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On Decidability within the Arithmetic of
Addition and Divisibility

Marius Bozga and Radu losif

Verimag/CNRS,
2 Avenue de Vignate,
38610 Gieres, France
{bozga, iosif}@imag.fr

Abstract. The arithmetic of natural numbers with addition and divis-
ibility has been shown undecidable as a consequence of the fact that
multiplication of natural numbers can be interpreted into this theory,
as shown by J. Robinson [?]. The most important decidable subsets of
the arithmetic of addition and divisibility are the arithmetic of addition,
proved by M. Presburger [?], and the purely existential subset, proved by
L. Lipshitz [?]. In this paper we define a new decidable fragment of the
form QzQ1x1 ... Qnrnp(x, z) where the only variable allowed to occur
to the left of the divisibility sign is 2. For this form, called £{"in the
paper, we show the existence of a quantifier elimination procedure which
always leads to formulas of Presburger arithmetic. Subsequently we gen-
eralize the £‘(1)form to Jz1, ... Jzm Q171 ... Qurnp(x, 2), where the only
variables appearing on the left of divisibility are 21, ..., z,. For this form,
called EI,C‘(“), we show decidability of the positive fragment, namely by
reduction to the existential theory of the arithmetic with addition and
divisibility.

The ,C‘(l), Elﬁ‘(")fragments were inspired by a real application in the field
of program verification. We considered the satisfiability problem for a
program logic used for quantitative reasoning about memory shapes, in
the case where each record has at most one pointer field. The reduction
of this problem to the positive subset of Elﬁ‘(")is sketched in the end of
the paper.



1 Introduction

The undecidability of first-order arithmetic of natural numbers occurs as a con-
sequence of K. Gddel’s Incompletness Theorem [?]. The basic result has been
discovered by A. Church [?], and the essential undecidability (undecidablity of
its every consistent extension) by B. Rosser [?], both as early as 1936. The most
famous consequences of this result are the undecidability of the theory of natu-
ral numbers with multiplication and successor function and with divisibility and
successor function, both discovered by J. Robinson in [?]. To complete the pic-
ture, the existential fragment of the full arithmetic i.e., Hilbert’s Tenth Problem
was proved undecidable by Y. Matiyasevich [?]. The interested reader is further
pointed to [?] for an excellent survey of the (un)decidability results in arithmetic.

On the positive side, the decidability of the arithmetic of natural numbers
with addition and successor function has been shown by M. Presburger [?], result
which has found many applications in modern computer science, especially in
the field of automated reasoning. Another important result is the decidability
of the existential theory of addition and divisibility, proved independently by A.
P. Beltyukov [?] and L. Lipshitz [?]. Namely, it is shown that formulas of the
form 3z, ...3z, /\ZK;1 fi(x)|gi(x) are decidable, where f;, g; are linear functions
over x1,...x, and the symbol | means that each f; is an integer divisor of
gi when both are interpreted over N". The decidability of formulas of the form
zy,...3z,p(x), where @ is an open formula in the language (+, |, 0, 1), is stated
as a corollary in [?].

In this paper we work within the theory of natural numbers with addition
and divisibility, our results being also applicable to integers. We start from an
observation encountered in [?], namely that an atomic proposition f(x,y)|g(x,y)
where y occurs in f with a non-zero coefficient, can be replaced by an equivalent
formula (x,y) of Presburger arithmetic, under the assumption y > z;, for all
x; € . An immediate consequence is that any formula of (N, +,|,0,1), such
that for any atomic propositon f(x)|g(y) we have y C a, can be directly defined
in Presburger arithmetic, hence it is decidable. This simple fact motivates the
search for more expressive decidable subsets of (N, +,,0,1), in which at least
one variable that occurs on the right side of the divisibility sign does not occur
simultaneously on the left.

Our main result is the decidability of formulas of the form QzQ1x; . .. Qnzno(x, 2)
where @, Q1 ...Q, € {3,V}, and all divisibility propositions are of the form
f(2)]g(z, z), with f,g linear functions. This form is called E‘(l), as there is only
one variable that appears on the left of |. We show that any formula in this frag-
ment, can be evaluated by applying quantifier elimination to the open formula
Q121 ...Qnrpp(x, 2), the result being a Presburger formula in which 2z occurs
free. Next, a generalization is made by allowing multiple existentially quantified
variables occur to the left of the divisibility sign that is, formulas of the form
21 ... 32,Q121 - .. Qmrmp(x, 2), where the only divisibility propositions are of
the form z;|f(x, z). Using essentially the same method as in the case of n = 1,

we show decidability of the positive form of the Hﬁ‘(n)subset i.e., in which no



divisibility proposition occurs under negation. However the result of quantifier
elimination for the positive EIE‘(n)fragment cannot be expressed in Presburger
arithmetic, but in the existential fragment of (N, +,/,0,1). Unfortunately, we
have not been able to answer the decidability problem for Elﬁ‘(n)in the case where

positive and negative divisibility propositions are mixed together. This fragment
is provably more expressive than the existential fragment of (N, +, |, 0, 1).

The worst-case complexity of the quantifier elimination method is non-elementary
and the decision complexity for the alternation-free fragments of L“(l), EIE‘(nHare
bounded by a triple exponential.

We applied the decidability result for the positive Hﬁ‘(n)fragment to a con-
crete problem in the field of program verification. More precisely, we consider a
specification logic used to reason about the shape of the recursive data struc-
tures generated by imperative programs that handle pointers. This logic, called
alias logic with counters [?] is interpreted over deterministic labeled graphs, ex-
pressing linear arithmetic relations between the lengths of certain paths within a
graph. The satisfiability problem has been shown undecidable over unrestricted
dag, and implicitly, graph, models but decidability can be shown over tree mod-
els. We complete the picture by showing decidability of this logic over structures
composed of an arbitrary finite number of lists. The difficulty w.r.t trees con-
sists in the fact that lists may have loops, which introduce divisibility constraints.
However, as it will be shown, the problem remains within the bounds of the pos-
itive Hﬁ‘(n)fragment of (N,+,],0,1). Despite its catastrophic complexity upper
bound, this result enables, in principle, the automatic verification of quantita-
tive properties for an important class of programs that manipulate list structures
only.

2 Preliminaries

Throughout this paper we work with first-order logic over the language (+, |, 0, 1).
A formula in this language is interpreted over N in the standard way: + denotes
the addition of natural numbers, | is the divisibility relation, and 0,1 are the
constants zero and one. In particular, we consider that 0(0, 0 f/ n and n|0, for all
n € N\ {0}. In the following we will intentionally use the same notation for a
mathematical constant symbol and its interpretation, as we believe, no confusion
will arise from that. For space reasons all proofs are included in Appendix B.

The results in this paper rely on two theorems from elementary number
theory. The first one is the well-known Chinese Remainder Theorem (CRT) [?]
and the second one is a (prized) conjecture proposed by P. Erdés in 1963 and
proved by R. Crittenden and C. Vanden Eynden in 1970 [?].

The Chinese Remainder Theorem states the following equivalence: 3z /\ZK:1
mil(z—ri) < Ni<; j<r(mi,m;)|(ri—r;), where m; € N,r; € Z and (a, b) denotes



the greatest common divisor of a and b'. The CRT can be slightly generalized
as follows:

Corollary 1. For any integers m; € N and a; € Z\ {0},r; € Z with 1 < i <
K we have: Jx /\ZK:1 mil(aix — i) <= Ni<ijer(@img, aymg)|(air; — ajri) A

AL (@i, mi)|r;

Usually the CRT is used as a means of solving systems of linear congruences.
A linear congruence equation is an equation of the form ax = b mod m, for
some a,b € Z and m € N\ {0}. Such an equation is solvable if and only if
(a,m)|b. If the equation admits one solution y, then the solutions are given by
the arithmetic progression {z =y mod ﬁ}

The second Theorem, stated as a conjecture by Erdds, is the following:

Theorem 1 ([?]). Let ay,...,an € Z,by,...,b, € N\ {0}. Suppose there exists
an integer xo satisfying none of the congruences: {x = a; mod b;}_,. Then
there is such an xo among 1,2,3,...,2".

3

We shall use this theorem rather in its positive form i.e., n arithmetic progres-
sions {a; + b;Z}}_ cover Z if and only if they cover the set 1,2,3,...,2".

If we interpret a linear congruence over Z instead of N we obtain that the
solutions form an infinite progression containing both positive and negative num-
bers. In other words, ax = b mod m has a solution in N if and only if it has
a solution in Z. The same reasoning applies to the CRT, since the solution of
a system of linear congruences is the intersection of a finite number of progres-
sions, hence a progression itself. As for Erdés’ Conjecture, we can see that it is
true for positive integers only (Corollary 3 in Appendix A). In conclusion, the
above theorems hold for Z as well as they do for N and viceversa. In general, all
results in this paper apply the same to integer and natural numbers, therefore
we will not make the distinction unless necessary?.

3 Setting up the Scene

The discussion of this section is intended to motivate formally our definitions of
decidable subsets of (N, +,],0,1), by establishing relations between our results
and the existing ones [?], [?].

For the purposes of this discussion, we consider two different relations be-
tween theories: definability and reducibility. Let 77 and 75 be two theories in-
terpreted over the same universe. On one hand, we say that T} is definable in T
if, for every relation symbol R(x1,...,z,) in the language of T} there exists an
open formula ¢g(z1,...,2,) in the language of T» such that, for any interpreta-
tion of z,..., Zpn, R holds in T} if and only if ¢ holds in T5. On the other hand,

3 3

! The second part of the Theorem, expressing the solutions z to the system of linear
congruences on the left hand of the equivalence is not used in this paper.

2 For instance, it is not clear whether one can define the order relation in (Z,+,],0,1),
hence we will work with (Z,+, |, <,0,1) instead of it, whenever needed.



we say that T} is reducible to T5 if there exists a Turing machine that transforms
every formula ¢ (x1,...,x,) in the language of Ty into a formula ¢ (1, ..., zy)
in the language of T5, such that, for any interpretation of z,. .., z,, ¢1 holds in
T, if and only if ¢ holds in T5. Obviously, definability implies reducibility, but
not viceversa. Our search for decidable theories is pointed towards theories that
are not trivially definable in a well-known decidable theory. As it will turn out,
our results are however reducible to known theories.

(N,+,],0,1)3"Y 3£ (N, +,],0,1)7

Figure 1 describes the contributions of this paper. The dotted arrows repre-
sent definability relations, while the solid ones stand for reducibility relations.
All theories presented here are interpreted over N, but the relations transfer to Z
without difficulty. We denote by (N, +,,0,1)= the fragment of (N, +,|,0,1), ob-
tained by applying the restriction that each divisibility proposition is of the form
f(x)|g(y), where x O y. By (N,+,0,1) we denote the Presburger arithmetic
and (N, +,[,0,1)7 stands for the purely existential subset of (N, +,[,0,1). By
(N, 4,/,0,1)7" we denote the fragment of (N, +, |,0, 1) of the form 3z, ... 3z, Vy ¢(z,y).
The contribution of this paper is the introduction of the E‘(n)fragment of

(N, +,],0,1). In general, E‘(n) denotes the class of formulas where only the first
n variables (in prenex form) appear to the left of the divisibility sign in an atomic
proposition. Formally, E‘(n)is the set of formulas Q121 ... QnznRi21 ... Rprmp(x, 2)
where Q;, R; € {3,V} and the only divisibility propositions are f(2)|g(z, 2), with
f and g linear functions. We denote by EIE‘(")the subset of E‘(n)obtained by set-

ting Q; = 3, for all 1 <i <n and, by 3£, the set of all formulas of I£{")in
which no divisibility proposition occurs within the scope of a logical negation.

The definability of (N, +,|,0,1)= into (N, +,0, 1) occurs as a consequence of
the following simple lemma:

Lemma 1 ([?]). Let f and g be linear functions, f(x,y) = ay+h(zx), a > 0 and
g(z,y) = bo—}—Zf:_llbjwj—l-bpy. Then the following holds: f(x,y)|g(x, y) AN,y >

e b]‘
zi < 2 kf(z,y) = g(z,y).



Let ¢(x) be an open formula of (N,+,|,0,1)2, to which we adjoin the valid
formula \/, o, . _ iy < 3y Ao A, < 3y, Now return to DNF and
apply Lemma 1 to replace each divisibility proposition by a Presburger formula.
This is possible due the assumption & D y for each f(x)|g(y) occurring in ¢.
So an essential ingredient of non-trivial subtheories of (N,+,],0,1) is the
occurrence of variables exclusively to the right of the divisibility sign. In the def-

inition of E‘(n)we take this fact into account, allowing unrestricted quantification

over these variables. On the other hand, in EIE‘(n), all variables on the left of the
divisibility sign are existentially quantified. The latter assumption is motivated
by a closer look at the undecidable fragment (N, +,],0,1)7 Y. Although syntac-

(n)

tically very similar to EE‘ , here we are allowed to use the last (universally

quantified) variable on both sides of the divisibility sign, as suggested by the
undecidability of the arithmetic with addition and relative primeness from [?].

The remaining relations from Figure 1, namely the reductions from L‘(l)to

Presburger arithmetic and from EE‘(nHto (N, +,,0,1)7 are the topics of Sections
4 and 5.

4 Decidability of £{"

In this section we show that the E‘(l)class can be effectively reduced to the
(N, +,0,1) theory. Mostly for clarity, we will work first with a simplified form,
in which each divisibility atomic proposition is of the form z|f(x,z), and then
we generalize to propositions of the form h(z)|f(x, z), with f, h linear functions.
Hence we start explaining the reduction of formulas of the following simple form:

N M P;
@ Quen \ (A Alhusl@2) A\ = Tl ) hoite,2)) ()

where f;; and g;; are linear functions with integer coefficients and ¢;, are Pres-
burger formulas with « and z free.

The general form (1) is not yet suitable for quantifier elimination due to the
following inconvenient: the same variable xj,, for some 1 < k < n, might appear
both in a divisibility proposition and in a Presburger formula ¢;(x, z). This pre-
cludes the application of the CRT in the given form (Corollary 1). To overcome
this problem, we eliminate first the ¢; subformulas from (1) as described in the
following.

Since Presburger arithmetic has quantifier elimination [?], we can assume
w.lo.g. that ¢;(x,2) is in the form \/, A, hu(z,2) = 0 A A, culhy, (2, 2),
with hg, b}, linear functions with integer coefficients, and ¢y positive integer
constants. Suppose now that x,,, for some 1 < m < n, appears in some hy; (x) =
Ty + b (x, 2) with coefficient ay; # 0. We multiply through with a; by
replacing all formulas of the form h(z, z) = 0 with ayh(z, z) = 0, c|h'(x, z) with
apiclagh'(x, z), and z|f(x, z) with agz]ag f(x, z). Then we eliminate agx,, by



substituting it with —bg;(x, z), which does not contain z,,. We repeat the above
steps until all z variables occurring within linear equations have been eliminated.
The resulting formula is of the form:

N M; P;
Q171 ... Qnan \/ ( N zijlfis(@, 2) AN zi fgi (2, 2) A 11%(2)) (2)
i=1 j=1 j=1

where each z;; is either a;;2, a;; € N\ {0}, or a constant ¢;; € N and v;(z)
are Presburger formulas in which z occurs free. In the rest of the section we
show how to reduce an arbitrary formula of the form (2) to an equivalent Pres-
burger formula in two phases: first, we successively eliminate the quantifiers
Q121,---,Qnxy and second, we define the resulting solved form into Presburger
arithmetic.

Quantifier Elimination

We consider three cases, based on the type of the last quantifier @Q),, (3, V) and the
sign of the divisibility propositions occurring in the formula (positive, negative).
Namely, we treat the cases existential positive, universal positive and universal
mixed. The remaining case (existential mixed) can be dealt with by first negating
and then applying the universal mixed case.

The Existential Positive Case: In this case the formula (2) becomes:

N M;
V 3en A zjlfij (@, 2) M) 3)
=1 j=1

W.lo.g. we can assume that M; # 0 for all 1 < i < N, and that f;;(z) =
a;jTn + gij(x), with all coefficients a;; # 0. Applying Corollary 1 to the i-th
disjunct, we obtain (the original ¢ subscript has been omitted throughout):

A (arzaz)l(avg —age) AN\ (a, 26)lgx A s (2)

1<k,I<M 1<k<M

In the resulting formula we have four types of divisibility propositions, which we
can write equivalently as:
~ (aia’z, a;0"2)[(aig; = ajgi) ¢ (aid’, aja")2|(aig; = a;g;)
— (aiaz, a56:)[(aig;—a;9:) © VLo~ aiaz = r mod ajein(ajei, )l (aig; — a;g:)
— (ai,az)|g;i < Vi, az =7 mod a; A (a;,r)|gi
— (ai, ¢;)|g; is left untouched.

We have used the equivalence (az,c)|f + \/f,;(l] az = r mod ¢ A (r,c)|f. Now
az = r mod ¢ is a Presburger formula with z free. The formula can now be
easily written back in the form (3), with n — 1 variables of type z;, instead of
n. The size of the resulting formula (in DNF) is at most quadratic in the size of

the input.



The Universal Positive Case It is now convenient to consider the matrix of
(2) in conjunctive normal form. In this case the formula (2) becomes:

P Qi

N\ Vzn \/ 2l fij (@, 2) vV i(2) (4)

i=1 j=1
W.lo.g. we can assume that f;;(z) = a;jzn+b;j(2, z) with all coefficients a;; # 0.
In each i-conjunct, the union of @); arithmetic progressions {z | aj;z = —b;;
mod z;; }?:1 covers N. By Theorem 1 it is sufficient (and trivially necessary) to
cover only the first 29¢ values. The equivalent form, with z,, eliminated, is the

following;:

P 29 Q;

/\ /\ \/ Zijlaijt + bij V bi(2)

i=1t=1j=1
The size of the resulting formula (in CNF this time) is simply exponential in the
size of the input.

The Universal Mixed Case Let us consider again the formula (2) with the
matrix written in conjunctive normal form:

P Qi R;

AVan(\ zilfig@.2) v\ 2 fgii(@.2)) V() (5)

i=1 j=1 j=1
Again, we can assume w.l.o.g. that z, occurs in each f;;, ¢g;; with a non-zero
coefficient. Also @Q;, R; can be considered greater than zero for all 1 < 7 <
n, the other cases being treated in the previous. If we consider an i-conjunct
individually, omitting throughout the ¢ subscript, we have:

R Q
an( /\ zjlg;(x, z) — \/ zj|fj(m,z)) Vh(z)

Jj=1 Jj=1

The parenthesized formula can be understood as coverage of an arithmetic pro-
gression by a finite union of arithmetic progressions. Assuming g;(x, 2) = ajz,+

b;j(x, z) with a; # 0, let us compute the period of the set {z : /\f:1 zjlgj(x,2)} =

R _ . _
ﬂjzl {z : ajo =b; mod z;}. Each linear congruence a;z = b; mod z; has a pe-

riodic solution with period (f—’a) The period of the intersection is the least
<12

common multiple of the individual periods i.e., [{ ﬁ

2%
either a;z, for a; € N\ {0} or some constants ¢;, using Lemma 3 from Ap-
zk;
(2.5)
some (effectively computable) constant values k;,1; € N\ {0}. Now we can ap-
ply Theorem 1 and eliminate Vz, from the i-th conjunct of the formula (5).

Supposing f;(z, z) = ¢;jz, + d;(x, z) for some c¢;j,d; € Z,c; # 0, the result is:

.. 3R . ,
}j:1]' Since all z;’s are

for

pendix A, we can simplify the expression of the period to the form

R
=~y A\jZq zjlajy + b, 2) v

R 2@ k;
Iy AL, zjlajy + b, 2) A AT V) 25le (y n é,zf)) +d;(x, 2)




The first disjunct is for the trivial case, in which the set {z : /\f:1 zjlgj(x, z)}
is empty, while the second disjunct assumes the existence of an element y of
this set and encodes the equivalent condition of Theorem 1, namely that the
first 29 elements of this set, starting with y, must be covered by the union of
@ progressions. Now y can be eliminated from the above formula using CRT, as
in the existential positive case, treated in the previous. Notice that, in addition
to the existential positive case, we have introduced a subterm of the form %
within the functions f;. This is reflected in the definition of the solved form, in
the next section. As in the previous case, the size of the output formula is simply
exponential in the size of the input.

The Solved Form The three cases from the previous section can be successively
applied to eliminate all quantified variables Qix1,...Qnz, from (2). For any
formula of type (2), the result of this transformation belongs to the following
solved form:

N M; P;
.\/ /\ a;;z| fij(2) A /\ bijz fgij(2) N i(2) (6)

where a;; and b;; are positive integers, f;; and g;; are linear combinations of

terms of the form % with k € N\ {0} and ; are Presburger formulas in 2.

We shall now consider the expressions az|f(z), where a is one of a;;, b;; and
ZC;

fis one of f;;, 5. Let f(z) = Vit iy +co- We write az|f(z), equivalently as:

\/ /\ (2,ki) =di NaDz|2XL ¢;D; + coD
(di,....dn) € div(ki)x...xdiv(k,) =1
where D = II'' \d;, D; = d% and div(k) denotes the set of divisors of k. Notice
that the last conjunct of each clause implies that z|coD, i.e., z € div(egD). The
entire formula is then equivalent to:

\V A (d, k:) = di A aDd|dS},¢;D; + coD
(dydy,...,dn) € div(coD)xdiv(ki)x...xdiV(k,) =1
Each divisibility proposition of the solved form can thus be evaluated. The solved
form is then either trivially false or equivalent to a disjunction of the form

Vi, V...V, for some 1 <iq,...,i, < N. The latter is obviously a Presburger
formula.

Block Elimination of Universal Quantifiers

This section presents results that are used in a generalization of the universal
positive and universal mixed cases, to perform the elimination of an entire block

3 Notice that we can also write z as (;z1)'




of successive universal quantifiers with simple exponential complexity. A set of
vectors (z1, ..., 2y) € Z" satisfying the linear congruence a1 +. .. +apz,+b =0
mod m is called a n-dimensional arithmetic progression. The block quantifier
elimination problem is equivalent to the coverage of an n-dimensional arithmetic
progression by a finite union of n-dimensional progressions. The latter can be
solved in simple exponential time, as shown by the following consequence of
Theorem 1:

Corollary 2. Let a;; € Z,b; € Z,m; € N, 1 <i <k, 1 <7 <n. The set of
progressions {X7_ a;;x; +b; =0 mod m; Y5 | covers Z™ if and only if it covers
the set {1...2k}n,

This takes care of the universal positive case. In the universal mixed case we
need to effectively compute the period of the intersection of any given number of
n-dimensional progressions. Let £Z[z] denote the monoid of linear polynomials in
z, with integer coefficients. Since our problem is parameterized by z, we consider
a system of progressions of the form /\f:1 Xi_1ai5z; =0 mod z, with solutions
from LZ[z]. We need to show that this set is a finitely generated monoid, and
moreover, that its base is effectively computable. The following theorem gives
the result:

Theorem 2. Leta; € Z,1<i<n,n>1.

1. The set of integer solutions to the equation X7 a;x; = 0 is a finitely gener-
ated submonoid M of (Z™,+). It is moreover possible to construct a base of
M of size n — 1.

2. The set of integer coefficient solutions to the congruence X! a;z; = 0
mod z is a finitely generated submonoid M|z] of (LZ"[z],+). It is moreover

possible to construct a base of M|[z] of the form {vy,...,vp_1,201,...,20n_1, 20},

with vy, ..., v, € Z".

3 3

Theorem 2 gives us the means to characterize the solution of a system of n-
dimensional progressions, parameterized by z. This is done inductively. Suppose
that we have already computed a base {vy,. .., Up—1, 201, ..., 2Un_1, 20y} for the

3 3

system /\f;ll X% jaijzy =0 mod z, according to the second point of Theorem 2.
We are now looking after a base generating the solutions to /\f:1 Y a7 =0

mod z. The solutions to the system are of the form x = E?;llajvj + 2 X7 Bjv;
with a;,3; € Z. Introducing those values into X} az;2; = 0 mod z, we ob-

tain that E?Zlaki(Z;;lajv;i) + zE}’Zlﬁjv;’)) = 0 mod z must be the case,

where v(?) denotes the i-th component of a vector v. This is furthermore equiv-
(4)

alent to Z?Zlakiﬂj’.’;fajvj = 0 mod #, or to the system with unknowns a;:

Z?:_f( izlaki'l);i))aj =0 mod z. According to Theorem 2, the solutions of the
latter system are generated by a base {uy,...,un_9,2u1,...,2uy_1}. Thus the

3 3

solutions of the original system /\f:1 Y% ja;jzy = 0 mod z are of the form



T = Ef:]QWZEfz_llul(j)vj + zEf:_llélE}.’Zlul(j)vj, with v;,0; € Z. The block quan-
tifier elimination can be now performed along the same lines of the universal

mixed case, discussed in the previous.

Extending to the entire El(l)

Let us now revisit the quantifier elimination procedure for the general case,
where the divisibility propositions are of the form f(z)|g(x,2), with f, g linear
functions. The only two differences w.r.t. the case f(z) = z are encountered
when applying the existential positive and the universal mixed cases.

In the existential positive case, subsequent to the application of the CRT,
we need to simplify formulas of the following two forms, where a; € N and
fi(2), f;(2), hij(x, 2), hi(z, 2) are arbitrary linear functions:

1. (fi, fj)|hij. We distinguish two cases:

— if either f; divides f; or f; divides f; in terms of polynomial division,
then (f;, f;) = fi or (fi, fj) = fj. respectivelly. Let us consider the first
situation, the other one being symmetric. We obtain, equivalently, f;|r,
where r is the constant polynomial representing the remainder of h;;
divided by f;. This can be expressed as a finite disjunction in Presburger
arithmetic.

— otherwise, (f;, f;) can be written equivalently as (g;5, k) where g;; is a
linear function in z and k € Z, by applying Euclid’s g.c.d. algorithm in
the polynomial ring Z[z]. We have reduced the problem to the case 2
below.

2. (fi,ai)|h; is equivalent to \/0<T<ai fi=r mod a; A (r,a;)|h;.

In the universal mixed case, subsequent to the application of Erdds Con-
jecture, we obtain subterms of the form 7 = [{(hjh—’a])
atomic propositions of the form h;|a;m + g;. where h;(z),h;(z) and gi(z, 2)
are linear functions. The first step is to substitute (h;,a;) for constants i.e.

R . s
}j:1] occurring within

T o= [{Z—:}le], for some d; € div(aj). The equivalent form is now: m# =
[{D;R; 3R] _ _ L Dihy

D({Djhj}?:l)
nator expression is the g.c.d. of a number of linear functions in z, and can be
reduced either to a linear function or to a constant, chosen from a set of divisors,
like in the existential positive case above. Hence 7 is a polynomial from Q[z],
of degree at most R. Every atomic proposition involving « can be put in the
form h(z)|p(z), where h,p € Z[z] (just multiply both sides with the l.c.m of all
denominators in 7). We consider the following two cases:

where D = TR and D; = £. Now the denomi-

— if z occurs in h with a non-zero coefficient, let r be the remainder of p divided
by h, the degree of r being zero. Hence h(z)|r, which is written as a finite
disjunction in Presburger arithmetic.

— otherwise, h is a constant ¢ € Z. Suppose w.l.o.g. that ¢ is positive. We
have p(z) = 0 mod ¢, which is further equivalent to V,cqo 132 =7
mod ¢Ap(r) =0 mod ¢

10



Example It is time to illustrate our method by means of an example. Let us
find all positive integers z that satisfy the formula VaVy z|122+4y — z|3z+12y.
To eliminate y we apply the universal mixed case and obtain:

Vaz [-3y 2|12z + 4y V Ty 2|12z + 4y A 2|3z + 12y A 2|3z + 12(y + (224))]
By an application of the CRT, 3y 2|12z + 4y is equivalent to (z,4)|122 which is
trivially true, since (z,4)|4 and 4/12z. Moreover, if 2|3z 4+ 12y, then z|3z + 12y +
12@ is equivalent to z\lQﬁ, which is also trivially true. Hence, the formula
can be simplified down to: Vz3y z|12z + 4y A z|3z + 12y By an application
of the CRT we obtain: Vz z[33z A (2,4)[122 A (z,12)|32z which, after trivial
simplifications, is equivalent to 2|33 A (2, 12)|3, leading to z € {1,3,11,33}. O

Complexity Assessment The quantifier elimination method has non-elementary
worst-case complexity. Let ¢ be any formula of L‘(l). Since the elimination of an
existential quantifier in the positive case can be done in time |¢|?, and the elim-
ination of any block of n universal quantifiers in time 2!, the only reason for
non-elementary blow-up lies within the alternation of existential and universal
quantifiers. Even in the positive case, alternation of quantifiers causes a for-
mula to be translated from disjunctive to conjunctive normal form or viceversa,
this fact alone introducing an exponential blow-up. However it is clear that the
alternation-free subset of L‘(l)can be dealt with in at most simple exponential
time. Since Presburger arithmetic is in DEXPTIME [?], the whole decision pro-

QWW\
om2...

cedure takes at most 22 time, where d is the alternation depth of ¢
and m the maximum size of an alternation-free quantifier block.

5 Decidability of 3£(™*

After performing the preliminary substitution of variables z; that occur together
with some z; in a linear constraint, we reduce a formula of the H,C‘(n)class to the
following form:

M; P;

fi3()lais (@, 20N N\ £5(2) Mol (2, 2)Api(2))

j=1

N
dz1 ... 32,Q1 21 .. QmTm \/ (

i=1  j=

where f;;, i, flfj,géj are all linear functions. In this section we reduce an arbi-

trary positive H,C‘(n)formula to an existentially quantified formula of (N, +, |, 0, 1).
In other words, we suppose that P; =0, for all 1 <i < n.

We are going to apply essentially the same quantifier elimination method
from Section 4 and analyze its outcome in case of multiple variables of type z;.
Let us have a look first at the existential case i.e., ),, = 3. Application of the
CRT to eliminate ,, yields atomic propositions of the form (fi, f2)|g12, where

11



g12(x, z) is a linear function. On the other hand, in the universal case (Q,, = V)
we just substitute z,, by a constant quantified over a finite range {1,...,2M:}
for some 1 < ¢ < N. Since negation does not involve divisibility propositions,
the universal mixed case does not apply. The solved form is, in this case:

M;
/\ {1 (2) 312 |hij(2) A bi(2)

\|<z

where, as usual, f; and h;; are linear functions over z. Since the g.c.d. operator
is left-right associative, we can apply CRT and write each divisibility proposition
(f1,--., fp)|h in the equivalent form:

P-1
Jyr - 3ypo filyr —h A N filyi — i A fRlypa
i=2
Since z1, ..., z, occur existentially quantified, we have obtained that EIE‘("Hcan

be reduced to (N, +,,0,1)?, hence it is decidable. The worst-case complexity
bound for the quantifier elimination is, as in the case for E‘(l), non-elementary.
According to [?], the decision complexity for the underlying theory is bounded

by 2(N+1)8N3, where N is the maximum between |p| and the maximum absolute
value of the coefficients in ¢?.

Unfortunately, we haven’t been able to solve the decidability of the entire
EIE‘(")class as of yet. This class appears to be strictly more expressive than

(N, +,,0,1)7, since e.g. the least common multiple relation [z,y] = z can be
defined in the former but not in the latter. The result of applying quantifier
elimination on formulas of EIE‘(n) with negation can be defined in the existential

fragment of (N, +,[],0, 1), however the latter is shown to be undecidable®.

6 Application to the Verification of Programs with Lists

The results in this paper are used to solve a decision problem related to the
verification of programs that manipulate dynamic memory structures, specified
by recursive data types. Examples include lists, trees, and, in general, graphs.
We are interested in establishing shape invariants such as e.g. absence of cycles
and data sharing, but also by quantitative properties involving lengths of paths
within the heap of a program. For instance, consider a list reversal program that
works by keeping two disjoint lists and moving pointers successively from one
list to another. A shape invariant of this program is that, given a non-cyclic list

4 Actually this expression is the result of some simplifications, the original expression
being rather intricate.

® Use [z, 2+1] = 2242 to define the perfect square relation, and (z+y)?—(z—y)? = 4y
to define multiplication.
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as input, the two lists are always disjoint. A quantitative invariant is that the
sum of their lengths must equal the length of the input list.

In order to express shape and quantitative properties of the dynamic mem-
ory of programs performing selector updating operations, we have defined a
specification logic called alias logic with counters [?]. Formulas in this logic are
interpreted over finite directed graphs with edges labeled with symbols from a
finite alphabet X. Formally such a graph is a triple G = (N, V, E), where N is
the set of nodes, £ : N x X — N is the deterministic edge relation, V. C N is
a designated set of nodes called wariables on which the requirement is that for
non € Nyo € X: E(n,0) € V. In other words, the graph is rooted on V. A
path in the graph is a finite sequence ™ = voyos ... € VX*. Since the graph is
deterministic, every path may lead to at most one node. Let 7 denote this node,
if defined. We say that two paths m; and ms are aliased if 71, 73 are defined and
T = 7. A quantitative path is a sequence w(x) = 00{1052 ..., where x is a
finite set of variables, interpreted over N, and fi, fo,... are linear functions on
x. Given an interpretation of variables 1 : @ — N, the interpretation of a quanti-
tative path 7, denoted as «(7), is the result of evaluating the functions fi, fa, ...
and replacing each occurrence of ¢ by the word o . ..o, repeated k times.

The logic of aliases with counters is the first-order additive arithmetic of
natural numbers, to which we add alias propositions of the form 7 (x)Om ().
Given an interpretation of variables, an alias proposition m; $7e holds in a graph
if the interpretation/sgf the /qu\antiﬁed paths involved are defined and they "meet”
in the same node: ¢(7;) = t(m2). The satisfaction of a closed formula ¢ on a graph
G, denoted as G [= ¢, is defined recursively on the syntax of ¢, as usual.

For example, to specify that u and v are two program variables pointing
towards two disjoint non-cyclic lists chained by the selector field o, and whose
lengths sum up to I, we write the following formula. The notation §(7) stands
for 707, meaning that the node 7 is defined in the graph.

JzFy x +y =LA (uc®™) Ad(va?) A2Vt z > — =6(uc®) Az >y = —d(vo”) A
z2<azAt<y— —urOuvo!

We have studied the satisfiability problem for this logic and found that it
is undecidable on unrestricted graph and dag models, and decidable on tree
models. For details, the interested reader is pointed to [?]. The problem in case
of simply linked lists is surprisingly more difficult than for trees, due to the
presence of loops. However, we can show decidability now, with the aid of the
positive fragment of the theory EIL‘(").

Since all memory structures considered are lists, we can assume that they are
implemented using only one selector field. In other words, the label alphabet can
be assumed to be a singleton X = {¢}. Hence we can write each quantitative
path in the normal form veo’, with f a linear function over . Consequently,
from now on we will only consider alias propositions of the form us/Gvo?.

To decide whether a closed formula ¢ in alias logic with counters has a model,
we use a notion of parametric graph G(z) over a set of variables z, which is an
abstraction of an infinite class of graphs. A formal definition of a parametric
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graph is given in the next section. The important point is that, in the case
of lists with one selector, the total number of parametric graphs is finite. In
fact, this number depends only on the number of program variables. Hence, the
satisfiability problem is reduced to deciding whether there exists 2y, ..., 2, such
that G(z) | ¢. To solve the latter problem, we shall derive an open formula
Uq,,(z) in the language of L"(n), such that, for all interpretations ¢ : z — N,
U, (t(2)) holds if and only if G(i(z)) = ¢. The formula ¢ is then satisfiable,
if and only if there exists a parametric graph G such that 3zq,...32,¥q, is
satisfiable. Moreover, as it will be pointed out, ¥ , is positive and the only
variables occurring on the left of the divisibility are z. Hence the latter condition
is decidable. The following discussion is meant only as a proof of decidability for
alias logic with counters in the case ¥ = {0}, the algorithmic effectiveness of
the decision procedure being left out of the scope of this paper.

A Parametric Model Checking Problem

A parametric graph over a set of variables z is a graph G = (N, V, E), the only
difference w.r.t. the previous definition being the edge alphabet, which is taken
to be X' x z, instead of Y. In other words, each edge is of the form n 25 m. We
assume that each edge is labeled with a different variable from z, and thus |E| =
|z|. Given an interpretation of variables ¢ : z — N, we define the interpretation
of an edge to be the sequence of edges n = n; - ny —— ...ny = m of length
k = 1(z), with no branching along the way. The interpretation of a graph is the
graph obtained by replacing each edge with its interpretation. As a convention,
the values of z are assumed to be strictly greater than one. The reason is that,
allowing zero length paths in the graph might contradict with the requirement
that the graph is deterministic. A parametric graph is said to be in normal form
if and only if:

— there are no two adjacent edges labeled with the same symbol e.g., m ™3

n 5 p, such that either the indegree or the outdegree of their common node
(n) is greater than one.
— each node in the graph is reachable from a root node in V.

Notice that each parametric graph can be put in normal form by replacing any
pair of edges violating this condition by a single edge labeled with the same
symbol. The interested reader may also consult [?] for a notion very similar to
the parametric graph.

In the rest of this section we shall consider the case X' = {o}. For any given
set V of program variables, the number of parametric graphs (N, V, E) in normal
form, is finite. This fact occurs as consequence of the following lemma:

Lemma 2. Let G = (N,V, E) be a parametric graph over a singleton alphabet,
in normal form. Then |N| < 2|V|.

Given a parametric graph and a closed formula in alias logic, we are interested
in finding an open formula ¥g ,(z) that encodes G(z) |= ¢, for all possible
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interpretations of z. We will define ¥ , inductively on the structure of ¢, by
first defining characteristic formulas for the alias literals (alias propositions and
negations of alias propositions). Intuitively, m; Omy holds on G(z) = (N, V, E) if
and only if the paths m; and 75 meet either in an ”explicit” node n € N or in
a node that does not occur in N but is "abstracted” within a parametric edge.
To treat the latter case, we need to add new nodes M = {m4,...,my} to N,

where k = |E| = | 2|, and replace every edge n =55 n/ by n 25 m; 255 !, for
some 1 < i < k, where for each variable z; we have introduced two fresh copies
2} and z!' with the constraint /\f:1 2t + 2! = 2z;. Since z; = 1 is possible for
some 1 < i <k, we will allow 2} = 0 or 2/’ = 0 for the new variables, while the
condition z; > 0 stays for the old ones. With this notation, Figure 2 defines the
characteristic formulas ¥ ; for alias literals .

G =mom: \/ Ti=nAmT=nV \/ (mzn/\m:m\/ﬂ'l:m/\m:n)

ANz=0
neENUM ’I‘LEN
me M
n 28 mor
mn
— — ﬂznATf}szﬁzmAﬂzn)
<> N = = (
Gb&ﬂ'l T2 \/ T ni N\ ms na A /\ a0
ni,na € NUM neN
ni # no m € M
n 25 m or
o,z
m-=n
Fig. 2.

Since both positive and negative literals can be encoded as positive boolean
combinations of equalities of the form 7 = n, it is sufficient to show how such
an equality can be defined as a positive formula of E‘(") with the only variables

occurring on the left of divisibility being the ones in z. Let 7 = vo/(®) be a
quantitative path. There are three possibilities:

1. if there is no path in G from v to n, then 7 = n is false.

2. if there is an acyclic path v =" ny =5 .. nj_1 3 nin G, then 7 = n is
equivalent to f(z) = ¥ 2, due to the fact that G is deterministic.

. . . 0,z 0,z O, Zk41 0,z
3. otherwise, thereis a cyclicpathv 3" ... nj_1 S np =n" =" ngpr...npmg 5

ng =nin G, and for all 1 < ¢ < 1,7 # k we have n; # n. Then 7 = n is
equivalent to f(z) > XF 2 A Ef:kﬂzi\f(m) — Xk z;, for the vo/ path may
iterate through the ng,ng41,. .., n; loop multiple times.

3 3
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Example The encoding of a query of the form G(z) |= W/(;) = n as a formula of
L‘(")is better understood by means of an example. Figure 3 shows a parametric

graph and three sample queries with their equivalent encodings. O

—

vioT =n1 x> x1 Aza+ 25 + 26l — 21
—_——
vlaz=n2:x2z1+z4/\z4+z5+z6|x—21—24

—

v10z=n3:mZml+Z4+Z5/\Z4+Z5+z6|m—21—24—Z5

Fig. 3.

Theorem 3. If | Y| = 1, then the satisfiability problem for the logic of aliases
with counters is decidable.

7 Conclusion

A Auxiliary Lemmas

Corollary 3. Let ay,...,a, € Z and by,...,b, € N\ {0}. Then a set of pro-
gressions {a; + b;N}?_, covers N if and only if it covers the set {1,...,2"}.

Proof. We can assume w.l.o.g. that a; < 2" for all 1 < i < n. Clearly if some
aj > 2" we have that {a; + b;N}/7Z_ ~ covers {1,...,2"}, and we prove the
result for the latter. Since a; + b;N C a; + b;Z, we have that {a; + b;Z}"_, covers
{1,...,2"}, and, by Theorem 1, it also covers Z. Take z > 2™, We will show that
z =a;+bjk for some 1 < j <n and k > 0. Since z is covered by some a; + b;Z,
we have that z = a; + bjk for some k € Z. Since a; < 2" we have:

b]'k?+2n Za]'+b]'k>2n
Since b; > 0, we obtain £ > 0. O

For positive integers 2 and y, let (x,y) denote their greates common divisor and
[, y] their least common multiple.

Lemma 3. Let z,a,b be positive integers. The following equalities hold:
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4- [(z’,za) ’ b] = (zfsb)

Proof. Let p be any prime number and let p.,p,,py denote the powers under
which p appears as a prime divisor of z, a, b, respectivelly. Then the above equal-
ities, relative to p, are equivalent to:

1. min(min(pz:pa): min(pz:pa)) = min(pza min(pa:pb))

2. min(min(pz:pa):pb) = min(pz: min(pa:pb))

3. max(pz - min(pzapa):pz - min(pzapb)) =Dz — min(pza min(pa:pb))

4. max(pz - min(pzapa):pb) =p:+Dpp— min(pz:pa +pb)
All these equalities are easy checks. O
B Proofs

Proof of Corollary 1:

Proof. Let A=1ITK a; and 4; = 2.

i

K K K
Jz /\ m;|(a;z —r;) +— Jx /\ Aim;|(Az — Ajr;) <— Ty /\ Aimi|(y — Airi) N Aly
i=1 1=1 1=1
CRT
<— /\ (AﬂnZ A]m])‘(AZTZ — Aj?“j) A /\ (Azmza A)‘Azrz
1<i<j<K 1<i<K

<

Il
-

— /\ (aimj, ajmi)|(airj — ajri) A
1<i,j<K i

(@i, m;)|r;

Proof of Lemma 1:

Proof. Since y > x; we have nyZObj >g(x,y) =kf(x,y) = k(ay + h(x)). Now

a > 0 implies y¥7_,b; > ky, hence k < X7_ob;. O

Proof of Corollary 2:

Proof. Suppose that {Z7_a;;z; +b; = 0 mod m;}}_; does not cover Z" ie.,
there exists a point (z1,...,2,) that is not covered. Then for each 1 < j < n, z;
satisfies none of congruences aijxj-l-Ei?lgnauxl+bi =0 mod m;,1<i<k. By
Theorem 1, there exists also a number 2 € {1... 2k} for which this is also the

case. Then (z},...,2),) € {1...2¥}", where each 2/ is found as in the previous,
does not satisfy any of the initial progressions. O

Proof of Theorem 2:
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Proof. 1. By induction on n. In the base case n = 2, the solution is gener-
ated by (ﬁ,(af—zz)) Indeed, since ajz; = —asxa, we have [a1,as]|aiz:,
which is equivalent to (a—a\ml and similarly, (a—a\xg ie., x; = k(a%g),

- l(al az)) But since (1, z2) is a solution, k = —I. For the induction step, let
a1y + ...+ ap 12,1 = —apx,. We distinguish two cases. First, if 2, = 0, let
{v1,... ,’Un_g} be the base of the set of solutions for ajzy + ...+ ap—1xn—1 = 0.
By induction hypothesis, this set is effectively computable. For the case x,, # 0,

_ —anu; —AnUn—1 (Q1,..,Gn-1) )
let v = ((al,...7an)""’ o an)? (arman) ), where u1,...,uy_1 € Z are num

bers satisfying X7 (ar e —y

computed, by Bézout Lemma, since ﬁ, 1 <i <n-—1 are altogether rela-
tively prime. We claim that the vectors v10,...,v,_20,v € Z™ form a base for the
set, of all solutions. First, notice that v is linearly independent on v,0, ..., v,,—20.
Second, the fact that any linear combination of these vectors is a solution to the
equation is an easy, mechanic check. Third, letting (z1,..., x,) be a solution
Ap UL T, —QnUn— 196n (a1,...7an_1)xn) is
a17---:an)’..., (ala--wan) ’ (ala--wan)

= 1. Such numbers exists and can be effectively

of the above equation, we have that ((
also a solution, hence the vector:

AnU1Tn ApUn—1Tn 1
(x1+ —————, . Iyt —————— | EZ"
(al,...,an_l) (al,...,an_l)
is a solution to E” ', a;xz; = 0, and by the induction hypothesis, a linear combina-
tion of v1,...,v,_o. Since (al, ooy Qpot)|an®y,, we have [(al, ceyQpet), an] |anz,

7(‘“’ Ant @1y8n-1) pofo1 some k € 7, we obtain
([L17 ln — laa’n ([Llw"aa’nf]aa’n) ’

that (z1,...,z,) is a linear combination of v10,...,v,_10,v.

ie., |:cn By puttlng Ty =

2. By the first point, the set of solutions for the equation Xj_ a;x; = 0 is gen-
erated by a base {vy,...,v,-1}. Let v, = (uy,...,u,) where u; are Bézout num-

bers satisfying X7, % = 1. We claim that the subset {vy,...,v,_1,201,...,

Tyeees@n)
of LZ"[z] is a base for the set of solutions to the linear congruence X ;a;z; =0

mod z. That all vectors in this set are linear independent is an easy check. So is
that every linear combination gives a solution to the congruence. To show com-
pletness, notice that the congruence can be seen as a linear equation in n+1 vari-
ables ¥ a;xz; — zy = 0, where x; € LZ[z] and y € Z are unknowns. Moreover,
x; = 8;z+t;, for some s;,t; € Z,1 <i < n. We have zX" , (a;s; —y)+ X a;t; =
0, and, since z is a parameter, this is equivalent to X7 a;s; —y = 0 and
X7 ,a;t; = 0. Notice that the solutions to the those equations in Z"*! and
7™ are generated by {vi,...,vp—1,v,} and {v1,...,v,-1}, respectivelly. Hence
T = 2(2” 1 Qv + anvn) + E?:_llﬂivi = Ef:_llaizvi + apzv, + E;’:_llﬂivi. O

Proof of Lemma 2:

Proof. For a set of nodes M C N, let succ(M) = {n | m — n} denote the set
of immediate successors of M, and, fr;(M) = succ'(M) \ succi~'(M), where
succ'(M) denotes the i-th application of the succ function to M, for i > 1.
By convention, we take frq(M) = M. Since each node is reachable from V,
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we have N C ;5 succ' (V) = Ujsg fri(V), therefore |[N| < Ziso fri(V)].
Let frkZl(M), fri;t (M) be the sets of nodes from fry(M) with two or more
predecessors, and with one predecessor respectivelly. Obviously, |fri(M)| =
| fr2" (M) + | fr£ (M)]. By the first condition from the definition of a nor-
mal form, each node from fr;'(V) has no successors for all k& > 0, so we have
Hfrkzl(V)H < Hfr;?_ll(V)H;Hfrfl(V)H for k> 1, and HfrlZl(V)H < Hfro(V)H—2Hf7”1=1(N)H_
Summing up, we obtain:

r2t rt
Dot fr2 (V)] < Uratl 4 g W20 _ g 1T )

21 \% =1
D LZWL g WD) ¢ Uty

2
Lisol fri(V)| < 2| fro(V)]
INT<2|V|

Proof of Theorem 3:

Proof. Let ¢ be aformula in which all alias propositions are of the form v o/t Gvao /2,
Y = {0} and let V' be the set of all v; occurring in (a quantitative path of) ¢.
Using the definitions from Figure 2, we reduce the satisﬁability/gf p to a pos-
itive boolean combination of atomic propositions of the form vof = n. Hence
© has a model if and only if it has a model (N,V, E), with the set of roots V,
as above. This is true if and only if ¢ is true over a parametric model with the
set of roots V. By Lemma 2, the number of such parametric models is finite,
and the parametric model checking problem can be defined in E{E‘(nH, hence it
is decidable. The conclusion follows. O
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