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On De
idability within the Arithmeti
 ofAddition and DivisibilityMarius Bozga and Radu IosifVerimag/CNRS,2 Avenue de Vignate,38610 Gi�eres, Fran
efbozga, iosifg�imag.frAbstra
t. The arithmeti
 of natural numbers with addition and divis-ibility has been shown unde
idable as a 
onsequen
e of the fa
t thatmultipli
ation of natural numbers 
an be interpreted into this theory,as shown by J. Robinson [?℄. The most important de
idable subsets ofthe arithmeti
 of addition and divisibility are the arithmeti
 of addition,proved by M. Presburger [?℄, and the purely existential subset, proved byL. Lipshitz [?℄. In this paper we de�ne a new de
idable fragment of theform QzQ1x1 : : : Qnxn'(x; z) where the only variable allowed to o

urto the left of the divisibility sign is z. For this form, 
alled L(1)j in thepaper, we show the existen
e of a quanti�er elimination pro
edure whi
halways leads to formulas of Presburger arithmeti
. Subsequently we gen-eralize the L(1)j form to 9z1; : : : 9zmQ1x1 : : : Qnxn'(x; z), where the onlyvariables appearing on the left of divisibility are z1; : : : ; zn. For this form,
alled 9L(n)j , we show de
idability of the positive fragment, namely byredu
tion to the existential theory of the arithmeti
 with addition anddivisibility.The L(1)j , 9L(n)j fragments were inspired by a real appli
ation in the �eldof program veri�
ation. We 
onsidered the satis�ability problem for aprogram logi
 used for quantitative reasoning about memory shapes, inthe 
ase where ea
h re
ord has at most one pointer �eld. The redu
tionof this problem to the positive subset of 9L(n)j is sket
hed in the end ofthe paper.



1 Introdu
tionThe unde
idability of �rst-order arithmeti
 of natural numbers o

urs as a 
on-sequen
e of K. G�odel's In
ompletness Theorem [?℄. The basi
 result has beendis
overed by A. Chur
h [?℄, and the essential unde
idability (unde
idablity ofits every 
onsistent extension) by B. Rosser [?℄, both as early as 1936. The mostfamous 
onsequen
es of this result are the unde
idability of the theory of natu-ral numbers with multipli
ation and su

essor fun
tion and with divisibility andsu

essor fun
tion, both dis
overed by J. Robinson in [?℄. To 
omplete the pi
-ture, the existential fragment of the full arithmeti
 i.e., Hilbert's Tenth Problemwas proved unde
idable by Y. Matiyasevi
h [?℄. The interested reader is furtherpointed to [?℄ for an ex
ellent survey of the (un)de
idability results in arithmeti
.On the positive side, the de
idability of the arithmeti
 of natural numberswith addition and su

essor fun
tion has been shown by M. Presburger [?℄, resultwhi
h has found many appli
ations in modern 
omputer s
ien
e, espe
ially inthe �eld of automated reasoning. Another important result is the de
idabilityof the existential theory of addition and divisibility, proved independently by A.P. Beltyukov [?℄ and L. Lipshitz [?℄. Namely, it is shown that formulas of theform 9x1; : : : 9xnVKi=1 fi(x)jgi(x) are de
idable, where fi; gi are linear fun
tionsover x1; : : : xn and the symbol j means that ea
h fi is an integer divisor ofgi when both are interpreted over Nn. The de
idability of formulas of the form9x1; : : :9xn'(x), where ' is an open formula in the language h+; j; 0; 1i, is statedas a 
orollary in [?℄.In this paper we work within the theory of natural numbers with additionand divisibility, our results being also appli
able to integers. We start from anobservation en
ountered in [?℄, namely that an atomi
 proposition f(x; y)jg(x; y)where y o

urs in f with a non-zero 
oeÆ
ient, 
an be repla
ed by an equivalentformula '(x; y) of Presburger arithmeti
, under the assumption y � xi, for allxi 2 x. An immediate 
onsequen
e is that any formula of hN;+; j; 0; 1i, su
hthat for any atomi
 propositon f(x)jg(y) we have y � x, 
an be dire
tly de�nedin Presburger arithmeti
, hen
e it is de
idable. This simple fa
t motivates thesear
h for more expressive de
idable subsets of hN;+; j; 0; 1i, in whi
h at leastone variable that o

urs on the right side of the divisibility sign does not o

ursimultaneously on the left.Our main result is the de
idability of formulas of the formQzQ1x1 : : :Qnxn'(x; z)where Q;Q1 : : : Qn 2 f9;8g, and all divisibility propositions are of the formf(z)jg(x; z), with f; g linear fun
tions. This form is 
alled L(1)j , as there is onlyone variable that appears on the left of j. We show that any formula in this frag-ment 
an be evaluated by applying quanti�er elimination to the open formulaQ1x1 : : : Qnxn'(x; z), the result being a Presburger formula in whi
h z o

ursfree. Next, a generalization is made by allowing multiple existentially quanti�edvariables o

ur to the left of the divisibility sign that is, formulas of the form9z1 : : : 9znQ1x1 : : : Qmxm'(x; z), where the only divisibility propositions are ofthe form zijf(x; z). Using essentially the same method as in the 
ase of n = 1,we show de
idability of the positive form of the 9L(n)j subset i.e., in whi
h no1



divisibility proposition o

urs under negation. However the result of quanti�erelimination for the positive 9L(n)j fragment 
annot be expressed in Presburgerarithmeti
, but in the existential fragment of hN;+; j; 0; 1i. Unfortunately, wehave not been able to answer the de
idability problem for 9L(n)j in the 
ase wherepositive and negative divisibility propositions are mixed together. This fragmentis provably more expressive than the existential fragment of hN;+; j; 0; 1i.The worst-
ase 
omplexity of the quanti�er elimination method is non-elementaryand the de
ision 
omplexity for the alternation-free fragments of L(1)j , 9L(n)+j arebounded by a triple exponential.We applied the de
idability result for the positive 9L(n)j fragment to a 
on-
rete problem in the �eld of program veri�
ation. More pre
isely, we 
onsider aspe
i�
ation logi
 used to reason about the shape of the re
ursive data stru
-tures generated by imperative programs that handle pointers. This logi
, 
alledalias logi
 with 
ounters [?℄ is interpreted over deterministi
 labeled graphs, ex-pressing linear arithmeti
 relations between the lengths of 
ertain paths within agraph. The satis�ability problem has been shown unde
idable over unrestri
teddag, and impli
itly, graph, models but de
idability 
an be shown over tree mod-els. We 
omplete the pi
ture by showing de
idability of this logi
 over stru
tures
omposed of an arbitrary �nite number of lists. The diÆ
ulty w.r.t trees 
on-sists in the fa
t that lists may have loops, whi
h introdu
e divisibility 
onstraints.However, as it will be shown, the problem remains within the bounds of the pos-itive 9L(n)j fragment of hN;+; j; 0; 1i. Despite its 
atastrophi
 
omplexity upperbound, this result enables, in prin
iple, the automati
 veri�
ation of quantita-tive properties for an important 
lass of programs that manipulate list stru
turesonly.2 PreliminariesThroughout this paper we work with �rst-order logi
 over the language h+; j; 0; 1i.A formula in this language is interpreted over N in the standard way: + denotesthe addition of natural numbers, j is the divisibility relation, and 0; 1 are the
onstants zero and one. In parti
ular, we 
onsider that 0j0, 0 6 j n and nj0, for alln 2 N n f0g. In the following we will intentionally use the same notation for amathemati
al 
onstant symbol and its interpretation, as we believe, no 
onfusionwill arise from that. For spa
e reasons all proofs are in
luded in Appendix B.The results in this paper rely on two theorems from elementary numbertheory. The �rst one is the well-known Chinese Remainder Theorem (CRT) [?℄and the se
ond one is a (prized) 
onje
ture proposed by P. Erd�os in 1963 andproved by R. Crittenden and C. Vanden Eynden in 1970 [?℄.The Chinese Remainder Theorem states the following equivalen
e: 9xVKi=1mij(x�ri)$ V1�i;j�K(mi;mj)j(ri�rj), wheremi 2 N; ri 2 Zand (a; b) denotes2



the greatest 
ommon divisor of a and b1. The CRT 
an be slightly generalizedas follows:Corollary 1. For any integers mi 2 N and ai 2 Z n f0g; ri 2 Z with 1 � i �K we have: 9xVKi=1mij(aix � ri)  ! V1�i;j�K(aimj ; ajmi)j(airj � ajri) ^VKi=1(ai;mi)jriUsually the CRT is used as a means of solving systems of linear 
ongruen
es.A linear 
ongruen
e equation is an equation of the form ax � b mod m, forsome a; b 2 Z and m 2 N n f0g. Su
h an equation is solvable if and only if(a;m)jb. If the equation admits one solution y, then the solutions are given bythe arithmeti
 progression fx � y mod m(a;m)g.The se
ond Theorem, stated as a 
onje
ture by Erd�os, is the following:Theorem 1 ([?℄). Let a1; : : : ; an 2 Z; b1; : : : ; bn 2 N n f0g. Suppose there existsan integer x0 satisfying none of the 
ongruen
es: fx � ai mod bigni=1. Thenthere is su
h an x0 among 1; 2; 3; : : : ; 2n.We shall use this theorem rather in its positive form i.e., n arithmeti
 progres-sions fai + biZgni=1 
over Z if and only if they 
over the set 1; 2; 3; : : : ; 2n.If we interpret a linear 
ongruen
e over Z instead of N we obtain that thesolutions form an in�nite progression 
ontaining both positive and negative num-bers. In other words, ax � b mod m has a solution in N if and only if it hasa solution in Z. The same reasoning applies to the CRT, sin
e the solution ofa system of linear 
ongruen
es is the interse
tion of a �nite number of progres-sions, hen
e a progression itself. As for Erd�os' Conje
ture, we 
an see that it istrue for positive integers only (Corollary 3 in Appendix A). In 
on
lusion, theabove theorems hold for Z as well as they do for N and vi
eversa. In general, allresults in this paper apply the same to integer and natural numbers, thereforewe will not make the distin
tion unless ne
essary2.3 Setting up the S
eneThe dis
ussion of this se
tion is intended to motivate formally our de�nitions ofde
idable subsets of hN;+; j; 0; 1i, by establishing relations between our resultsand the existing ones [?℄, [?℄.For the purposes of this dis
ussion, we 
onsider two di�erent relations be-tween theories: de�nability and redu
ibility. Let T1 and T2 be two theories in-terpreted over the same universe. On one hand, we say that T1 is de�nable in T2if, for every relation symbol R(x1; : : : ; xn) in the language of T1 there exists anopen formula �R(x1; : : : ; xn) in the language of T2 su
h that, for any interpreta-tion of x1; : : : ; xn, R holds in T1 if and only if �R holds in T2. On the other hand,1 The se
ond part of the Theorem, expressing the solutions x to the system of linear
ongruen
es on the left hand of the equivalen
e is not used in this paper.2 For instan
e, it is not 
lear whether one 
an de�ne the order relation in hZ;+; j; 0; 1i,hen
e we will work with hZ;+; j;�; 0; 1i instead of it, whenever needed.3



we say that T1 is redu
ible to T2 if there exists a Turing ma
hine that transformsevery formula �1(x1; : : : ; xn) in the language of T1 into a formula �2(x1; : : : ; xn)in the language of T2, su
h that, for any interpretation of x1; : : : ; xn, �1 holds inT1 if and only if �2 holds in T2. Obviously, de�nability implies redu
ibility, butnot vi
eversa. Our sear
h for de
idable theories is pointed towards theories thatare not trivially de�nable in a well-known de
idable theory. As it will turn out,our results are however redu
ible to known theories.9L(n)jhN;+; j; 0; 1i9�8 9L(n)+jL(1)j hN;+; 0; 1ihN;+; j; 0; 1i�
hN;+; j; 0; 1i9

Fig. 1.Figure 1 des
ribes the 
ontributions of this paper. The dotted arrows repre-sent de�nability relations, while the solid ones stand for redu
ibility relations.All theories presented here are interpreted over N, but the relations transfer to Zwithout diÆ
ulty. We denote by hN;+; j; 0; 1i� the fragment of hN;+; j; 0; 1i, ob-tained by applying the restri
tion that ea
h divisibility proposition is of the formf(x)jg(y), where x � y. By hN;+; 0; 1i we denote the Presburger arithmeti
and hN;+; j; 0; 1i9 stands for the purely existential subset of hN;+; j; 0; 1i. ByhN;+; j; 0; 1i9�8 we denote the fragment of hN;+; j; 0; 1i of the form 9x1 : : : 9xn8y '(x; y).The 
ontribution of this paper is the introdu
tion of the L(n)j fragment ofhN;+; j; 0; 1i. In general, L(n)j denotes the 
lass of formulas where only the �rstn variables (in prenex form) appear to the left of the divisibility sign in an atomi
proposition. Formally, L(n)j is the set of formulasQ1z1 : : :QnznR1x1 : : : Rmxm'(x; z)whereQi; Rj 2 f9;8g and the only divisibility propositions are f(z)jg(x; z), withf and g linear fun
tions. We denote by 9L(n)j the subset of L(n)j obtained by set-ting Qi � 9, for all 1 � i � n and, by 9L(n)+j , the set of all formulas of 9L(n)j inwhi
h no divisibility proposition o

urs within the s
ope of a logi
al negation.The de�nability of hN;+; j; 0; 1i� into hN;+; 0; 1i o

urs as a 
onsequen
e ofthe following simple lemma:Lemma 1 ([?℄). Let f and g be linear fun
tions, f(x; y) = ay+h(x), a > 0 andg(x; y) = b0+�p�1i=1 bjxj+bpy. Then the following holds: f(x; y)jg(x; y)^Vni=1 y �xi $ W�pj=0bjk=1 kf(x; y) = g(x; y). 4



Let �(x) be an open formula of hN;+; j; 0; 1i� , to whi
h we adjoin the validformula W1�i1;:::;in�n xi1 � xi2 ^ : : : ^ xin�1 � xin . Now return to DNF andapply Lemma 1 to repla
e ea
h divisibility proposition by a Presburger formula.This is possible due the assumption x � y for ea
h f(x)jg(y) o

urring in �.So an essential ingredient of non-trivial subtheories of hN;+; j; 0; 1i is theo

urren
e of variables ex
lusively to the right of the divisibility sign. In the def-inition of L(n)j we take this fa
t into a

ount, allowing unrestri
ted quanti�
ationover these variables. On the other hand, in 9L(n)j , all variables on the left of thedivisibility sign are existentially quanti�ed. The latter assumption is motivatedby a 
loser look at the unde
idable fragment hN;+; j; 0; 1i9�8. Although synta
-ti
ally very similar to 9L(n)j , here we are allowed to use the last (universallyquanti�ed) variable on both sides of the divisibility sign, as suggested by theunde
idability of the arithmeti
 with addition and relative primeness from [?℄.The remaining relations from Figure 1, namely the redu
tions from L(1)j toPresburger arithmeti
 and from 9L(n)+j to hN;+; j; 0; 1i9 are the topi
s of Se
tions4 and 5.4 De
idability of L(1)jIn this se
tion we show that the L(1)j 
lass 
an be e�e
tively redu
ed to thehN;+; 0; 1i theory. Mostly for 
larity, we will work �rst with a simpli�ed form,in whi
h ea
h divisibility atomi
 proposition is of the form zjf(x; z), and thenwe generalize to propositions of the form h(z)jf(x; z), with f; h linear fun
tions.Hen
e we start explaining the redu
tion of formulas of the following simple form:Q1x1 : : : Qnxn N_i=1� Mîj=1 zjfij(x; z) ^ Pîj=1 z 6 jgij(x; z) ^ 'i(x; z)� (1)where fij and gij are linear fun
tions with integer 
oeÆ
ients and 'i, are Pres-burger formulas with x and z free.The general form (1) is not yet suitable for quanti�er elimination due to thefollowing in
onvenient: the same variable xk, for some 1 � k � n, might appearboth in a divisibility proposition and in a Presburger formula 'i(x; z). This pre-
ludes the appli
ation of the CRT in the given form (Corollary 1). To over
omethis problem, we eliminate �rst the 'i subformulas from (1) as des
ribed in thefollowing.Sin
e Presburger arithmeti
 has quanti�er elimination [?℄, we 
an assumew.l.o.g. that 'i(x; z) is in the form WkVl hkl(x; z) = 0 ^ Vl 
kljh0kl(x; z),with hkl; h0kl linear fun
tions with integer 
oeÆ
ients, and 
kl positive integer
onstants. Suppose now that xm, for some 1 � m � n, appears in some hkl(x) =aklxm + bkl(x; z) with 
oeÆ
ient akl 6= 0. We multiply through with akl byrepla
ing all formulas of the form h(x; z) = 0 with aklh(x; z) = 0, 
jh0(x; z) withakl
jaklh0(x; z), and zjf(x; z) with aklzjaklf(x; z). Then we eliminate aklxm by5



substituting it with �bkl(x; z), whi
h does not 
ontain xm. We repeat the abovesteps until all x variables o

urring within linear equations have been eliminated.The resulting formula is of the form:Q1x1 : : : Qnxn N_i=1� Mîj=1 zij jfij(x; z) ^ Pîj=1 zij 6 jgij(x; z) ^  i(z)� (2)where ea
h zij is either aijz, aij 2 N n f0g, or a 
onstant 
ij 2 N and  i(z)are Presburger formulas in whi
h z o

urs free. In the rest of the se
tion weshow how to redu
e an arbitrary formula of the form (2) to an equivalent Pres-burger formula in two phases: �rst, we su

essively eliminate the quanti�ersQ1x1; : : : ; Qnxn and se
ond, we de�ne the resulting solved form into Presburgerarithmeti
.Quanti�er EliminationWe 
onsider three 
ases, based on the type of the last quanti�erQn (9;8) and thesign of the divisibility propositions o

urring in the formula (positive, negative).Namely, we treat the 
ases existential positive, universal positive and universalmixed. The remaining 
ase (existential mixed) 
an be dealt with by �rst negatingand then applying the universal mixed 
ase.The Existential Positive Case: In this 
ase the formula (2) be
omes:N_i=1 9xn Mîj=1 zij jfij(x; z) ^  i(z) (3)W.l.o.g. we 
an assume that Mi 6= 0 for all 1 � i � N , and that fij(x) =aijxn + gij(x), with all 
oeÆ
ients aij 6= 0. Applying Corollary 1 to the i-thdisjun
t, we obtain (the original i subs
ript has been omitted throughout):^1�k;l�M(akzl; alzk)j(akgl � algk) ^ ^1�k�M(ak; zk)jgk ^  j(z)In the resulting formula we have four types of divisibility propositions, whi
h we
an write equivalently as:{ (aia0z; aja00z)j(aigj � ajgi)$ (aia0; aja00)zj(aigj � ajgi){ (aiaz; aj
i)j(aigj�ajgi)$ Waj
i�1r=0 aiaz � r mod aj
i^(aj
i; r)j(aigj � ajgi){ (ai; az)jgi $ Wai�1r=0 az � r mod ai ^ (ai; r)jgi{ (ai; 
i)jgi is left untou
hed.We have used the equivalen
e (az; 
)jf $ W
�1r=0 az � r mod 
 ^ (r; 
)jf . Nowaz � r mod 
 is a Presburger formula with z free. The formula 
an now beeasily written ba
k in the form (3), with n � 1 variables of type xi, instead ofn. The size of the resulting formula (in DNF) is at most quadrati
 in the size ofthe input. 6



The Universal Positive Case It is now 
onvenient to 
onsider the matrix of(2) in 
onjun
tive normal form. In this 
ase the formula (2) be
omes:P̂i=1 8xn Qi_j=1 zij jfij(x; z) _  i(z) (4)W.l.o.g. we 
an assume that fij(x) = aijxn+bij(x; z) with all 
oeÆ
ients aij 6= 0.In ea
h i-
onjun
t, the union of Qi arithmeti
 progressions fx j aijx � �bijmod zijgQij=1 
overs N. By Theorem 1 it is suÆ
ient (and trivially ne
essary) to
over only the �rst 2Qi values. The equivalent form, with xn eliminated, is thefollowing: P̂i=1 2Qît=1 Qi_j=1 zij jaij t+ bij _  i(z)The size of the resulting formula (in CNF this time) is simply exponential in thesize of the input.The Universal Mixed Case Let us 
onsider again the formula (2) with thematrix written in 
onjun
tive normal form:P̂i=18xn� Qi_j=1 zij jfij(x; z) _ Ri_j=1 zij 6 jgij(x; z)� _  i(z) (5)Again, we 
an assume w.l.o.g. that xn o

urs in ea
h fij , gij with a non-zero
oeÆ
ient. Also Qi; Ri 
an be 
onsidered greater than zero for all 1 � i �n, the other 
ases being treated in the previous. If we 
onsider an i-
onjun
tindividually, omitting throughout the i subs
ript, we have:8xn� R̂j=1 zj jgj(x; z)! Q_j=1 zj jfj(x; z)� _  (z)The parenthesized formula 
an be understood as 
overage of an arithmeti
 pro-gression by a �nite union of arithmeti
 progressions. Assuming gj(x; z) = ajxn+bj(x; z) with aj 6= 0, let us 
ompute the period of the set fx : VRj=1 zj jgj(x; z)g =TRj=1fx : ajx � bj mod zjg. Ea
h linear 
ongruen
e ajx � bj mod zj has a pe-riodi
 solution with period zj(zj ;aj) . The period of the interse
tion is the least
ommon multiple of the individual periods i.e., �� zj(zj;aj)	Rj=1�. Sin
e all zj 's areeither ajz, for aj 2 N n f0g or some 
onstants 
j , using Lemma 3 from Ap-pendix A, we 
an simplify the expression of the period to the form zkj(z;lj) forsome (e�e
tively 
omputable) 
onstant values kj ; lj 2 N n f0g. Now we 
an ap-ply Theorem 1 and eliminate 8xn from the i-th 
onjun
t of the formula (5).Supposing fj(x; z) = 
jxn + dj(x; z) for some 
j ; dj 2 Z; 
j 6= 0, the result is::9yVRj=1 zj jajy + bj(x; z) _9yVRj=1 zj jajy + bj(x; z) ^V2Qt=1WQj=1 zj j
j�y + zkjt(z;lj)�+ dj(x; z)7



The �rst disjun
t is for the trivial 
ase, in whi
h the set fx : VRj=1 zj jgj(x; z)gis empty, while the se
ond disjun
t assumes the existen
e of an element y ofthis set and en
odes the equivalent 
ondition of Theorem 1, namely that the�rst 2Q elements of this set, starting with y, must be 
overed by the union ofQ progressions. Now y 
an be eliminated from the above formula using CRT, asin the existential positive 
ase, treated in the previous. Noti
e that, in additionto the existential positive 
ase, we have introdu
ed a subterm of the form zk(z;l)within the fun
tions fj . This is re
e
ted in the de�nition of the solved form, inthe next se
tion. As in the previous 
ase, the size of the output formula is simplyexponential in the size of the input.The Solved Form The three 
ases from the previous se
tion 
an be su

essivelyapplied to eliminate all quanti�ed variables Q1x1; : : :Qnxn from (2). For anyformula of type (2), the result of this transformation belongs to the followingsolved form: N_i=1 Mîj=1 aijzjfij(z) ^ Pîj=1 bijz 6 jgij(z) ^  i(z) (6)where aij and bij are positive integers, fij and gij are linear 
ombinations ofterms of the form z(z;k) with k 2 N n f0g3 and  i are Presburger formulas in z.We shall now 
onsider the expressions azjf(z), where a is one of aij ; bij andf is one of fij ; gij . Let f(z) = �ni=1 z
i(z;ki) + 
0. We write azjf(z), equivalently as:_(d1;:::;dn) 2 div(k1)�:::�div(kn) n̂i=1(z; ki) = di ^ aDzjz�ni=1
iDi + 
0Dwhere D = �ni=1di, Di = Ddi and div(k) denotes the set of divisors of k. Noti
ethat the last 
onjun
t of ea
h 
lause implies that zj
0D, i.e., z 2 div(
0D). Theentire formula is then equivalent to:_(d;d1;:::;dn) 2 div(
0D)�div(k1)�:::�div(kn) n̂i=1(d; ki) = di ^ aDdjd�ni=1
iDi + 
0DEa
h divisibility proposition of the solved form 
an thus be evaluated. The solvedform is then either trivially false or equivalent to a disjun
tion of the form i1 _ : : :_ in , for some 1 � i1; : : : ; in � N . The latter is obviously a Presburgerformula.Blo
k Elimination of Universal Quanti�ersThis se
tion presents results that are used in a generalization of the universalpositive and universal mixed 
ases, to perform the elimination of an entire blo
k3 Noti
e that we 
an also write z as z(z;1) .8



of su

essive universal quanti�ers with simple exponential 
omplexity. A set ofve
tors (x1; : : : ; xn) 2 Zn satisfying the linear 
ongruen
e a1x1+: : :+anzn+b � 0mod m is 
alled a n-dimensional arithmeti
 progression. The blo
k quanti�erelimination problem is equivalent to the 
overage of an n-dimensional arithmeti
progression by a �nite union of n-dimensional progressions. The latter 
an besolved in simple exponential time, as shown by the following 
onsequen
e ofTheorem 1:Corollary 2. Let aij 2 Z; bi 2 Z;mi 2 N, 1 � i � k, 1 � j � n. The set ofprogressions f�nj=1aijxj + bi � 0 mod migki=1 
overs Zn if and only if it 
oversthe set f1 : : : 2kgn.This takes 
are of the universal positive 
ase. In the universal mixed 
ase weneed to e�e
tively 
ompute the period of the interse
tion of any given number ofn-dimensional progressions. Let LZ[z℄ denote the monoid of linear polynomials inz, with integer 
oeÆ
ients. Sin
e our problem is parameterized by z, we 
onsidera system of progressions of the form Vki=1�nj=1aijxj � 0 mod z, with solutionsfrom LZ[z℄. We need to show that this set is a �nitely generated monoid, andmoreover, that its base is e�e
tively 
omputable. The following theorem givesthe result:Theorem 2. Let ai 2 Z, 1 � i � n, n > 1.1. The set of integer solutions to the equation �ni=1aixi = 0 is a �nitely gener-ated submonoid M of (Zn;+). It is moreover possible to 
onstru
t a base ofM of size n� 1.2. The set of integer 
oeÆ
ient solutions to the 
ongruen
e �ni=1aixi � 0mod z is a �nitely generated submonoid M [z℄ of (LZn[z℄;+). It is moreoverpossible to 
onstru
t a base ofM [z℄ of the form fv1; : : : ; vn�1; zv1; : : : ; zvn�1; zvng,with v1; : : : ; vn 2 Zn.Theorem 2 gives us the means to 
hara
terize the solution of a system of n-dimensional progressions, parameterized by z. This is done indu
tively. Supposethat we have already 
omputed a base fv1; : : : ; vn�1; zv1; : : : ; zvn�1; zvng for thesystemVk�1i=1 �nj=1aijxj � 0 mod z, a

ording to the se
ond point of Theorem 2.We are now looking after a base generating the solutions to Vki=1�nj=1aijxj � 0mod z. The solutions to the system are of the form x = �n�1j=1 �jvj + z�nj=1�jvjwith �j ; �j 2 Z. Introdu
ing those values into �ni=1akixi � 0 mod z, we ob-tain that �ni=1aki��n�1j=1 �jv(i)j + z�nj=1�jv(i)j � � 0 mod z must be the 
ase,where v(i) denotes the i-th 
omponent of a ve
tor v. This is furthermore equiv-alent to �ni=1aki�n�1j=1 �jv(i)j � 0 mod z, or to the system with unknowns �j :�n�1j=1 ��ni=1akiv(i)j ��j � 0 mod z. A

ording to Theorem 2, the solutions of thelatter system are generated by a base fu1; : : : ; un�2; zu1; : : : ; zun�1g. Thus thesolutions of the original system Vki=1�nj=1aijxj � 0 mod z are of the form9



x = �n�2l=1 
l�n�1j=1 u(j)l vj + z�n�1l=1 Æl�nj=1u(j)l vj , with 
l; Æl 2 Z. The blo
k quan-ti�er elimination 
an be now performed along the same lines of the universalmixed 
ase, dis
ussed in the previous.Extending to the entire L(1)jLet us now revisit the quanti�er elimination pro
edure for the general 
ase,where the divisibility propositions are of the form f(z)jg(x; z), with f; g linearfun
tions. The only two di�eren
es w.r.t. the 
ase f(z) = z are en
ounteredwhen applying the existential positive and the universal mixed 
ases.In the existential positive 
ase, subsequent to the appli
ation of the CRT,we need to simplify formulas of the following two forms, where ai 2 N andfi(z); fj(z); hij(x; z); hi(x; z) are arbitrary linear fun
tions:1. (fi; fj)jhij . We distinguish two 
ases:{ if either fi divides fj or fj divides fi in terms of polynomial division,then (fi; fj) = fi or (fi; fj) = fj , respe
tivelly. Let us 
onsider the �rstsituation, the other one being symmetri
. We obtain, equivalently, fijr,where r is the 
onstant polynomial representing the remainder of hijdivided by fi. This 
an be expressed as a �nite disjun
tion in Presburgerarithmeti
.{ otherwise, (fi; fj) 
an be written equivalently as (gij ; k) where gij is alinear fun
tion in z and k 2 Z, by applying Eu
lid's g.
.d. algorithm inthe polynomial ring Z[z℄. We have redu
ed the problem to the 
ase 2below.2. (fi; ai)jhi is equivalent to W0�r<ai fi � r mod ai ^ (r; ai)jhi.In the universal mixed 
ase, subsequent to the appli
ation of Erd�os Con-je
ture, we obtain subterms of the form � = �� hj(hj;aj)	Rj=1� o

urring withinatomi
 propositions of the form hijai� + gi. where hi(z); hj(z) and gi(x; z)are linear fun
tions. The �rst step is to substitute (hj ; aj) for 
onstants i.e.� = ��hjdj 	Rj=1�, for some dj 2 div(aj). The equivalent form is now: � =�fDjhjgRj=1�D = �Rj=1DjhjD�fDjhjgRj=1� where D = �Rj=1 and Dj = Ddj . Now the denomi-nator expression is the g.
.d. of a number of linear fun
tions in z, and 
an beredu
ed either to a linear fun
tion or to a 
onstant, 
hosen from a set of divisors,like in the existential positive 
ase above. Hen
e � is a polynomial from Q[z℄,of degree at most R. Every atomi
 proposition involving � 
an be put in theform h(z)jp(z), where h; p 2 Z[z℄ (just multiply both sides with the l.
.m of alldenominators in �). We 
onsider the following two 
ases:{ if z o

urs in h with a non-zero 
oeÆ
ient, let r be the remainder of p dividedby h, the degree of r being zero. Hen
e h(z)jr, whi
h is written as a �nitedisjun
tion in Presburger arithmeti
.{ otherwise, h is a 
onstant 
 2 Z. Suppose w.l.o.g. that 
 is positive. Wehave p(z) � 0 mod 
, whi
h is further equivalent to Wr2f0;:::;
�1g z � rmod 
 ^ p(r) � 0 mod 
 10



Example It is time to illustrate our method by means of an example. Let us�nd all positive integers z that satisfy the formula 8x8y zj12x+4y! zj3x+12y.To eliminate y we apply the universal mixed 
ase and obtain:8x �:9y zj12x+ 4y _ 9y zj12x+ 4y ^ zj3x+ 12y ^ zj3x+ 12(y + z(z; 4))�By an appli
ation of the CRT, 9y zj12x+4y is equivalent to (z; 4)j12x whi
h istrivially true, sin
e (z; 4)j4 and 4j12x. Moreover, if zj3x+12y, then zj3x+12y+12 z(z;4) is equivalent to zj12 z(z;4) , whi
h is also trivially true. Hen
e, the formula
an be simpli�ed down to: 8x9y zj12x + 4y ^ zj3x + 12y By an appli
ationof the CRT we obtain: 8x zj33x ^ (z; 4)j12x ^ (z; 12)j3x whi
h, after trivialsimpli�
ations, is equivalent to zj33^ (z; 12)j3, leading to z 2 f1; 3; 11; 33g. utComplexity Assessment The quanti�er elimination method has non-elementaryworst-
ase 
omplexity. Let ' be any formula of L(1)j . Sin
e the elimination of anexistential quanti�er in the positive 
ase 
an be done in time j'j2, and the elim-ination of any blo
k of n universal quanti�ers in time 2nj'j, the only reason fornon-elementary blow-up lies within the alternation of existential and universalquanti�ers. Even in the positive 
ase, alternation of quanti�ers 
auses a for-mula to be translated from disjun
tive to 
onjun
tive normal form or vi
eversa,this fa
t alone introdu
ing an exponential blow-up. However it is 
lear that thealternation-free subset of L(1)j 
an be dealt with in at most simple exponentialtime. Sin
e Presburger arithmeti
 is in DEXPTIME [?℄, the whole de
ision pro-
edure takes at most 222m2:::2mj'jo2d time, where d is the alternation depth of 'and m the maximum size of an alternation-free quanti�er blo
k.5 De
idability of 9L(n)+jAfter performing the preliminary substitution of variables xi that o

ur togetherwith some zj in a linear 
onstraint, we redu
e a formula of the 9L(n)j 
lass to thefollowing form:9z1 : : : 9znQ1x1 : : : Qmxm N_i=1� Mîj=1 fij(z)jgij(x; z)^ Pîj=1 f 0ij(z) 6 jg0ij(x; z)^'i(z)�where fij ; gij ; f 0ij ; g0ij are all linear fun
tions. In this se
tion we redu
e an arbi-trary positive 9L(n)j formula to an existentially quanti�ed formula of hN;+; j; 0; 1i.In other words, we suppose that Pi = 0, for all 1 � i � n.We are going to apply essentially the same quanti�er elimination methodfrom Se
tion 4 and analyze its out
ome in 
ase of multiple variables of type zi.Let us have a look �rst at the existential 
ase i.e., Qm � 9. Appli
ation of theCRT to eliminate xm yields atomi
 propositions of the form (f1; f2)jg12, where11



g12(x; z) is a linear fun
tion. On the other hand, in the universal 
ase (Qm � 8)we just substitute xm by a 
onstant quanti�ed over a �nite range f1; : : : ; 2Migfor some 1 � i � N . Sin
e negation does not involve divisibility propositions,the universal mixed 
ase does not apply. The solved form is, in this 
ase:N_i=1 Mîj=1 �ffk(z)gPijk=1�jhij(z) ^  i(z)where, as usual, fk and hij are linear fun
tions over z. Sin
e the g.
.d. operatoris left-right asso
iative, we 
an apply CRT and write ea
h divisibility proposition(f1; : : : ; fP )jh in the equivalent form:9y1 : : :9yP�1 f1jy1 � h ^ P�1̂i=2 fijyi � yi�1 ^ fP jyP�1Sin
e z1; : : : ; zn o

ur existentially quanti�ed, we have obtained that 9L(n)+j 
anbe redu
ed to hN;+; j; 0; 1i9 , hen
e it is de
idable. The worst-
ase 
omplexitybound for the quanti�er elimination is, as in the 
ase for L(1)j , non-elementary.A

ording to [?℄, the de
ision 
omplexity for the underlying theory is boundedby 2(N+1)8N3 , where N is the maximum between j'j and the maximum absolutevalue of the 
oeÆ
ients in '4.Unfortunately, we haven't been able to solve the de
idability of the entire9L(n)j 
lass as of yet. This 
lass appears to be stri
tly more expressive thanhN;+; j; 0; 1i9 , sin
e e.g. the least 
ommon multiple relation [x; y℄ = z 
an bede�ned in the former but not in the latter. The result of applying quanti�erelimination on formulas of 9L(n)j with negation 
an be de�ned in the existentialfragment of hN;+; [℄; 0; 1i, however the latter is shown to be unde
idable5.6 Appli
ation to the Veri�
ation of Programs with ListsThe results in this paper are used to solve a de
ision problem related to theveri�
ation of programs that manipulate dynami
 memory stru
tures, spe
i�edby re
ursive data types. Examples in
lude lists, trees, and, in general, graphs.We are interested in establishing shape invariants su
h as e.g. absen
e of 
y
lesand data sharing, but also by quantitative properties involving lengths of pathswithin the heap of a program. For instan
e, 
onsider a list reversal program thatworks by keeping two disjoint lists and moving pointers su

essively from onelist to another. A shape invariant of this program is that, given a non-
y
li
 list4 A
tually this expression is the result of some simpli�
ations, the original expressionbeing rather intri
ate.5 Use [x; x+1℄ = x2+x to de�ne the perfe
t square relation, and (x+y)2�(x�y)2 = 4xyto de�ne multipli
ation. 12



as input, the two lists are always disjoint. A quantitative invariant is that thesum of their lengths must equal the length of the input list.In order to express shape and quantitative properties of the dynami
 mem-ory of programs performing sele
tor updating operations, we have de�ned aspe
i�
ation logi
 
alled alias logi
 with 
ounters [?℄. Formulas in this logi
 areinterpreted over �nite dire
ted graphs with edges labeled with symbols from a�nite alphabet �. Formally su
h a graph is a triple G = hN; V;Ei, where N isthe set of nodes, E : N � � ! N is the deterministi
 edge relation, V � N isa designated set of nodes 
alled variables on whi
h the requirement is that forno n 2 N; � 2 �: E(n; �) 2 V . In other words, the graph is rooted on V . Apath in the graph is a �nite sequen
e � = v�1�2 : : : 2 V ��. Sin
e the graph isdeterministi
, every path may lead to at most one node. Let b� denote this node,if de�ned. We say that two paths �1 and �2 are aliased if 
�1;
�2 are de�ned and
�1 = 
�2. A quantitative path is a sequen
e �(x) = v�f11 �f22 : : : , where x is a�nite set of variables, interpreted over N, and f1; f2; : : : are linear fun
tions onx. Given an interpretation of variables � : x! N, the interpretation of a quanti-tative path �, denoted as �(�), is the result of evaluating the fun
tions f1; f2; : : :and repla
ing ea
h o

urren
e of �k by the word � : : : �, repeated k times.The logi
 of aliases with 
ounters is the �rst-order additive arithmeti
 ofnatural numbers, to whi
h we add alias propositions of the form �1(x)3�2(x).Given an interpretation of variables, an alias proposition �13�2 holds in a graphif the interpretations of the quanti�ed paths involved are de�ned and they "meet"in the same node:[�(�1) = [�(�2). The satisfa
tion of a 
losed formula ' on a graphG, denoted as G j= ', is de�ned re
ursively on the syntax of ', as usual.For example, to spe
ify that u and v are two program variables pointingtowards two disjoint non-
y
li
 lists 
hained by the sele
tor �eld �, and whoselengths sum up to l, we write the following formula. The notation Æ(�) standsfor �3�, meaning that the node b� is de�ned in the graph.9x9y x+ y = l ^ Æ(u�x) ^ Æ(v�y) ^ 8z8t z > x! :Æ(u�z) ^ z > y ! :Æ(v�z) ^z � x ^ t � y ! :u�z3v�tWe have studied the satis�ability problem for this logi
 and found that itis unde
idable on unrestri
ted graph and dag models, and de
idable on treemodels. For details, the interested reader is pointed to [?℄. The problem in 
aseof simply linked lists is surprisingly more diÆ
ult than for trees, due to thepresen
e of loops. However, we 
an show de
idability now, with the aid of thepositive fragment of the theory 9L(n)j .Sin
e all memory stru
tures 
onsidered are lists, we 
an assume that they areimplemented using only one sele
tor �eld. In other words, the label alphabet 
anbe assumed to be a singleton � = f�g. Hen
e we 
an write ea
h quantitativepath in the normal form v�f , with f a linear fun
tion over x. Consequently,from now on we will only 
onsider alias propositions of the form u�f3v�g.To de
ide whether a 
losed formula ' in alias logi
 with 
ounters has a model,we use a notion of parametri
 graph G(z) over a set of variables z, whi
h is anabstra
tion of an in�nite 
lass of graphs. A formal de�nition of a parametri
13



graph is given in the next se
tion. The important point is that, in the 
aseof lists with one sele
tor, the total number of parametri
 graphs is �nite. Infa
t, this number depends only on the number of program variables. Hen
e, thesatis�ability problem is redu
ed to de
iding whether there exists z1; : : : ; zn su
hthat G(z) j= '. To solve the latter problem, we shall derive an open formula	G;'(z) in the language of L(n)j , su
h that, for all interpretations � : z ! N,	G;'(�(z)) holds if and only if G(�(z)) j= '. The formula ' is then satis�able,if and only if there exists a parametri
 graph G su
h that 9z1; : : :9zn	G;' issatis�able. Moreover, as it will be pointed out, 	G;' is positive and the onlyvariables o

urring on the left of the divisibility are z. Hen
e the latter 
onditionis de
idable. The following dis
ussion is meant only as a proof of de
idability foralias logi
 with 
ounters in the 
ase � = f�g, the algorithmi
 e�e
tiveness ofthe de
ision pro
edure being left out of the s
ope of this paper.A Parametri
 Model Che
king ProblemA parametri
 graph over a set of variables z is a graph G = hN; V;Ei, the onlydi�eren
e w.r.t. the previous de�nition being the edge alphabet, whi
h is takento be �� z, instead of �. In other words, ea
h edge is of the form n �;z�! m. Weassume that ea
h edge is labeled with a di�erent variable from z, and thus jjEjj =jjzjj. Given an interpretation of variables � : z ! N, we de�ne the interpretationof an edge to be the sequen
e of edges n = n1 ��! n2 ��! : : : nk = m of lengthk = �(z), with no bran
hing along the way. The interpretation of a graph is thegraph obtained by repla
ing ea
h edge with its interpretation. As a 
onvention,the values of z are assumed to be stri
tly greater than one. The reason is that,allowing zero length paths in the graph might 
ontradi
t with the requirementthat the graph is deterministi
. A parametri
 graph is said to be in normal formif and only if:{ there are no two adja
ent edges labeled with the same symbol e.g., m �;z1!n �;z2! p, su
h that either the indegree or the outdegree of their 
ommon node(n) is greater than one.{ ea
h node in the graph is rea
hable from a root node in V .Noti
e that ea
h parametri
 graph 
an be put in normal form by repla
ing anypair of edges violating this 
ondition by a single edge labeled with the samesymbol. The interested reader may also 
onsult [?℄ for a notion very similar tothe parametri
 graph.In the rest of this se
tion we shall 
onsider the 
ase � = f�g. For any givenset V of program variables, the number of parametri
 graphs hN; V;Ei in normalform, is �nite. This fa
t o

urs as 
onsequen
e of the following lemma:Lemma 2. Let G = hN; V;Ei be a parametri
 graph over a singleton alphabet,in normal form. Then jjN jj � 2jjV jj.Given a parametri
 graph and a 
losed formula in alias logi
, we are interestedin �nding an open formula 	G;'(z) that en
odes G(z) j= ', for all possible14



interpretations of z. We will de�ne 	G;' indu
tively on the stru
ture of ', by�rst de�ning 
hara
teristi
 formulas for the alias literals (alias propositions andnegations of alias propositions). Intuitively, �13�2 holds on G(z) = hN; V;Ei ifand only if the paths �1 and �2 meet either in an "expli
it" node n 2 N or ina node that does not o

ur in N but is "abstra
ted" within a parametri
 edge.To treat the latter 
ase, we need to add new nodes M = fm1; : : : ;mkg to N ,where k = jjEjj = jjzjj, and repla
e every edge n �;zi�! n0 by n �;z0i�! mi �;z00i�! n0, forsome 1 � i � k, where for ea
h variable zi we have introdu
ed two fresh 
opiesz0i and z00i with the 
onstraint Vki=1 z0i + z00i = zi. Sin
e zi = 1 is possible forsome 1 � i � k, we will allow z0i = 0 or z00i = 0 for the new variables, while the
ondition zi > 0 stays for the old ones. With this notation, Figure 2 de�nes the
hara
teristi
 formulas 	G;l for alias literals l.G j= �13�2 : _n2N[M
�1 = n ^
�2 = n _ _n 2 Nm 2Mn �;z! m orm �;z! n
�
�1 = n ^
�2 = m _
�1 = m ^
�2 = n�^ z = 0

G 6j= �13�2 : _n1; n2 2 N [Mn1 6= n2 
�1 = n1 ^
�2 = n2 ^ ^n 2 Nm 2Mn �;z! m orm �;z! n
�
�1 = n ^
�2 = m _
�1 = m ^
�2 = n�! z > 0

Fig. 2.Sin
e both positive and negative literals 
an be en
oded as positive boolean
ombinations of equalities of the form b� = n, it is suÆ
ient to show how su
han equality 
an be de�ned as a positive formula of L(n)j with the only variableso

urring on the left of divisibility being the ones in z. Let � = v�f(x) be aquantitative path. There are three possibilities:1. if there is no path in G from v to n, then b� = n is false.2. if there is an a
y
li
 path v �;z1! n1 �;z2! : : : nk�1 �;zk! n in G, then b� = n isequivalent to f(x) = �ki=1zi, due to the fa
t that G is deterministi
.3. otherwise, there is a 
y
li
 path v �;z1! : : : nk�1 �;zk! nk = n �;zk+1! nk+1 : : : nl�1 �;zl!nl = n in G, and for all 1 � i < l, i 6= k we have ni 6= n. Then b� = n isequivalent to f(x) � �ki=1zi^�li=k+1zijf(x)��ki=1zi, for the v�f path mayiterate through the nk; nk+1; : : : ; nl loop multiple times.15



Example The en
oding of a query of the form G(z) j= d�(x) = n as a formula ofL(n)j is better understood by means of an example. Figure 3 shows a parametri
graph and three sample queries with their equivalent en
odings. ut
[v1�x = n1 : x � x1 ^ z4 + z5 + z6jx� z1[v1�x = n2 : x � z1 + z4 ^ z4 + z5 + z6jx� z1 � z4[v1�x = n3 : x � x1 + z4 + z5 ^ z4 + z5 + z6jx� z1 � z4 � z5

v1 v2z4 z2z5z3n1 n2n3z1z6 v3 Fig. 3.Theorem 3. If jj�jj = 1, then the satis�ability problem for the logi
 of aliaseswith 
ounters is de
idable.7 Con
lusionA Auxiliary LemmasCorollary 3. Let a1; : : : ; an 2 Z and b1; : : : ; bn 2 N n f0g. Then a set of pro-gressions fai + biNgni=1 
overs N if and only if it 
overs the set f1; : : : ; 2ng.Proof. We 
an assume w.l.o.g. that ai � 2n for all 1 � i � n. Clearly if someaj > 2n we have that fai + biNgi6=j1�i�n 
overs f1; : : : ; 2ng, and we prove theresult for the latter. Sin
e ai+ biN � ai+ biZ, we have that fai+ biZgni=1 
oversf1; : : : ; 2ng, and, by Theorem 1, it also 
overs Z. Take x > 2n. We will show thatx = aj + bjk for some 1 � j � n and k > 0. Sin
e x is 
overed by some aj + bjZ,we have that x = aj + bjk for some k 2 Z. Sin
e aj � 2n we have:bjk + 2n � aj + bjk > 2nSin
e bj > 0, we obtain k > 0. utFor positive integers x and y, let (x; y) denote their greates 
ommon divisor and[x; y℄ their least 
ommon multiple.Lemma 3. Let z; a; b be positive integers. The following equalities hold:1. ((z; a); (z; b)) = (z; (a; b))2. ((z; a); b) = (z; (a; b))3. � z(z;a) ; z(z;b)� = z(z;(a;b)) 16



4. � z(z;a) ; b� = zb(z;ab)Proof. Let p be any prime number and let pz; pa; pb denote the powers underwhi
h p appears as a prime divisor of z; a; b, respe
tivelly. Then the above equal-ities, relative to p, are equivalent to:1. min(min(pz ; pa);min(pz; pa)) = min(pz;min(pa; pb))2. min(min(pz ; pa); pb) = min(pz;min(pa; pb))3. max(pz �min(pz; pa); pz �min(pz; pb)) = pz �min(pz ;min(pa; pb))4. max(pz �min(pz; pa); pb) = pz + pb �min(pz; pa + pb)All these equalities are easy 
he
ks. utB ProofsProof of Corollary 1:Proof. Let A = �Ki=1ai and Ai = Aai .9x K̂i=1mij(aix� ri) ! 9x K̂i=1Aimij(Ax �Airi) ! 9y K̂i=1Aimij(y �Airi) ^ AjyCRT ! ^1�i<j�K(Aimi; Ajmj)j(Airi �Ajrj) ^ ^1�i�K(Aimi; A)jAiri ! ^1�i;j�K(aimj ; ajmi)j(airj � ajri) ^ K̂i=1(ai;mi)jri utProof of Lemma 1:Proof. Sin
e y � xi we have y�pj=0bj � g(x; y) = kf(x; y) = k(ay+ h(x)). Nowa > 0 implies y�pj=0bj � ky, hen
e k � �pj=0bj . utProof of Corollary 2:Proof. Suppose that f�nj=1aijxj + bi � 0 mod migki=1 does not 
over Zn i.e.,there exists a point (x1; : : : ; xn) that is not 
overed. Then for ea
h 1 � j � n, xjsatis�es none of 
ongruen
es aijxj+�l6=j1�l�nailxl+bi � 0 mod mi, 1 � i � k. ByTheorem 1, there exists also a number x0j 2 f1 : : : 2kg for whi
h this is also the
ase. Then (x01; : : : ; x0n) 2 f1 : : :2kgn, where ea
h x0j is found as in the previous,does not satisfy any of the initial progressions. utProof of Theorem 2: 17



Proof. 1. By indu
tion on n. In the base 
ase n = 2, the solution is gener-ated by � �a2(a1;a2) ; a1(a1;a2)�. Indeed, sin
e a1x1 = �a2x2, we have [a1; a2℄ja1x1,whi
h is equivalent to a2(a1;a2) jx1 and similarly, a1(a1;a2) jx2 i.e., x1 = k a2(a1;a2) ,x2 = l a1(a1;a2)�. But sin
e (x1; x2) is a solution, k = �l. For the indu
tion step, leta1x1 + : : :+ an�1xn�1 = �anxn. We distinguish two 
ases. First, if xn = 0, letfv1; : : : ; vn�2g be the base of the set of solutions for a1x1 + : : :+ an�1xn�1 = 0.By indu
tion hypothesis, this set is e�e
tively 
omputable. For the 
ase xn 6= 0,let v = � �anu1(a1;:::;an) ; : : : ; �anun�1(a1;:::;an) ; (a1;:::;an�1)(a1;:::;an) �, where u1; : : : ; un�1 2 Z are num-bers satisfying �n�1i=1 aiui(a1;:::;an�1) = 1. Su
h numbers exists and 
an be e�e
tively
omputed, by B�ezout Lemma, sin
e ai(a1;:::;an�1) , 1 � i � n�1 are altogether rela-tively prime. We 
laim that the ve
tors v10; : : : ; vn�20; v 2 Zn form a base for theset of all solutions. First, noti
e that v is linearly independent on v10, . . . , vn�20.Se
ond, the fa
t that any linear 
ombination of these ve
tors is a solution to theequation is an easy, me
hani
 
he
k. Third, letting (x1; : : : ; xn) be a solutionof the above equation, we have that � �anu1xn(a1;:::;an) ; : : : ; �anun�1xn(a1;:::;an) ; (a1;:::;an�1)xn(a1;:::;an) � isalso a solution, hen
e the ve
tor:�x1 + anu1xn(a1; : : : ; an�1) ; : : : ; xn�1 + anun�1xn(a1; : : : ; an�1)� 2 Zn�1is a solution to �n�1i=1 aixi = 0, and by the indu
tion hypothesis, a linear 
ombina-tion of v1; : : : ; vn�2. Sin
e (a1; : : : ; an�1)janxn, we have �(a1; : : : ; an�1); an�janxni.e., (a1;:::;an�1)(a1;:::;an�1;an) jxn. By putting xn = (a1;:::;an�1)(a1;:::;an�1;an)k for some k 2 Z, we obtainthat (x1; : : : ; xn) is a linear 
ombination of v10; : : : ; vn�10; v.2. By the �rst point, the set of solutions for the equation �ni=1aixi = 0 is gen-erated by a base fv1; : : : ; vn�1g. Let vn = (u1; : : : ; un) where ui are B�ezout num-bers satisfying�ni=1 aiui(a1;:::;an) = 1.We 
laim that the subset fv1; : : : ; vn�1; zv1; : : : ; zvn�1; zvngof LZn[z℄ is a base for the set of solutions to the linear 
ongruen
e �ni=1aixi � 0mod z. That all ve
tors in this set are linear independent is an easy 
he
k. So isthat every linear 
ombination gives a solution to the 
ongruen
e. To show 
om-pletness, noti
e that the 
ongruen
e 
an be seen as a linear equation in n+1 vari-ables �ni=1aixi � zy = 0, where xi 2 LZ[z℄ and y 2 Z are unknowns. Moreover,xi = siz+ti, for some si; ti 2 Z, 1 � i � n. We have z�ni=1(aisi�y)+�ni=1aiti =0, and, sin
e z is a parameter, this is equivalent to �ni=1aisi � y = 0 and�ni=1aiti = 0. Noti
e that the solutions to the those equations in Zn+1 andZn are generated by fv1; : : : ; vn�1; vng and fv1; : : : ; vn�1g, respe
tivelly. Hen
ex = z��n�1i=1 �ivi + �nvn�+�n�1i=1 �ivi = �n�1i=1 �izvi + �nzvn +�n�1i=1 �ivi. utProof of Lemma 2:Proof. For a set of nodes M � N , let su

(M) = fn j m ! ng denote the setof immediate su

essors of M , and, fri(M) = su

i(M) n su

i�1(M), wheresu

i(M) denotes the i-th appli
ation of the su

 fun
tion to M , for i > 1.By 
onvention, we take fr0(M) = M . Sin
e ea
h node is rea
hable from V ,18



we have N � Si�0 su

i(V ) = Si�0 fri(V ), therefore jjN jj � �i�0jjfri(V )jj.Let fr�1k (M), fr=1k (M) be the sets of nodes from frk(M) with two or moreprede
essors, and with one prede
essor respe
tivelly. Obviously, jjfrk(M)jj =jjfr�1k (M)jj + jjfr=1k (M)jj. By the �rst 
ondition from the de�nition of a nor-mal form, ea
h node from fr=1k (V ) has no su

essors for all k � 0, so we havejjfr�1k (V )jj � jjfr�1k�1(V )jj�jjfr=1k (V )jj2 for k > 1, and jjfr�11 (V )jj � jjfr0(V )jj�jjfr=11 (N)jj2 .Summing up, we obtain:�i�1jjfr�1i (V )jj � jjfr0(V )jj2 +�i�1 jjfr�1i (V )jj2 ��i�1 jjfr=1i (V )jj2�i�1 jjfr�1i (V )jj2 +�i�1 jjfr=1i (V )jj2 � jjfr0(V )jj2�i�0jjfri(V )jj � 2jjfr0(V )jjjjN jj � 2jjV jj utProof of Theorem 3:Proof. Let ' be a formula in whi
h all alias propositions are of the form v1�f13v2�f2 ,� = f�g and let V be the set of all vi o

urring in (a quantitative path of) '.Using the de�nitions from Figure 2, we redu
e the satis�ability of ' to a pos-itive boolean 
ombination of atomi
 propositions of the form dv�f = n. Hen
e' has a model if and only if it has a model hN; V;Ei, with the set of roots V ,as above. This is true if and only if ' is true over a parametri
 model with theset of roots V . By Lemma 2, the number of su
h parametri
 models is �nite,and the parametri
 model 
he
king problem 
an be de�ned in 9L(n)+j , hen
e itis de
idable. The 
on
lusion follows. ut
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