
HAL Id: hal-00374988
https://hal.science/hal-00374988

Submitted on 10 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiment on Verification of a Planetary Rover
Controller

Anahita Akhavan, Saddek Bensalem, Marius Bozga, Eleni Orfanidou

To cite this version:
Anahita Akhavan, Saddek Bensalem, Marius Bozga, Eleni Orfanidou. Experiment on Verification of
a Planetary Rover Controller. 4th International Workshop on Planning and Scheduling for Space
IWPSS 2004, Jun 2004, Darmstadt, Germany. pp.3-10. �hal-00374988�

https://hal.science/hal-00374988
https://hal.archives-ouvertes.fr

Experiment on Verification of a Planetary Rover Controller

Anahita Akhavan, Saddek Bensalem, Marius Bozgaand Eleni Orfanidou
VERIMAG - Centre Equation, 2 Avenue de Vignate, 38610 Gières

{akhavan,bensalem,bozga,orfanido}@imag.fr

Abstract. In this paper, we report an experiment on the
verification of the K9 Rover Executive, an experimental plat-
form for autonomous vehicles targeted for the exploration of
the Martian surface developed at NASA Ames. The Execu-
tive provides a means to control and command the vehicles
through predefined plans, that are hierarchical descriptions of
actions annotated with real-time constraints. The verification
concerns the correctness of the Executive, which must exe-
cute the plans according to their semantics.

1 Introduction
Proof of correctness is a collection of techniques that apply
the formality and rigor of mathematics to the task of prov-
ing consistency between an algorithmic solution and a rig-
orous, complete specification of the intent of the solution.
This technique is also often referred to as ”formal verifica-
tion”. The usual proof technique follows Floyd’s Method of
Inductive Assertions (Floyd 1967; Hantler and King 1976).
Proof of correctness techniques are usually presented in the
context of verifying an implementation against a specifica-
tion.

Formal verification has increasingly gained acceptance
within hardware (Burchet al. 1990; McMillan 1993)
and protocol verification (Holzmann 1991) as an additional
means to discovering errors. However, there are several lim-
itations to formal verification. One limitation has to do with
verifying large systems. In general, the state space is of-
ten much bigger and the relationships harder to understand
because of asynchronous behavior. Many techniques have
been developed in order to push further the limits of verifi-
cation technology. One of them consists in usingproperty
preserving abstractions: Given a program and a property to
be verified, find a (simpler) abstract program such that the
satisfaction on the abstract program implies the satisfaction
on the initial program, called concrete program in this con-
text. An important point is, given a concrete program, how
to constructan abstract program that is both, simple enough
in order to be verified by available tools, and that still con-
tains enough relevant details for the satisfaction of the con-
sidered properties.

Verifying large programs written in real programming

languages is different from verifying hardware or protocols:
the amount of details to handle, combined with the lack of
powerful tools and a more complicated underlying seman-
tics may make the proof technique impractical. Few attemps
have been made to automatically verify programs written in
real programming languages. The most known attempt is
Java Pathfinder (Havelund and Pressburger 2000) (JPF). JPF
is an explicit-state model checker for programs written in
Java. As any model checker JPF suffers from state-explosion
problem and even more acute when checking actual source
code.

A complementary or alternative approach widely used in
the industry today is testing. Testing is less ambitious than
verification, in the sense that it only aims at finding bugs,
and not at proving correctness. Indeed, most test methods
are not complete (i.e., the system cannot be guaranteed to be
correct even if it passes all tests). Nevertheless, confidence
in the correctness of the system increases as the number of
successful tests increases (Zhuet al. 1997). This feature of
testing is particularly appealing to the industry, because it
allows engineers to decide how much effort to put in valida-
tion, in contrast to an “all-or-nothing” verification approach.

In (Bensalemet al. 2004), we proposed a new methodol-
ogy of dynamic testing for real-time applications. It is dy-
namic in the sense that it makes use of instrumentation of the
system under test (SUT) and of run-time verification tech-
nology. We applied this methodology for testing the NASA
K9Rover (see Section 3).

In this paper, we report an experiment on the verification
of the K9 Rover Executive, an experimental platform for au-
tonomous vehicles targeted for the exploration of the Mar-
tian surface developed at NASA Ames. The Executive pro-
vides a means to control and command the vehicles through
predefined plans, that are hierarchical descriptions of actions
annotated with real-time constraints. The verification con-
cerns the correctness of the Executive, which must execute
the plans according to their semantics.

The verification approach consists of three steps. First,
we extract an abstract operational model of the actual soft-
ware as a composition of timed automata. It will allow us

to approximate, for a given plan,all concrete executions of
the software for that plan. Second, we give an operational
semantics of plans in terms of timed automata too. That is,
for a given plan, we construct a plan observer encoding the
set of allbad executions for the plan. Third, the verifica-
tion step computes the intersection of concrete executions
and the bad ones i.e, by exploring the product between the
abstract specification and the plan observer. Common exe-
cutions correspond to errors of the Executive.

The paper is organized as follows. Section 2 recalls some
basic results of timed automata theory. Section 3 introduces
the case study. The verification approach and the results are
presented in section 4. Finally, some conclusions and per-
spectives are presented in section 5.

Related work
Two different works considered the K9 Rover Executive

to experiment different approaches:

• In (Artho et al. 2003) an experimental evaluation of ver-
ification and validation tools, by NASA Ames computer
scientists, on K9 rover has been done. The objective of
the study was to assess the maturity of different technolo-
gies. The experiment consisted of using specific technol-
ogy to analyse the same code. The technologies used were
model checking, runtime analysis, static analysis and test-
ing. The tools associated with these technologies analyse
a program for particular kinds of bugs, or rather coding er-
rors. The static tool was the commercial Polyspace tool.
It focuses on finding errors that lead to run-time faults
such as underflow/overflow, non-initialized variables, null
pointer de-referencing, and array bound checking. The
model checking tool was Java PathFinder (JPF), which is
an explicit-state model checker that works directly on Java
code. The runtime analysis tools were Java PathExplorer
(JPaX) and DBRover.

• The work presented in the paper (Bratet al. 2003) de-
scribes experiments with test case generation and runtime
analysis.

2 Preliminaries
We recall here the model of timed automata with urgencies
from (Bornotet al. 1997). Then, we recall the most impor-
tant decidability results concerning timed automata in gen-
eral.

2.1 Timed Automata
Let X be a finite set of real-valued variables, calledclocks,
andΣ be a finite set of action names, the alphabet. We define
the set ofguardsG(X) overX as being the set of clock con-
straints defined by the grammarg ::= x#k | x−y#k | g∧g,
where x, y ∈ X are clocks,k ∈ N denotes a natu-
ral number and # denotes any of the relational operators
{<,≤,=,≥, >}. We define also the set of urgency types

U = {ε = eager, δ = delayable, λ = lazy}. The urgency
is associated to each transition in order to define its priority
with respect to the progress oftime, see below

A timed automatonover the set of clocksX with actions
in the alphabetΣ is a tuple(Q, X, Σ, T, q0) whereQ is a
finite set of locations,T ⊆ Q×G(X)× Σ× 2X × U ×Q
is a finite set of transitions andq0 ∈ Q is the initial location.

A configurationof a timed automaton is a tuple(q, v)
whereq ∈ Q is a location andv ∈ RX is a clock valuation.
The automaton moves from one configuration to another
by performing either discrete or timed transitions. Discrete
transitions are of the form(q, v) a−→ (q′, v′) wherea ∈ Σ
and there is a transition(q, g, a, r, u, q′) such thatv satisfy
the guardg andv′ is obtained by resetting to zero all clocks
in r and leaving the others unchanged. Timed transitions are

of the form(q, v) t−→ (q, v + t) wheret ∈ R, t > 0 and there
is no transition(q, g, r, u, q′) such that: eitheru = δ (de-
layable),v satisfyg, andv + t does not satisfyg; or u = ε
(eager) andv satisfyg. Intuitively, eagertransitions must
be executed as soon as they are enabled and waiting is not
allowed; lazy transitions are never urgent, that is, when a
lazy transition is enabled the transition may be executed or,
alternatively, the process may wait without any restriction;
finally, when adelayabletransition is enabled, waiting is al-
lowed as long as time progress does not disable it.

A configuration(q, v) of the timed automaton is called ac-
cepting if the locationq is accepting. We define thereal-time
languageL(A) accepted by the automatonA as being the
set of finite-length tracesl0, l1, ...ln from (Σ ∪ R)∗ leading
from the initial configuration(q0, {0}X) to some accepting
configuration.

2.2 Decidability results
Timed automata are particularly interesting for verification.
In fact, the reachability problem i.e, deciding if a control lo-
cation is reachable or not, is known to be decidable (Alur
and Dill 1994). Moreover, the emptiness test, deciding if a
real-time language is empty or not is also decidable. Fur-
thermore, real-time languages are closed under intersection.

Unfortunately, not all the properties of finite-state au-
tomata and finite-state languages remain true for timed au-
tomata and real-time languages. For instance, real time lan-
guages are not closed under complementation. In turn, the
language containement problem, that is, deciding if a real-
time language is contained in another one, is undecidable in
general. For a recent survey of the negative results on timed
automata see (Tripakis 2003).

Nevertheless, we can solve some of the above problems
with some restrictions. In particular, deterministic timed-
automata can be effectively complemented. More precisely,
given timed automatonA we can effectively compute theA
automaton such thatL(A) = L(A). The construction is the
same as for finite state automata, see for example (Ahoet
al. 1986). If A is deterministic, the language containment

L(B) ⊆ L(A) is also reduced to an emptiness test, using the
classical definition:

L(B) ⊆ L(A) ⇔ L(B) ∩ L(A) = ∅

2.3 Tools
The verification tools we used during this experiment are
connected through theIF validation toolbox(Bozgaet al.
2002) developed at VERIMAG. This environment relies on a
generalintermediate languagefor timed systems, theIF lan-
guage. IF uses timed automata with urgencies as semantic
model, but extend them with many otherdiscretefeatures
such as discrete variables, communication primitives, dy-
namic creation and destruction, parameterisation, executable
code integration etc.

The IF environment integrates several verification com-
ponents. It provides static analysis tools allowing for the
simplification and optimisation of specifications prior to the
verification. Moreover, it provides an interactive debugger
as well as an exhaustive model-extractor and model-checker.
Furthermore, components allowing for test generation, code
generation, scheduling, etc., are also available but they have
not been used in this case study.

3 The K9 Rover Executive
The NASA Ames K9 rover is an experimental platform for
autonomous wheeled vehicles called rovers, targeted for the
exploration of the Martian surface. K9 is specifically used to
test out new autonomy software, such as the Rover Execu-
tive. The Rover Executive provides a flexible means of com-
manding a rover through plans that control the movement,
experimental apparatus, and other resources of the Rover -
also taking into account the possibiliy of failure of command
actions. In this section we present a description of the sys-
tem, including a description of what plans look like. In the
next section, we describe how for each plan a timed automa-
ton can be automatically generated, which contains all the
good behavior of the executive when executing the plan.

3.1 System Description
The Rover executive is a software prototype written by re-
searchers at NASA Ames. It is a multi-threaded system
(8,000 lines of Java code), made up of a main coordinating
component namedExecutive, components for monitoring
the state conditionsExecCondChecker, and temporal con-
ditionsExecTimerChecker - each further decomposed into
threads- and finally anActionExecution thread that is re-
sponsible for issuing the commands to the Rover. Synchro-
nization between these threads is performed through mutex
and condition variables.

A plan is a hierarchical structure of actions that the
rover must perform. Traditionally, plans are determinis-
tic sequences of actions. However, increased autonomy re-
quires added flexibility. The plan language therefore allows

branching based on conditions that need to be checked, and
also for flexibility with respect to the starting time of an ac-
tion. We give here a short presentation of the language used
in the description of the plans that the rover executive must
execute.

The definition of correctness of the rover implementation
is that plans are executed correctly. That is, given a plan,
the rover shall execute that plan according to its intended
semantics.

3.2 Plan Syntax
A plan is a node, a node is either a task, corresponding to
an action to be executed, or a block, corresponding to a log-
ical group of nodes. Figure 1 shows the grammar for the
language; we should note that all the node attributes, with
the exception of the node’s id, are optional. Each node may
specify a set ofconditions, e.g., thestart condition(that must
be true at the beginning of the node execution), thewait for
conditions(wait for if the condition is not true), the main-
tain condition (must be true through the execution of the
node) and theend condition(that must be true at the end of
the node execution). Each condition includes information
about relative or absolute time window, indicating a lower
and upper bound on the time. Thecontinue-on-failureflag
indicates what the behavior will be when node failure is en-
countered.

Plan → Node
Node → Block | Task
Block → (block

NodeAttr
:node-list (Node ... Node))

Task → (task
NodeAttr
:action Symbol)

NodeAttr → :id Symbol
:start-condition Condition
:waitfor-condition Condition
:maintain-condition Condition
:end-condition Condition
[:continue-on-failure]

Condition → (time StartTime EndTime)

Figure 1: The concrete grammar of plans.

3.3 Plan Semantics
The nodes must be executed according to the informal
algorithm given below. This algorithm has been taken
from (Arthoet al. 2003):

1. wait until the timed part in the start and wait-for condi-
tions are satisfied;

2. if the discrete part of wait-for conditions is not empty,
wait for it to become satisfied;

3. check the discrete part of the start conditions: the node
fails if it is not satisfied, the execution continue otherwise;

4. put in background a thread to check the maintain condi-
tions (both timed and discrete) if they are not empty; these
conditions are checked on every memory update: if they
ever becomes satisfied the node fails;

5. put in background a thread to check the timed part of the
end conditions; if the time exceeds the end condition, the
node fails;

6. the remainder of the execution is type-specific i.e, de-
pends if the node is a task or a block: for task nodes,
the action is performed, for block nodes, the inner nodes
are executed sequentially, according to their given order
in the block node list;

7. finally, if the end of execution arrives inside the timed part
of end condition the node successfully terminates; other-
wise it fails.

On anode failureoccuring in a sequence, the value of the
enclosing block node’scontinue-on-failureflag is checked.
If true, execution proceeds to the next node in the sequence.
If false, the node failure is propagated to the block enclosing
node and so on. If the node failure passes out to the top level
block of the plan, the execution is aborted.

4 Verification
The correctness requirement states that the executive exe-
cute the plans according to their semantics. In other words,
for any plan, any possible execution must conform to the
semantics of the plan. We can not verify this requirement
in general, however, we can test it for any plan apriori fixed.
More precisely, the verification proceeds through the follow-
ing steps:
• define a formal semantics for plan executions
The meaning of plan executions is described informally

in (Artho et al. 2003). Here, we give a constructive se-
mantics using timed automata. The timed automaton en-
codes all thegoodexecutions of the plan. Moreover, it is
deterministics by construction and therefore it can be com-
plemented. The complemented automaton, called hereafter
plan observer, encodes all thebad executions for the plan,
and will be run in parallel with the executive (see later) in
order to detect execution errors.
• build an abstract executable formal model of the K9

Rover.
The K9 Rover executive is a highly non-deterministic

software: it is designed as parallel composition of threads
and runs in an open environment. For a fixed plan, it is
therefore possible to obtain several executions, depending
on the interleaving of threads and on the external environ-
ment. Since we want to check thatall executions conforms

��

?

?

?

?

?

((((((((

?

##

�� ��
�

��

?

��

��

��

?

?

Executive
K9 Rover Java

Executive
K9 Rover

data
plan

plan2if

plan

specification
plan

description
plan

IF model checking

yes/no

observer
planIF IF IF

IFmodel extraction

abstraction
+

complementation

Figure 2: Our approach to the verification problem

to the plan observer, we need a way to enumerate all of them,
in a finite amount of time. That is, we need an abstract ex-
ecutable model of the K9 Rover. This model has been ex-
tracted from the Java source code as a parallel composition
of extended finite-state automata.

If the completeness is not an issue, that is, we are not in-
terested to verify the correctness, but only to test it, this step
may be skipped. Instead of checking that all the possible ex-
ecutions are conform, we can restrict us to a finite number of
them. That is, just run the K9 Rover several times and check
only the obtained executions.
• check the conformance of the executive.
This step simply consists of performing the synchronous

execution of the abstract executive on some plan and the cor-
responding plan observer. If error states are reached by the
observer, the executive is not conform i.e, there are bad ex-
ecutions produced by the executive on that plan. Otherwise,
the executive is conform for the given plan.

4.1 Model extraction
Executive

The first step in the verification process has been the con-
struction of an abstract model of the (actual) implementation
of the K9 Rover executive. There are currently automated
tools allowing to extract such models directly from the code,
however, they are usually limited by the size of the code and
its inherent complexity. Instead, we perform the extraction
of the abstract model by hand, still following a quite system-
atic approach.

The general architecture of the Rover implementation is
shown in figure 3. In order to keep the abstract model with

#
"

!

PlanWatcher
...

ActionExecution
internalRunAction()
internalDoAction()
doAction(),
stopAction(),
abortAction()...

Database
(System state)

ExecCondChecker

DBMonitor

Internal
...

...

Executive
executePlan()
executeCurrentNode()
executeTaskAction()
... B

B
B
B

!!

Z
Z

Z
ZZ

J
J

J
JJ

"
""

procWakeupTimes()

ExecTimerWaiterExecTimer
...

...

Figure 3: The K9 Rover Architecture

manageable sizes, not all the components have been con-
sidered. We focus on the critical parts concerning the plan
execution i.e, theExecutive, ActionExecution andTimer
threads whereas the non-critical parts such as theDatabase
or theexecConditionChecker have been abstracted away.
We assumed that they work properly.

We treat the execution of a single plan apriori fixed. The
plan is stored in a particular data structure containing all the
useful information (timing constraints, failure control, etc).
The execution of the plan is controlled by theExecutive
thread. It mainly goes through the nodes in depth-first or-
der and, for each task node reached, it triggers theexecute
method inActionExecution thread. Whenexecute gets
called onActionExecution, first, it aborts the currently run-
ning task if not yet terminated, then, it installs and launches
the new task. On termination, it signals back theExecutive
thread. The concrete execution of tasks is external to the
model.

Timing plays a crucial role in the plan execution. Two
special threads,ExecTimer and ExecTimerWaiter, are
used to handle the set of the timing constraints attached to
the active nodes. Intuitively, theExecutive forwards toEx-
ecTimer all the constraints reached (start, wait-for, main-
tain, end). TheExecTimer keeps the list of incoming con-
straints ordered by the (absolute) expiration time. When the
time reaches the first expiration date, the constraint is re-
moved and theExecTimerWaiter informs theExecutive
accordingly.

Plans
The second step in the verification process has been the

formalisation of plans and their intended (ideal) execution.
We propose hereafter a compilation method allowing to ob-
tain from a plan (that is, a syntactic object) a network of
timed automata (that is, a semantic model) encoding all the
accepted, reasonable executions of that plan.

For sake of simplicity, we consider the following abstract
syntax for plans.

Definition 1 (plan syntax)
A planP is a tuple(N, δ, λ, n0) where

• N is a finite set of nodes

• δ : N → N∗ is the node decomposition function, defined
such that the image set relation̂δ = {(n, n′)|n′ ∈ δ(n)}
satisfies

– acyclicity: ∀n ∈ N. n 6∈ δ̂+({n})
– disjointness: ∀n1, n2 ∈ N,n1 6= n2. δ̂+({n1}) ∩

δ̂+({n2}) = ∅
• λ : N → A × I4 × B is the node labeling function,

whereA is a set of action labels,I = {[l, u] | l, u ∈ N}
is the set of interval constraints, andB are the booleans.
That is,λ(n) = (an, (sn, wn,mn, en), fn) wherean is
the action symbol,sn, wn, mn, en are respectively the
start, wait-for, maintain and end timed constraints, and
fn is the continue-on-failure flag associated to the node
n.

• n0 ∈ N is the main (or start) node of the plan

We present now the semantics of nodes and plans in terms
of timed automata. The semantics isconstructivein the
sense that, automata can be effectively constructed, depend-
ing on syntactical description of the nodes. The semantics
is alsocompositionalin the sense that, the semantics of the
plan is obtained directly by composition of timed automata
associated to nodes.

Let us first introduce some notations for some given plan
P = (N, δ, λ, n0). The set of actionsAP contains respec-
tively the set of synchronisation actionsbeginn, abortn,
failn, endn defined for all nodes, and the set of elementary
actionsan, defined for task nodes of the plan.

The set of clocksXP = {xn | n ∈ N} contains one
clock xn for each noden of the plan. This clockxn is set
to 0 when the execution of the noden begins. Ifcn = [l, u]
is some constraint of the noden, we will note with [[c]] the
timed guard(l ≤ xn ∧ xn ≤ u). We note also withc•

the constraint[−∞, u] where the lower bound ofc has been
removed.

To each noden of P we associate a timed automaton
over clocksXP and actionsAP . The automaton encodes
the sequential behaviour described by the node execution al-
gorithm. Note that, since the execution algorithm is deter-
ministic, the timed automata obtained are determnistic also.

�� ��

�� ��

�

�

�

�

�� ��
�� �� �� ��

?

�� ��

? ?

6

�� ��?

66

�
�
�
�

�� ��

?

?

66 ?

?

ready

end
?abortn

!failn

¬[[en]]

[[sn]] ∧ [[wn]]

!failn

¬[[e•n]]

?beginn/xn := 0

?abortn

abort

execute

[[en]]

!endn

fail

!failn

Figure 4: Timed automaton defined for common part.

Definition 2 (node semantics)
Let n be a node withδ(n) = n1...nk and λ(n) =

(an, (sn, wn,mn, en), fn). The semantics of the noden is
described by the timed automaton from figure 5. The spe-
cific part is filled according to node attributes as shown in
figure 5.

Finally, the semantics of the entire planP is given by the
parallel composition i.e, the network of timed automata de-
fined for all of its nodes. Note that, the product automaton
is deterministic too.

Definition 3 (plan semantics)
Let P = (N, δ, λ, n0) be a plan,XP the set of clocks

and AP the set of actions defined byP . Let TAni
be the

timed automata overXP andAP associated to nodesni ∈
N . The semantics of the planP is given by the network
TAn0 ||TAn1 ||...||TAnk

.

4.2 Results

The plan translation algorithm has been effectively imple-
mented. The translator takes a concrete plan description and
produces the corresponding network of timed automata. The
product timed automaton is computed statically, then com-
plemented in order to obtain the timed plan observer.

We experiment with plans of different sizes, having dif-
ferent timing constraints or failure control schemes. Several
simple examples are listed in appendix. Our model of the ex-
ecutive performed always correctly, that is, for a given plan,
all possible traces produced by the executive on that plan are
accepted by the corresponding timed observer.

�� ��

�� ��
?

6 6
�� ��

�� ��
?

�� ��

execute
?abortn ¬[[e•n]] ∨ ¬[[mn]]

!failn

end

ready

failabort

!an

? ?

6
�� ��

66 �� ��

�� �� �� ��
? ?

�� ��
-�� ��

�� ��
6

�

failabort

!abortni

?abortn

!beginni

!failn
!failn

¬[[e•n]] ∨ ¬[[mn]]

¬[[e•n]] ∨ ¬[[mn]]

!abortni

before ni+1

execute ni

before ni
?abortn

?failni?endni

?

?

6
�� ��

6

6

�� ��

�� �� �� ��
?

�� ��

�� ��

�� ��
6

�

before ni

fail

execute ni

abort

?abortn

!abortni

?abortn

?endni ?failni

!abortni

¬[[e•n]] ∨ ¬[[mn]]

!beginni

!failn
¬[[e•n]] ∨ ¬[[mn]]

!failn

before ni+1

Figure 5: Timed automata defined for respectively the task
specific part (top), block specific part with continue on fail-
ure on (middle) and block specific with continue on failure
off (bottom).

The table 1 gives some details about the size of the models
obtained on plans given in the appendix.

5 Discussion
The most difficult part of this experiment has been the con-
struction of an abstract specification for the Rover execu-
tive. This specification has been extracted manually from
the Java code. In consequence, despite the usage of a sys-
tematic translation approach, it may not reflect exactly the
actual code. To avoid this problem, one possibility is to use
automatic model extraction tools such as Bandera (Corbett
et al. 2000). Nevertheless, the models have to be anyway
extended with timing information about the execution plat-
form. This information is not present in the source code, but
is mandatory for the verification of timing related properties.

Another possibility is to focus ontestingrather than veri-
fication, that is finding bugs rather than proving the software
to be correct. The idea is to check, for some fixed plan, the

plan model executive model
plan size states trans. states trans.

A 3 nodes 127 179 323 459
B 3 nodes 196 263 771 1111
C 6 nodes 164391 231952 3269 4800
D 6 nodes 1617 2286 4172 6184

Table 1: Theplan modelcolumns (states + transitions) gives
the size of the model of the network of timed automaton
for the given plan.Theexecutive modelcolumns (states +
transitions) gives the size of the model of the executive when
running the given plan.

traces produced by the executive against the corresponding
plan observer. Common traces denote bad executions, that
are, bugs in the software. The big advantage is that there is
no more need for an abstract model of the software i.e, plans
are enough to define the correctness requirement. But, the
results are always partial because we will check for a subset
of executions and not for all of them. This approach have
been investigated in (Bensalemet al. 2004) and the results
obtained are very encouranging.

Furthermore, in this work we did not consider the verifica-
tion of plans themselves. Each plan has been takenas isand
transformed into a requirement for the executive sofware.
Nevertheless, checking plan consistency is another problem
which can be handled using our methodology. In fact, the
timed automata model captures precisely the semantics of
plans and can be therefore used to model check any relevant
properties. Such properties include for instance feasibility
(allow successfull execution), absence of timelocks or dead-
locks, response times, etc.

Finally, another interesting perspective concerns the ex-
tension of these results toparameterizedplans. That is,
instead of considering individual plans where delays are
bounded by integer values (e.g, in the interval[2, 4]) con-
sider parameterized plans where delays are expressed with
respect to symbolic parameters (e.g, in an interval[a, 2a],
with a ≥ 2). Such a parameterized plan captures a poten-
tially infinite family of plans, each one being obtained by
some valid instantiation of parameters with integer values.
Parameterized plans still can be compiled to a parameterized
timed automata model and can be directly analyzed using
specific techniques such as (Annichiniet al. 2000).

References
A. Aho, R. Sethi, and J.D. Ullman.Compilers: Principles,
Techniques and Tools. Addison-Wesley, Readings, MA,
1986.

R. Alur and D. Dill. A Theory of Timed Automata.Theo-
retical Computer Science, 126:183–235, 1994.

A. Annichini, E. Asarin, and A. Bouajjani. Symbolic tech-
niques for parametric reasoning about counter and clock

systems. InProceedings of CAV 2000, volume 1855, pages
419–434. Springer, 2000.

C. Artho, D. Drusinsky, A. Goldberg, K. Havelund,
M. Lowry, C. Pasareanu, G. Rosu, and W. Visser. Exper-
iments with test case generation and runtime analysis. In
Proceedings of 10th International Workshop on Abstract
State Machines, ASM 2003, March 2003.

Saddek Bensalem, Marius Bozga, Moez Krichen, and
Stavros Tripakis. Testing conformance of real-time soft-
ware by automatic generaton of observers. InProceedings
of Runtime Verification Workshop, RV’04, April 2004.

S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency
in Timed Systems. InInternational Symposium: Composi-
tionality - The Significant Difference (Holstein, Germany),
volume 1536 ofLNCS. Springer, September 1997.

M. Bozga, S. Graf, and L. Mounier. If-2.0: A validation
environment for component-based real-time systems. In
K.G. Larsen Ed Brinksma, editor,Proceedings of CAV’02
(Copenhagen, Denmark), volume 2404 ofLNCS, pages
343–348. Springer, July 2002.

Guillaume Brat, Dimitra Giannakopoulou, Allen Goldberg,
Klaus Havelund, Mike Lowry, Corina Pasareanu, Arnaud
Venet, and Willem Visser. Experimental evaluation of v&v
tools on martian rover software. InSEI Software Model
Checking Workshop, 2003.

J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L.
Dill. Sequential circuit verification using symbolic model
checking. In27th ACM/IEEE Design Automation Confer-
ence, 1990.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera : Extracting Finite-
state Models from Java Source Code. InProceedings of
the 22nd International Conference on Software Engineer-
ing, June 2000.

R.W. Floyd. Assigning meanings to programs. InIn. Proc.
Symp. on Appl. Math. 19, pages 19–32. American Mathe-
matical Society, 1967.

B.S.L. Hantler and J.C. King. An introduction to proving
the correcteness of programs.ACM Computing Surveys,
8(3):331–353, 1976.

K. Havelund and T. Pressburger. Model Checking Java
Programs Using Java PathFinder.International Journal on
Software Tools for Technology Transfer (STTT), 2(4), April
2000.

Gerard J. Holzmann.Design and Validation of Computer
Protocols. Prentice Hall Software Series, 1991.

K.L. McMillan. Symbolic Model Checking: an Approach
to the State Explosion Problem. Kluwer Academic Pub-
lisher, 1993.

S. Tripakis. Folk theorems on determinization and mini-
mization of timed automata. InProceedings of First In-

ternational Workshop on Formal Modeling and Analysis of
Timed Systems, FORMATS’03, September 2003.

H. Zhu, P. Hall, and J. May. Software unit test coverage
and adequacy.ACM Computing Surveys, 29(4), 1997.

A Examples of plans
A.1 Plan A

(block :id a0
:start-condition (time 0 2)
:end-condition (time 2 4)
:continue-on-failure f :node-list (
(block :id a1
:start-condition (time 1 3)
:end-condition (time 1 4)
:continue-on-failure t :node-list (
(task :id a2
:start-condition (time 1 6)
:end-condition (time 1 8)
:action a2)))))

A.2 Plan B

(block :id b0
:start-condition (time 0 2)
:end-condition (time 2 4)
:continue-on-failure f :node-list (
(task :id b1
:start-condition (time 1 3)
:end-condition (time 1 4)
:action b1)

(task :id b2
:start-condition (time 1 6)
:end-condition (time 1 8)
:action b2)))

A.3 Plan C

(block :id c0
:start-condition (time 0 2)
:end-condition (time 1 8)
:continue-on-failure t :node-list (
(block :id c1
:start-condition (time 1 3)
:end-condition (time 1 7)
:continue-on-failure f :node-list (
(task :id c3
:start-condition (time 2 5)
:end-condition (time 2 7)
:action c3)

(task :id c4
:start-condition (time 2 5)
:end-condition (time 2 6)
:action c4)

(task :id c5

:start-condition (time 2 5)
:end-condition (time 2 6)
:action c5)))

(task :id c2
:start-condition (time 1 6)
:end-condition (time 2 7)
:action c2)))

A.4 Plan D
(block :id d0
:start-condition (time 0 2)
:end-condition (time 1 10)
:continue-on-failure t :node-list (
(block :id d1
:start-condition (time 1 3)
:end-condition (time 1 7)
:continue-on-failure f :node-list (
(task :id d3
:start-condition (time 1 5)
:end-condition (time 0 1)
:action d3)

(task :id d4
:start-condition (time 3 8)
:end-condition (time 4 6)
:action d4)

(task :id d5
:start-condition (time 2 6)
:end-condition (time 4 6)
:action d5)))

(task :id d2
:start-condition (time 1 3)
:end-condition (time 2 7)
:action d2)))

