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Rami�ed Random Apollonian NetworksNiolas Bonnel and Pierre-Franois Marteau and Gildas M�enierVALORIA, Universit�e de Bretagne Sud, Universit�e Europ�eenne de Bretagne, Campusde Tohanni, 56 000 Vannes, FraneE-mail: fbonnel,marteau,menierg�univ-ubs.frAbstrat. We present a simple algorithm that produes a so alled growing Rami�edRandom Apollonian Networks (R-RAN) in any dimension d. Analytial derivationsshow that these networks still exhibit small-word and sale-free harateristis. Toharaterize further the struture of R-RAN, we introdue new parameters that werefer to as the parallel degree and the rami�ation oeÆient, that determine loallyand in average the number of verties inside the (d+1)-liques omposing the network.We provide analytial derivations for the omputation of the degree and parallel degreedistributions, rami�ation and lustering oeÆients. We give an upper bound for theaverage path lengths for R-RAN and �nally show that our derivations are in very goodagreement with our simulations.



Rami�ed Random Apollonian Networks 21. IntrodutionDuring the last deade, the study of network topologies has beome a useful way totakle the understanding of information ow within omplex natural systems. Theappliations range from soiology, logistis, epidemiology, immunology, neural networksharaterization, granular paking analysis, P2P networking, et. Among a multitudeof proposed models, sale-free and small world networks have been widely addressed,essentially beause many empirial or real life networks display suh properties [5, 8℄.This is the ase for random graphs, soial networks, the web and for gene networksfor instane. Basially, sale free networks display a power-law degree distribution,p(k) � k� , where k is onnetivity (degree) and  the degree exponent [2℄, while insmall world networks, most verties an be reahed from any other by a small numberof hops or steps. Small world networks are haraterized by a high lustering oeÆient,e.g. a high level of verties interonnetion, and small average path length, namely smallminimum path length in average between any pairs of verties in the network.

Figure 1. 2D Apollonian gasket and orresponding networkAmong the topologies that display sale free and small world properties, Apolloniannetworks [1℄ have reently attrated muh attention [7, 6℄. Apollonian networks areonstruted from a fratal generated from a set of hyper-spheres, where any hyper-sphere is tangent to the others. This fratal is also known as the Apollonian gasket,named after Greek mathematiian Apollonius of Perga. The 2D Apollonian network, orDeterministi Apollonian Network (DAN) [1℄, is obtained by onneting the enters oftouhing spheres (intrepreted as verties) in a three-dimensional Apollonian gasket byedges, as shown in Fig 1. The �rst generation for this fratal network is haraterizedby red disks verties, the seond generation is haraterized by blue square verties andthe third generation is haraterized by green triangle verties. Extension to higherdimension have been provided in [10℄.



Rami�ed Random Apollonian Networks 3Ramdom Apollonian Networks (RAN) [14℄, di�er from the reursive onstrutionof the DAN, as RAN starts from a (d+1)-lique (a triangle in dimension 2) ontainingd+ 1 verties. Then, at eah time step, a single (d+1)-lique is randomly seleted fromthe set of (d+1)-lique in the network that do not already ontain a vertex onnetedto all the verties omposing the (d+1)-lique. The seleted (d+1)-lique is then usedto insert a new node linking to all of the d+1 verties of the seleted (d+1)-lique. 2DRamdom Apollonian Networks (RAN) have been extensively studied in [14, 13℄, andextension to high dimension RAN (HDRAN) provided in [11℄.Some reent attempts [refs℄ to make use of RAN like strutures in P2P appliationfaes the requirement to maintain suh topologies in dynami onditions, e.g. whenverties almost freely enter and leave the network. For RAN or HDRAN topologies, therepairement proess when nodes leave the network is quite osly and limits the rangeof potential appliations. In order to simplify the topology repairement proess, weonsider in this paper an extension of the RAN or HDRAN topologies to what we allRami�ed RAN (R-RAN). This new topology that di�ers slightly from RAN or HDRANallows to insert several verties inside a (d+1)-lique, eah inserted verties being fullyonneted to all the verties omposing the lique. This extension onstruts networksof rami�ed random Apollonian strutures that we formally study through out the paper.After a short presentation of Rami�ed Deterministi Apollonian Networks (R-DAN)and Rami�ed Random Apollonian Networks (R-RAN) in the �rst two setions, weintrodue in the third setion the parallel degree distribution and rami�ation oeÆientfor suh networks and study their asymptoti statistial properties for any dimension.The fourth, �fth and sixth setions give the derivations respetively for the degreedistribution and the degree exponent, the lustering oeÆient and the average pathlength in R-RAN. Extensive simulation results are provided through out these setionsto validate as far as possible the analytial derivations. A short onlusion ends thepaper.2. Rami�ed Deterministi Apollonian NetworksA rami�ed deterministi Apollonian network in dimension d is onstruted reursivelyfrom an initial (d+1)-lique allowing to insert at step t more than one vertex into(d+1)-liques omposing the network at step t � 1. Various rules an be adopted forthe onstrution of Rami�ed Apollonian networks. Some of them lead to ExpandedApollonian networks [9℄ or reursive lique trees [3℄ for whih at eah time step, anew vertex is inserted in every (d+1)-lique omposing the network. In the followingsubsetion, as an example, we propose other rules that lead to a di�erent topology. Toharaterize the rami�ation nature of this kind of networks, we introdue what we allthe parallel degree m � 0 of a (d+1)-liques that haraterizes the number of vertiesinside the lique and fully onneted to the verties omposing the lique.
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Figure 2. 2-dimensionnal R-DAN at t=0 (left) and t=1 (right)2.1. Construting algorithmInitially, a network ontaining d+2 verties and d+2 (d+1)-liques is reated. At eahtime step t, m � 1 verties are added into all existing (d+1)-liques reated at timestep t � 1 in the urrent network and eah new vertex is onneted to eah verties ofthe embedding (d+1)-lique, reating m:(d+ 1) new (d+1)-liques.3. Rami�ed Random Apollonian NetworksWe de�ne Rami�ed Random Apollonian Networks as RAN for whih a new vertexan be inserted at time step t in any (d+1)-lique omposing the network, whatever itsreation time step is. This means that a (d+1)-lique an ontain in its inside more thanone vertex fully onneted to the verties omposing the lique. To our knowledge, noprevious work have been reported spei�ally on R-RAN. Nevertheless, some similarityan be found for simple topologies desribed in one dimension in [4℄. We study in thefollowing setions R-RAN for any dimensions.3.1. Construting algorithmInitially, a network ontaining d+2 verties and d+2 (d+1)-liques is reated. At eahtime step, a vertex is added into a (d+1)-lique seleted at random. The new vertexis onneted to eah node of the seleted lique, reating d + 1 new (d+1)-liques.Thus, omparatively to RAN for whih new verties are inserted into (d+1)-liques thatontain no vertex inside, for R-RAN, any (d+1)-lique an be seleted to insert a newnode, what ever the number of inside verties is.4. Parallel degree distribution and rami�ation oeÆientThe parallel degree is a harateristi that applies to (d+1)-liques. We de�ne theparallel degree of a (d+1)-lique as the number of verties \inside" the (d+1)-lique,e.g. the number of verties that are onneted to every verties of the (d+1)-lique butare not in the set of verties that ompose the (d+1)-lique.
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Figure 3. 2-dimensionnal R-RAN. One vertex is added to a randomly hosen 3-liqueat eah time steps. Edges added at eah time step are dashed4.1. Estimating the parallel degree distributionAt time t = 0, the networks is omposed with d + 2 verties forming d + 2 (d+1)-liques. Eah time a new vertex is inserted into the network, the number of (d+1)-liques inreases by d + 1. If Nt is the number of (d+1)-liques at time t, we haveNt = d+ 2 + t:(d+ 1).Furthermore, eah time a (d+1)-lique j is seleted for the insertion of a newvertex, its parallel degree mj inreases by 1. Thus, if Nt(m) is the number of (d+1)-liques having a parallel degree equal to m at time t we get the following growth ratefor Nt(m) Nt(m) = Nt�1(m) + Nt�1(m� 1)d+ 2 + (d+ 1)(t� 1) � Nt�1(m)d+ 2 + (d+ 1)(t� 1) (1)Let Pt(m) be the probability to selet a (d+1)-lique with parallel degreem at timet. Pt(m) an be approximated by the ratio Nt(m)d+2+t:(d+1) . Thus Nt(m) = Nt:P t(m) =(d+ 2 + t:(d+ 1)):P t(m) and we get from Eq.1(d+ 2 + t:(d+ 1)):P t(m) = (d+ 2 + (t� 1):(d+ 1)):P t�1(m)+Pt�1(m� 1)� Pt�1(m) (2)Thus Pt(m) = t(d+ 1)d+ 2 + t(d+ 1) :P t�1(m) + Pt�1(m� 1)d+ 2 + t(d+ 1) (3)As Pt(m) is bounded for all m and t, from Eq.3 we get that Pt(m) is a Cauhysequene, whih shows that limt!+1 Pt(m) = P(m) exists and that for large t,



Rami�ed Random Apollonian Networks 6Pt(m) � Pt�1(m) � P(m). Rewriting the previous equation for large t we getP(m) � P(m� 1)d+ 2 = P(0)(d+ 2)m (4)It is easy to show by indution on t that the probability to selet at any time t a(d+1)-lique having a null parallel degree is P(0) = (d+ 1)=(d+ 2). Thus for large tP (m) � d+ 1(d+ 2)(m+1) (5)This last result shows that the parallel degrees for R-RAN sales as a geometriseries whose ratio is 1=(d+ 2).4.2. Average parallel degree and rami�ation oeÆientTo measure the average degree of rami�ation of a R-RAN, we onsider �rst the averageparallel degree as followsM = 1Xm=1m:P(m) = 1Xm=1m: d+ 1(d + 2)(m+1) (6)M measures the average number of nodes inside a (d+1)-lique.We show easily thatM = 1d+2 + 1(d+2)2 + 1(d+2)3 + :::= 1d+1 (7)For d = 2, M = 1=3 for R-RAN whih ould be ompared to the M = 2=15 forRAN.Finally, we de�ne the rami�ation oeÆient � as the M � P(1), i.e.� = 1Xm=2m: d+ 1(d + 2)(m+1) = 1d+ 1 � d+ 1(d+ 2)2 = 2:d+ 3(d+ 1)(d+ 2)2 (8)For d = 2, � = 7=48 for R-RAN while � = 0 for RAN.5. Estimating the degree distributionThe degree of a vertex in a network is the number of onnetions it shares with otherverties and the degree distribution is the probability distribution of these degrees overthe whole network.
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Figure 4. Rami�ation oeÆient of a R-RAN as a funtion of the dimension5.1. Determining the degree distributionWe note that, after a vertex is added into the R-RAN network, the number of (d+1)-liques available for the insertion of a new vertex is inreased by d+1. After t iterations,the number of (d+1)-liques available for the insertion of a new vertex is d+2+ t(d+1).Thus, given a vertex vi, when its degree inreases by 1 the number of (d+1)-liquesthat ontain vertex vi inreases by d. So the number of (d+1)-liques available forseletion ontaining vertex vi with degree ki is (ki � (d+ 1)):d+ d+ 1 = d:ki � d2 + 1,sine at t = ti, the reation time of vertex vi there is d + 1 (d+1)-liques that ontainvertex vi.Let Nt be the total number of verties into the R-RAN at step t (Nt = d + 2 + t)and let Nt(k) be the number of verties having a degree k at time t. We an write thefollowing di�erene equationNt(k) = Nt�1(k) + d:(k�1)�d2+1d+2+(t�1):(d+1)Nt�1(k � 1)� d:k�d2+1d+2+(t�1):(d+1)Nt�1(k) (9)Let Pt(k) be the probability to selet a vertex with degree k at time t. Pt(k) anbe approximated by the ratio Nt(k)d+2+t . Thus Nt(k) = (d + 2 + t):Pt(k) and we get fromEq.9 Pt(k):(d+ 2 + t) = Pt�1(k):(d+ 2 + (t� 1))+ d(k�1)�d2+1d+2+(t�1)(d+1) :Pt�1(k � 1):(d+ 2 + (t� 1))� dk�d2+1d+2+(t�1)(d+1) :Pt�1(k):(d+ 2 + (t� 1)) (10)As Pt(k) is bounded for all k and t from Eq.10 we get that Pt(k) is a Cauhysequene, showing that limt!+1 Pt(k) = P (k) exists, and that for large t, Pt(k) �Pt�1(k) � P (k). Rewriting the previous equation for large t we get



Rami�ed Random Apollonian Networks 8P (k):�1 + d:k�d2+1d+1 � � d:k�d2�d+1d+1 :P (k � 1) (11)and �nallyP (k) � d:k � d2 � d+ 1d:k � d2 + d+ 2 � P (k � 1) (12)This reursive equation is de�ned for k � d+1. We show in the following subsetionthat P (d+ 1) = 1=2 for all dimensions.5.2. Determining P (d+ 1)� Let Nd+1;t be the expeted number of verties into the network having a degreeequal to d+ 1 at time t,� let nt be the expeted total number of (d+1)-liques having a parallel degree equalto 0,� let n0t be the expeted total number of (d+1)-liques having a parallel degree equalto 0 for whih all verties have a degree k > (d+ 1) at time t,� let n00t be the expeted total number of (d+1)-liques having a parallel degree equalto 0 for whih all verties have a degree k > d + 1 exept one vertex that has adegree k = d+ 1 at time t.For suÆiently large t, every vertex vi in the network has a degree ki � d+ 1, andevery (d+1)-lique vj has either all its verties with a degree k > d + 1 or only onevertex with a degree k = 3. Thus, when we insert a new vertex in a (d+1)-lique j,only three ases arise for the (d+1)-lique seleted for the insertion:(i) If the lique has a parallel degree m > 0 then Nd+1(t) is inrease by one, n0t isunhanged and n00t is inreased by d+ 1(ii) If the lique has a parallel degree m = 0 and all its d + 1 verties has a degreek > d + 1, in this ase the Nd+1(t) is inreased by one, n0t is dereased by one andn00t is inreased by d+ 1(iii) If the lique has a parallel degree m = 0 and all its d + 1 verties has a degreek > d + 1 exept one with a degree equal to d + 1, in this ase the Nd+1(t) isunhanged, n0t is inreased by d and n00t is unhanged.In Setion 4 we have shown that the probability to selet randomly a (d+1)-liquewith a parallel degree m = 0 is P (m = 0) = (d+ 1)=(d+ 2) and nt � t: (d+1)2d+2 . Previousstatements lead to the following equationsP (d+ 1) � 1d+ 2 + d+ 1d+ 2 :n0tnt (13)



Rami�ed Random Apollonian Networks 9n0t = n0t�1 + �d:n00t�1nt�1 � n0t�1nt�1� :d+1d+2= n0t�1 + �d:nt�1�n0t�1nt�1 � n0t�1nt�1� :d+1d+2= n0t�1 �1� d+1nt�1 :d+1d+2� + d:d+1d+2 (14)Assuming that limt!+1 n0t=nt exists (this is obviously the ase sine P (k = d + 1)exists), n0t � a:t where a is a onstant. Replaing n0t in Eq.13 we geta:t = a:(t� 1)�1� 1t� 1�+ d:d+ 1d+ 2 (15)leading to a = d2 :(d+1d+2). Thus,n0tnt � ad+1d+2 :(d+ 1) = d2:(d+ 1) (16)Finally, P (d+ 1) = P (k = d+ 1) � 1d+2 + d+1d+2 :n0tnt = d+1d+2 + d2:(d+1) = 1=2.Note that P (d+ 1) is independent from the dimension d.Thus, the reursive equation that gives the degree spetrum is( P (k) � d:k�d2�d+1d:k�d2+d+2 � P (k � 1) for k > d+ 1P (k) � 12 for k = d+ 1 (17)To our knowledge, there is no simple analytial expression for P (k) in anydimension. Nevertheless, for d = 1, we getP (k) � 12(k + 2):(k + 1):k (18)This result in dimension one has already been reported in [4℄.5.3. Degree exponentTo show that the degree distribution follows a power law, we evaluate the asymptotivalue of the following ratioR(k) = log(P (k))� log(P (k � 1))log(k)� log(k � 1) = log(P (k)=P (k� 1))log(k=(k � 1)) (19)Thus R(k) = log( d:k�d2�d+1d:k�d2+d+2 )log(k=(k�1)) = log( d:k�d2�d+1d:k�d2+d+2 )log(k=(k�1))= log( 1+�d2�d+1d:k1+�d2+d+2d:k )�log(1� 1k ) (20)and for large kR(k) � k:��d2�d+1d:k � �d2+d+2d:k �� �2:d+1d (21)This shows that for large k P (k) � k� with  = 2:d+1d . For d = 2, we get  = 5=2.



Rami�ed Random Apollonian Networks 106. Clustering oeÆientsThe lustering oeÆient Ci for a vertex vi is the proportion of links between the vertieswithin its neighborhood (vi exluded) divided by the number of links that ould possiblyexist between them. For undireted graph, onsidering two verties vi and vj, the edgesvi ! vj and vj ! vi are onsidered idential. Therefore, if a vertex vi has ki neighbors,ki(ki�1)2 edges ould exist among the verties within its neighborhood. The lusteringoeÆient for the whole network is the average of the lustering oeÆients Ci over theset of verties omposing the network.When a vertex is inserted into the network, it is onneted to all the verties ofa seleted (d+1)-lique. It follows that every vertex having a degree ki = d + 1 has alustering oeÆient of one. Furthermore, when a vertex vi having a degree ki belongsto a (d+1)-lique in whih a new vertex is inserted, its degree inreases by one and thenew inserted neighbor onnets to d among the ki verties of its previous neighborhood.This leads to the following lustering oeÆient for a vertex having a degree kC(k) = d:(d+1)2 + d:(k � d� 1)k:(k�1)2 = d:(2k � d� 1)k:(k � 1) (22)This loal lustering oeÆient is exatly the same as the one obtained for vertiesin RAN [℄. Eq.22 shows that the loal lustering oeÆient sales as C(k) � k�1We average these oeÆients using the disrete degree distribution (Eq.17) asfollows C = 1Xki=d+1�d:(2ki � d� 1)ki:(ki � 1) :P (ki)� (23)For d = 2, we get C = 0:813. Figure 6 shows that the lustering oeÆient inreasesfrom 0:813 for d = 2 to 1 as d tends towards in�nity. Comparatively, HDRANs have asigni�antly lower lustering oeÆient at low dimension, e.g. for d = 2, a RAN has alustering oeÆient C = :7687. Average path lengthThe average path length (APL) is a harateristi of the network topology that is de�nedas the average number of edges along the shortest paths for all possible pairs of networkverties. Following the very similar derivations already presented in [14, 13℄ for RAN,we address below the average path length for R-RAN.First, we suppose that any vertex of the R-RAN network is ordered aording toits insertion time stamp t that we onsider disrete (t 2 N). It is straightforward toestablish that for R-RAN the following property holds (as well as for DAN or RAN)For any two arbitrary verties i and j all shortest paths from i to j does not passthrough a vertex k if k > max(i; j).
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Figure 5. Clustering oeÆient of a R-RAN as a funtion of the dimensionLet d(i; j) denotes the distane between verties i and j, namely the length of ashortest path between verties i and j. Let �(N) be the sum of all distanes betweenall the pairs of verties into the network with order N , e.g. ontaining N verties.�(N) = X1�i<j�N d(i; j) (24)and let L(N) be the average path length of the R-RAN of order NL(N) = 2�(N)N:(N � 1) (25)Following exatly the approah given in [12℄ we get the following reursive inequalityfor �(N) �(N + 1) < �(N) +N + 2�(N)N (26)Considering the inequality Eq.26 as an equation we get the same upper bound forthe variation of �(N) than for RANd�(N)dN = N + 2�(N)N (27)whih leads to�(N) � N2:log(N) + S (28)where S is a onstant. As �(N) is asymptotially upper bonded by � N2:log(N),L(N) is asymptotially upper bounded by log(N), e.g. L(N) inreases at most as log(N)with N .Fig. 7 ompares for dimensions 2, 4 and 6 average path lengths for HDRANs andR-RANs and shows that, for a given dimension, average path lengths are shorter for R-RANs than for HDRANs. Nevertheless, as the dimension inreases, di�erenes betweenpath lengths vanish. This result was expeted sine R-RANs have a higher lusteringoeÆient than RANs.
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Figure 6. Average path length in RANs and R-RANs8. ConlusionFrom previous works on Apollonian Networks, mainly RAN and HDRAN networks, wehave introdued what we all Rami�ed Deterministi or Random Apollonian Networks.These topologies, for whih (d+1)-liques may aept in their inside more than onevertex fully onneted to the verties omposing the lique, are still small world and salefree. This paper reports the main statistial properties of R-RANs. For suh networks,the degree exponent is in between 2 (2 is attained at the limit when the dimension tendstowards in�nity) and 2:5 (when the dimension of the network is 2) or 3 if we aeptthe limit ase of Apollonian networks in dimension one. We have shown analytiallythat, omparatively to RAN or HDRAN, R-RAN networks are haraterized with higherlustering oeÆients and shorter average path lengths. R-RAN are also haraterizedby their parallel degree distribution and rami�ation oeÆient that quantify the numberof verties inside the (d+1)-liques that ompose R-RAN networks. The simulationsresults that provided though out the paper are in very good onformane with theanalytial expetations.9. Referenes[1℄ Jos�e S. Andrade, Hans J. Herrmann, Roberto F. S. Andrade, and Luiano R. da Silva. Apolloniannetworks: Simultaneously sale-free, small world, eulidean, spae �lling, and with mathinggraphs. Phys. Rev. Lett., 94(1):018702, Jan 2005.[2℄ Albert-Laszlo Barabasi, Reka Albert, and Hawoong Jeong. Mean-�eld theory for sale-free randomnetworks, 1999.[3℄ Franes Comellas, Guillaume Fertin, and Andr�e Raspaud. Reursive graphs with small-worldsale-free properties. Physial Review E, 69(3):037104+, Marh 2004.[4℄ S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Generi sale of the sale-free growingnetworks. 2000.[5℄ K. I. Goh, E. Oh, H. Jeong, B. Kahng, and D. Kim. Classi�ation of sale-free networks. ProNatl Aad Si U S A, 99(20):12583{12588, Otober 2002.
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