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This note is devoted to flatness for switched linear discrete-time systems. For this class of hybrid systems, algebraic conditions are derived to check whether a given output is flat. Then, a feedforward flatness-based control strategy for trajectory tracking is proposed.

by some so-called defining matrices (see [START_REF] Levine | Flat output characterization for linear systems using polynomial matrices[END_REF]). On the other hand, such a characterization is no longer valid for switched systems. A simple but special situation occurs when each linear mode of the switched system is active during a sufficient large time, in others words when a minimum "dwell-time" is guaranteed. In such a case, we can check for flat outputs for each linear models and one can then design a hybrid flatness-based control that takes care of each local dynamics. However, that amounts not only to discard the hybrid aspect but also this strategy may fail if the minimum "dwell-time" is not guaranteed. In this note, we relax the dwell-time constraint and thus we really consider the hybrid issue. We derive conditions which enable to check whether a given output of a switched linear discrete-time system is flat and a flatness-based control strategy for trajectory tracking is suggested.

Notation : For any integer l, 1 l refers to the l-dimensional identity matrix and O l×l stands for the l × l zero matrix. If irrelevant, the dimension of the zero matrix will be omitted and we shall merely write O. For a matrix X, X T stands for transposition. X † stands for the Moore-Penrose generalized inverse of X, namely the matrix of the same dimension as X T so that XX † X = X, X † XX † = X † , XX † and X † X are Hermitian.

II. PRELIMINARIES AND DEFINITIONS

We examine switching linear discrete-time systems of the form   

x k+1 = A σ(k) x k + B σ(k) u k y k = C σ(k) x k + D σ(k) u k (1) 
where x k ∈ R n , u k ∈ R m and y k ∈ R p are the states, the inputs and the measurements, respectively. All the matrices, namely

A σ(k) ∈ R n×n , B σ(k) ∈ R n×m , C σ(k) ∈ R p×n and D σ(k) ∈ R p×m belong to the respective finite sets (A j ) 1≤j≤J , (B j ) 1≤j≤J , (C j ) 1≤j≤J and (D j ) 1≤j≤J .
At a given time k, the index j corresponds to the mode of the system and results from a

switching function σ : k ∈ N → j = σ(k) ∈ {1, . . . , J}. {σ} k 1 +T k 1
refers to the mode sequence {σ(k 1 ), . . . , σ(k 1 + T )}. For a given switching rule σ, the set of corresponding mode sequences over any interval of time of length T + 1 is denoted by Σ T . This set may contain either all possible mode sequences (also called paths) if there are not any repetitive switching patterns or can be reduced if any. We assume that the mode is known, either accessible or reconstructed (see [START_REF] Balluchi | Design of Observers for Hybrid Systems[END_REF] for this reconstruction issue). A key point lies in that no restriction on the time separation October 10, 2008 DRAFT between switches ("dwell time") must be imposed.

Let U be the space of input sequences over [0, ∞) and Y the corresponding output space.

At time k, for each initial state x k ∈ R n , when the system (1) is driven by the input sequence We introduce the subsequent vectors and matrices.

{u} k+T k = {u k , . . . , u k+T } ∈ U ,
For i < 0 M i σ(k) = 0, for i = 0 M 0 σ(k) = D σ(k)
and for i > 0, 

M i σ(k) =            D σ(k) 0 p×m . . . . . . . . . C σ(k+1) B σ(k) D σ(
C σ(k+i) A σ(k+i-1) σ(k+1) B σ(k) C σ(k+i) A σ(k+i-1) σ(k+2) B σ(k+1) . . . C σ(k+i) B σ(k+i-1) D σ(k+i)            (2) 
with the transition matrix

A σ(k 1 ) σ(k 0 ) = A σ(k 1 ) A σ(k 1 -1) . . . A σ(k 0 ) if k 1 ≥ k 0 = 1 n if k 1 < k 0 Īm = (1 m 0 m×(m•r) ), Īp = (0 p×(p•r) 1 p ) (3) 
O i σ(k) =        C σ(k) C σ(k+1) A σ(k) . . . C σ(k+i) A σ(k+i-1) σ(k)        , C i σ(k) = A σ(k+i-1) σ(k+1) B σ(k) A σ(k+i-1) σ(k+2) B σ(k+1) . . . B σ(k+i-1) (4) 
u i k =        u k u k+1 . . . u k+i        , u i k =        u k u k+1 . . . u k+i        , y i k =        y k y k+1 . . . y k+i        , y i k =        y k y k+1 . . . y k+i        (5) 
October 10, 2008 DRAFT When (1) is driven by an input sequence {u} ∞ k ∈ U and a mode sequence {σ} ∞ k , one has:

y i k = O i σ(k) x k + M i σ(k) u i k (6)
Definition 1. When the system (1) is square (m = p), it is said to be flat if there exists a set of independent variables y k , referred to as flat outputs, such that all system variables can be expressed as a function of the flat outputs and a finite number of its backward and/or forward iterates. In particular, there exist two functions F and G which obey

   x k = F (y k+k F , . . . , y k+k F ) u k = G(y k+k G , . . . , y k+k G ) (7) 
where k F , k F , k G and k G are Z-valued integers.

Both deriving algebraic conditions to check whether a given output of ( 1) is flat and providing a feedforward flatness-based control for trajectory tracking require a central notion namely the input invertibility.

III. INPUT INVERTIBILITY

We must distinguish input left and right invertibility. Some recent papers [START_REF] Sundaram | Designing stable inverters and state observers for switched linear systems with unknown inputs[END_REF][6] have addressed the input left invertibility for switched discrete-time systems and the results are recalled in Subsect. III-A. In Subsect. III-B, we derive results on input right invertibility.

A. Input left invertibility

Definition 2. The system ( 1) is input left invertible if there exists a nonnegative integer r < ∞ such that, for all mode sequences in Σ r , for two any inputs {u} r 0 , {u } r 0 ∈ U , the following implication applies:

{y(x 0 , σ, u)} r 0 = {y(x 0 , σ, u )} r 0 ⇒ u 0 = u 0 ∀x 0 (8) 
In others words, by input left invertibility, we mean the ability to recover the input u 0 from a finite number of r + 1 measurements y i (i = 0, . . . , r), the state vector x 0 at time k = 0 and the mode sequences {σ} r 0 being known. The term input has been introduced to emphasize the fact that only the input u 0 is expected to be recovered. The least integer r for which (1) is input left invertible is called the left inherent delay or merely the delay.
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rank M r σ(k) -rank M r-1 σ(k+1) = m (9) Definition 3.
A system is a left r-delay inverse for (1) if, under identical initial conditions x 0 and identical mode sequences {σ} ∞ 0 , when driven by y r k , its output fulfills ûk+r = u k for all k ≥ 0 Theorem 2. Assume that ( 1) is input left invertible with left inherent delay r. The system

   xk+r+1 = P r σ(k) xk+r + B σ(k) Īm M r † σ(k) y r k ûk+r = -Īm M r † σ(k) O r σ(k) xk+r + Īm M r † σ(k) y r k ( 10 
) with P r σ(k) = A σ(k) -B σ(k) Īm M r † σ(k) O r σ(k) (11)
is a left r-delay inverse system for [START_REF] Balluchi | Design of Observers for Hybrid Systems[END_REF]. 

i) The system (1) is input right invertible

ii) There exists a nonnegative integer r < ∞ such that, for all mode sequences in Σ r , the

equation with unknown Q r σ(k) M r σ(k) Q r σ(k) = ĪT p ( 13 
)

has a solution

iii) There exists a nonnegative integer r < ∞ such that for all mode sequences in Σ r ,

rank ĪT p M r σ(k) -rank M r σ(k) = 0 (14)
iv) There exists a nonnegative integer r < ∞ such that for all mode sequences in Σ r ,

rank M r σ(k) -rank M r -1 σ(k) = p (15) Proof: i) ⇔ ii) On the interval of time [k, k + r ],
according to (6), one has

y r k = O r σ(k) x k + M r σ(k) u r k (16)
Besides, according to the Definition 4 of right invertibility, it is assumed that x k = 0 at time k.

Thus, from (12) and ( 16) one has

y r k = M r σ(k) u r k = ĪT p ỹk+r
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M r σ(k) Q r σ(k) = (0 p×(p•r) 1 p ) T The matrix Q r σ(k) reads explicitly Q r σ(k) = M r † σ(k) ĪT p ii) ⇔ iii)
The relation ( 14) is the immediate consequence of the algebraic result stating that for any pairs (W, Z) of matrices, the equation W X = Z with unknown X has a solution if and

only if rank(W Z) = rank W . iii) ⇔ iv) We first notice that M r σ(k) =   M r -1 σ(k) 0 (p•r )×m C σ(k+r ) C r σ(k) D σ(k+r )   Consequently, ĪT p M r σ(k) =   0 (p•r )×p M r -1 σ(k) 0 (p•r )×m 1 p C σ(k+r ) C r σ(k) D σ(k+r )   Hence rank ĪT p M r σ(k) = rank M r -1 σ(k) + rank 1 p D σ(k+r )
Finally, noticing that rank 1 p D σ(k+r ) = p, substituting the last equality into (14) gives (15).

When (1) is input right invertible, we are looking for a second dynamical system which drives the system (1) so that its output tracks a reference trajectory ỹk , ỹk+1 , . . . for k ≥ 0. Let us define the following compound vector: 1) is input right invertible with right inherent delay r . The system

ỹi k =        ỹk ỹk+1 . . . ỹk+i        Theorem 4. Assume that (
   xk+1 = P r σ(k) xk + B σ(k) Īm M r † σ(k) ỹr k u k = -Īm M r † σ(k) O r σ(k) xk + Īm M r † σ(k) ỹr k (17) 
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P r σ(k) = A σ(k) -B σ(k) Īm M r † σ(k) O r σ(k)
is a right r -delay inverse system for [START_REF] Balluchi | Design of Observers for Hybrid Systems[END_REF].

Proof: Notice that 1) is input right invertible, (13) holds and is equivalent to

y k+r -ỹk+r = Īp y r k -ỹk+r = Īp (O r σ(k) x k + M r σ(k) u r k ) -ỹk+r = Īp O r σ(k) x k -Īp M r σ(k) M r † σ(k) O r σ(k) xk + Īp M r σ(k) M r † σ(k) ỹr k -ỹk+r Since (
M r σ(k) M r † σ(k) ĪT p = ĪT p Therefore, Īp (M r σ(k) M r † σ(k) ) T = Īp
The Moore-Penrose generalized inverse being hermitian, one has

(M r σ(k) M r † σ(k) ) T = M r σ(k) M r † σ(k)
and the following equality applies

Īp M r σ(k) M r † σ(k) = Īp (18)
As a result, taking into account (18), y k+r -ỹk+r finally reads

y k+r -ỹk+r = Īp O r σ(k) (x k -xk ) (19) 
On the other hand, it is easy to see that

x k+1 -xk+1 = A σ(k) (x k -xk ) (20) 
In view of the Definition 5, we must consider that ( 1) and ( 17) are initialized such that x0 = x 0 .

By virtue of (20), we infer that x k -xk = 0 for all k ≥ 0 and thus y k+r -ỹk+r = 0 for all k ≥ 0.

When the system (1) is both left and right invertible with left and right inherent delays r = r , it will be merely said that the system (1) is input invertible with inherent delay r = r = R.

October 10, 2008 DRAFT Remark 4. It is interesting to notice that when the system ( 1) is square, if Σ r = Σ r and the sets contain the all possible mode sequences over any interval of time of length r + 1 = r + 1, input left invertibility is equivalent to input right invertibility. Indeed, in such a case, ( 9) is equivalent to (15).

IV. FLATNESS

A. Flat output characterization

Let us define the inverse transition matrix as

P σ(k 1 ) σ(k 0 ) = P r σ(k 1 ) P r σ(k 1 -1) . . . P r σ(k 0 ) if k 1 ≥ k 0 = 1 n if k 1 < k 0 with P r σ(k) = A σ(k) -B σ(k) Īm M r † σ(k) O r σ(k)
Theorem 5. A componentwise independent output y k of the system (1) assumed to be square (m = p) and left input invertible with inherent delay r, is a flat output if there exists a positive integer K < ∞ such that, for all mode sequences in Σ r+K-1 , the following equality applies for all k ≥ 0: Proof: Assume that the system (1) is input invertible with inherent delay r, thus the left r-delay inverse system (10) exists. Iterating (10) yields:

P σ(k+K-1) σ(k) = 0 ( 
xk+r+l = P σ(k+l-1) σ(k) xk+r + l-1 i=0 P σ(k+l-1) σ(k+i+1) B σ(k+i) Īm M r † σ(k+i) y r k+i ûk+r+l = Īm M r † σ(k+l) (y r k+l -O r σ(k+l) xk+r+l ) (22) 
If ( 21) is fulfilled with l = K, (22) turns into:

xk+r+K = K-1 i=0 P σ(k+K-1) σ(k+i+1) B σ(k+i) Īm M r † σ(k+i) y r k+i ûk+r+K = Īm M r † σ(k+K) (y r k+K -O r σ(k+K) xk+r+K ) (23) 
revealing that xk+r+K and so ûu+r+K is independent of xk+r . In particular, (23) holds for xk 0 +r = x k 0 for all k 0 ≥ 0 which implies that xk+r+K = x k+K and ûk+r+K = u k+K for all October 10, 2008 DRAFT k ≥ 0. Therefore, after performing the change of variable k → k -K, we obtain

x k = K-1 i=0 P σ(k-1) σ(k+i+1-K) B σ(k+i-K) Īm M r † σ(k+i-K) y r k+i-K (24) 
and

u k = Īm M r † σ(k) (y r k -O r σ(k) ( K-1 i=0 P σ(k-1) σ(k+i+1-K) B σ(k+i-K) Īm M r † σ(k+i-K) y r k+i-K )) (25) 
Equations ( 24) and (25) reveal that x k and u k can be expressed as a function of y k and a finite number of its backward and/or forward iterates in the form [START_REF] Sira-Ramirez | Differentially Flat Systems[END_REF], that is to say y k is a flat output.

B. Flatness-based control for trajectory tracking

If we are interested in delivering the flat control (25) in a recursive way, the following theorem can be useful.

Theorem 6. Assume that ( 1) is (left and right) input invertible with inherent delay R. If there exists a positive integer K < ∞ such that for all mode sequences in Σ R+K-1 , 26) is fulfilled, the control u k reads:

P σ(k+K-1) σ(k) = 0 (26) with P R σ(k) = A σ(k) -B σ(k) Īm M R † σ(k) O R σ(k) then the control u k delivered by    xk+1 = P R σ(k) xk + B σ(k) Īm M R † σ(k) ỹR k u k = Īm u R k = -Īm M R † σ(k) O R σ(k) xk + Īm M R † σ(k) ỹR k ( 
xk + K-1 i=0 P σ(k+K-1) σ(k+i+1) B σ(k+i) Īm M R † σ(k+i) y R k+i u k+K = Īm M R † σ(k+K) (y R k+K -O R σ(k+K) xk+K ) Finally, if (
u k = Īm M R † σ(k) (y R k -O R σ(k) ( K-1 i=0 P σ(k-1) σ(k+i+1-K) B σ(k+i-K) Īm M R † σ(k+i-K) y R k+i-K ))
revealing that u k is a flat control since it only depends on the output.

The problem of assessing the stability of (20) turns into a usual switched stability analysis problem. We can resort to polyquadratic stability ( [START_REF] Daafouz | A poly-quadratic stability based approach for switched systems[END_REF]).

C. Illustrative example

We shall consider a MIMO switched linear discrete-time system of the form (1) and having two distinct modes (J = 2). The respective finite sets (A j ) 1≤j≤2 , (B j ) 1≤j≤2 , (C j ) 1≤j≤2 and 

(D j ) 1≤j≤2 are A 1 =        0.3 1 
       , B 1 = B 2 =        -1 0.5 0 -1.5 1 0 0 1        , C 1 = C 2 =   1 1 1 1 1 3 1 4   , D 1 = D 2 = 0
The system is driven by some inputs {u} ∞ 0 ∈ U , the set of input sequences ranging between two arbitrary bounds, say 0 and 1 for the example. We shall examine three distinct switching rules: a switching rule which obeys σ(k) = 1 for all k which amounts to consider a mere linear system (case 1), a switching rule which obeys σ(k) = 2 for all k which also amounts to consider October 10, 2008 DRAFT a mere linear system (case 2), a switching rule for which σ(k) alternates randomly between 1 and 2, the occurrence of two consecutive modes 1 being however not allowed.

We first consider the case 1. It turns out that (9) and (15) hold for r = r = 2. Hence, according to the Theorem 1 and Theorem 3, the system is left and right input invertible with inherent delay r = r = 2. The set Σ r is merely composed of a single mode sequence {1, 1, 1}. According to the Theorem 5, y k is a flat output because (21) is fulfilled with K = 2. For the case 2, the situation is exactly the same than the case 1 except that the set Σ r is composed of {2, 2, 2}. As a result, it can be stressed that the minimum dwell time equals 2. Then, we consider the case 3. Such a case is interesting in that the switching rule does not always guarantee the minimum dwell time. It turns out that (9) and (15) hold for r = r = 2. Hence, according to Theorem 1 and Theorem 3, the system is input invertible with inherent delay r = r = R = 2. The set Σ R does not contain all possible mode sequences but only the patterns {1, 2, 1}, {1, 2, 2}, {2, 1, 2}, {2, 2, 1}, {2, 2, 2} , the only ones which are compatible with the switching rule. Equation ( 26) is fulfilled with K = 2.

Consequently the assumptions of Theorem 6 hold and a feedforward flatness-based control can be designed. that (20) is u.a.s, more precisely, it can be checked that it is polyquadratically stable. Figure 1 represents the results of the trajectory tracking based on the flat control delivered by (27). The time plots illustrate that the desired trajectories are well tracked. The convergences toward zero are consistent with the theoretical results.

V. CONCLUSION For switched linear discrete-time systems, algebraic conditions in terms of the state description matrices to check whether a given output is flat have been derived. Then, it has been shown how a feedforward flat control for trajectory tracking can be carried out in the case when a minimum dwell time is not guaranteed. Let us finally mention that one can resort to these conditions and to such a flat control when considering periodic systems or monovariate systems with time-varying relative degree.

  for a mode sequence {σ} k+T k , {x(x k , σ, u)} k+T k refers to the solution in the interval of time [k, k + T ] of (1) emanating from x k and {y(x k , σ, u)} k+T k ∈ Y refers to the corresponding output sequence in the same interval of time [k, k + T ].
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  21)Σ r+K-1 stands for the set of mode sequences over the interval of time [k, . . . , k + r + K -1].

  Fig. 1. A : solid line ỹ(1) k and dashed line y

( 2 ) 2 Two distinct sinusoidal trajectories {ỹ ( 1 )

 221 k . C : |y kỹk | 2 . D : |x kxk | 0 have been planified for the two respective entries y

( 2 )

 2 k of the output y k . It can be verified through a LMI approach ([2]) October 10, 2008 DRAFT

  in the proof of Theorem 4, after substituting r by R, since x0 may differ from x 0 , one has October 10, 2008 DRAFT lim k→∞ y k+R -ỹk+R = 0 whenever (20) is u.a.s. On the other hand, iterating (27) K -1 times

	27) is a flat control and guarantees a stable trajectory tracking whenever the system (20) is uniformly asymptotically stable (u.a.s). Proof: On one hand, if (1) is input invertible with inherent delay R, by virtue of (19) and (20) yields σ(k+K-1) xk+K = P σ(k)
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