
HAL Id: hal-00374998
https://hal.science/hal-00374998

Submitted on 10 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flatness of Switched Linear Discrete-time Systems
Gilles Millérioux, Jamal Daafouz

To cite this version:
Gilles Millérioux, Jamal Daafouz. Flatness of Switched Linear Discrete-time Systems. IEEE Transac-
tions on Automatic Control, 2009, 54 (3), pp.615-619. �10.1109/TAC.2008.2009589�. �hal-00374998�

https://hal.science/hal-00374998
https://hal.archives-ouvertes.fr


1

Flatness of Switched Linear Discrete-time

Systems

Gilles Millérioux, Jamal Daafouz

Nancy University, CNRS (France)

Centre de Recherche en Automatique de Nancy (CRAN),

gilles.millerioux@esstin.uhp-nancy.fr

jamal.daafouz@ensem.inpl-nancy.fr

Abstract

This note is devoted to flatness for switched linear discrete-time systems. For this class of hybrid

systems, algebraic conditions are derived to check whether a given output is flat. Then, a feedforward

flatness-based control strategy for trajectory tracking is proposed.

Index Terms

Switched discrete-time systems, flatness, invertibility

I. INTRODUCTION

In this paper, we address the problem of flat output characterization and feedforward flatness-

based control for switched multivariable linear discrete-time systems. Flatness was introduced

by Fliess and al. [3] in 1995 and a deep insight can be found in the quite recent book [7].

Flatness-based control has been involved in many applications and has a compelling interest

because it is well appropriate for, to mention a few, predictive control, trajectory planning,

constraints handling. From the recent literature, it turns out that flatness-based control can

be especially attractive for switched linear systems as well. For instance [4] and references

therein are interesting papers dedicated to the control of power converters. However, for switched

systems, flatness-based control still remains an open and challenging problem. Indeed, for linear

systems, flatness is merely equivalent to controllability and flat outputs can be easily characterized
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by some so-called defining matrices (see [5]). On the other hand, such a characterization is no

longer valid for switched systems. A simple but special situation occurs when each linear mode

of the switched system is active during a sufficient large time, in others words when a minimum

“dwell-time” is guaranteed. In such a case, we can check for flat outputs for each linear models

and one can then design a hybrid flatness-based control that takes care of each local dynamics.

However, that amounts not only to discard the hybrid aspect but also this strategy may fail if the

minimum “dwell-time” is not guaranteed. In this note, we relax the dwell-time constraint and

thus we really consider the hybrid issue. We derive conditions which enable to check whether a

given output of a switched linear discrete-time system is flat and a flatness-based control strategy

for trajectory tracking is suggested.

Notation : For any integer l, 1l refers to the l−dimensional identity matrix and Ol×l′ stands for

the l× l′ zero matrix. If irrelevant, the dimension of the zero matrix will be omitted and we shall

merely write O. For a matrix X , XT stands for transposition. X† stands for the Moore-Penrose

generalized inverse of X , namely the matrix of the same dimension as XT so that XX†X = X ,

X†XX† = X†, XX† and X†X are Hermitian.

II. PRELIMINARIES AND DEFINITIONS

We examine switching linear discrete-time systems of the form






xk+1 = Aσ(k)xk + Bσ(k)uk

yk = Cσ(k)xk + Dσ(k)uk

(1)

where xk ∈ R
n, uk ∈ R

m and yk ∈ R
p are the states, the inputs and the measurements,

respectively. All the matrices, namely Aσ(k) ∈ R
n×n, Bσ(k) ∈ R

n×m, Cσ(k) ∈ R
p×n and Dσ(k) ∈

R
p×m belong to the respective finite sets (Aj)1≤j≤J , (Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J .

At a given time k, the index j corresponds to the mode of the system and results from a

switching function σ : k ∈ N 7→ j = σ(k) ∈ {1, . . . , J}. {σ}k1+T
k1

refers to the mode sequence

{σ(k1), . . . , σ(k1 + T )}. For a given switching rule σ, the set of corresponding mode sequences

over any interval of time of length T + 1 is denoted by ΣT . This set may contain either all

possible mode sequences (also called paths) if there are not any repetitive switching patterns or

can be reduced if any. We assume that the mode is known, either accessible or reconstructed (see

[1] for this reconstruction issue). A key point lies in that no restriction on the time separation
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between switches (“dwell time”) must be imposed.

Let U be the space of input sequences over [0,∞) and Y the corresponding output space.

At time k, for each initial state xk ∈ R
n, when the system (1) is driven by the input sequence

{u}k+T
k = {uk, . . . , uk+T} ∈ U , for a mode sequence {σ}k+T

k , {x(xk, σ, u)}k+T
k refers to the

solution in the interval of time [k, k + T ] of (1) emanating from xk and {y(xk, σ, u)}k+T
k ∈ Y

refers to the corresponding output sequence in the same interval of time [k, k + T ].

We introduce the subsequent vectors and matrices.

For i < 0 M i
σ(k) = 0, for i = 0 M0

σ(k) = Dσ(k) and for i > 0,

M i
σ(k) =























Dσ(k) 0p×m . . . . . . . . .

Cσ(k+1)Bσ(k) Dσ(k+1) 0p×m . . . . . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

Cσ(k+i)A
σ(k+i−1)
σ(k+1) Bσ(k) Cσ(k+i)A

σ(k+i−1)
σ(k+2) Bσ(k+1) . . . Cσ(k+i)Bσ(k+i−1) Dσ(k+i)























(2)

with the transition matrix

A
σ(k1)
σ(k0) = Aσ(k1)Aσ(k1−1) . . . Aσ(k0) if k1 ≥ k0

= 1n if k1 < k0

Īm = (1m 0m×(m·r)), Īp = (0p×(p·r) 1p) (3)

Oi
σ(k) =















Cσ(k)

Cσ(k+1)Aσ(k)

...

Cσ(k+i)A
σ(k+i−1)
σ(k)















, Ci
σ(k) =

(

A
σ(k+i−1)
σ(k+1) Bσ(k) A

σ(k+i−1)
σ(k+2) Bσ(k+1) . . . Bσ(k+i−1)

)

(4)

ui
k =















uk

uk+1

...

uk+i















, u
′i
k =















u′
k

u′
k+1

...

u′
k+i















, yi

k
=















yk

yk+1

...

yk+i















, y
′i

k
=















y′
k

y′
k+1

...

y′
k+i















(5)
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When (1) is driven by an input sequence {u}∞k ∈ U and a mode sequence {σ}∞k , one has:

yi

k
= Oi

σ(k)xk + M i
σ(k)u

i
k (6)

Definition 1. When the system (1) is square (m = p), it is said to be flat if there exists a set

of independent variables yk, referred to as flat outputs, such that all system variables can be

expressed as a function of the flat outputs and a finite number of its backward and/or forward

iterates. In particular, there exist two functions F and G which obey






xk = F(yk+kF
, . . . , yk+k′

F
)

uk = G(yk+kG
, . . . , yk+k′

G
)

(7)

where kF , k′
F , kG and k′

G are Z-valued integers.

Both deriving algebraic conditions to check whether a given output of (1) is flat and providing

a feedforward flatness-based control for trajectory tracking require a central notion namely the

input invertibility.

III. INPUT INVERTIBILITY

We must distinguish input left and right invertibility. Some recent papers [8][6] have addressed

the input left invertibility for switched discrete-time systems and the results are recalled in

Subsect. III-A. In Subsect. III-B, we derive results on input right invertibility.

A. Input left invertibility

Definition 2. The system (1) is input left invertible if there exists a nonnegative integer r < ∞

such that, for all mode sequences in Σr, for two any inputs {u}r
0, {u

′}r
0 ∈ U , the following

implication applies:

{y(x0, σ, u)}r
0 = {y(x0, σ, u′)}r

0 ⇒ u0 = u′
0 ∀x0 (8)

In others words, by input left invertibility, we mean the ability to recover the input u0 from a

finite number of r + 1 measurements yi (i = 0, . . . , r), the state vector x0 at time k = 0 and the

mode sequences {σ}r
0 being known. The term input has been introduced to emphasize the fact

that only the input u0 is expected to be recovered. The least integer r for which (1) is input left

invertible is called the left inherent delay or merely the delay.
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Theorem 1. The system (1) is input left invertible if there exists a nonnegative integer r < ∞

such that for all mode sequences in Σr,

rank M r
σ(k) − rank M r−1

σ(k+1) = m (9)

Definition 3. A system is a left r-delay inverse for (1) if, under identical initial conditions x0

and identical mode sequences {σ}∞0 , when driven by yr

k
, its output fulfills ûk+r = uk for all

k ≥ 0

Theorem 2. Assume that (1) is input left invertible with left inherent delay r. The system






x̂k+r+1 = P r
σ(k)x̂k+r + Bσ(k)ĪmM

r†

σ(k)y
r

k

ûk+r = −ĪmM
r†

σ(k)O
r
σ(k)x̂k+r + ĪmM

r†

σ(k)y
r

k

(10)

with

P r
σ(k) = Aσ(k) − Bσ(k)ĪmM

r†

σ(k)O
r
σ(k) (11)

is a left r-delay inverse system for (1).

Remark 1. In the Definition 2 and Definition 3, the initial condition is considered at the

particular discrete time k = 0 but can be replaced by any other initial condition xk taken

at the discrete time k.

Remark 2. It is also shown that the state vector of the left r-delay inverse (10) fulfills x̂k+r = xk

for all k ≥ 0

B. Input right invertibility

Let us define a reference trajectory as a sequence of desired outputs {ỹk, ỹk+1, . . .} for k ≥ 0.

Definition 4. The system (1) is input right invertible if there exists a nonnegative integer r ′ < ∞

such that, for all mode sequences in Σr′ , for any reference output ỹr′ at time k = r′ and for the

initial condition x0 = 0, there exists an input segment {u}r′

0 such that

{y(x0 = 0, σ, u)}r′

0 = {0}r′−1
0 ∗ ỹr′ (12)

where {0}r′−1
0 ∗ ỹr′ denotes a sequence of null vectors of dimension p over the interval of

time [0, . . . , r′ − 1] and ỹr′ corresponds to the reference output at time k = r′. The term input
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has been introduced as well to emphasize the fact that we are interested in finding out the input

segment {u}r′

0 only. The least integer r′ for which (1) is input right invertible will be called the

right inherent delay or merely the delay.

Definition 5. A system, with input ỹr′

k
is a right inverse for (1) if, under an identical initial

condition x0 and identical mode sequences {σ}∞0 , it can drives (1) such that yk+r′ = ỹk+r′ for

all k ≥ 0

Remark 3. Similarly to the Remark 1, in the Definition 4 and Definition 5, the initial condition

is considered at the particular discrete time k = 0 but can be replaced by any other initial

condition xk taken at the discrete time k.

Theorem 3. The following statements are equivalent.

i) The system (1) is input right invertible

ii) There exists a nonnegative integer r′ < ∞ such that, for all mode sequences in Σr′ , the

equation with unknown Qr′

σ(k)

M r′

σ(k)Q
r′

σ(k) = ĪT
p (13)

has a solution

iii) There exists a nonnegative integer r′ < ∞ such that for all mode sequences in Σr′ ,

rank
(

ĪT
p M r′

σ(k)

)

− rank M r′

σ(k) = 0 (14)

iv) There exists a nonnegative integer r′ < ∞ such that for all mode sequences in Σr′ ,

rank M r′

σ(k) − rank M r′−1
σ(k) = p (15)

Proof: i) ⇔ ii) On the interval of time [k, k + r′], according to (6), one has

yr′

k
= Or′

σ(k)xk + M r′

σ(k)u
r′

k (16)

Besides, according to the Definition 4 of right invertibility, it is assumed that xk = 0 at time k.

Thus, from (12) and (16) one has

yr′

k
= M r′

σ(k)u
r′

k = ĪT
p ỹk+r′
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Input right invertibility means that this equality must be fulfilled for any ỹk+r′. As a result, the

existence of ur′

k is strictly equivalent to the existence a matrix Qr′

σ(k) fulfilling

M r′

σ(k)Q
r′

σ(k) = (0p×(p·r) 1p)
T

The matrix Qr′

σ(k) reads explicitly Qr′

σ(k) = M
r′†

σ(k)Ī
T
p

ii) ⇔ iii) The relation (14) is the immediate consequence of the algebraic result stating that

for any pairs (W, Z) of matrices, the equation WX = Z with unknown X has a solution if and

only if rank(W Z) = rank W .

iii) ⇔ iv) We first notice that

M r′

σ(k) =





M r′−1
σ(k) 0(p·r′)×m

Cσ(k+r′)C
r′

σ(k) Dσ(k+r′)





Consequently,
(

ĪT
p M r′

σ(k)

)

=





0(p·r′)×p M r′−1
σ(k) 0(p·r′)×m

1p Cσ(k+r′)C
r′

σ(k) Dσ(k+r′)





Hence

rank
(

ĪT
p M r′

σ(k)

)

= rank M r′−1
σ(k) + rank

(

1p Dσ(k+r′)

)

Finally, noticing that rank
(

1p Dσ(k+r′)

)

= p, substituting the last equality into (14) gives

(15). �

When (1) is input right invertible, we are looking for a second dynamical system which drives

the system (1) so that its output tracks a reference trajectory ỹk, ỹk+1, . . . for k ≥ 0. Let us define

the following compound vector:

ỹi

k
=















ỹk

ỹk+1

...

ỹk+i















Theorem 4. Assume that (1) is input right invertible with right inherent delay r ′. The system






x̂k+1 = P r′

σ(k)x̂k + Bσ(k)ĪmM
r′†

σ(k)ỹ
r′

k

uk = −ĪmM
r′†

σ(k)O
r′

σ(k)x̂k + ĪmM
r′†

σ(k)ỹ
r′

k

(17)
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with

P r′

σ(k) = Aσ(k) − Bσ(k)ĪmM
r′†

σ(k)O
r′

σ(k)

is a right r′-delay inverse system for (1).

Proof: Notice that

yk+r′ − ỹk+r′ = Īpy
r′

k
− ỹk+r′

= Īp(O
r′

σ(k)xk + M r′

σ(k)u
r′

k ) − ỹk+r′

= ĪpO
r′

σ(k)xk − ĪpM
r′

σ(k)M
r′†

σ(k)O
r′

σ(k)x̂k + ĪpM
r′

σ(k)M
r′†

σ(k)ỹ
r′

k
− ỹk+r′

Since (1) is input right invertible, (13) holds and is equivalent to

M r′

σ(k)M
r′†

σ(k)Ī
T
p = ĪT

p

Therefore,

Īp(M
r′

σ(k)M
r′†

σ(k))
T = Īp

The Moore-Penrose generalized inverse being hermitian, one has

(M r′

σ(k)M
r′†

σ(k))
T = M r′

σ(k)M
r′†

σ(k)

and the following equality applies

ĪpM
r′

σ(k)M
r′†

σ(k) = Īp (18)

As a result, taking into account (18), yk+r′ − ỹk+r′ finally reads

yk+r′ − ỹk+r′ = ĪpO
r′

σ(k)(xk − x̂k) (19)

On the other hand, it is easy to see that

xk+1 − x̂k+1 = Aσ(k)(xk − x̂k) (20)

In view of the Definition 5, we must consider that (1) and (17) are initialized such that x̂0 = x0.

By virtue of (20), we infer that xk − x̂k = 0 for all k ≥ 0 and thus yk+r′ − ỹk+r′ = 0 for all

k ≥ 0.

�

When the system (1) is both left and right invertible with left and right inherent delays r = r ′,

it will be merely said that the system (1) is input invertible with inherent delay r = r ′ = R.
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Remark 4. It is interesting to notice that when the system (1) is square, if Σr = Σr′ and the sets

contain the all possible mode sequences over any interval of time of length r +1 = r ′ +1, input

left invertibility is equivalent to input right invertibility. Indeed, in such a case, (9) is equivalent

to (15).

IV. FLATNESS

A. Flat output characterization

Let us define the inverse transition matrix as

P
σ(k1)
σ(k0) = P r

σ(k1)P
r
σ(k1−1) . . . P r

σ(k0) if k1 ≥ k0

= 1n if k1 < k0

with

P r
σ(k) = Aσ(k) − Bσ(k)ĪmM

r†

σ(k)O
r
σ(k)

Theorem 5. A componentwise independent output yk of the system (1) assumed to be square

(m = p) and left input invertible with inherent delay r, is a flat output if there exists a positive

integer K < ∞ such that, for all mode sequences in Σr+K−1, the following equality applies for

all k ≥ 0:

P
σ(k+K−1)
σ(k) = 0 (21)

Σr+K−1 stands for the set of mode sequences over the interval of time [k, . . . , k + r +K − 1].

Proof: Assume that the system (1) is input invertible with inherent delay r, thus the left

r-delay inverse system (10) exists. Iterating (10) yields:

x̂k+r+l = P
σ(k+l−1)
σ(k) x̂k+r +

∑l−1
i=0 P

σ(k+l−1)
σ(k+i+1) Bσ(k+i)ĪmM

r†

σ(k+i)y
r

k+i

ûk+r+l = ĪmM
r†

σ(k+l)(y
r

k+l
−Or

σ(k+l)x̂k+r+l)
(22)

If (21) is fulfilled with l = K, (22) turns into:

x̂k+r+K =
∑K−1

i=0 P
σ(k+K−1)
σ(k+i+1) Bσ(k+i)ĪmM

r†

σ(k+i)y
r

k+i

ûk+r+K = ĪmM
r†

σ(k+K)(y
r

k+K
−Or

σ(k+K)x̂k+r+K)
(23)

revealing that x̂k+r+K and so ûu+r+K is independent of x̂k+r. In particular, (23) holds for

x̂k0+r = xk0 for all k0 ≥ 0 which implies that x̂k+r+K = xk+K and ûk+r+K = uk+K for all
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k ≥ 0. Therefore, after performing the change of variable k → k − K, we obtain

xk =
∑K−1

i=0 P
σ(k−1)
σ(k+i+1−K)Bσ(k+i−K)ĪmM

r†

σ(k+i−K)y
r

k+i−K
(24)

and

uk = ĪmM
r†

σ(k)(y
r

k
−Or

σ(k)(
∑K−1

i=0 P
σ(k−1)
σ(k+i+1−K)Bσ(k+i−K)ĪmM

r†

σ(k+i−K)y
r

k+i−K
)) (25)

Equations (24) and (25) reveal that xk and uk can be expressed as a function of yk and a

finite number of its backward and/or forward iterates in the form (7), that is to say yk is a flat

output.

�

B. Flatness-based control for trajectory tracking

If we are interested in delivering the flat control (25) in a recursive way, the following theorem

can be useful.

Theorem 6. Assume that (1) is (left and right) input invertible with inherent delay R. If there

exists a positive integer K < ∞ such that for all mode sequences in ΣR+K−1,

P
σ(k+K−1)
σ(k) = 0 (26)

with

P R
σ(k) = Aσ(k) − Bσ(k)ĪmM

R†

σ(k)O
R
σ(k)

then the control uk delivered by






x̂k+1 = P R
σ(k)x̂k + Bσ(k)ĪmM

R†

σ(k)ỹ
R

k

uk = ĪmuR
k = −ĪmM

R†

σ(k)O
R
σ(k)x̂k + ĪmM

R†

σ(k)ỹ
R

k

(27)

is a flat control and guarantees a stable trajectory tracking whenever the system (20) is uniformly

asymptotically stable (u.a.s).

Proof: On one hand, if (1) is input invertible with inherent delay R, by virtue of (19) and

(20) in the proof of Theorem 4, after substituting r′ by R, since x̂0 may differ from x0, one has
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limk→∞yk+R − ỹk+R = 0 whenever (20) is u.a.s. On the other hand, iterating (27) K − 1 times

yields

x̂k+K = P
σ(k+K−1)
σ(k) x̂k +

∑K−1
i=0 P

σ(k+K−1)
σ(k+i+1) Bσ(k+i)ĪmM

R†

σ(k+i)y
R

k+i

uk+K = ĪmM
R†

σ(k+K)(y
R

k+K
−OR

σ(k+K)x̂k+K)

Finally, if (26) is fulfilled, the control uk reads:

uk = ĪmM
R†

σ(k)(y
R

k
−OR

σ(k)(
∑K−1

i=0 P
σ(k−1)
σ(k+i+1−K)Bσ(k+i−K)ĪmM

R†

σ(k+i−K)y
R

k+i−K
))

revealing that uk is a flat control since it only depends on the output.

�

The problem of assessing the stability of (20) turns into a usual switched stability analysis

problem. We can resort to polyquadratic stability ([2]).

C. Illustrative example

We shall consider a MIMO switched linear discrete-time system of the form (1) and having

two distinct modes (J = 2). The respective finite sets (Aj)1≤j≤2, (Bj)1≤j≤2, (Cj)1≤j≤2 and

(Dj)1≤j≤2 are

A1 =















0.3 1 0 1

0.3 0 0.1 0.2

−0.1 0 0 −0.4

0.01 0.1 0.2 0















, A2 =















0.3 2 0 1

0.3 0 0.1 0.2

−0.6 0 0 −0.4

0.01 0.1 0.2 0















,

B1 = B2 =















−1 0.5

0 −1.5

1 0

0 1















, C1 = C2 =





1 1 1 1

1 3 1 4



 , D1 = D2 = 0

The system is driven by some inputs {u}∞0 ∈ U , the set of input sequences ranging between

two arbitrary bounds, say 0 and 1 for the example. We shall examine three distinct switching

rules: a switching rule which obeys σ(k) = 1 for all k which amounts to consider a mere linear

system (case 1), a switching rule which obeys σ(k) = 2 for all k which also amounts to consider
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a mere linear system (case 2), a switching rule for which σ(k) alternates randomly between 1

and 2, the occurrence of two consecutive modes 1 being however not allowed.

We first consider the case 1. It turns out that (9) and (15) hold for r = r ′ = 2. Hence, according

to the Theorem 1 and Theorem 3, the system is left and right input invertible with inherent delay

r = r′ = 2. The set Σr is merely composed of a single mode sequence {1, 1, 1}. According to the

Theorem 5, yk is a flat output because (21) is fulfilled with K = 2. For the case 2, the situation is

exactly the same than the case 1 except that the set Σr is composed of {2, 2, 2}. As a result, it can

be stressed that the minimum dwell time equals 2. Then, we consider the case 3. Such a case is

interesting in that the switching rule does not always guarantee the minimum dwell time. It turns

out that (9) and (15) hold for r = r′ = 2. Hence, according to Theorem 1 and Theorem 3, the

system is input invertible with inherent delay r = r′ = R = 2. The set ΣR does not contain all

possible mode sequences but only the patterns
{

{1, 2, 1}, {1, 2, 2}, {2, 1, 2}, {2, 2, 1}, {2, 2, 2}
}

,

the only ones which are compatible with the switching rule. Equation (26) is fulfilled with K = 2.

Consequently the assumptions of Theorem 6 hold and a feedforward flatness-based control can

be designed.
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0

50

100

150

200

250

0 50 100 150 200
−10

−8

−6

−4

−2

0

2

0 50 100 150 200
0

20

40

60

80

100

120

140

A B 

C D 

Fig. 1. A : solid line ỹ
(1)
k

and dashed line y
(1)
k

. B : solid line ỹ
(2)
k

and dashed line y
(2)
k

. C : |yk − ỹk|
2. D : |xk − x̂k|

2

Two distinct sinusoidal trajectories {ỹ
(1)
k }∞0 and {ỹ

(2)
k }∞0 have been planified for the two

respective entries y
(1)
k and y

(2)
k of the output yk. It can be verified through a LMI approach ([2])
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that (20) is u.a.s, more precisely, it can be checked that it is polyquadratically stable. Figure 1

represents the results of the trajectory tracking based on the flat control delivered by (27). The

time plots illustrate that the desired trajectories are well tracked. The convergences toward zero

are consistent with the theoretical results.

V. CONCLUSION

For switched linear discrete-time systems, algebraic conditions in terms of the state description

matrices to check whether a given output is flat have been derived. Then, it has been shown how

a feedforward flat control for trajectory tracking can be carried out in the case when a minimum

dwell time is not guaranteed. Let us finally mention that one can resort to these conditions and to

such a flat control when considering periodic systems or monovariate systems with time-varying

relative degree.
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