps
gxg —» kbett gxg b k!
() — )z, (e9) — (@ y)oms

respectively, and denote by o’(z,y) and o}(z, y) the tangent map at (z, y) of o and o; respectively.
Then o}(z, y) is given by the differentials of the fi(m) 'sat (z,y) and o/ (x, y) is given by the elements
oi(z,y)-
Lemma 2.4. Let (z,y) and (v,w) be in g X g.

(i) Fori=1,...,¢, ol(x,y) maps (v,w) to

(pi(2),0), (287 (2, 1), 0) + (& (2, ), w),

DT (@), 0) + (D () w), (s () w)).

(i) Suppose that o’ (x,y)(v,w) = 0. Then, for w' in g, o' (x,y)(v,w’") = 0 if and only if w—w'’
is orthogonal to V.
(ili) For € greg, o' (z,y)(v,w") =0 for some w' € g if and only if v € [z, g].

Proof. (i) The verifications are easy and left to the reader.
(ii) Since o'(z, y)(v,w) =0, o’(z,y)(v,w") = 0 if and only if o' (x, y) (v, w —w’") = 0 whence the
statement by (i).
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(iii) Suppose that z is regular and suppose that o’(z,y)(v,w’) = 0 for some w’ € g. Then by
(i), v is orthogonal to the elements ¢1(z),...,p¢(z). So by Lemma R.1(ii), v is orthogonal to g*.
Since g7 is the orthogonal complement of [z, g] in g, we deduce that v lies in [z, g]. Conversely,
since o(x,y) = o(g(x),g(y)) for all g in G, the element ([u,x], [u,y]) belongs to the kernel of
o'(z,y) for all u € g. So, the converse implication follows. O

2.2. On Bolsinov’s criterion. Let a be in g and denote by 7 the map

gx Ga - gxkPatt

(z,y) — (2,0(2,y)).

Remark 2.5. Recall that the family (F;),cq constructed by the argument shift method consists

of all elements fi(m) (z,.) for i =1,...,0 and 1 < m < d;, see Remark [L.4. By definition of the
morphism 7, there is a family constructed by the argument shift method whose restriction to G.a
contains %dim G.a algebraically independent functions if and only if 7 has a fiber of dimension

%dimG.a.

In view of Theorem [L.I] and the above remark, we now concentrate on the fibers of 7. For
(x,y) € g x G.a, denote by F,, the fiber of 7 at 7(z,y):

Fry = {a} x {y € Ga | ole.y) = o(z.y)}.

Lemma 2.6. Let (x,y) be in g X G.a.

(i) The irreducible components of F,, have dimension at least %dim G.a.

(ii) The fiber Fy, has dimension %dimG.a if and only if any irreducible component of Fy ,
contains an element (x,y') such that (g9 + Vi) has dimension 1dimG.a.

Proof. We prove (i) and (ii) all together. The tangent space Ty, (Fyy) of Fy, at (z,y’) in
F, , identifies to the subspace of elements w of [¢/, g] such that ¢’(x,y")(0,w) = 0. Hence, by
Lemma R.4(ii),

T:B,y/(FlB,y) = [y/’g] N V:vL,y/ = (gy’ + Vm,y’)la
since [y, g] = (g¥')*. But by Lemma R(ii), (g + Vi) has dimension at least $dim G.a; so
does Ty (Fyy). This proves (i). Moreover, the equality holds if and only if (g% + Vi,,/)* has
dimension %dimG.a, whence the statement (ii). O

Theorem 2.7. The following conditions are equivalent:

(1) indg® = ¢;

(2) 7 has a fiber of dimension %dim G.a;

(3) there exists (z,y) € g X G.a such that (g¥ + V)" has dimension $dimG.a;
(4) there exists T in greg such that dim (g% + V) = 1(dimg + dimg?®);
(5) there exists x in greg such that dimV, , = %dim G.a+{;
(6) o(g x {a}) has dimension 3dimG.a + £.

Proof. By Theorem [[.]] and Remark R.H, we have (1)< (2). Moreover, by Lemma P.q(ii), we have
(2)&(3)-
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(3)<(4): If (4) holds, so does (3). Indeed, if so,

1
2
Conversely, suppose that (3) holds. By LemmaR.J(ii), g¥ + V;,, has maximal dimension %(dimg—l—

dimg¥). So the same goes for all (x,y) in a G-invariant nonempty open subset of g x G.a. Hence,
since the map (z,y) — V,, is G-equivariant, there exists = in gres such that

1
dimg — §dimG.a = —(dimg + dimg?) = dim (g* + V. o).

1
dim (V30 +9%) = i(dimg + dimg®).

(4)<(5): Let @ be in greg. By Lemma R.3(iii), [z, Va.a] = [a, Va,e). Hence g* NV, has dimension
¢ by Remark R.3(2). As a consequence,

dim (g% 4+ Vo) = dimg® + dimV, , — ¢,

whence the equivalence.
(2)<(6): Suppose that (2) holds. By Lemma P., $dimG.a is the minimal dimension of the
fibers of w. So, (g x G.a) has dimension

1 1
dimg + dimG.a — §dimG.a =dimg+ §dimG.a.

Denote by 7 the restriction to (g x G.a) of the projection map g x kPs™* — kPe+t, Then 7or
is the restriction of o to g x G.a. Since o is a G-invariant map, o(g x {a}) = o(g x G.a). Let
(%,Y) € Greg,ss X G.a. The fiber of T at z = o(x,y) is G.z since z is a regular semisimple element
of g. Hence,

dimo(g x {a}) = dimn(g x G.a) — (dimg —¢) = %dimG.a +/

and we obtain (6).
Conversely, suppose that (6) holds. Then m(g x G.a) has dimension dimg + %dim G.a by the
above equality. So the minimal dimension of the fibers of 7 is equal to

1 1
dimg+ dimG.a — (dimg + §dimG.a) = §dimG.a
and (2) holds. 0

2.3. Induced and rigid nilpotent orbits. The definitions and results of this subsection are
mostly extracted from [Di74], [Di7H], [LS7Y] and [BoK7Y. We refer to [[CMa9d] and [[LY05] for
recent surveys.

Let p be a proper parabolic subalgebra of g and let [ be a reductive factor of p. We denote by
pyu the nilpotent radical of p. Denote by L the connected closed subgroup of G whose Lie algebra

is adl and denote by P the normalizer of p in G.

Theorem 2.8 ([CMa9]],Theorem 7.1.1). Let O be a nilpotent orbit of I. There exists a unique
nilpotent orbit Oy in g whose intersection with O(+p, is a dense open subset of O+p,. Moreover,
the intersection of Oy and Oy + p, consists of a single P-orbit and codimg(O4) = codim(Oy).
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The orbit Oy only depends on [ and not on the choice of a parabolic subalgebra p containing
it [CMa93, Theorem 7.1.3]. By definition, the orbit Oy is called the induced orbit from Oy it
is denoted by Ind{(Oy). If O; = 0, then we call Oy a Richardson orbit. For example all even
nilpotent orbits are Richardson [CMa93, Corollary 7.1.7]. In turn, not all nilpotent orbits are
induced from another one. A nilpotent orbit which is not induced in a proper way from another
one is called rigid.

We shall say that e € N(g) is an induced (respectively rigid) nilpotent element of g if the
G-orbit of e is an induced (respectively rigid) nilpotent orbit of g. The following results are
deeply linked to the properties of the sheets of g and the deformations of its G-orbits. We refer
to [B 9] about these notions.

Theorem 2.9. (i) Let x be a non nilpotent element of g and let Oy be the induced nilpotent orbit

from the adjoint orbit of x, in g®. Then O is the unique nilpotent orbit contained in C(x)
whose dimension is dim G.z. Furthermore, C(x) N N(g) = Oy and C(z) N"N(g) is the nullvariety
in C(z) of fi where i is an element of {1,... €} such that fi(zx) # 0.

(ii) Conversely, if Og is an induced nilpotent orbit, there exists a non nilpotent element x of g

such that C(x) N N(g) = Oy.

Proof. (i) Let p be a parabolic subalgebra of g having g as a Levi factor. Denote by p, its
nilpotent radical and by P the normalizer of p in G. Let O’ be the adjoint orbit of z,, in g*s.

Claim 2.10. Let C' be the P-invariant closed cone generated by x and let Cy be the subset of
nilpotent elements of C. Then C = ks + O’ + py, Co = O’ + p, and Cp is an irreducible subset
of dimension dim P(z).

Proof. The subset x5 + O + p, is an irreducible closed subset of p containing P(z). Moreover,
its dimension is equal to

dim @' + dimp, = dim g™ — dimg® + dimp, = dimp — dim g*.

Since the closure of P(z) and x5 + O + p, are both irreducible subsets of g, they coincide. As
a consequence, the set ks + O’ + py is contained in C. Since the former set is clearly a closed
conical subset of g containing z, C' = kxs + O’ + p,. Then we deduce that Cy = O’ + p,,. U

Denote by G xp g the quotient of G x g under the right action of P given by (g,z).p :=
(gp,p~1(2)). The map (g,2) — g(z) from G x g to g factorizes through the quotient map from
G x g to G xpg. Since G/P is a projective variety, the so obtained map from G xp g to g is
closed. Since C' and Cj are closed P-invariant subsets of g, G xp C and G xp Cy are closed
subsets of G xp g. Hence C(z) = G(C) and G(C)) is a closed subset of g. So, by the claim, the
subset of nilpotent elements of C(x) is irreducible since Cj is irreducible. Since there are finitely

many nilpotent orbits, the subset of nilpotent elements of C'(x) is the closure of one nilpotent
orbit. Denote it by O and prove O = O.
For all k,1in {1,...,¢}, denote by py; the polynomial function

s = fr(@)® f = () f
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Then py; is G-invariant and homogeneous of degree dd;. Moreover py ;(z) = 0. As a consequence,

C(x) is contained in the nullvariety of the functions py;, 1 < k,1 < £. Hence the nullvariety of f; in

C'(x) is contained in the nilpotent cone of g since it is the nullvariety in g of the functions f1,...,f.
Then dimO = dimC(z) — 1 = dimG.z. Since O’ + p, is contained in C(z), Theorem P.§ tells
us that Oy is contained in C(z). Moreover by Theorem R.§, Oy has dimension dim G.z, whence

O = Oq4. All statements of (i) are now clear.

(ii) By hypothesis, Oy = Ind}(Oy), where [ is a proper Levi subalgebra of g and O; a nilpotent
orbit in . Let zg be an element of the center of [ such that g* = [ let x, be an element of O,
and set © = x5+ . Since [ is a proper subalgebra, the element x is not nilpotent. So by (i), the
subset of nilpotent elements of C(x) is the closure of Q. g

3. PROOF OF THEOREM [[.J FOR INDUCED NILPOTENT ORBITS

Let e be an induced nilpotent element. Let x be a non nilpotent element of g such that
C(z) "N(g) = G.e. Such an element does exist by Theorem R.4(ii).
As an abbreviation, we set:

ke = kB x kAot o kPt
k= (kB {0}) x oo x (k% {0}),
PL = P(kBF) x ..o x P(k¥H) = PO x ... x Pde,

For j =1,...,¢, recall that o; is the map:

g4 .
ax g -5k (2,y) = (A" (@.9))o<mza, -
Let B; be the nullvariety of o; in g x g and let B be the union of By,...,By; it is a bicone of
g X g. Denote by p and 7 the canonical maps:

(@x9)\{0} = P(gxag)
kdx - P

Let o* be the restriction to (g x g) \ B of o; it has values in k4. Since o;(sz,sy) = s%io;(z,y)

for all (x,y) € gx gand j = 1,...,¢, the map Toc* factors through p. Denote by o* the map
from p(g x g\ B) to P? making the following diagram commutative:

U*:U‘gxg\B

gxg\B——> kdx

and let T be the graph of the restriction to p(g x C(z) \ B) of o*.
Lemma 3.1. The set T is a closed subset of P(g x g) x P2,

Proof. Let T be the inverse image of I by the map p x 7. Then [ is the intersection of the graph
of o and (g x C(z) \ B) x k&*. Since o~ (k?\ k%%) is contained in B, I is the intersection of the
graph of o and (g x C(z) \ {0}) x k%%; so T is closed in (g x C(z))\ {0} x k%%. As a consequence,
I is closed in P(g x g) x P4, since P(g x g) x P4 is endowed with the quotient topology. O
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Denote by Z the closure of o(g x C(z)) in k2.

Lemma 3.2. There exists an open subset U of Z, contained in o(g x C(x)), such that UNo(g x
G.e) is not empty.

Proof. Let Ty be the projection of ' C P(g x g) x P2 to P4, By Lemma B.], I's is a closed subset
of P2 since P(g x g) is complete. So 77 (T'3) is a closed subset of k%*. Moreover,

771 (l2) = o(g x Clz) \ B)

since o (g x C(z)) is stable under the action of k* x - - - x k* on k. Hence the open subset Z Nk

of Z is contained in o(g x C(x)). But for all y in g such that f;(y) # 0 for any j, o(y, e) belongs
to k9%, Thus, the open subset U = Z Nk%* of Z is convenient and the lemma follows. ]

We are now ready to prove the main result of this section:

Theorem 3.3. Assume that inda® = rka for all reductive subalgebras a strictly contained in g
and for all  in a. Then for all induced nilpotent orbits Og in g and for all e in Oy, indg® = £.

Proof. Let O4 be an induced nilpotent orbit and let e be in O4. Using Theorem R.4(ii), we let
x be a non nilpotent element of g such that m NN(g) = O_g. Since x is not nilpotent, g* is
the centralizer in the reductive Lie algebra g®s of the nilpotent element x, of g¥. Since g% is
strictly contained in g and has rank ¢, the index of g% is equal to ¢ by hypothesis. Besides, by
Theorem R.7, (1)=(6), applied to ,

1
dimo(g x {z}) = §dimG.x + £

Since o is G-invariant, o(g x {z}) = (g x G.x). Hence for all z in a dense subset of o(g x G.z),
the fiber of the restriction of o to g X G.x at z has minimal dimension

1 1
dimg + dimG.x — (idimG.x + () =dimg + §dimG.x — /.

Denote by Z the closure of o(g x C(z)) in k% We deduce from the above equality that Z has
dimension

1 1
dimg + dimC(z) — (dimg + §dimG.x —0) = dimC(z) — gdimG.x +/

1
= §dimG.e +44+1,

since dimC(z) = dimG.z + 1 = dimG.e + 1.
By Lemma B.3, there exists an open subset U of Z contained in (g x C'(z)) having a nonempty
intersection with o(g x G.e). Let i be in {1,...,¢} such that f;(x) # 0. For z € k%, we write

z = (%) 1<i<¢ its coordinates. Let V; be the nullvariety in U of the coordinate z; 4,. Then V;
0<5<d;

is not empty by the choice of U. Since U is irreducible and since 2; 4; is not identically zero on
U, V; is equidimensional of dimension %dim G.e + . By Theorem R.9(i), the nullvariety of f; in
C(z) is equal to G.e. Hence o~ 1(V;) N (g x C(z)) = o1 (U) N (g x G.e) is an open subset of
g x G.e. So (g x G.e) has dimension 1dimG.e + ¢. Then by Theorem B.7, (6)=(1), the index
of g¢ is equal to £. O
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From that point, our goal is to prove Theorem for rigid nilpotent elements; Theorem
tells us that this is enough to complete the proof.

4. THE SLODOWY SLICE AND THE PROPERTY (P)

In this section, we introduce a property (P) in Definition .3 and we prove that e € N(g) has
Property (P) if and only if indg® = ¢ (Theorem [.13). Then, we will show in the next section
that all rigid nilpotent orbits of g but seven orbits (one in the type E7 and six in the type Eg)
do have Property (P).

4.1. Blowing up of 8. Let e be a nilpotent element of g and consider an slo-triple (e, h, f)
containing e as in Subsection [J. The Slodowy slice is the affine subspace 8 := e + g/ of g which
is a transverse variety to the adjoint orbit G.e. Denote by Be(8) the blowing up of 8 centered at e
and let p : B.(8) — 8 be the canonical morphism. The variety § is smooth and p~!(e) is a smooth
irreducible hypersurface of B(8). The use of the blowing-up B.(8) for the computation of the
index was initiated by the first author in [Ch04] and resumed by the second author in [Mo06a].
Here, we use again this technique to study the index of g°. Describe first the main tools extracted

from [ICh04] we need.
For Y an open subset of B.(8), we denote by k[Y] the algebra of regular functions on Y. By

[Ch04, Théoréme 3.3], we have:

Theorem 4.1. The following two assertions are equivalent:
(A) the equality indg® = ¢ holds,
(B) there erists an affine open subset Y C Be(8) such that Y Np~t(e) # 0 and satisfying the
following property:
for any regular map ¢ € k[Y] ®k g such that p(x) € [g,p(z)] for all x € Y, there
exists 1 € kK[Y] @k g such that o(x) = [(z),p(x)] for all z €Y.

An open subset 2 C B(8) is called a big open subset if B.(8) \ € has codimension at least
2 in B.(8). As explained in [Ch04}, Section 2], there exists a big open subset  of B.(8) and a

regular map

a:Q — Gre(g)

such that a(z) = gP@) if p(x) is regular. Furthermore, the map « is uniquely defined by this
condition. In fact, this result is a consequence of [Fh94, Ch. VI, Theorem 1]. From now on, «
stands for the so-defined map. Since p~!(e) is an hypersurface and since 2 is a big open subset
of B.(8), note that QN p~'(e) is a nonempty set. In addition, a(x) C g’® for all z € Q.

Definition 4.2. We say that e has Property (P) if 3(g°) C a(z) for all z in Q N p~i(e).

Remark 4.3. Suppose that e is regular. Then g¢ is a commutative algebra, i.e. 3(g°) = g°. If
r € QN p i), then a(r) = g° since p(xr) = e is regular in this case. On the other hand,
indg® = dimg® = /¢ since e is regular. So e has Property (P) and indg® = ¢.
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4.2. On the property (P). This subsection aims to show: Property (P) holds for e if and only
if indg® = ¢. As a consequence of Remark [.3, we can (and will) assume that e is a nonregular
nilpotent element of g. As a first step, we will state in Corollary that, if (P) holds, then so
does the assertion (B) of Theorem [.1].

Let Lq be the S(g)-submodule of ¢ € S(g) ®x g satisfying [p(x),x] = 0 for all z in g. It is known
that Lg is a free module of basis ¢1, ..., @y, cf. [Di7d]. We investigate an analogous property for
the Slodowy slice 8 = e+4g/. We denote by Sreg the intersection of 8§ and greg. As e is nonregular,
the set (8 8;e¢) contains e.

Lemma 4.4. The set 8\ 8;¢ has codimension 3 in 8 and each irreducible component of 8\ 8yeg
contains e.

Proof. Let us consider the morphism
Gx8§ — g
(g,2) — g(x)

By a Slodowy’s result [BI8(], this morphism is a smooth morphism. So its fibers are equidi-
mensional of dimension dimgf. In addition, by V73], g\ greg is a G-invariant equidimensional
closed subset of g of codimension 3. Hence 8 \ 8¢, is an equidimensional closed subset of 8 of
codimension 3.

Denoting by ¢ — g(t) the one parameter subgroup of G generated by adh, 8§ and 8 \ 8,¢ are
stable under the action of ¢t=2g(¢) for all ¢ in k*. Furthermore, for all x in 8, t~2g(t)(x) goes to e
when t goes to oo, whence the lemma. O

Denote by k(8] the algebra of regular functions on 8 and denote by Lg the k[8]-submodule of
¢ € k[8] ®k g satisfying [¢(x),x] = 0 for all z in §.

Lemma 4.5. The module Lg is a free module of basis ¢1ls, ..., pels where ;s is the restriction
to 8 of p; fori=1,...,L.

Proof. Let ¢ be in Lg. There are regular functions ay,...,a, on 8., satisfying

p(z) = ar1(@)pr]s(@) + -+ - + ar(@)pels(z)
for all € 8¢, by Lemma R.(ii). By Lemma [£.4, 8§\ S;q has codimension 3 in 8. Hence
aiy,...,ay have polynomial extensions to 8 since 8 is normal. So the maps ¢1]s,. .., pr|s generate

Ls. Moreover, by Lemma P.1|(ii) for all € 8yeq, ¢1(2),...,¢s(z) are linearly independent,
whence the statement. O

The following proposition accounts for an important step to interpret Assertion (B) of Theo-
rem [L.1):

Proposition 4.6. Let ¢ be in k[S] ®k g such that o(x) € [g,x] for all x in a nonempty open
subset of g. Then there exists a polynomial map 1 € K[8] ®k g such that p(x) = [(x),z]| for all
x €8.
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Proof. Since g* is the orthogonal complement of [z,g] in g, our hypothesis says that o(z) is
orthogonal to g* for all 2 in a nonempty open subset 8 of 8. The intersection 8’ N 8,¢¢ is not
empty; so by Lemma P(ii), (¢(x),¢ils(z)) = 0 for all i = 1,...,¢ and for all z € 8§ N 8yeq.
Therefore, by continuity, (p(z), @i|s(x)) =0foralli=1,...,¢ and all x € 8. Hence ¢(z) € [z, g]
for all z € 8;¢¢ by Lemma R.1J(ii) again. Consequently by Lemma [l.4, Lemma [L.§ and the proof
of the main theorem of [Di7d], there exists an element v € k[§] ®j g which satisfies the condition
of the proposition. O

Let uy,. .. ,um, be a basis of g/ and let uj,...,ur, be the corresponding coordinate system of
8 = e+ g/. There is an affine open subset Y C B.(8) with Y N p~(e) # 0 such that k[Y] is the
set of linear combinations of monomials in (u})~!, u},...,u?, whose total degree is nonnegative.
In particular, we have a global coordinates system uj,vs,..., v}, on Y satisfying the relations:

* X ok * Xk
(4) Uy = UV eeny Uy = ULV

Note that, for z € Y, we so have: p(z) = e+ uj(z)(u1 + v5(x)ug + - - - + v}, (z)u, ). So, the image
of Y by p is the union of {e} and the complementary in 8 of the nullvariety of u}. Let Y’ be an
affine open subset of Y contained in 2 and having a nonempty intersection with p~!(e). Denote
by Ly the set of regular maps ¢ from Y’ to g satisfying [¢(x), p(x)] =0 for all z € Y.

Lemma 4.7. Suppose that e has Property (P). For each z € 3(g%), there exists v, € k[Y'] ®k g
such that z — ujv, belongs to Ly.

Proof. Let z be in 3(g¢). Since Y’ C Q, for each y € Y, there exists an affine open subset U, of
Y’ containing y and regular maps vi, ... v from Uy to g such that vi(x),... v(x) is a basis of
a(z) for all x € Uy. Let y be in Y’. We consider two cases:

(1) Suppose p(y) = e.
Since e has Property (P), there exist regular functions ay,...,a¢ on Uy satisfying

z=ay(z)v1(x) + - + ag(x)ve(x),

for all z € U, Np~!(e). The intersection U, N p~t(e) is the set of zeroes of u} in U,. So there
exists a regular map 1 from U, to g which satisfies the equality:

z—uj =ajvr + - - + agy.

Hence [z — u}(x)(z),p(z)] = 0 for all x € U, since a(z) is contained in gP® for all = € Q.

(2) Suppose p(y) # e.
Then we can assume that U, N p~!(e) = () and the map ¢ = (u})"'z satisfies the condition:
[z —ui(x)Y(x),p(x)] =0 for all x € U,.

In both cases (1) or (2), we have found a regular map ¢, from U, to g satisfying: [z —
(uithy)(x), p(z)] = 0 for all x € U,,.

Let y1,...,yx be in Y/ such that the open subsets Uy,,...,Uy, cover Y'. For i =1,... k,
we denote by 1; a regular map from Uy, to g such that z — uj; is in I'(Uy,, £) where £ is the
localization of Lys on Y’. Then for i,j = 1,...,k, ¢; —; is in T(U,, N Uy,,L). Since Y is

affine, H(Y’,£) = 0. So, for i = 1,...,1, there exists {/;Z in I'(Uy,, £) such that v¢; — 1); is equal
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to 1; — 1 on Uy, NU,, for all ¢, j. Then there exists a well-defined map 1, from Y’ to g whose

restriction to Uy, is equal to 1; — {/;Z for all ¢, and such that z —uj1, belongs to Ly-. Finally, the
map ¢, verifies the required property. ]

Let z be in 3(g¢). We denote by ¢, the regular map from Y to g defined by:
(5) o.(z) = [z,u1] + v3(x)[z,uz] + -+ - + v, (x)[z,up], forall ze.

Corollary 4.8. Suppose that e has Property (P) and let z be in 3(g¢). There exists v, ink[Y'|®kg
such that @, (x) = [, (x),p(z)] for all z € Y'.
Proof. By Lemma [.7, there exists v, in k[Y’] ® g such that z — u}¢, is in Lys. Then

uypz(z) = [2,p(x)] = [z — ul¥:(2), p(x)] + w1 Y= (z), p(z)],
for all x € Y. So the map 1, is convenient, since u} is not identically zero on Y. ]
The following lemma is easy but helpful for Proposition f.10:
Lemma 4.9. Let v be in g°. Then, v belongs to 3(g°) if and only if [v, '] C [e, g].
Proof. Since [z, g] is the orthogonal complement of g* in g for all x € g, we have:
v.g'] Cle.a] = ([v,07].0°) =0 = ([v,0°].0') =0 = [v, 0] C [f,4].

But g is the direct sum of g¢ and [f, g] and [v, g°] is contained in g¢ since v € g¢. Hence [v,g/] is
contained in e, g] if and only if v is in 3(g°). O

Proposition 4.10. Suppose that e has Property (P) and let ¢ be in k[Y]®kg such that p(z) € [g, p(x)]
for all x € Y. Then there exists 1 in kK[Y']| ®k g such that o(x) = [(z),p(x)] for all z € Y.

Proof. Since ¢ is a regular map from Y to g, there is a nonnegative integer d and ¢ € k[S] ®k g
such that

(6) (u))(@)p(z) = (Zop)(x), Yo €Y

and ¢ is a linear combination of monomials in uj,..., ), whose total degree is at least d. By

hypothesis on ¢, we deduce that for all x € 8 such that uj(z) # 0, ¢(z) is in [g,z]. Hence by
Proposition [L.6, there exists 1 in k[8] ®; g such that $(z) = [¢(z), ] for all z € 8.
Denote by 1/ the sum of monomials of degree at least d in 1) and denote by 1)’ the element of

k[Y] @k g satisfying

(7) (up) @) (x) = (F'op)(), Va € Y.

Then we set, for z € Y, ¢'(z) := ¢(z) — [¢'(z),p(x)]. We have to prove the existence of an
element " in k[Y'] ® g such that ¢'(z) = [¢"(x),p(z)] for all z € Y.

e If d =0, then ¢ = Pop, 1) =1 and ¢’ = 0; so )/ is convenient in that case.

o If d =1, we can write

ui(@)p(z) = Bp(z)) = [(p(x), e + ui (@) (ur + v3(@)uz + - + 0} (@)um)],
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for all x € Y, whence we deduce
ui(2)(p(z) = [ (2), p(2)]) = [P(e), e + ui(@)(ur + v5(x)uz + - + v}, (@)um)]
for all z € Y. Hence 9(e) belongs to g and [1h(e),us] € [e,g] foralli = 1,...,m, since p(z) € [e, g]
for all x € Y Np~t(e). Then v(e) is in 3(g°) by Lemma [.9. So by Corollary [L.§, ¢’ has the
desired property.
e Suppose d > 1. For i = (i1,...,imy) € N™, we set |i| :== i1 + -+ + i), and we denote by ;
the coefficient of (u})™ --- (u¥,)'™ in 1. By Corollary [E§, it suffices to prove:
{ Gi=0 il <d—1;
Y €3(g?) i =d—1
For i € N™ and j € {1,...,m}, we define the element i(j) of N by:
Z(]) = (’il, L. ,’L'jfl,ij + 1,ij+1, - ,’im).
It suffices to prove:
Claim 4.11. For |i| < d—1, v; is an element of g° such that [th;, u;]+[t(;),e] = 0 for j = 1,...,m.
Indeed, by Lemma [1.9, if
Vi, uj] + [Y4(j), ] = 0 and ¢ € ¢°
for all j =1,...,m, then v; € 3(g°). Furthermore, if

[thi, uj] + [y(5), €] = 0 and 1); € g° and ¥y ;) € g°

for all j =1,...,m, then v¢; = 0 since 3(g°) N g/ = 0. So only remains to prove Claim [L.11].

We prove the claim by induction on |i|. Arguing as in the case d = 1, we prove the claim for
li| = 0. We suppose the claim true for all |i| <1 —1 for some 0 < [ < d—2. We have to prove the
statement for all |i| < [. By what foregoes and by induction hypothesis, 1; = 0 for |i|] <1 —2.
For k = [+ 1,1 + 2, we consider the ring k[rx] where 75 = 0. Since (u})? vanishes on the set of
k[7;41]-points @ = z¢ + 217741 + -+ - + xlTll_H of Y whose source z is a zero of uj,

0= [let ) et e = 3 s d(ed) - ()™ (),
li|=t
for all v € g/. So ;€ g° for |i| = I.
For |i| equal to [, the term in
Tl (W)™ () (g ) () () (0)
of [1;(6 + Ti19v), e + T49v] is equal to [Q,Z)Z(j),e] + [¥i,u;]. Since (u“{)d
k[7+2]-points of Y whose source is a zero of uj, this term is equal to 0, whence the claim. g

vanishes on the set of

Recall that Y is an affine open subset of Y contained in © and having a nonempty intersection
with p~t(e).

Corollary 4.12. Suppose that e has Property (P). Let ¢ be in k[Y'|®kg such that ¢(z) € [g,p(z)]
for all z € Y'. Then there exists 1 in K[Y'] ®k g such that p(z) = [(z), p(x)] for all x € Y'.
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Proof. For a € k[Y], denote by D(a) the principal open subset defined by a. Let D(ay), ..., D(an)
be an open covering of Y’ by principal open subsets of Y, with aq,...,a; in k[Y]. Since ¢ is a
regular map from Y to g, there is m; > 0 such that a;" ¢ is the restriction to Y’ of some regular
map ; from Y to g. For m; big enough, ¢; vanishes on Y \ D(a;); hence ¢;(z) € [g,p(z)] for
all z € Y. So, by Proposition [L.4, there is a regular map v; from Y’ to g such that ¢;(z) =
[¢i(x),p(x)] for all z € Y. Then for all x € D(a;), we have ¢(z) = [a;(x) ™ ;(z), p(x)]. Since
Y’ is an affine open subset of Y, there exists a regular map 1 from Y’ to g which satisfies the
condition of the corollary. O

We are now in position to prove the main result of this section:
Theorem 4.13. The equality indg® = ¢ holds if and only if e has Property (P).

Proof. By Corollary [l.19, if e has Property (P), then Assertion (B) of Theorem [i.1 is satisfied.
Conversely, suppose that indg® = ¢ and show that e has Property (P). By Theorem [i.1], (A)=(B),
Assertion (B) is satisfied. We choose an affine open subset Y’ of Y, contained in €, such that
Y’ Np~l(e) # and verifying the condition of the assertion (B). Let z € 3(g°). Recall that the
map ¢, is defined by (§). Let = be in Y. If u}(z) # 0, then () belongs to [g,p(x)] by (|). If
ui(z) = 0, then by Lemma [.9, ¢, (z) belongs to [e, g]. So there exists a regular map 1 from Y’
to g such that ¢, (x) = [¢(x),p(z)] for all 2 € Y’ by Assertion (B). Hence we have

[z = ui¢(z), p(x)] = 0,

for all z € Y’ since (uf¢,)(z) = [z, p(z)] for all z € Y. So a(x) contains z for all z in QNY’' N
p~!(e). Since p~1(e) is irreducible, we deduce that e has Property (P). O

4.3. A new formulation of the property (P). Recall that Property (P) is introduced in
Definition .. As has been noticed in the proof of Lemma [£.4, the morphism G x 8 — g, (g,z) —
g(z) is smooth. As a consequence, the set 8;cq 0f v € 8 such that v is regular is a nonempty open
subset of §. For = in 8¢, g°T==¢) has dimension ¢ for all ¢ in a nonempty open subset of k
since z = e + (x — ¢) is regular. Furthermore, since k has dimension 1, [Sh94, Ch. VI, Theorem

1] asserts that there is a unique regular map

,Bx k— Grg(g)

satisfying (3, (t) = g¢Tt@=¢) for all ¢ in a nonempty open subset of k.
Recall that Y is an affine open subset of B(8) with Y Np~t(e) # 0 and that u},v3,..., v}

MRS TS

a global coordinates system of Y, cf. (). Let 81eg be the subset of z in 8¢ such that uj(x) # 0.
For x in 8/,,, we denote by & the element of Y whose coordinates are 0, v5(x),. .., vy, ().

Lemma 4.14. Let x be in 8j,-

(i) The subspace (5(0) is contained in g°.
(i) If € Q, then a(x) = B,(0).

Proof. (i) The map 5, is a regular map and [3,(t),e + t(x —e)] = 0 for all ¢ in a nonempty open
subset of k. So, 5,(0) is contained in g°.
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(ii) Since 8/, has an empty intersection with the nullvariety of uj in 8, the restriction of p to

reg

P 1(8}g) is an isomorphism from p~1(8].,) to 8}.,. Furthermore, 3, (t) = a(p~'(e +tx —te)) for
any t in k such that e +¢(z — e) belongs to 8., and p~Y(e+tx — te) goes to T when ¢ goes to 0.
Hence (,(0) is equal to a(Z) since o and 8 are regular maps. O

Corollary 4.15. The element e has Property (P) if and only if 3(g%) C B.(0) for all z in a
nonempty open subset of Sreg.

reg t0 Y is well-defined and its image is an open subset of Ynp~i(e).

such that 7 € Q and let Y” be the image of 87, by the map x — 7.

Proof. The map x +— 7 from 8§
Let 87, be the set of x € 8!

reg reg reg
Then 8, is open in 8;c; and Y is dense in QN p~*(e) since p~!(e) is irreducible. Furthermore,

"
reg

e has property (P) if and only if a(z) contains 3(g¢) for all  in a dense subset of Y”. By
Lemma [L.T4(ii), the latter property is equivalent to the fact that 3,(0) contains 3(g¢) for all = in

a dense open subset of 8. O

the image of a dense open subset of 8 by the map z — 7 is dense in Y. Since « is regular,

Corollary 4.16. (i) If 3(g°) is generated by pi(e),...,i(e), then e has Property (P).
(i) If 3(g°) has dimension 1, then e has Property (P).

Proof. Recall that ;(e) belongs to 3(g¢), for all i = 1,...,/, by Lemma R.1(i). Moreover, for all
T in 8eg and all i = 1,..., ¢, ;(e+t(z —e)) belongs to gc+H=—e)
vi(e) belongs to 5,(0). As a consequence, whenever 3(g¢) is generated by ¢1(e), ... ,p¢(e), e has
Property (P) by Corollary .15

(ii) is an immediate consequence of (i) since p;(e) = e by our choice of dj. O

for any ¢ in k. So by continuity,

5. PROOF OF THEOREM [[.J FOR RIGID NILPOTENT ORBITS
We intend to prove in this section the following theorem:

Theorem 5.1. Suppose that g is reductive and let e be a rigid nilpotent element of g. Then the
index of g° is equal to £.

Theorem [.] will complete the proof of Theorem [[. by Theorem B.3J. As explained in intro-
duction, we can assume that g is simple. We consider two cases, according to g has classical type
or exceptional type.

5.1. The classical case. Assume that g is simple of classical type. More precisely, assume that
g is one of the Lie algebras sly11(k), s09s41(k), spoy(k), s020(k).

Lemma 5.2. Let m be a positive integer such that x™ — trz™ belongs to g for all x in g. Then
e™ belongs to the subspace generated by ¢i(e),. .. pu(e).

Proof. Recall that Ly is the submodule of elements ¢ of S(g) ®k g such that [z, ¢(z)] = 0 for all
x in g. According to [Di79], Lg is a free module generated by the ¢}s. For all z in g, [z,2™] = 0.
Hence there exist polynomial functions a1, ...,a; on g such that

™ —tra™ = ay(x)p1(z) + - + ap(z)pe(x)

for all z in g, whence the lemma. O
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Theorem 5.3. Let e be a rigid nilpotent element. Then 3(g¢) is generated by powers of e. In
particular, the index of g¢ is equal to L.

Proof. Let us prove the first assertion. If g has type A or C, then 3(g°) is generated by powers
of e by [Mo06d, Théoreme 1.1.8] or [Y06H]. So we can assume that g has type B or D.

Set n := 20 + 1 if g has type By and n := 2¢ if g has type Dy. Denote by (ni,...,ng), with
n1> .- >ng, the partition of n corresponding to the nilpotent element e. By [Mo06d, Théoréme
1.1.8] or [[Y06H], 3(g°) is mot generated by powers of e if and only if ny and ny are both odd
integers and n3 < ng. On the other hand, since e is rigid, nj is equal to 1, n; < n;q < n; + 1
and all odd integers of the partition (n1,...,n;) have a multiplicity different from 2 [Ke83, Bp83,
ch. II] or [CMa93, Corollary 7.3.5]. Hence, the preceding criterion is not satisfied for e. Then,
the second assertion results from Lemma .3, Corollary [.1(i) and Theorem [.13. U

Remark 5.4. Yakimova’s proof of Elashvili’s conjecture in the classical case is shorter and more
elementary [[Y064d]. The results of Section ] will serve the exceptional case in a more relevant
way.

5.2. The exceptional case. We let in this subsection g be simple of exceptional type and
we assume that e is a nonzero rigid nilpotent element of g. The dimension of the center of
centralizers of nilpotent elements has been recently described in [LT0§, Theorem 4]. On the
other hand, we have explicit computations for the rigid nilpotent orbits in the exceptional types
due to A.G. Elashvili. These computations are collected in [Sp89, Appendix of Chap. II] and a
complete version was published later in [E85H]. From all this, we observe that the center of g¢
has dimension 1 in most cases. In more details, we have:

Proposition 5.5. Let e be nonzero rigid nilpotent element of g.

(i) Suppose that g has type Ga, Fy or Eg. Then dimj3(g¢) = 1.

(ii) Suppose that g has type Er. If g° has dimension 41, then dimjz(g®) = 2; otherwise
dimj(g®) = 1.

(iii) Suppose that g has type Es. If g¢ has dimension 112, 84, 76, or 46, then dim3(g°) = 2, if
g¢ has dimension 72, then dimj(g®) = 3; otherwise dimj(g®) = 1.

By Corollary [L.1§(ii), indg® = ¢ whenever dim3(g®) = 1. So, as an immediate consequence of
Proposition f.5, we obtain:

Corollary 5.6. Suppose that either g has type Ga, Fy, Eg, or g has type E7 and dim g® # 41, or
g has type Eg and dimg® ¢ {112,84,76,72,46}. Then dim3(g°) = 1 and the index of g¢ is equal
to L.

According to Corollary p.6, it remains 7 cases; there are indeed two rigid nilpotent orbits of
codimension 46 in Eg. We handle now these remaining cases. We process here in a different way;
we study technical conditions on g° under which indg® = ¢. For the moment, we state general
results about the index.

Let a be an algebraic Lie algebra. Recall that the stabilizer of £ € a* for the coadjoint
representation is denoted by aé and that ¢ is regular if dimaé = inda. Choose a commutative
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subalgebra t of a consisted of semisimple elements of a and denote by 34(t) the centralizer of t in
a. Then a = 3,(t) @ [t, a]. The dual 34(t)* of 34(t) identifies to the orthogonal complement of [t, a
in a*. Thus, £ € 3,(t)* if and only if t is contained in af.

Lemma 5.7. Suppose that there exists & in 34(t)* such that dim (a N [t,a]) < 2. Then
inda < indj4(t) + 1.

Proof. Let T be the closure in 34(t)* x Grz([t,a]) of the subset of elements (7, F') such that 7

*

is a regular element of 34(t)* and E is contained in a”7. The image 77 of T by the projection
from 34(t)* x Grs([t, a]) to 34(t)* is closed in 34(t)*. By hypothesis, T} is not equal to 34(t)* since
for all n in 77, dim (a” N [t,a]) > 3. Hence there exists a regular element &y in 34(t)* such that

dim (a% N [t,a]) < 2. Since t is contained in a%,
a% = 3,(0)% @ a® N [t, a].

If [t,a] N a0 = {0} then inda is at most ind3,(t). Otherwise, a% is not a commutative subalgebra
since t is contained in a%. Hence & is not a regular element of a*, so inda < dimaf. Since
dim a0 < ind4(t) + 2, the lemma follows. O

From now on, we assume that a = g°. As a rigid nilpotent element of g, e is a nondistinguished
nilpotent element. So we can choose a nonzero commutative subalgebra t of g¢ consisted of
semisimple elements. Denote by [ the centralizer of t in g. As a Levi subalgebra of g, [ is a
reductive Lie algebra whose rank is £. Moreover its dimension is strictly smaller than dimg. In
the preceding notations, we have 34¢(t) = 34(t)° = I°. Let t; be a commutative subalgebra of [©
containing t and consisting of semisimple elements of [. Then [t, g¢] is stable under the adjoint
action of t;. For X in ], denote by g§ the A-weight space of the adjoint action of t; in g°.

Lemma 5.8. Let A € t] be a nonzero weight of the adjoint action of t; in g°. Then —\ is also
a weight for this action and X and —\ have the same multiplicity. Moreover, g is contained in
[t, 8¢ if and only if the restriction of A to t is not identically zero.

Proof. By definition, g§ N [¢ = {0} if and only if the restriction of A to t is not identically zero.
So g5 is contained in [t, g°] if and only if the restriction of A to t is not equal to 0 since

gy = (ax N ) @ (gx N[t o))

The subalgebra t; is contained in a reductive factor of g¢. So we can choose h and f such that
t; is contained in g° N gf. As a consequence, any weight of the adjoint action of ¢; in g/ is a
weight of the adjoint action of t; in g® with the same multiplicity. Furthermore, the t;-module
g/ for the ajoint action is isomorphic to the t;-module (g€)* for the coadjoint action. So —\ is a
weight of the adjoint action of t; in g/ with the same multiplicity as A. Hence —\ is a weight of
the adjoint action of t; in g¢ with the same multiplicity as A, whence the lemma. O

Choose pairwise different elements Aj,... )\, of t] so that the weights of the adjoint action of
t; in g° which are not identically zero on t are precisely the elements +X;. For ¢ = 1,...,r, let
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Vils - Vim; and w;1,...,W;m, be basis of gii and ge_)\i respectively. Then we set:
q; = det ([Uivk7wivl])1§k,l§mi € S([e).

Proposition 5.9. Suppose that indI¢ = ¢ and suppose that one of the following two conditions
is satisfied:
(1) fori=1,...,7, ¢; #0,
(2) there exists j in {1,...,r} such that ¢ # 0 for all i # j and such that the basis
U1y Ujm, and wj1, ... Wjm, €an be chosen so that

det ([vjks Wji1)1 <py<pm,—1 7 O-

Then, indg® = ¢.
Proof. First, observe that indg® — ind g is an even integer. Indeed, we have:
indg® — indg = (indg® — dim g°) + (dimg® — dimg) + (dimg — ind g).

But the integers ind g® — dim g¢, dimg® — dimg and dimg — ind g are all even integers. Thereby,
if indg® < indg + 1, then indg® < indg. In turn, by Vinberg’s inequality (cf. Introduction), we
have indg® > indg. Hence, it suffices to prove indg® < ind[¢ + 1 since our hypothesis says that
indl® = ¢ = indg. Now, by Lemma [.7, if there exists & in (I°)* such that (g¢)¢ N [t,g¢] has
dimension at most 2, then we are done.

Denote by [; the centralizer of ¢; in g. Then [; is contained in [ and I¢ = [§ & [t, ] and ([{)*
identifies to the orthogonal of [t;, [?] in the dual of [°. Moreover, for i = 1,...,r, ¢; belongs to
S(If). For £ in (I7)*, denote by B¢ the bilinear form

[t o] x [t,g°] — k
(v, w) — (v, w])

and denote by ker By its kernel. For i =1,...,r, —q;(€)? is the determinant of the restriction of
B¢ to the subspace

(g%, @ 02),) x (85, © 0%,
in the basis Vily«-3Vimg, Wily .-, Wim,-

If (1) holds, we can find £ in (I{)* such that ker B¢ is zero. If (2) holds, we can find £ in (I7)*
such that ker B¢ has dimension 2 since B is invariant under the adjoint action of t;. But ker B
is equal to (g¢)¢ N [t,g¢]. Hence such a ¢ satisfies the required inequality and the proposition
follows. O

The proof of the following proposition is given in Appendix [A since it relies on explicit com-
putations:

Proposition 5.10. (i) Suppose that either g has type E7 and dimg® = 41 or, g has type Eg and
dimg® € {112,72}. Then, for suitable choices of t and t;, Condition (1) of Proposition p.9 is
satisfied.

(ii) Suppose that g has type Eg and that g¢ has dimension 84, 76, or 46. Then, for suitable
choices of t and ty, Condition (2) of Proposition 5.5 is satisfied.
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5.3. Proof of Theorem [[.3. We are now in position to complete the proof of Theorem [L.3;

Proof of Theorem [[.J. We argue by induction on the dimension of g. If g has dimension 3, the
statement is known. Assume now that ind (¢ = rk! for any reductive Lie algebras [ of dimension at
most dimg — 1 and any ¢’ € N(I). Let e € N(g) be a nilpotent element of g. By Theorem B.J and
Theorem p.3, we can assume that e is rigid and that g is simple of exceptional type. Furthermore
by Corollary p.6, we can assume that dimj(g®) > 1. Then we consider the different cases given
by Proposition p.10.

If, either g has type E7 and dimg® = 41, or g has type Eg and dimg® equals 112, 72, or 46,
then Condition (1) of Proposition f.9 applies for suitable choices of t and t; by Proposition [.10.
Moreover, if [ = 34(t), then [ is a reductive Lie algebra of rank ¢ and strictly contained in g. So,
from our induction hypothesis, we deduce that indg® = ¢ by Proposition [.9.

If g has type Eg and dim g® equals 84, 76, or 46, then Condition (2) of Proposition .9 applies for
suitable choices of t and t; by Proposition p.10. Arguing as above, we deduce that indg® = ¢. [

APPENDIX A. PROOF OF PROPOSITION .10 EXPLICIT COMPUTATIONS.

This appendix aims to prove Proposition p.10. We prove Proposition for each case by
using explicit computations made with the help of GAP; our programmes are presented below
(two cases are detailed; the other ones are similar). Explain the general approach. In our
programmes, z[1],... are root vectors generating the nilradical of the Borel subalgebra b of g
and the representative e (denoted by e in our programmes) of the rigid orbit is chosen so that
e and h belong to b and b respectively. The element e is given by the tables of [[GQTS8(]. In
fact, in [GQT8(], they use the programme Lie which induces minor changes in the numbering.
Then, we exhibit suitable tori t and t; of g contained in g¢ which satisfies conditions (1) or (2) of
Proposition .9, In each case, our torus t is one dimensional; we define it by a generator, called
t in our programmes. Its centralizer in g€ is denoted by le. The torus t; has dimension at most
4. It is defined by a basis denoted by Bt1. The weights of t; for the adjoint action of t; on g€ are
given by their values on the basis Bt1 of t;. We list in a matrix W almost all weights which have a
positive value at Bt1. The other weights have multiplicity 1. In our programmes, by the term S
we check that no weight is forgotten; this term has to be zero. Then, the matrices corresponding
to the weights given by W are given by a function A. Their determinants correspond to the ¢;’s in
the notations of Proposition p.g. If there is only one other weight, the corresponding matrix is
denoted by a. At last, we verify that these matrices have the desired property depending on the
situations (i) or (ii) of Proposition p.10.

As examples, we detail below two cases:

(1) the case of E7 with dimg® = 41 where we intend to check that Condition (1) of Proposi-
tion 5.9 is satisfied;

(2) the case of Eg with dimg® = 84 where we intend to check that Condition (2) of Proposi-
tion .9 is satisfied.
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(1) E7, dimg® = 41: In this case, with our choices, dimt =1, dim[¢ = 23 and dimt; = 3. The
order of matrices to be considered is at most 2.

SimpleLieAlgebra("E",7,Rationals);; R := RootSystem(L);;
PositiveRootVectors(R);; y := NegativeRootVectors(R);;
x[14]+x[26]+x[28]+x[49];;

LieCentralizer(L,Subspace(L, [e])) ;Bc := BasisVectors(Basis(c));;

<Lie algebra of dimension 41 over Rationals>

LieCentre(c);; Bz := BasisVectors(Basis(z));;

¢ N V. o 0o X
]

Bc[Dimension(c)];;
le := LieCentralizer(L,Subspace(L, [t,e]l));
> <Lie algebra of dimension 23 over Rationals>
n := function(k)
if k=2 then return 1;;
elif k=-2 then return 1;;
elif k=1 then return 8;;
elif k=-1 then return 8;; fi;; end;;
#The function n assigns to each weight of t the dimension of the corresponding
#weight subspace.
M := function(k) 1local m;;
m := function(j,k)
if j=1 then return Position(List([1..Dimension(c)],
i->t*Bc[i]-k*Bc[i]),0*x[1]1);;
else return m(j-1,k)+Position(List([m(j-1,k)+1..Dimension(c)],
i->t*Bc[i]-k*Bc[i]),0*x[1]);;
fi;;
end; ;
return List([1..n(k)],i->m(i,k));;
end; ;
Btl := [Bc[41],Bc[40],Bc[391];;
N := function(k,p) local n;;
n := function(j,k,p)
if j=1 then return Position(List([1..8],
i->Bt1[2]*Bc[M(k) [1]]-p*Bc[M(k) [1]]) ,0*x[1]1);;
else return n(j-1,k,p)+Position(List([n(j-1,k,p)+1..8],
i->Bt1[2]*Bc [M(k) [1]]-p*Bc[M(k) [11]),0*x[1]);;
fi;;
end; ;
return List([1..4],i->M(k) [n(i,k,p)]1);;
end; ;
r := function(t)
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if t=1 then return 1;
elif t=-1 then return 1;;
elif t=0 then return 2;;
fi;;
end; ;
Q := function(k,s,t) local q;;
q := function(j,k,s,t)
if j=1 then return Position(List([1..4],
i->Bt1[3]*Bc[N(k,s) [i11-t*Bc[N(k,s) [i]1]),0*x[1]);;
else return q(j-1,k,s,t)+Position(List([q(j-1,k,s,t)+1..4],
i->Bt1[3]1*Bc[N(k,s) [i]1]-t*Bc[N(k,s) [i]1]1),0*x[1]1);;

fi;;
end; ;
return List([1..r(t)],i->N(k,s) [q(i,k,s,t)]);;
end; ;
w .= [[1,1,1],[1,-2,1],(2,1,-1],[2,-1,-1],[1,1,0],[1,-1,01];;

S :

2% (1+Sum(List ([1..Length(W)],i->Length(Q(W[i] [1],W[i] [2],W[i][3])))))

+Dimension(le)-Dimension(c);

>0

A := function(i) return List([1..r(W[il[3])],t->List([1..r(W[i]l[31)],
s->Bc[Q(W[i] [1],w[i] [2],w[i][3]) [s11*Bc[Q(-W[i][1],-W[i][2],-W[i][31)[t11));;

end; ;

A(1);A(2);A(3);A(4);A(5);A(6);

> [ [ (-1)=v.63 1] ]

v.63 1 ]

v.63 1 ]

(-1)*v.63 ] ]

(D) *xv.57+(-1)*v.60, (-1)*v.63 1, [ (-1)*v.63, 0*v.1 ] ]

(D) *xv.57+(-1)*v.60, (-1)*v.63 1, [ (-1)*v.63, 0*v.1 ] ]

:= Bc[M(2) [111*Bc[M(-2) [11];

v.133

M /oM
[ T s IO s T s I |

>
>
>
>
>
a
>

In conclusion, Condition (1) of Proposition .9 is satisfied for t := kt and t; :=span(Bt1).

(2) Eg, dimg® = 84: In this case, with our choices, dimt =1, dim[® = 48 and dimt; = 3. The
matrix A(7) has order 5 and it is singular of rank 4. The order of the other matrices is at most
2

SimplelLieAlgebra("E",8,Rationals);; R := RootSystem(L);;
PositiveRootVectors(R);; y := NegativeRootVectors(R);;
x[64]1+x[61]1+x [77]1+x[97];;

LieCentralizer(L,Subspace(L, [e])); Bc := BasisVectors(Basis(c));;

o o X
]
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> <Lie algebra of dimension 84 over Rationals>
z := LieCentre(c);; Bz := BasisVectors(Basis(z));;
t := Bc[Dimension(c)];;
le := LieCentralizer(L,Subspace(L, [t,e]l));
> <Lie algebra of dimension 48 over Rationals>
n := function(k)
if k=2 then return 1;;
elif k=-2 then return 1;;
elif k=1 then return 17;;
elif k=-1 then return 17;;

fi;;
end; ;
M := function(k) 1local m;;
m := function(j,k)
if j=1 then return Position(List([1..Dimension(c)],
i->Bc[84]*Bc[i]l-k*Bc[i]),0%x[1]);;
else return m(j-1,k)+Position(List([m(j-1,k)+1..Dimension(c)],
i->Bc[84]*Bc[i]l-k*Bc[il), O0*x[1]1);;
fi;;
end; ;
return List([1..n(k)],i->m(i,k));;
end; ;

r := function(k,t)
if k=1 and t=1 then return 4;;
elif k=-1 and t=-1 +then return 4;;
elif k=1 and t=-1 then return 4;;
elif k=-1 and t=1 then return 4;;
elif k=1 and t=0 then return 9;;
elif k=-1 and t=0 then return 9;;
fi;;
end; ;
Btl := [Bc[84],Bc[83],Bc[82]];;
N := function(k,t) local p;;
p := function(j,k,t)
if j=1 then return Position(List([1..n(k)],
i->Bt1[2]*Bc[M(k) [i]]-t*Bc[M(k) [i]]),0*x[1]);;
else return p(j-1,k,t)+Position(List([p(j-1,k,t)+1..n(k)],
i->Bt1[2]*Bc[M(k) [i]]-t*Bc[M(k) [i]]),0*x[1]);;
fi;;
end; ;
return List([1..r(k,t)],i->M(k) [p(i,k,t)]1);;
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end; ;

m := function(k,s,t)
if k=1 and s=1 and t=-1 then return 2;;
elif k=-1 and s=-1 and t=1 then return 2;;
elif k=1 and s=1 and t=0 then return 2;;
elif k=-1 and s=-1 and t=0 then return 2;;
elif k=1 and s=-1 and t=1 then return 2;;
elif k=-1 and s=1 and t=-1 then return 2;;
elif k=1 and s=-1 and t=0 then return 2;;
elif k=-1 and s=1 and t=0 then return 2;;
elif k=1 and s=0 and t=1 then return 2;;
elif k=-1 and s=0 and t=-1 then return 2;;
elif k=1 and s=0 and t=-1 then return 2;;
elif k=-1 and s=0 and t=1 then return 2;;
elif k=1 and s=0 and t=0 then return 5;;
elif k=-1 and s=0 and t=0 then return 5;;
fi;;

end; ;

Q := function(k,s,t) local q;;

q := function(j,k,s,t)
if j=1 then return Position(List([1..r(k,s)],
i->Bt1[3]1*Bc[N(k,s) [i]]1-t*Bc[N(k,s) [i]1]1),0*x[1]1);;
else return q(j-1,k,s,t)+Position(List([q(j-1,k,s,t)+1..r(k,s)],
i->Bt1[3]1*Bc[N(k,s) [i]1]1-t*Bc[N(k,s) [i]1]1),0*x[1]1);;
fi;;

end;;

return List([1l..m(k,s,t)],i->N(k,s) [q(i,k,s,t)]);;

end; ;
w:=1[[1,1,-1],[1,1,0],[1,-21,1],([2,-1,0],[1,0,1],[1,0,-1],[1,0,011;;
S := 2 + 2+xSum(List ([1..Length(W)],i->Length(Q(W[i] [1],wW[i] [2],W[i]1[3]))))
+ Dimension(le)-Dimension(c);;
A := function(i) return List([1..m(W[i][1],wlil[2],w[i]l[31)1],
t->List([1..m(W[i] [1],w[i][2],w[i][3])],
s=>Bc[Q(W[i] [1],w([i] [2] ,W[i] [3]) [s]I1*Bc[Q(-W[i] [1],-W[il[2],-W[il[31)[t11));;
end;;

# A(1), A(2), A(3), A(5), A(B) are nonsingular.

# A(7) is singular of order 5 of rank 4; its minor
List([1..4],s->List([1..4],

t->Bc QW71 [1],wl7]1[2],wl7]1[3]) [s]11*Bc[Q(-WL7]1[1],-Wl7]1[2],-W[7I1[3]1)[t]11));;
# is different from O.

a := Bc[M(2) [1]1]1*Bc[M(-2)[1]];;
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In conclusion, Condition (2) of Proposition .9 is satisfied for t := kt and t; :=span(Bt1).
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