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Parallel Random Apollonian NetworksNi
olas Bonnel and Pierre-Fran
ois Marteau and Gildas M�enierVALORIA, Universit�e de Bretagne Sud, Universit�e Europ�eenne de Bretagne, Campusde Tohanni
, 56 000 Vannes, Fran
eE-mail: fbonnel,marteau,menierg AT univ-ubs.frAbstra
t. We present and study in this paper a simple algorithm that produ
esso 
alled growing Parallel Random Apollonian Networks (P-RAN) in any dimensiond. Analyti
al derivations show that these networks still exhibit small-word and s
ale-free 
hara
teristi
s. To 
hara
terize further the stru
ture of P-RAN, we introdu
enew parameters that we refer to as the parallel degree and the parallel 
oeÆ
ient,that determine lo
ally and in average the number of verti
es inside the (d+1)-
liques
omposing the network. We provide analyti
al derivations for the 
omputation of thedegree and parallel degree distributions, parallel and 
lustering 
oeÆ
ients. We givean upper bound for the average path lengths for P-RAN and �nally show that ourderivations are in very good agreement with our simulations.



Parallel Random Apollonian Networks 21. Introdu
tionDuring the last de
ade, the study of network topologies has be
ome a useful way to ta
klethe understanding of information 
ow within 
omplex natural or arti�
ial systems. Theappli
ations range from so
iology, logisti
s, epidemiology, immunology, neural networks
hara
terization, granular pa
king analysis, networking, et
. Among a multitude ofproposed models, s
ale-free and small world networks have been widely addressed,essentially be
ause many empiri
al or real life networks display su
h properties [6, 9℄.This is the 
ase for random graphs, so
ial networks, the web and for gene networksfor instan
e. Basi
ally, s
ale free networks display a power-law degree distribution,p(k) � k�
 , where k is 
onne
tivity (degree) and 
 the degree exponent [2℄, while insmall world networks, most verti
es 
an be rea
hed from any other by a small numberof hops or steps. Small world networks are 
hara
terized by a high 
lustering 
oeÆ
ient,e.g. a high level of verti
es inter
onne
tion, and small average path length, namely smallminimum path length in average between any pairs of verti
es in the network.

Figure 1.1. 2D Apollonian gasket and 
orresponding network. 1st generation: disks,2nd generation: squares, 3rd generation: trianglesAmong the topologies that display s
ale free and small world properties, Apolloniannetworks [1℄ have re
ently attra
ted mu
h attention [8, 7℄. Apollonian networks are
onstru
ted from a fra
tal generated from a set of hyper-spheres, where any hyper-sphere is tangent to the others. This fra
tal is also known as the Apollonian gasket,named after Greek mathemati
ian Apollonius of Perga. The 2D Apollonian network, orDeterministi
 Apollonian Network (DAN) [1℄, is obtained by 
onne
ting the 
enters oftou
hing spheres (interpreted as verti
es) in a three-dimensional Apollonian gasket byedges, as shown in Fig 1.1. The �rst generation for this fra
tal network is 
hara
terizedby disks verti
es, the se
ond generation is 
hara
terized by square verti
es and the thirdgeneration is 
hara
terized by triangle verti
es. Extension to higher dimension have



Parallel Random Apollonian Networks 3been provided in [11℄.Ramdom Apollonian Networks (RAN) [15℄, di�er from the re
ursive 
onstru
tionof DANs, as a RAN starts from a (d+1)-
lique (a triangle in dimension 2) 
ontainingd+ 1 verti
es. Then, at ea
h time step, a single (d+1)-
lique is randomly sele
ted fromthe set of (d+1)-
lique in the network that do not already 
ontain a vertex 
onne
tedto all the verti
es 
omposing the (d+1)-
lique. The sele
ted (d+1)-
lique is then usedto insert a new vertex linking to all of the d + 1 verti
es of the sele
ted (d+1)-
lique.2D Random Apollonian Networks (RAN) have been extensively studied in [15, 14℄, andextension to high dimension RAN (HDRAN) provided in [12℄.Some re
ent attempts to make use of RAN like stru
tures in P2P appli
ation [refs℄fa
es the requirement to maintain su
h topologies in dynami
 
onditions, e.g. whenverti
es almost freely enter and leave the network. For RAN or HDRAN topologies,the repairing pro
ess when verti
es leave the network is quite 
ostly and limits therange of potential appli
ations. In order to simplify the topology repairing pro
ess(that is beyond the s
ope of this paper), we are 
onsidering an extension of the RANor HDRAN topologies to what we 
all Parallel RAN (P-RAN). This new topologythat di�ers slightly from RAN or HDRAN allows to insert several verti
es inside a(d+1)-
lique, ea
h inserted verti
es being fully 
onne
ted to all the verti
es 
omposingthe 
lique. This extension 
onstru
ts parallel random Apollonian stru
tures that weformally study through out the paper.After a short presentation of Parallel Deterministi
 Apollonian Networks (P-DAN)and Parallel Random Apollonian Networks (P-RAN) in the �rst two se
tions, weintrodu
e in the third se
tion the parallel degree distribution and parallel 
oeÆ
ientfor su
h networks and study their asymptoti
 statisti
al properties for any dimension.The fourth, �fth and sixth se
tions give the derivations respe
tively for the degreedistribution and the degree exponent, the 
lustering 
oeÆ
ient and the average pathlength for P-RAN. Extensive simulation results are provided through out these se
tionsto validate as far as possible the analyti
al derivations. A short 
on
lusion ends thepaper.2. Parallel Deterministi
 Apollonian NetworksA parallel deterministi
 Apollonian network in dimension d is 
onstru
ted re
ursivelyfrom an initial (d+1)-
lique allowing to insert at step t more than one vertex into(d+1)-
liques 
omposing the network at step t � 1. Various rules 
an be adopted forthe 
onstru
tion of Parallel Apollonian networks. Some of them lead to ExpandedApollonian networks [10℄ or re
ursive 
lique trees [4℄ for whi
h at ea
h time step, anew vertex is inserted in every (d+1)-
lique 
omposing the network. In the followingsubse
tion, as an example, we propose other rules that lead to a di�erent topology. To
hara
terize the parallel nature of this kind of networks, we introdu
e what we 
all theparallel degree m � 0 of a (d+1)-
liques that 
hara
terizes the number of verti
es insidethe 
lique and fully 
onne
ted to the verti
es 
omposing the 
lique. This 
onstru
ting



Parallel Random Apollonian Networks 4pro
ess is detailed in Algorithm 1Data: d: dimension of the P-DAN; tMax: maximum number of steps; m theparallel degreeResult: r a d-dimensional P-DANt 0;Initialize r to a (d+1)-
lique, 
 (r 
ontains 1 (d+1)-
liques);C  
 the set of (d+1)-
liques 
omposing the P-DAN ;while t < tMax doC 0  C;for all 
 in C doInsert m new verti
es into 
, fully 
onne
ted to the verti
es 
omposing 
 ;Insert into C 0 the m:(d+ 1) new 
reated (d+1)-
liques ;endt t+ 1 ;C  C 0;end Algorithm 1: P-DAN 
onstru
ting algorithm

Figure 2.1. 2-dimensional P-DAN at t=0 (left), t=1 (middle) and t=2 (right)2.1. Constru
ting algorithmFollowing Algorithm 1 spe
i�
ation, initially, a network 
ontaining d+ 1 verti
es and asingle (d+1)-
lique is 
reated. At ea
h time step t, m � 1 verti
es are added into allexisting (d+1)-
liques 
reated at time step t � 1 in the 
urrent network and ea
h newvertex is 
onne
ted to ea
h verti
es of the embedding (d+1)-
lique, 
reating m:(d + 1)new (d+1)-
liques. Figure 2.1 presents the �rst three steps of the P-DAN 
onstru
tingalgorithm.3. Parallel Random Apollonian NetworksWe de�ne Parallel Random Apollonian Networks as RAN for whi
h a new vertex 
anbe inserted at time step t in any (d+1)-
lique 
omposing the network, whatever its
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reation time step is. This means that a (d+1)-
lique 
an 
ontain in its inside morethan one vertex fully 
onne
ted to the verti
es 
omposing the 
lique as detailed inAlgorithm 2. To our knowledge, no previous work have been reported spe
i�
ally onP-RAN. Nevertheless, some similarity 
an be found for simple topologies des
ribed inone dimension in [5℄. We study in the following se
tions P-RAN for any dimensions.

Figure 3.1. 2-dimensionnal P-RAN. One vertex is added to a randomly 
hosen 3-
lique at ea
h time steps. Edges added at ea
h time step are dashed3.1. Constru
ting algorithmData: d: dimension of the P-RAN; tMax: maximum number of stepsResult: r a d-dimensional P-RANt 0;Initialize r to a (d+2)-
lique (r 
ontains d+ 1 (d+1)-
liques);C  
1; 
2; 
3 the set of (d+1)-
liques 
omposing the initial (d+2)-
lique ;while t < tMax doSele
t randomly a (d+1)-
lique, 
, in C ;Insert a new vertex into 
, fully 
onne
ted to the verti
es 
omposing 
 ;Add to C the d+ 1 new (d+1)-
liques 
reated by the insertion of the newvertex and update r ;t t+ 1 ;end Algorithm 2: P-RAN 
onstru
ting algorithmInitially, a network 
ontaining d+2 verti
es and d+2 (d+1)-
liques is 
reated. Atea
h time step, a new vertex is added into a (d+1)-
lique sele
ted at random. The newvertex is 
onne
ted to ea
h vertex of the sele
ted 
lique, 
reating d+1 new (d+1)-
liques.



Parallel Random Apollonian Networks 6Thus, 
omparatively to RAN for whi
h new verti
es are inserted into (d+1)-
liques that
ontain no vertex inside, for P-RAN, any (d+1)-
lique 
an be sele
ted to insert a newvertex, what ever the number of inside verti
es is. Figure 3.1 shows the �rst four stepsof 
onstru
tion of a P-RAN. A parallel embran
hment is 
reated at the third step sin
ea 
lique 
ontaining already a vertex is sele
ted for the insertion of a se
ond inner vertex.4. Parallel degree distribution and parallel 
oeÆ
ientThe parallel degree is a 
hara
teristi
 that applies to (d+1)-
liques. We show hereinafterthat the dis
rete parallel distribution for P-RANs follows asymptoti
ally a geometri
allaw.De�nition We de�ne the parallel degree of a (d+1)-
lique as the number of verti
es\inside" the (d+1)-
lique, e.g. the number of verti
es that are 
onne
ted to everyverti
es of the (d+1)-
lique but are not in the set of verti
es that 
ompose the (d+1)-
lique.4.1. Estimating the parallel degree distributionLemma 4.1 Let t be the iteration step of the 
onstru
tion of the growing P-RANalgorithm, and let m be an integer. For large t the parallel degree distribution ofa d dimensional P-RAN asymptoti
ally follows the geometri
 distribution P
(m) =d+1(d+2)(m+1) .Proof At time t = 0, the networks is 
omposed with d + 2 verti
es forming d + 2(d+1)-
liques. Ea
h time a new vertex is inserted into the network, the number of(d+1)-
liques in
reases by d + 1. If N
t is the number of (d+1)-
liques at time t, wehave N
t = d+ 2 + t:(d+ 1).Furthermore, ea
h time a (d+1)-
lique 
j is sele
ted for the insertion of a newvertex, its parallel degree mj in
reases by 1. Thus, if N
t(m) is the number of (d+1)-
liques having a parallel degree equal to m at time t we get the following growth ratefor N
t(m) N
t(m) = N
t�1(m) + N
t�1(m� 1)d+ 2 + (d+ 1)(t� 1) � N
t�1(m)d+ 2 + (d+ 1)(t� 1) (1)Let P
t(m) be the probability to sele
t a (d+1)-
lique with parallel degreem at timet. P
t(m) 
an be approximated by the ratio N
t(m)d+2+t:(d+1) . Thus N
t(m) = N
t:P 
t(m) =(d+ 2 + t:(d+ 1)):P 
t(m) and we get from Eq.1(d+ 2 + t:(d+ 1)):P 
t(m) = (d+ 2 + (t� 1):(d+ 1)):P 
t�1(m)+P
t�1(m� 1)� P
t�1(m) (2)Thus P
t(m) = t(d+ 1)d+ 2 + t(d+ 1) :P 
t�1(m) + P
t�1(m� 1)d+ 2 + t(d+ 1) (3)



Parallel Random Apollonian Networks 7As P
t(m) is bounded for all m and t, from Eq.3 we get that P
t(m) is a Cau
hysequen
e, whi
h shows that limt!+1 P
t(m) = P
(m) exists and that for large t,P
t(m) � P
t�1(m) � P
(m). Rewriting the previous equation for large t we getP
(m) � P
(m� 1)d+ 2 = P
(0)(d+ 2)m (4)It is easy to show by indu
tion on t that the probability to sele
t at any time t a(d+1)-
lique having a null parallel degree is P
(0) = (d+ 1)=(d+ 2). Thus for large tP 
(m) � d+ 1(d+ 2)(m+1) (5)This ends the proof and shows that the parallel degree for P-RAN s
ales as a geometri
aldistribution.Figure 4.1 gives the parallel degree distribution for P-RANs estimatedexperimentally for ea
h dimension from the 
onstru
tion of 10 networks utteran
es
ontaining 100000 verti
es ea
h. The �gure gives also the absolute error andits 
orresponding standard deviation measured 
omparatively to the theoreti
alexpe
tation, showing a good mat
h between simulation and the theoreti
al model.

Figure 4.1. Parallel Degree distribution estimated from 10 2-dimensional P-RANs
ontaining 100000 verti
es ea
h. Error and standard deviation to theory are given onthe right verti
al axis.4.2. Average parallel degree and parallel 
oeÆ
ientDe�nition The average parallel degree M of a P-RAN is de�ned as the mathemati
alexpe
tation of the parallel degree, i.e.M = E(P
(m)) = 1Xm=1m:P
(m) = 1Xm=1m: d+ 1(d+ 2)(m+1) = 1d+ 1 (6)



Parallel Random Apollonian Networks 8Thus, M measures the average number of verti
es inside (d+1)-
liques of a P-RAN.De�nition We de�ne the parallel 
oeÆ
ient of a d-dimensional P-RAN � asM�P
(1),i.e. � = 1Xm=2m: d+ 1(d + 2)(m+1) (7)Lemma 4.2 For d-dimensional P-RAN the average parallel degree is M = 1=(d + 1),and the parallel 
oeÆ
ient is � = 2:d+3(d+1)(d+2)2 .Proof A

ording to Eq.6 The parallel degree distribution follows a geometri
al lawwhose expe
tation is M = 1=(d + 1) and varian
e is (d + 2)=(d + 1)2. Thus � =M � P
(1) = 1d+1 � d+1(d+2)2 and the result follows.For d = 2 we getM = 1=3 for P-RAN, whi
h is also the 
ase for RAN, and � = 7=48for P-RAN while � = 0 for RAN.Figure 4.2 shows the parallel 
oeÆ
ients for P-RANs estimated experimentallyfor ea
h dimension from the 
onstru
tion of 10 networks utteran
es 
ontaining 100000verti
es ea
h. The �gure gives also the absolute error and its 
orresponding standarddeviation measured 
omparatively to the theoreti
al expe
tation.

Figure 4.2. Parallel 
oeÆ
ient of a P-RAN as a fun
tion of the dimension. Error andstandard deviation to theory are given on the right verti
al axis.5. Estimating the degree distributionThe degree of a vertex in a network is the number of 
onne
tions it shares with otherverti
es and the degree distribution is the probability distribution of these degrees overthe whole network.



Parallel Random Apollonian Networks 95.1. Determining the degree distributionLemma 5.1 The degree distribution of a d-dimensional P-RAN is given by the followingre
ursion ( P (k) � d:k�d2�d+1d:k�d2+d+2 � P (k � 1) for k > d+ 1P (k) � 12 for k = d+ 1 (8).Proof We note that, on
e a new vertex is added into the P-RAN network, the numberof (d+1)-
liques available for the insertion of a new vertex is in
reased by d+ 1. Aftert iterations, the number of (d+1)-
liques available for the insertion of a new vertex isd+ 2 + t(d+ 1).Thus, given a vertex vi, when its degree in
reases by 1 the number of (d+1)-
liquesthat 
ontain vertex vi in
reases by d. So the number of (d+1)-
liques available forsele
tion 
ontaining vertex vi with degree ki is (ki � (d+ 1)):d+ d+ 1 = d:ki � d2 + 1,sin
e at t = ti, the 
reation time of vertex vi there is d + 1 (d+1)-
liques that 
ontainvertex vi.Let Nt be the total number of verti
es into the P-RAN at step t (Nt = d + 2 + t)and let Nt(k) be the number of verti
es having a degree k at time t. We 
an write thefollowing di�eren
e equationNt(k) = Nt�1(k) + d:(k�1)�d2+1d+2+(t�1):(d+1)Nt�1(k � 1)� d:k�d2+1d+2+(t�1):(d+1)Nt�1(k) (9)Let Pt(k) be the probability to sele
t a vertex with degree k at time t. Pt(k) 
anbe approximated by the ratio Nt(k)d+2+t . Hen
e N
t(k) = (d+ 2+ t):Pt(k) and we get fromEq.9 Pt(k):(d+ 2 + t) = Pt�1(k):(d+ 2 + (t� 1))+ d(k�1)�d2+1d+2+(t�1)(d+1) :Pt�1(k � 1):(d+ 2 + (t� 1))� dk�d2+1d+2+(t�1)(d+1) :Pt�1(k):(d+ 2 + (t� 1)) (10)As Pt(k) is bounded for all k and t from Eq.10 we get that Pt(k) is a Cau
hysequen
e, showing that limt!+1 Pt(k) = P (k) exists, and that for large t, Pt(k) �Pt�1(k) � P (k). Rewriting the previous equation for large t we getP (k):�1 + d:k�d2+1d+1 � � d:k�d2�d+1d+1 :P (k � 1) (11)and �nallyP (k) � d:k � d2 � d+ 1d:k � d2 + d+ 2 � P (k � 1) (12)This re
ursive equation is de�ned for k � d+1. We show next that P (d+1) = 1=2for all dimensions.



Parallel Random Apollonian Networks 10� Let Nd+1;t be the expe
ted number of verti
es into the network having a degreeequal to d+ 1 at time t,� let nt be the expe
ted total number of (d+1)-
liques having a parallel degree equalto 0,� let n0t be the expe
ted total number of (d+1)-
liques having a parallel degree equalto 0 for whi
h all verti
es have a degree k > (d+ 1) at time t,� let n00t be the expe
ted total number of (d+1)-
liques having a parallel degree equalto 0 for whi
h all verti
es have a degree k > d + 1 ex
ept one vertex that has adegree k = d+ 1 at time t.For suÆ
iently large t, every vertex vi in the network has a degree ki � d+ 1, andevery (d+1)-
lique vj has either all its verti
es with a degree k > d + 1 or only onevertex with a degree k = 3. Thus, when we insert a new vertex in a (d+1)-
lique 
j,only three 
ases arise for the (d+1)-
lique sele
ted for the insertion:(i) If the 
lique has a parallel degree m > 0 then Nd+1(t) is in
reased by one, n0t isun
hanged and n00t is in
reased by d+ 1(ii) If the 
lique has a parallel degree m = 0 and all its d + 1 verti
es has a degreek > d + 1, in this 
ase the Nd+1(t) is in
reased by one, n0t is de
reased by one andn00t is in
reased by d+ 1(iii) If the 
lique has a parallel degree m = 0 and all its d + 1 verti
es have a degreek > d + 1 ex
ept one with a degree equal to d + 1, Nd+1(t) is un
hanged, n0t isin
reased by d and n00t is un
hanged.In Se
tion 4 we have shown that the probability to sele
t randomly a (d+1)-
liquewith a parallel degree m = 0 is P (m = 0) = (d+ 1)=(d+ 2) and nt � t: (d+1)2d+2 . Previousstatements lead to the following equationsP (d+ 1) � 1d+ 2 + d+ 1d+ 2 :n0tnt (13)n0t = n0t�1 + �d:n00t�1nt�1 � n0t�1nt�1� :d+1d+2= n0t�1 + �d:nt�1�n0t�1nt�1 � n0t�1nt�1� :d+1d+2= n0t�1 �1� d+1nt�1 :d+1d+2� + d:d+1d+2 (14)Assuming that limt!+1 n0t=nt exists (this is obviously the 
ase sin
e P (k = d + 1)exists), n0t � a:t where a is a 
onstant. Repla
ing n0t in Eq.13 we geta:t = a:(t� 1)�1� 1t� 1�+ d:d+ 1d+ 2 (15)leading to a = d2 :(d+1d+2). Thus,n0tnt � ad+1d+2 :(d+ 1) = d2:(d+ 1) (16)



Parallel Random Apollonian Networks 11Finally, P (d+ 1) = P (k = d + 1) � 1d+2 + d+1d+2 :n0tnt = d+1d+2 + d2:(d+1) = 1=2. Note thatP (d+ 1) is independent from the dimension d.This 
ompletes the re
ursive equation that gives the degree spe
trum distribution.To our knowledge, there is no simple analyti
al expression for P (k) in anydimension. Nevertheless, for d = 1, we getP (k) � 12(k + 2):(k + 1):k (17)This result in dimension one has already been reported in [5℄.5.2. Degree exponentFor s
ale free networks, the degree distribution follows asymptoti
ally a power law whoseexponent is 
alled the degree exponent. In the following, we show that P-RANs are s
alefree networks and derive their degree exponents.Lemma 5.2 The degree exponent of a d-dimensional P-RAN is 
 = 2:d+1dProof To show that the degree distribution follows a power law, we evaluate theasymptoti
 value of the following ratioR(k) = log(P (k))� log(P (k � 1))log(k)� log(k � 1) = log(P (k)=P (k� 1))log(k=(k � 1)) (18)Thus R(k) = log( d:k�d2�d+1d:k�d2+d+2 )log(k=(k�1)) = log( d:k�d2�d+1d:k�d2+d+2 )log(k=(k�1))= log( 1+�d2�d+1d:k1+�d2+d+2d:k )�log(1� 1k ) (19)and for large kR(k) � k:��d2�d+1d:k � �d2+d+2d:k �� �2:d+1d (20)This shows that for large k P (k) � k�
 with 
 = 2:d+1d .For d = 2, we theoreti
ally get 
 = 5=2.We evaluate the empiri
al degree exponent using the mean of the maximumlikelihood estimate 
omputed a

ording to the following formula proposed in [3℄ :
 � 1 + n nXi=1 log� kikmin � 12�!�1 (21)
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Figure 5.1. Degree exponent estimation for a 2-dimensional P-RAN 
ontaining200000 verti
es a

ording to Eq.21where ki, i = 1; 2; :::; n are the observed values of k su
h that ki � kmin. Figure 5.1gives the estimated degree exponent a

ording to kmin for networks 
ontaining 500000nodes. Results are well 
orrelated with theory for kmin 2 [30; 300℄. When xmin is lowerthan 30, a bias is introdu
ed in the power law by low degree verti
es while when kmin ishigher than 300, the set of verti
es having a high degree be
omes too small to give ana

urate estimate.6. Clustering 
oeÆ
ientsThe 
lustering 
oeÆ
ient Ci that 
hara
terizes vertex vi is the proportion of linksbetween the verti
es within its neighborhood (vi ex
luded) divided by the number oflinks that 
ould possibly exist between them. For undire
ted graph, 
onsidering twoverti
es vi and vj, the edges vi ! vj and vj ! vi are 
onsidered identi
al. Therefore,if a vertex vi has ki neighbors, ki(ki�1)2 edges 
ould exist among the verti
es within itsneighborhood. The 
lustering 
oeÆ
ient for the whole network is the average of the
lustering 
oeÆ
ients Ci over the set of verti
es 
omposing the network, i.e. this is theexpe
tation of the 
lustering 
oeÆ
ient distribution.When a vertex is inserted into the network, it is 
onne
ted to all the verti
es ofa sele
ted (d+1)-
lique. It follows that every vertex having a degree ki = d + 1 has a
lustering 
oeÆ
ient of one. Furthermore, when a vertex vi having a degree ki belongsto a (d+1)-
lique in whi
h a new vertex is inserted, its degree in
reases by one andthe new inserted neighbor 
onne
ts to d verti
es among the ki verti
es that 
omposeits neighborhood previously to the insertion. This leads to the following 
lustering
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oeÆ
ient for a vertex having a degree kC(k) = d:(d+1)2 + d:(k � d� 1)k:(k�1)2 = d:(2k � d� 1)k:(k � 1) (22)This lo
al 
lustering 
oeÆ
ient is exa
tly the same as the one obtained for verti
esin RAN [13℄. Eq.22 shows that the lo
al 
lustering 
oeÆ
ient s
ales as C(k) � k�1We average these 
oeÆ
ients using the dis
rete degree distribution (Eq.8) as followsC = 1Xki=d+1�d:(2ki � d� 1)ki:(ki � 1) :P (ki)� (23)For d = 2, we get C = 0:813. Figure 6.1 shows that the 
lustering 
oeÆ
ientin
reases from 0:813 for d = 2 to 1 as d tends towards in�nity. Comparatively, HDRANshave a signi�
antly lower 
lustering 
oeÆ
ient at low dimension, e.g. for d = 2, a RANhas a 
lustering 
oeÆ
ient C = :768.Figure 6.1 gives the 
lustering 
oeÆ
ients for P-RANs estimated experimentallyfor ea
h dimension from the 
onstru
tion of 10 networks utteran
es 
ontaining 100000verti
es ea
h. The �gure gives also the absolute error and its 
orresponding standarddeviation measured 
omparatively to the theoreti
al expe
tation, showing a good mat
hbetween simulation and the theoreti
al model.

Figure 6.1. Clustering 
oeÆ
ient of a P-RAN as a fun
tion of the dimension. Errorand standard deviation to theory are given on the right verti
al axis.7. Average path lengthThe average path length (APL) is a 
hara
teristi
 of the network topology that is de�nedas the average number of edges along the shortest paths for all possible pairs of networkverti
es. Following exa
tly the derivations already presented in [15, 14℄ for RAN, weaddress below the average path length for P-RAN.



Parallel Random Apollonian Networks 14First, we suppose that any vertex of the P-RAN network is ordered a

ording toits insertion time stamp t that we 
onsider dis
rete (t 2 N). It is straightforward toestablish that for P-RAN the following property holds (as well as for DAN or RAN)For any two arbitrary verti
es i and j all shortest paths from i to j does not passthrough a vertex k if k > max(i; j).Let d(i; j) denotes the distan
e between verti
es i and j, namely the length of ashortest path between verti
es i and j. Let �(N) be the sum of all distan
es betweenall the pairs of verti
es into the network with order N , e.g. 
ontaining N verti
es.�(N) = X1�i<j�N d(i; j) (24)and let L(N) be the average path length of the P-RAN of order NL(N) = 2�(N)N:(N � 1) (25)Following exa
tly the approa
h given in [13℄ we get the following re
ursive inequalityfor �(N) �(N + 1) < �(N) +N + 2�(N)N (26)Considering the inequality Eq.26 as an equation we get the same upper bound forthe variation of �(N) than for RANd�(N)dN = N + 2�(N)N (27)whi
h leads to�(N) � N2:log(N) + S (28)where S is a 
onstant. As �(N) is asymptoti
ally upper bounded by � N2:log(N),L(N) is asymptoti
ally upper bounded by log(N), e.g. L(N) in
reases at most as log(N)with N .Figure 7.1 
ompares for dimensions 2, 4 and 6 average path lengths for HDRANsand P-RANs and shows that, for a given dimension, average path lengths are shorterfor P-RANs than for HDRANs. Nevertheless, as the dimension in
reases, di�eren
esbetween path lengths vanish. This result was expe
ted sin
e P-RANs have a higher
lustering 
oeÆ
ient than RANs.8. Con
lusionFrom previous works on Apollonian Networks, mainly RAN and HDRAN networks,we have introdu
ed what we 
all Parallel Deterministi
 or Parallel Random ApollonianNetworks. These topologies, for whi
h (d+1)-
liques may a

ept in their inside morethan one vertex fully 
onne
ted to the verti
es 
omposing the 
lique, are still small worldand s
ale free. This paper reports the main statisti
al properties of P-RANs. For su
h
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Figure 7.1. Average path length in RANs and P-RANsnetworks, the degree exponent is in between 2 (2 being attained at the limit when thedimension tends towards in�nity) and 2:5 (when the dimension of the network is 2) or3 if we a

ept the limit 
ase of Apollonian networks in dimension one. We have shownanalyti
ally that, 
omparatively to RAN or HDRAN, P-RAN networks are 
hara
terizedwith higher 
lustering 
oeÆ
ients and shorter average path lengths. P-RAN are also
hara
terized by their parallel degree distribution and parallel 
oeÆ
ient that quantifythe number of verti
es inside the (d+1)-
liques that 
ompose P-RAN networks. Thesimulations results provided through out the paper are in very good 
onforman
e withthe analyti
al expe
tations.9. Referen
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