
HAL Id: hal-00374984
https://hal.science/hal-00374984

Submitted on 10 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Algorithm for the Computation of
Optimum Paths in Weighted Graphs

Marius Bozga, Radu Iosif, Vassiliki Sfyrla

To cite this version:
Marius Bozga, Radu Iosif, Vassiliki Sfyrla. An Efficient Algorithm for the Computation of Optimum
Paths in Weighted Graphs. MEMICS 2007: Third Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science, Oct 2007, Znojmo, Czech Republic. pp.19-27. �hal-00374984�

https://hal.science/hal-00374984
https://hal.archives-ouvertes.fr


An Efficient Algorithm

for the Computation of Optimum Paths

in Weighted Graphs

Marius Bozga1, Radu Iosif1, and Vassiliki Sfyrla1

VERIMAG 2, Avenue de Vignate
38610 GIERES, France

{Marius.Bozga, Radu.Iosif, Vassiliki.Sfyrla}@imag.fr

Abstract. The goal of this paper is to identify a more efficient algorithm
for the computation of the path of minimum ratio (i.e. the quotient of the
weight divided by the length) in a weighted graph. The main application
of this technique is to improve the efficiency of reachability analysis for
flat counter automata with Difference Bound Matrix constraints on tran-
sitions. A previous result showed that these paths could be defined using
Presburger arithmetic. However, this method is costly, as the complexity
of deciding satisfiability of Presburger formulae has a double exponential
lower bound. Our solution avoids the use of Presburger arithmetic, by
computing the function between any n ∈ N and the weight of the minimal
path of length n. The function is computed iteratively, by computing the
minimal fixed point of a system of set constraints, involving semilinear
sets. This requires a min operator on linear sets, which is implemented
using rewrite rules.

1 Introduction

Flat counter automata [6], [8], [3] have received a lot of attention recently, as
they represent an important class of infinite-state systems, for which the reach-
ability and termination problems are decidable. These results have been used in
a number of successful verification tools, e.g. FAST [2], LASH [9] or TREX [1].

Comon and Jurski show in [6] that the reachability problem for a flat counter
automaton can be expressed in Presburger arithmetic, given that the automata
have transition guards that are conjunctions of relations of the form x − y ≤ c,
where x and y denote either the current or the future (primed) values of the
counters, and c is an integer constant. These constraints are known as Difference
Bound Matrix (DBM). To our knowledge, their result concerns the most general
class of flat counter automata, considered so far.

Recent work by Bozga, Iosif and Lakhnech [4] addresses the same class of
counter automata as the one in [6], but presents a simplified proof of decidability,
based on the translation of a control loop with a DBM constraint into a weighted
automaton, such that, for each pair of counters x and y of the original loop,
we have x0 − yn ≤ w, where w is the weight of the minimum weight path of



length n between given states of the weighted automaton. Moreover, it can be
shown that the minimal weight is a linear function of the length n of the path.
Computing this weight, as a function of the length, i.e. w = α · n + β, for some
α, β ∈ Z is crucial in order to express the global relation between the input and
output values of the counters. However, for the purposes of the proof in [4], full
Presburger arithmetic was used in order to define this function.

The goal of this paper is therefore to present a more efficient method for the
computation of the minimum weight function in a given weighted graph. We
introduce a new approach to this problem, which overpasses the method based
on Presburger arithmetic. Our method is based on the computation of the least
fixed point of a system of set constraints on semilinear sets. This computation is
shown to terminate if an entire elementary cycle is considered at the time, rather
than just single edges. Since the number of elementary cycles is exponential in
the number of nodes, we consider only the elementary cycles of minimum ratio
(= the weight of the cycle divided by its length). It can be shown that the num-
ber of optimal cycles is polynomial in the number of graph nodes. Moreover, a
polynomial-time algorithm for finding these elementary cycles has been reported
in [5]. In order for the solution of the system of set constraints to be a function,
i.e. a set of pairs 〈n, w〉 that is a functional relation, we use a min(X) operator
that returns, for any semilinear set X the set of minimal points. For efficiency
reasons, this operator has been implemented using a set of rewriting rules, that
work on semilinear sets.

The techniques described in this paper have been implemented, the result
being a tool for the analysis of flat counter systems, which is to be released
soon.

2 Notation and Definitions

For the rest of the paper, let us consider a fixed weighted graph G = 〈V,E, w〉,
where:

– V is a finite set of nodes,
– E ⊆ V × V the set of edges.
– w : E → Z is the weight function.

A path π in a graph is a sequence of nodes v0, v1, ..., vn such that π =
(v0, v1, ..., vn), where (vi, vi+1) ∈ E,∀i = 1, ..., n. The length |π| is equal to the
number of edges of the path. The weight w(π) is equal to the sum of the weights
on the path. A path between two nodes s and t is called optimal of length m if
there is no other path of length m and with smaller weight.

A cycle c is a path such that the start node and the end node are the same.

The cycle mean ρ(c) is defined as w(c)
|c| . A cycle is called elementary if there is

a sequence of nodes in which there is never twice the same node. An elemen-
tary cycle is called critical if it has the minimum cycle mean amongst all the
elementary cycles of the graph. A node is critical if it belongs to a critical cycle.



A linear set a0 + a1N + ... + anN where a0, a1, ..., an ∈ Z
k denote the set of

all points x ∈ Z
k of the form x = a0 +

∑n

i=1 xiai, where xi ∈ N. A semilinear
set is a finite union of linear sets.

Given two sets A,B ⊆ Z
k, we define A ⊕ B = {a + b|a ∈ A, b ∈ B}. It could

be shown that if A and B are semilinear sets, then A ⊕ B does so.

3 The Problem

Let u, v ∈ V be two nodes in the graph, and Puv be the relation between lengths
and weights of paths from u to v: Puv = {(m,w) | ∃π from u to v such that |π| =
m,w(π) = w}. This set is semilinear, for any nodes u and v. This could be proved
either directly, or by using the Presburger formula defined in [4]. Now, the set
of optimal paths from u to v is:

minPuv = {(m,w) | (m,w) ∈ Puv and ∀(m,w′) ∈ Puv ⇒ w ≤ w′}
This set is also semilinear, given that Puv is semilinear.
Our aim is to effectively compute minPst for some given s and t by over-

passing the construction in [4] which produces a Presburger formula that is too
complex to be useful in practice.

4 Our Solution

4.1 The Initial Approach

Let s ∈ V be a fixed node in the graph.

The sets Psv are the least fixpoint solution with

(

0
0

)

∈ Pss of the following

system of equations, for all v:

Psv =
⋃

e=(u,v)∈E

Psu ⊕

(

1
w(e)

)

These equations give a direct way to compute the sets Psv as the limit of the

sequences P
(k)
sv defined as follows:

P (k+1)
sv =

⋃

e=(u,v)∈E

P (k)
su ⊕

(

1
w(e)

)

started with P
(0)
ss =

(

0
0

)

and P
(0)
sv = ∅ for all v 6= s. Unfortunately, the

computation above cannot be carried out iteratively because the limit cannot be
reached in a finite number of steps, if there are cycles in the graph.

Nevertheless, we can extend the equations above to take into account the
elementary cycles(EC), as follows:

Psv =
⋃

e=(u,v)∈E

Psu ⊕

(

1
w(e)

)

⊕
⊕

c∈EC(v)

(

|c|
w(e)

)

N



Now, it can be shown that by iterating these equations, we always reach the
limit in a finite number of steps (cf. Theorem 1). The second step is to extract
the set of minimal points out of a semilinear set (cf. Section 4.3).

4.2 The Improved Approach

A problem with the previous approach is that it requires to compute and use all
the elementary cycles in the graph. Or, it is well known that their number is at
worst exponential.

Since we are interested in computing the optimal paths, we restrict ourselves
to elementary critical cycles(ECC) only and optimal paths. That is, we attempt

to compute sets Xsv as the least fixpoint solution with

(

0
0

)

∈ Xss to the system

of equations, for all v:

Xsv = min





⋃

e=(u,v)∈E

Xsu ⊕

(

1
w(e)

)

⊕
⊕

c∈ECC(v)

(

|c|
w(c)

)

N





As before, we compute the sets Xsv as the limit of sequences X
(k)
sv defined as

follows:

X(k+1)
sv = min





⋃

e=(u,v)∈E

X(k)
su ⊕

(

1
w(e)

)

⊕
⊕

c∈ECC(v)

(

|c|
w(c)

)

N





started with X
(0)
ss =

(

0
0

)

and X
(0)
sv = ∅ for all v 6= s.

The following theorem states the correctness of the improved approach:

Theorem 1. Given a weighted graph G = 〈V,E, w〉, for all pairs of nodes u, v ∈
V we have:

– [correctness] the limit set Xuv is semilinear, and Xuv = minPuv,

– [termination] the sequence X
(k)
uv converges in a finite number of steps.

To calculate the critical cycles, we use the Howard’s algorithm [7], which is
known to perform in a remarkable almost linear average execution time.

4.3 Implementing the min Operator

The previous approaches requires the min operator to be implemented on semi-
linear sets X. The formal definition of this operator is: minX = {(m,w) | (m,w) ∈
X and ∀(m,w′) ∈ X ⇒ w ≤ w′}

This operator is effectively implemented by the set of rewriting rules given
in table 1.

The rule (1) applies to linear sets having more than one generator and reduces
their number by one. In this transformation, the optimal generator is kept (the



(1) Y +

„

m1

w1

«

N +

„

m2

w2

«

N ❀

M/m2−1
S

k=0

Y +

„

m1

w1

«

N +

„

km2

kw2

«

[w1/m1 ≤ w2/m2, M = lcm(m1, m2)]

(2)

„

m0

w0

«

+

„

m1

w1

«

N ∪

„

m′

0

w′

0

«

+

„

m2

w2

«

N ❀

M/m1−1
S

k=0

„

m0 + km1

w0 + kw1

«

+

„

M
w1M/m1

«

N ∪

M/m2−1
S

k=0

„

m′

0 + km2

w′

0 + kw2

«

+

„

M
w2M/m2

«

N

[m1 6= m2, gcd(m1, m2)|(m0 − m′

0), M = lcm(m1, m2)]

(3)

„

m0

w0

«

+

„

m
w1

«

N ∪

„

m′

0

w′

0

«

+

„

m
w2

«

N ❀

n1
S

k=0

„

m0 + km
w0 + kw1

«

∪
n2
S

k=0

„

m′

0 + km
w′

0 + kw2

«

∪
„

m0 + (n1 + 1)m
w0 + (n1 + 1)w1

«

+

„

m
w1

«

N

[m|(m0 − m′

0), w1 < w2, n1 = max(0, [((w0 − w′

0) + w2(m
′

0 − m0)/M)/(w2 − w1)])]
[ n2 = max(0, [((w0 − w′

0) + w1(m
′

0 − m0)/M)/(w2 − w1)])]

(4)

„

m0

w0

«

+

„

m
w

«

N ∪

„

m′

0

w′

0

«

+

„

m
w

«

N ❀

n−1
S

k=0

„

m0 + km
w0 + kw

«

∪

„

m′

0

w′

«

+

„

m
w

«

N

[m|(m0 − m′

0), m′

0 ≥ m0, n = (m′

0 − m0)/m, w′ = min(w′

0, w0 + nw)]

(5)

„

m0

w0

«

+

„

m
w

«

N ∪

„

m′

0

w′

0

«

❀

„

m0

w0

«

+

„

m
w

«

N

[m|(m0 − m′

0), m′

0 ≥ m0, w′

0 ≥ w0 + w(m′

0 − m0)/m]

(6)

„

m0

w0

«

+

„

m
w

«

N ∪

„

m′

0

w′

0

«

❀

n−1
S

k=0

„

m0 + km
w0 + kw

«

∪

„

m′

0

w′

0

«

∪

„

m0 + (n + 1)m
w0 + (n + 1)w

«

+

„

m
w

«

N

[m|(m0 − m′

0), m′

0 ≥ m0, w′

0 < w0 + w(m′

0 − m0)/m, n = (m′

0 − m0)/m]

(7)

„

m0

w0

«

∪

„

m0

w′

0

«

❀

„

m0

w0

«

[w0 ≤ w′

0]
Table 1. Rewriting rules for the min operator



one having the best ration w/m) while the others are taken only a finite number
of times.

The rules (2-4) apply to a semilinear sets containing precisely two overlapping
linear sets with one generator each (i.e., sequences). The rule (2) handles the case
where the generators have distinct periods (m values) and simply ’split’ them in
order to obtain a common period (the least common multiple of both periods).
Then, rules (3-4) select the minimum amongst two overlapping linear sets having
the same period. Notice that rule (3) applies for the case where the generator
weights are different, and rule (4) applies for the case where the generator weights
are the same.

Rules (5-6) apply to semilinear sets containing precisely two overlapping
linear sets, one with no generator (i.e, an isolated point) and one with some
generator (a sequence). Rule (5) handles the case where the isolated point has a
bigger value than the one provided by the sequence, and rule (6) the converse.
Finally, rule (7) applies for two isolated points choosing the minimal one.

The following theorem states the corectness of this method:

Theorem 2. Let X be a semilinear set in two dimensions (m,w):

1. [soundness] If X rewrites to X ′ using one of the rules above then minX =
minX ′.

2. [completness] If X cannot be rewritten by any of the rules then minX = X;
3. [termination] Any derivation of X using the rules above eventually termi-

nates in a finite number of steps.

5 An Example

Consider the graph G given in figure 1. We are interested to obtain optimal
paths from the node 1 to all other nodes in the graph.

The system of equations is the following:

X11 = min

{

X12 ⊕

(

1
3

)}

⊕

(

2
4

)

N

X12 = min

{

X11 ⊕

(

1
1

)}

⊕

(

2
4

)

N

X13 = min

{(

X11 ⊕

(

1
2

))

⋃

(

X13 ⊕

(

1
2

))

⋃

(

X14 ⊕

(

1
2

))}

⊕

(

2
3

)

N

X14 = min

{

X13 ⊕

(

1
1

)}

⊕

(

2
3

)

N

X15 = min

{

X14 ⊕

(

1
2

)}

After solving the above system, the minimal solution is the following:



21

1

2 3

4

5

1

2

2

2

3

2

21

1

2 3

4

5

1

2

2

2

3

2

(2,4)

(2,4)

(2,3)

(2,3)

Fig. 1. (a) an example graph (b) the graph annotated with critical nodes and critical
cycles

X11 =

{(

2
4

)

N

}

X12 =

{(

1
1

)

+

(

2
4

)

N

}

X13 =

{(

1
2

)

+

(

2
3

)

N,

(

2
3

)

+

(

2
3

)

N

}

X14 =

{(

2
3

)

+

(

2
3

)

N,

(

3
4

)

+

(

2
3

)

N

}

X15 =

{(

3
5

)

+

(

2
3

)

N,

(

4
6

)

+

(

2
3

)

N

}

6 Conclusions

We have addressed the problem of finding minimal ratio paths in a weighted
graph. This problem is of interest to the verification community, as it provides
an effective method for the analysis of flat counter automata with DBM con-
straints, which is one of the most general class of infinite state systems, known to
be decidable. Our solution relies on computing the least fixed point of a system
of set constraints. This computation is accelerated by adding one elementary
cycle at the time, and using a performant algorithm to select the elementary



cycles of minimal ratio. Then computing the minimum function is done by ap-
plying exhaustively a set of rewriting rules. The techniques presented have been
implemented in a tool for the analysis of flat counter automata which is to be
released soon.

References

1. A. Annichini, A. Bouajjani, and M.Sighireanu. Trex: A tool for reachability analysis
of complex systems. In Proc.CAV, volume 2102 of LNCS, pages 368 – 372. Springer,
2001.

2. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: Fast accelereation of symbolic
transition systems. In Proc. TACAS, volume 2725 of LNCS. Springer, 2004.

3. B. Boigelot. On iterating linear transformations over recognizable sets of integers.
TCS, 309(2):413–468, 2003.

4. Marius Bozga, Radu Iosif, and Yassine Lakhnech. Flat parametric counter au-
tomata. In ICALP, LNCS 4052, pages 577–588, 2006.

5. Jean Cochet-Terrasson, Guy Cohen, Stephane Gaubert, Michael Mc Gettrick, and
Jean-Pierre Quadrat. Numerical computation of spectral elements in max-plus al-
gebra.

6. Hubert Comon and Yan Jurski. Multiple Counters Automata, Safety Analysis and
Presburger Arithmetic. In Proc. CAV, volume 1427 of LNCS, pages 268 – 279.
Springer, 1998.

7. E.V. Denardo and B.L. Fox. Multichain markov renvewal programs. SIAM Journal

of Applied Mathematics, pages 16:468–487, 1968.
8. A. Finkel and J. Leroux. How to compose presburger-accelerations: Applications

to broadcast protocols. In Proc. FST&TCS, volume 2556 of LNCS, pages 145–156.
Springer, 2002.

9. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces.
In Proc. CAV, volume 1427 of LNCS, pages 88–97. Springer, 1998.


