N
N

N

HAL

open science

Close shock detection using time-frequency Prony
modeling

Nadine Martin, Pierre Jaussaud, Francois Combet

» To cite this version:

Nadine Martin, Pierre Jaussaud, Frangois Combet. Close shock detection using time-frequency Prony
modeling. Mechanical Systems and Signal Processing, 2004, 18 (2), pp.235-261. hal-00374823

HAL Id: hal-00374823
https://hal.science/hal-00374823
Submitted on 10 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00374823
https://hal.archives-ouvertes.fr

Close shock detection using time-frequency Prony modeling

Nadine Martin, Pierre Jaussaud and Francois Combet

Laboratoire des Images et des Signaux
(INPG-CNRS)
BP46, 38402 Saint Martin d’'Heres Cedex France

nadine.martin@lis.inpg.fr



Abstract

In many cases, modeling a mechanical process noayreea good understanding of signals issued flwersystem, as
vibration accelerations. This is particularly these when shocks are responsible of the vibratlarthe case of critical
systems, each shock induces natural modes exaitatith damped sines amplitudes. Identification loé tshocks
(occuring instants and induced vibrations) is ayverportant step of the analysis. However, whercesasive shocks
are very close, their separation and their indialddentification are not easy. In that paper, wWap the well-known
stationary Prony model to this non stationary ceint®/e propose a method where shocks instants titteand

parameters shocks estimation are separated. Vgtralle the performances of the method on COR culweslast part,
we apply it to a real acceleration signal recordada chairlift running over a compression towerinope transport

plant where 48 shocks are expected, some of thém beparated by only a few milliseconds.



1. Introduction
The aim of this paper is to study the response wieahanical system to a succession of shocks.als deith linear
systems which conditions are such that their resporio shocks are damped sines. More generally pdper also
concerns all transitory signals which wave shape ltave a model defined by a damped sine. We intedan
excitation model, which stems from mechanics. Thiglel represents successive shocks occurringfatetit instants,
not necessarily regularly distributed, with a shawbdel defined by a Dirac function. We call thisdeba multi-shocks

model. The objective of that paper is to proposgethod for modeling the output signal of systemster this way.

We first illustrate the fact that the Fourier arsadyrapidly reaches its limits even by a time femagy approach with a
short time Fourier transform. Blind deconvolutiooutd be applied to the output signals for estingatihe input
excitation withouta priori knowledge on the system response. These inverigodseare tackled with order 2, by
minimization of a prediction error power, with higbrder statistics [LAC 97] or, more recently, withutual
information, by adapting methods from source sdfara]TAL 01]. These methods assume stationary esgst
parameters. These approaches are not considetiedt ipaper and the reader can refer to [COM 02hfoapplication

to multi-shock signals.

In this paper, we choose an approach, which yialasodel of the response and which takes into at¢diwennon-
stationary aspect of the problem. In signal pracgskterature, a damped sine exactly refers toRheny model. This
model was introduced in a stationary context oidfldynamics [PRO 95]. We propose to extend this eh¢al a non-
stationary context as the one mentioned above. §ysem response can change with time eventuallyerVh
oscillations are weakly damped, a model can betiiilsth on a gliding window, such as for instance thiiomedical
application presented in [GAR 00]. But, if dampimgst be taken into account, an appropriate praogssust be used.
In 1982, Atal [ATA 82] proposed to iterate a deftat algorithm: estimating of the first pulse, thauwbtracting it from
the signal, estimating of the next pulse, etc. 986, for analyzing electromagnetic transitory slgn8. Yvetot [YVE
96] presented an exhaustive study that introduceslti-pulse model based on the Prony approachevpeises instant

detection were performed by a wavelet transform.

The method we propose here has some common pathtshat developed by Yvetot. We apply the Pronyhod on a
gliding window. The only constraint is a local sta@rity requirement, which is reasonable to asswitle shocks.

Window width is an important parameter, which mustequal to the system response time. We propcsstitoate this



width by using the Prony estimator properties ofialde window width. Using Prony method for eacbahrequires a
first step to detect the instant at which shockuogcThe originality of our approach is to propaseinitial step for
instant detection, also based on Prony method. libked to Prony sensitivity to non-stationaryrsitp and namely to

phase advance or delay.

In Section 2, we derive the multi-shock model fratmmechanical point of view. In Section 3, we préserope chairlift
compression tower, excited by such a model. Ini&eet, we comment and illustrate the limits of #aurier analysis
in that context. Section 5 briefly recalls the ista@ry Prony method and is then focused on theetaifon Prony one.
We also investigate a crucial problem of all pariimeestimators, which needs inverse matrices cdimgu All
methods are very sensitive to the matrices comditgh We propose an original and simple test fasiding a bad
conditioning. In Section 6, we derive the methodpsepose, a detection/estimation based on timeaséecy Prony. It
will reveal to be particularly efficient when shaclre close to each other and when the resporesctoshock is very
short, of about one oscillation period. Performaneee illustrated by mean of ROC curves. Knowledfehe
mechanical structure response to shocks is alsoresbto calculate the lifetime of the structurds[C87]. In Section 7,
this method is applied to an acceleration signauming at hanging top of the chairlift running @nda compression
tower. It allows us to model the acceleration feahduced in this type of situation, thus incregsihe possibilities of

managing safety problems in chairlifts.

2. «Multi-shock » model
A shock occurs when a mechanical system is subinitiea rapid variation of its speed (or momentlhE MV ),
either in terms of amplitude or direction. Througk basic mechanics equaticﬁ:%';’, this shock can be assimilated

into a force applied during a short time. It is Malown that a shock on a structure will exciterésonance modes. Let
us consider a discrete linear system wiRhdegrees of freedom and losses proportional todsgdeés thus ruled by a

linear second order differential system with constoefficients. If the shock or excitation inpatdefined as thd?

dimension vectore(t), the response movement (strain or deformation)litudp is the physical displacement of the

system from its equilibrium position for each degod freedom. This response defined as a P dimrm’otory(t) is

solution of [BRU 55]

My (t)+Cy(t)+K y(t) = e(t) (N



where e(t) defines the excitation or input of the system, soeed as an acceleratioy(t) and ¥ (t) are speed and

acceleration of the displacemer¥] the Px P inertia matrix, C the Px P damping matrix andK the PxP

y(t)

stiffness matrix. Settingv (t) = {

y(t)

} , the order of the system (1) is reduced by 1 amdbe written as

0
v(t)=Bwl(t)+ 2
w(t) =B w(t) [Mle(t)} 2
0 |
where the2P x 2P matrix B is defined asB = . 1~ | with 2P complex conjugate eigenvaluek, in
-M"K -M"C
such way as to have [NEW 89]
V;o BV, =[diag(A,.A,) ] (3)

where [diag(/ll.../izp)] is a 2Px 2P diagonal matrix of termA . V,, is the 2Px2P orthogonal matrix whose

columns are eigenvectors & and represents the relative amplitude of the mavtmisplacement in relation to each

mode for theP first values and the relative velocity in relatimneach mode for th& next values. So we can write

V, _ _ _
Var ={V P } and Vp :I:Vleflt Vriglht:| (4)

down

with V,,the Px2P orthogonal matrix relative to the displacement afyg,, the Px2P orthogonal matrix relative to

-1

the velocity V;x and V

are 2P x P matrices. The solution of Eq. (1) is the sum of tarms

y(t) =ye () +y. (1) ®)
The P dimension vectory. (t) is the forced contribution due to excitati@ft) whereas theP dimension vector

y. (t) represents the free oscillations created by toekstMathematically speaking.. (t) is a particular solution of

the full equation and/, (t) is a general solution of the system without ightihanded term, the homogeneous system

[BAS 68].

2.1. Expression of the forced solution

A particular solutiony . (t) of system (1) can be given as [NEW 89]



Ve (t) =V, | diag( ... é‘)]j[ diad &*... €°)]| Vg, M7e( )5 « (6)

with [diag(e"l‘... éz"‘)] a 2Px2P diagonal matrix of terme™. Each component of/ (t) is the sum ofP

convolution products between each component oéxeitation vector and a term of Rx P matrix. This matrix is the

system impulse respondg(t) . Eq. (6) can be written as

+00

ye(t)= '[ h(t-s)e(s) ds (7)

-0

whereh(t) is defined as

h(t) = u(t) V., | diag(&"... &*)] Vi M ®8)

right
where u(t) is Heavyside function, which is zero whér0 and 1 whent >0. Given that we consider the system

input as a force and the system output as displesgrthe impulse response has to be homogeneaikdo, as it is.

2.2. Expression of the free solution

For a linear system where the response is equbkteum of individual responses of each eigenmibdefree solution

Y. (t) of system (1) can be written as
yo(t)=2u(t) ¢, € vy, €)

The P dimension vectorv,,, , defined by thepth column of matrixV,,, represents the relative amplitudes of the
P

movement of each mass for the m((qe). The constantg, , with unit m, are determined from the initial conditions

that the system displacemeyl(t) must satisfy.

2.3. Model of the excitation

Let us now consider a sequence of Dirac shocksronguat instants,,. The so-defined inpug,, (t) can be written as

a(t-t,)e, (10)

1

ew (t) =

M
m=



where theP dimension vectoe,, stands for amplitude of the"hshock and is homogeneous to a for&é) stands for

Dirac function andM is the shock number. This excitation model is veimple. Others can be written with more

complex functions than Dirac one, such as finiteatlan pulses or serrated functions. Examples &engn [LAL 99].

At instant t,,, the responseym(t) to a single excitationb'(t —tm)e is drawn from Eg. (5) with the forced solution

m

given by Eg. (7) and the free solution by Eq. @, y,,(t) can be written as

2P
Ym(t)=Oh(t-t,)e,+ > u(t-t,)c, gl y . (11)

p=1

where 1= I 5(3) ds=1 with unit s, [LAL 99].

Constantsc,,  are now indexed byn to refer it to the instant,,. Theses constants are such tygt(t) satisfies the
initial conditions of the system. These conditians defined at each instaty, from the state of the system given by all
preceding shocks. Thus, initial conditions at inst, are defined by the initial positiog,, =ym_1(tm) and by the

initial speedy ., (t,,)-

Responsey (t) to the M excitations defined by Eq. (10) is the sum of kheesponsesy, (t) defined in Eq. (11).

Taking Eg. (8) into accouny(t) can be written as

M

y(t)=> u(t-t,) (D Vup[diag( gl éz'”(t'tm))] Vi M7, +ZZP: G, &) VUR]J (12)

m=1

Given thatA, =-a, + j Q , each coordinate, (t) of vectory(t) has the form

(0= 390 (t- 1) ot-1,) (13)
where
A 2P —at [Q
ymi(t)zzamipe ’ é / (14)
p=l

with the complex amplitude,;, defined by



B = D[lepj en)v% + Gy Y (15)

whereV > M ™= [ij] with unit skg™ andV,, = [vu

right ] dimensionless.

R

The complex amplitudes,,;, and real parameters, Qp and t,, completely characterise the system response to

excitation e, (t) . Response (13) will henceforth be caltadlti-shock model. If the shocks occur before the vibrations

of the former shock disappeared, the interpretatibabservations is difficult, either in time or frequency domain.

Our aim is to characterise each response to areekany shock, even when these are close to eaeh, thiat is to say

when (t,, —t,) is about’r)rgig(ZT/Qp) :

From an experimental point of view, the signal tkaneasured is very often an acceleration. Indhge, the measured

signal must be compared to the second order demvat Y, (t) that we can write as

p 2p % o j[Qp(tftm)mrclg[zgp_i;]
3(0)= X0 (@5 -a) +aaioz] e e = 16)
m=l p=

The only difference between Egs. (14) and (16nisuaplitude factor and an additive phase paranfetetion of the

system parameters. In both cases, the respondeeaaritten under the form of a damped sine sum.

3. Ropechairlift compression tower and shocks

In the vertical plane of a rope chairlift compresstower, a rocker with two wheels has only onerde@f freedom as
the direction of the line joining the wheels’ canitethe only required parameter to describe itsab®ur. In a twelve
wheel rocker, the rocker position can be descrinedll angles, thus leading to 11 degrees of freeédior the 6 two -
wheel rockers, 2 for the 2 four-wheel rockers, 2the 2 six-wheel rockers and one for the singlevh2el rocker. Fig.

1c shows the links corresponding to each degréeeflom (1 color by link).

This analysis supposes that the wheels are indepéeaahd that the rope is elastic. This is not #eecfirst due to the
high rope rigidity (raised by rope tension), and¢os®l due to the rope/wheel contacts. To analyze pgbant, we
calculated the shape of a 4-wheel rocker when itlsé Wheel is shifted away from the rope (see Rig). In this
example, the shift follows a sine law one periazhgl It can be observed th&E3, the link angle for wheels 3-4 (see

Fig. 2b), is constant and that the angle for glabaker TEL, is just one fourth of the excited beam angle2, the



link angle for wheels 1-2. For 8 wheels, this ratiould be 1/8 and so on. This result could justifyapproximation of

the degree of freedom of a 12-wheel rocker to 1.

wheels

&
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accelerometer E —
shocls T
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1 2 3 4
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1 &4 needles' shocks ; 2 & 3 grip's flat shocks

a - Four shocks from the grip/wheel interaction b - A detachable grip (by courtesy of POMA S.A.)
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c- Wheels distribution on a rocker
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d- Rope chairlift excitation: shock instant distrtion
Fig. 1. Presentation of the rocker model to be analysespatd 4,16 m/s.

In fact, the system is more complex. The complgstesn includes a 12-wheel rocker, and also the amykthe tower.

The last one could have flexions. Furthermore seiresor is on the top of the chair suspension. Pheteel rocker is
governed by equation system (1), where the dispiace vectory(t) represents link angles between wheels. The

degree of freedom is theoretically 11 but one arsglems playing a leading part. The sensor measiueesgertical



component of the acceleration. Under the assumti@mall angles, this measure is equal to a liceanbination of

each componeny, (t) described by Eq. (16).

LAm LU SCLVLS maa L

W1 jump height =40, Omm

Rope vertical displacement : 9.5mm
TEL, TE2 andTE3 are rockers angles/balance position

a-Two extreme positions in a four-wheel rocker wherfitist wheel is shifted away from the rope in theker plane.

| NTERNAL ANGLES OF A 4- WHEELS ROCKER
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b- Sub-rockeangular movement in a four-wheel rocker when the fitseel is shifted away from the rope in the rogiane

Fig. 2. Study of a four-wheel rocker

What about the excitation? In a rope chairlift coegsion tower, the rope goes under the rocker whirethis case, the
grip upper part must insert between the rope aedatheels. At each grip angle, the speed vectoctitire changes
being always vertical as shown in Fig. 1a. Thisuos@ times for each wheel. For instance, for avh2el rocker, 48
shocks occur. The 2 grip ends correspond to acadidiownward speed variation of the grip and the tmiddle angles
correspond to a vertical upward variation with derahmplitude. Furthermore, shock intervals higtigpend on grip
and rocker geometry and are not regularly distedutsing the wheel diameter and the rope speedawdind when

the grip/wheel shocks will occur and draw a schefribese shocks. Grip presented in Fig. 1b runoimder the rocker

10



of Fig. 1c gives a shock distribution presente&io 1d in the case of a speed of 4.16 m/s. Wenasghat the impulse
response is the same whatever the shock positiorhé shock instant calculation takes into accahbetfact that the
end shocks do not occur when the grip end goesruhdevheel center but slightly before or aftestpoint (see Fig.

la).

At this time, we are not able to derive the equatigstem for such a mechanical system and suckdctatéon. In this
paper, we propose a signal processing approaclthvduiuld help to model such a complex system. Ththod we
propose is supported by the fact that Eq. (16)ssra of damped sines, where damping factors arghpoihs are those
of the eigenmodes. The model does not take acafusiistem parts, which act on the amplitudes antherphases

only.

4. Fourier analysisof aresponseto multi-shocks signal

Fourier analysis is a classic approach for physicisourier transforny, (a)) of the response (13) can be written as

V(@)=Y — Fmw e (17)
I mel =1 ap+j(a)—Qp)

The difficulty of this method is that it only givegobal information on the spectrum. As severalcksmccur, an extra
phase term is introduced for each term of the dtishocks are regularly spaced and if the structnogle number is
weak, it is possible to work with Eq. (17). Usedyather with spectrum interpretation technique aadmonics
detection [DUR 99], [MAR 02], the method can leadat good characterisation of the system with a doaguency
resolution depending on the time extension of fgaad. Nevertheless, in a more general case, using Foamni&lysis
turns out to be less fruitful. Let us come backhe chairlift acceleration signal described in HigThe experimental

signal can be observed in Fig. 3 together withglitdal frequency analysis. The sampling frequesc§d0OHz, which
is enough given that the frequencies excited bysyistem are lower tha80 Hz . This sampling rate was validated by
other experiments using higher sampling frequenmh sas1000Hz. As seen in Section 3, the 12-wheel rocker has

theoretically 11 vibration modes. Global Fourieralgsis failed in extracting the shock parametetsmight be
interesting to use a narrow time-gliding windowisTwill provide time evolution of the frequency ¢ent of the signal.
A spectrogram of the recorded signal of Fig. 3 lsttpd in Fig. 4 with Blackman window of lengtBl4ms (64
points). We can see this method is however not eéfigient, as its frequency resolution dependgtenwindow size.
This should be very small if we intend to sepamdtesed shocks. In the case of the above rockergaipgd shock

separation time is betwee®ims and 70ms with a mean separation equal 2Y ms. A spectrogram with 64 points

11



window is not able to separate the different shanokme. A smaller window length has an unaccelgtdlequency
resolution. The limits of a Fourier based approdciie thus rapidly reached. The mean shock separiataround one

period of the eigenmode, which is estimatedB®ms (see Section 7). In that context, only parametrathod, which

assumes a data model, can reach such a performance.
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Fourier Transtorm
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0 20 10 0 80 100 20 1o
Freguency (Hz)

Fig. 3. Acceleration at top of vehicle hanging for a aétable grip. 1024 points were recorded with a sangpfiequency of 300 Hz.
Lower curve shows the global Fourier Transform.
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Fig. 4. Spectrogram of acceleration signal of Fig. 3 witlaédman window of width 214 ms (64 points, -3dB barifd®Hz).

5. Stationary correlation Prony method



Eqg. (13) is a sum of delayed damped sinusoidsaéh ¢imet,,, model (14) has common points with the Prony model
Parameter identification of this model has beeml s&ece a very long time [PRO 1795]. This Sectidefty recalls this
stationary approach before dealing with the noticstary one. It will end by the proposition of ariginal criterion for
reducing the sampling effect.

The Prony method models a discrete sigylEalk], with sampling period,, from a linear combination oP complex

exponential components. Such a model is said @f bederP and the expression for it the noté{ik] is

9K =i_ap-é‘l Ok=1 N (18)

where a, is the complex amplitude for modep, a,=A,. €%, z is the complex pole for modep,

p

z =e™"

. . &' and N is the number of discrete values in the signal.

5.1. The two steps of Prony method

The z transform of the model, denot‘é(i z) , can be written as

R P a ZO’B”Z_p
V(=2 155 (19)
et 2mTt
p=0

where B,, 1, are real coefficients angd, =1. From this, it will be observed that the model nbyconsidered as the
transfer function of an ARMA filter which hav® AR complex polesz, and (P—l) MA zeros [SHA 01]. MA and

AR part can be written as polynomials, which ineefourier Transform leads to

>, 9lk- =2 8,0k § Ok=1 N (20)

When time indexk > P, (k - p) is strictly positive and the right-handed terngf. (20) is zero. Thus, fdk> P, we

get an equation where differences are function®fcaefficientss,

P
> n,9[k-p =0 Ok= PR N (21)
p=0

Eqg. (18) involves the determination @ complex parameters, namely tike poles z, and the P amplitudess, .

The simultaneous estimate of these parameters adie@st-squares method is a non-linear procesk [BR. Eq. (21)

13



allows splitting the resolution process into twepst. In the first step we get an estimate of theca&ficientss, by a
least-squares method. The denominator of Eq. (@) a polynomial whose roots are the complex palgsThe
second step leads to amplitudgs by using a least-squares method, this step beiegrl So the originality of Prony’s

method is to put the non-linearity into the deteration of the roots of a complex polynomial. A brieminder of the
exact solution, when the number of points in tlgmal equals 2P, and the least-squares one, wheeraithber of points

is greater, are respectively given in Appendicemné B.

5.2. Othersidentifications for a noisy model

The method is particularly sensitive to additiveite#moise, as Prony model does not introduce angendo, the
performances degrade when the signal to noise (@tiR) decreases. If we have an important addesenthe AR
approximation (B.3) still degrades the performan@aN 68], [BLA 75]. Many developments allow overomg this
difficulty. Let us quote the calculation of coeféiats from signal space only (i.e. separated frasenspace) [KUM
82], [KUM 83], [HEN 81]. Higher order statistics mdbe used when the noise is gaussian [PAP 90].if@pewdels
were proposed for coloured noise [SAT 78], [NEH,g38AK 86]. In [YOU 01], a threshold on waveletsefficient

eliminate a part of the noise. On a general pdiniew of rational system response identificatiothaut a priori links

between poles and zeros, Steiglitz et Mc Bride psep an identification algorithm based on an iteeatalculation

using Kalman filters [STE 65], [STO 81].

All these attempts assume that system input is #ewipise. Shaw proposed an approach based on aMAAR
determinist model, with a pulse input. This modeléry suitable in mechanics. The error criteriithien non linear

and the solution is reached using iterations [SHA BBHA 01].

For modeling electromechanical oscillations, Samclied Chow empirically compare Prony method witkiregular

value decomposition [SAN 99].

5.3. A particular case: Prony Correlation

In Appendix B, it is shown that the first stageRybny’s method is a signal approximation by an ARkhadel. Many
model parameters estimation have been suggestéé iiterature [CAS 02], [MAR 87], [BLA 75], [DON&, [KUM
86]. However, we will not present them here. Nawelgss, we want to point out a specificity of the with respect to

the autocorrelation function. In the case of an &RARMA model, the autocorrelation function keepe tpoles

unchanged. Indeed, an estimatigp[k] of the autocorrelation of signai[ k] can be defined by

14



N-k

yyy[k]:% nZy[n] yfn+ § Ok=0, N-1 (22)

Let us insert Eq. (B.3) for AR model or Eq. (B.by ARMA model at index(n+k) into Eq. (22). Remembering that

e,[K| from Eq. (B.3) is a white noise, we get in a matotation

2L T L AR Las
I n= . v | ==

. =-y (23)
VIN=-2] ... p,[N-1-P]) (7, VoI N-1

The (N -1- P)x P correlation matrixI" is a Toeplitz matrix, because of the same vallmsgaeach diagonal. These

equations lead to an important conclusion: the aartelation function of an AR signal is also an ARdel, with the
same coefficients. Furthermore, when the delayeatgr than the model ordé&, the autocorrelation is independent of
the noise if it is a broadband noise. So, it appéarbe interesting to apply the Prony method @nahtocorrelation
function of the signal rather than on the signselit (see Appendix C). The resolution of the fiPsbny step needs
inversion of the correlation matri . The second step needs inversion of the Vanderenomatrix Z defined in

Eq.(C.3).

5.4. Sampling influenceon I' and Z conditioning

Prony resolution involves two linear systems (seg.HE23) anderreur ! Source du renvoi introuvable.)). For the
solution to be less sensitive to perturbationss, itnportant to optimise the matrix conditioninge\Want to present here
a simple and original operating mode. Solving @&dinsystem requires one to invert a matrix, eitglicitly or
implicitly. The inverse of a matrix can be writtanterms of the inverse of its singular valuesth# smallest singular
value is close to 0, the solution will be sensitiweany small perturbation [GOL 83]. The sensitivaff a matrixI" can

be measured by its conditioning defined by

a = 24)
where ||En is the matrix norm [GOL83]. A matrix is correcitpnditioned wherk, is weak. Whichever the norm may

be, k. >1. So, it may be interesting to look at the inveksé, which is limited to the range [0,1]. Thus," is close to
1 for a good conditioning. When we choose the n@rmx. can be written as the ratio of the largest singuédue

Auax (T) to the smallest ond,;, (). So,

maX(

15



K = Aun() (T) (25)

1)
For I defined in Eq. (23)k;* decreases when the sampling rdteincreases. This can be explained as follows. In a
Toeplitz matrix, whenfgincreases, the column vectors become more and degrendent, its rank decreases and the
matrix becomes less and less invertible [HUN 72j.t8e other hand, for small values 6f, x/* goes up withf.

Therefore, there is an optimum value ff, which is given by the position of the maximumsgf versus f

f, optimal= argfemax(/(r’l) (26)

Contrary to Fourier based methods, analysing an-sspled signal with a parametric method decretmeprecision
of the analysis. Fig. 5 presents results for sitedlasignals and converges to a well-known resuie &nalysis of a

signal constructed with only one frequency is heken this frequency equal¥4 of the sampling frequency. The
maximum of the curve will be observed wheg/ f,ax =4. When two frequencies are present, the ratio shbal

close t03.

When a real signal has been recorded, it is nodlompssible to vary the sampling rate. It can ribedess be
interesting to have a first interpolation of thgrsl to be closer to the optimum value, mainlyhié tnoise is not

negligible. This step will prove to be useful irrtbhock instant detection proposed in Section 6.2.

As shown in Fig. 5, conditioning of matrix defined in Eq. (C.3) is less sensitive to samptatg than conditioning of
I' . Nevertheless, it is important to watch its vadsat influences the amplitude calculation, whichturns, influences,

the shock instant detection.

1 1
09 }
ol o\ N
0.7 / \ P=2 0.7 /
0.6 7[ \‘ ’ &
. / 0.6 7\
05 05
KL os / b K Jloa ! \< \\
St SN
02 / X‘-\ \\‘\ 0.2 N
* =g ]
01 \ 0.1 —
\‘\,,,_ I

0
% 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

felfmax fe/fmax

Fig. 5. Sampling Influence ol" conditioning (left) andZ conditioning (right): P=2 corresponds to a simuldtsignal built with a
damped sine. P=4, includes two damped frequenciRisS11 dB.
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6. Non stationary and multishock model
On many systems, the recorded vibration signalofiem the result of very short events, like shoo&tveen different
mechanical components, which excite the resonarecgiéncies of the system. If these events are ¢tosach other,
the system responses from each one may interfdte thé signal. Assuming a linear and stationarypaease, the
recovery of the excitation signal is called a dedation problem [LEE 98], [COM 02]. But in the ea®f a non-
stationary transfer function of the system, or afaaiation of the system configuration, anotherrapph is necessary.
In this paper, we focus on linear and non-statipisgstems whose output signals can be writtenliagar combination

of exponentially damped sinusoids with differerdarshg instantst,,. Such signals follow the multishock model as

described by Eqg. (13). We showed in Section 4ttietimits of the usual time-frequency detectiorthmes are rapidly
reached in order to separate close shocks in tBoewe propose here a new instant detection basdtleoRrony-

Correlation method applied to a gliding window.

6.1. Model rupture on analysis window

Let us first recall [BRI 81] the definition of stabharity. A signal is said to be stationary if thés a simple, analytic and
converging relation between its values at diffetames. In this way, when the window is opened betbe beginning
of the signal, the signal included in the windowmat be considered as stationary and the Pronyauetfil give poor

results.

When the window is opened too early (in phase aclprapplying Prony method to this window woulddea
important errors. When resolving Eq.(C.1), we wogdd an error for AR parameters, error which vasieghe ratio of
the signal power before the shock to the shockoresp power [ROB 96]. When resolving Eq. (C.4), bt¢YVE 96],
[YVE 93] showed that amplitude estimation has bathultiplicative bias linked to the model poles adadditive
bias linked to the signal samples amplitude betbeeshock. This bias will be more or less importal®pending on

what these samples are, either noise or the etigegfrevious shock response.

On the opposite, if the window is opened aftergtaeting instant of the shock, the estimated pararsevill be those of

the signal present in the window with a delay whiel influence phase and amplitude values in thsotution of

Eq.(C.4). With a phase delag, , the amplitude and phase of each mopebecomes equal toﬁ\ae'”’”"/Q é(¢’+%)

instead of A, e Fig. 6 illustrates that sensitivity to window pasit.
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Prony model at order P=2 with a window size of N=20nt®imarked by two vertical lines).

6.2. Shock instants detection: amplitude curve
To bypass the problem due to observation windovitipas we first estimate the model rupture instahst us note the

shock instants ag, =k, t..

Let us first assume that responses to shocks dovestap. Consider aN, points gliding window, N, being of the

order of the point number that separates the shaeitk, be the first time index of this window.

When ky, < k¢ < kpsg =Ny, the signal on which the window is open has a pliday ¢, =k, Q (see Section 6.1).

With an origin fixed at the first point of the wiodl and withO<k < N —1, the modely; [k] can be written as

[=]
Y, [k] =Z Anp e%(k Ki—kn) te gp(k Ki= k) 1@ mp (27)
p=1

Let Ap[kf] be the amplitude for modp in the analysis window. We can write it as

A) |:kf:|: Anp e_ap(kf_km)te (28)
Eqg. (28) shows that, in the window, each mode aogii exponentially depends dqg , the window position, and is

maximum atks =kq,.
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When K41 — Nf +1<ks <k, —1, the window is open before the signal occurs (phadvance) and it contains a
model rupture. Amplitude estimations will be pebted during a time corresponding to the window widlth . Given
that the model parameters are estimated in twaraepsteps, poles estimation from Eq. (A.2) theplaodes from Eq.
(C.4), it is possible to choose different windowesfor each step. This processing is interestingesour interest in the
first step is the detection, so the sensibilityteariation rather than an accurate estimation.NLghis be the window
length in the second step. If we chod¥g bis << N , amplitude estimation will be perturbed on a lesseent. Fig. 7
presents two Prony analyses, one with identicatlain size for both steps and the other with diffeeres. Choosing
N¢bis=2P seems to be a good compromise.

Therefore, when the window glides point by poineo®a multi-pulse signal, the amplitud@p[kf] is a succession of

decreasing exponentials and the maxima of the dadieate a synchronism between the shock and kaiong of the

window. This is true for each modp. As there is no reason to focus more onto one ntwale another, we will focus
onto the sum of amplitudes for all modes. Thus, shecks instants,, will be detected with the arguments of

amplitude sum maxima
R P A
k, =argmaxy” A[ k; | with A[ K, ] >g andg = Ao (29)
Ky p=1

with g the noise standard deviation, which can be estichéitom the spectrogram using a maximum likelihood

method [HOR 02] for instance, antl ana priori fixed real number.
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T T

1 T T T T T
0.5 |- 1
o
-0.5 |- 1
1
3

L L L
60 70 80 90

- L L
0 10 20 0 40 50
Amplitude curve N=N'=20

T T

D

0 10 20 70 80 90

30 . 40 50 60
Amplitude curve N=20,N'=2P =4
T T T T

1 -
0.5 |- 1
0 L . L L 1 L

0 10 20 30 40 50 60 70 80 90

Fig. 7. Amplitude curve estimated from the simulatedaigntop figure. Middle: amplitude curve estimateith windows of the
same size in the two Prony steps=(N,;<=20 pts). Lower: amplitude curve with different sigis=20, Ny,=2P=4 pts).
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In order to decrease false alarm probability, we adsecond constraint by detecting exponentialedesgs after each

maxima k,,,. Between two maxim&,, and k.,+1, we approximate an exponential function with atoplé Akf and
damping factorsc?kf by least-squares and retain only maxikg which residue’s power is under a fixed threshold

£5. So, we have

2

S S A]-A e
K =k | i=1

<§g, (30)

We should also note that, even if responses tokshoeerlap, a correct detection is still possibleé assume that the
same frequencies are excited by the shocks, wétlsdime damping factor. If this is the case, iteasily be shown that
each portion of the amplitude curve is a decreaggonential, whatever the distance between twakshoFor

instance, for two shocks at timég and k, , with the same pulsatio® , the same damping facter andt, =1s for

sake of simplicity, we have
y[k]: Ak ok i L{ k= H*’ AGR Bl P p K 2“( (31)

The area under concern herekis k, where we have interferences between both vibration

y() = €707 (A ) @iy AR for k> g (32)

Eq. (32) can be written as

y[= A, e dl-ee) (33)

where A, and @, depend ork;, k, ¢ and ¢, . According to these parameters, amplitule varies between two

limits
A max - Ae™? (ke=ko) 4 Ay when interferences are constructive;
* Agnin Aie_a(kz_kl) -A when interferences are destructive.

Fig. 8 and 9 illustrate this situation for a signadde of three shocks: the first two interfere tmmsively, whereas the
last two interfere destructively. In Fig. 8, withawise, the last shock could be detected. BuEidn 9, 5 false alarms

occur in parts of the signal where the SNRis we@& @B for the 3 shock). In the next Section, we show the limits of

the detector for destructive interference wheneaisreases.
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6.3. Instant detector performance

Fig. 10 presents the Receiver Operating Charatitasrisr ROC. These curves show the detection piibtyaBd versus

false alarm probability?f, for various SNRvalues whereas conditional prolitaslPd andPf are defined as

R, = P(k, = k|k)

and

P = P(lZm # k1|k1) (34)

The thresholds, is the varying parameter. Given that threshejds less critical, only two values af; are chosen.
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Fig. 10. ROC (Pd versus Pf) for instant detection of a draek simulated signal witls; = 35 (left) and &1 = 66 (right).
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Fig. 11 presents a simulated three shocks sigrthl ssime amplitude and response for each shock bartying delay
between shocks. In case of a constructive interfereas 2 and 3 periods (upper and bottom curvésgofll), the
ROC shows a similar detection to that for one sirgflock of Fig. 10. The middle curve of Fig. 11lresents the ROC

for a destructive interference (2.5 periods). bt ttase, performance is unacceptable.

SNR=16 dB ROC curves
1 1
3 0 0.5
periods SNR=16 dB ROC curves
-1 o 1 1
0 20 40 60 80 0 0.5 1
2:5d 0 W\/\/\W 05
periods
1 1
2 * 0
periods 0 05 0 20 40 60 80 0 05 1
1 0 Destructive interferences
0 20 40 60 80 0 0.5 1

Constructive interferences

Fig. 11. Detection performance for a simulated 3 shocgaiwith various delays between shocks: 3 and 2gdsrof the signal for
constructive interferences, 2.5 periods of the &lifor destructive interferences. SNR = 16 dB. Facleperiod, left curve shows the

signal and right curve the ROC with =65 .

6.4. Time-frequency Prony

In previous Section, we assumed that either shesganses do not interfere or the local respons&i®nary. This
allows us to choose a widd ¢ for good poles estimation and a short sidg,;; < N; to improve shock detection and
separation. Thus, both estimation and detectiostcaints are filled. In a second stage, shock imstatection allows a

temporal segmentation of the signal. In a thirdjstave apply gliding Prony’s method to each segraedtwe finally

reconstruct a whole signal model. The overall metstoucture is shown in table 1.

Prony’s model applied to a gliding-window:
-first step: sizeN; fixed a priori (about 3 periods)
-second step: sizeNgw,;<<Ny, orderP a priori

Shock instant detection on the amplitude curve:
detection of exponential decreasing after maxima
using detection criterion (Eq. 4)

Whole signal modeling: Prony’s model applied tolea
segment between shocks instants or on a minimuen
of N; points.

o
N

Table 1. Time-Frequency Prony Algorithm

Fig. 12 shows comparison between the analyzed Isignththe reconstructed signal for signal of FigM®del error is

calculated from the ratio of the residue poweh®gignal power.
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Simulated (plain) and reconstructed (dotted) signals
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Fig. 12. Simulated signal superposed on the reconstrumtedby time-frequency Prony method (upper). Ersssus time (middle).
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7. Application to a chairlift acceleration signal
In order to illustrate the method that we presertece, we are going to present results on the obpdlift system
mentioned in Section 3. First, in Section 7.1, wsidn an acceleration model derived from Eq. (f&jameters being
estimated from mechanical knowledge. We call thtedeh a mechanical model to set it apart from theniPrmodel

estimated by the method we propose. Then, in Se¢t®, we analyze a recorded signal.

7.1. Analysis of a mechanical model

In the model design, we will assume that only tegrde of freedom of the sub-rocker in contact whth grip will be
excited (see Section 3). The vibration frequencthisf sub system can easily be calculated anduisdfdo be around 30
Hz. This frequency is rather stable for standasiaitations, because the legal rules are very gteord only a little

liberty is given to the tension of the rope. Frormany measurements, we observed that the dampiny fachs out to
be around50s ™. From what precedes, we can work out the inducedlaration to the chair. The real rocker impulse

response can be calculated from Eq. (8) vitk= 2. It is then possible to calculate the overall cese when the grip
runs under the rocker. Under the form of accelenative have to use Eq. (16). The rocker is exdiedxcitation (10).
Figs. 13, 14 and 15 show the accelerometric regpasmsobtain and the results of the time-frequenony method at

1, 2 and 4.16 m/s, respectively.

In these figures, the upper curve is the mechameadel, the second one shows the reconstructe@lsagmwhich
vertical lines represent the detected shocks. Téguéncy, damping factor, amplitude and phase vewwtution are

then presented versus time. On the last curveydheal lines shows the simulated excitation model
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At speed 1m/s (Fig. 13), the window width for timstant detection is fixed to the minimum gap betwieo shocks

(N; =10). Every shock instant is well detected. The ediaidrequencies and damping factors remain québlest

and correspond to the simulated ones. Amplituddspiiases also correspond to the model: we recheesttocks with
. Vs . . V4
amplitude 0.75 and phaseE and those with amplitude 0.5 and phas%.

At speed 2m/s (Fig. 14)N; is also fixed tol0 and cannot be fixed to a lower value, since itisut the period of the

vibration frequency. Thus, the selected window tvifittr the instant detection is superior to the miunin gap between
two shocks. Where the shocks are too close to etisdr, we observe a bad detection. As a consegueacameter

estimation of these close shocks is less accuratother ones are correctly detected and estimated

At speed 4.16 m/s (Fig. 15), which is the speethefreal experimentation presented in the nexti@eclN, is also

fixed to 10 and the reconstruction error increases again dubet same problem. It is important to notice it

situation is very critical (see Fig. 1d also).
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Fig. 13. Time-frequency Prony method applied to a mechamicalel of the interaction grip / 12 wheel rockespeed 1m/s. From
up to bottom: mechanical model with frequency30lmping factor 505 and SNR=20dB; detected shock instants (verticais)
and signal reconstruction by time-frequency PrdPy4, N=10); estimated frequencies versus time; estimdsedping factors
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versus time; estimated amplitudes versus timenestid phases versus time. On the last curve, ttiealdines indicate the shock
instants of the excitation model.

24 shocks, reconstruction error (%) : 7.4638
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Fig. 14. Time-frequency Prony method applied to a mechamicalel of the interaction grip / 12 wheel rockesspeed 2m/s. From
up to bottom: mechanical model with frequency30mping factor 508 and SNR =20dB; detected shock instants (vertinak)
and signal reconstruction by time-frequency PrdhyZ, N=10); estimated frequencies versus time; estimdgetdping factors
versus time; estimated amplitudes versus timenestid phases versus time. On the last curve, ttiealdines indicate the shock
instants of the excitation model.

7.2. Analysis of a chairlift model

Let us now analyse a real signal, namely the act@d® measurement at the top of a hanging chair detachable 4-
seats chairlift. Signal is recorded when cable ispged 4.16m/s. The rope wearing induces a vibiratvhich is better
to filter before analysing the signal. This vibeattifrequency can be calculated from the rope wgastep and the

velocity. Before processing, the real signal idilsered by a low-pass filter with a cut-off frequey equal to 50 Hz.

Fig. 16 shows time-frequency Prony results on tlkeréd real signal. The model order here also=2 AL frequency in
real signal analysis). The mean value of the egtichfrequencies is 26 Hz and their standard dewiafi Hz. The
fluctuation of the estimated parameters can bea@xgdl by the critical case of this situation: higgeed and shocks

very close to each others, as in the simulatioe [&8g. 15).
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48 shocks, reconstruction error (%) : 8.7

Fig. 15. Time-frequency Prony method applied to a mechamicadel of the interaction grip / 12 wheel rockeispeed 4.16m/s.
From up to bottom: mechanical model with frequen&i3@lamping factor 50sand SNR =20dB; detected shock instants (vertical
lines) and signal reconstruction by time-frequeRecyny (P=2, N=10); estimated frequencies versus time; estimdtadping
factors versus time; estimated amplitudes versus;testimated phases versus time. On the last din@eertical lines indicate the
shock instants of the excitation model.

8. Conclusion

Understanding the chairlift behaviour opens the teag predictive model, a situation which is indeeshfer situation,
as it allows to calculate dynamic strains in thaistes (and also in the towers). This allows chegkihe equipment
reliability before construction, and also to makeesthat the equipment will pass all legal testeag to undergo.

On a signal processing point of view the need foraalel of a mechanical system allowed us to proposew method
for shock detection and transient signal analy#i® succeeded in detecting very close shocks, elvengh the
responses were overlapping. The detection methbdsed on estimation of the physical parametess fstem. The
good performance can be due to the fact that thaéetrie close to the physical reality when vibraticare involved.

Being a non-stationary analysis, the model allowisrge variety of applications. So, it could be lggap to many
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vibration situations. An interesting progress woblel to include in our process a deflation step. &k currently

working on this problem.

48 shocks, reconstruction error (%) :19.3
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Fig. 16. Time-frequency Prony method applied to a recorslgdal at speed 4.16 m/s. From top to bottom: Rigdal after low-
pass filtering; Detected shock instants (vertidags) and signal reconstruction by time-frequenoyny (P=2, N=10); Estimated
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Appendix A: Exact Prony solution

When N, the number of points in the sigrye{lk] , equals 2P we have as many equations of typelBy.ag parameters
to determine. The system thus has an exact solyfjéch= 3] K| and Eq. (21) becomes
P
>n,y[k-p=0 Ok=P N and N=2F (A1)
p=0
This equation leads to parameteps from which we can deduce poleg, by polynomial factorization of the
denominator of Eq. (19)
2 1 S 51
I_l(l‘zpz )= (A2)
b=

p=0

In the second step we have to determane which can be done by using Eqg. (18) after innerthe obtained matrix.

Appendix B: Least-squares Prony solution

When N >2P, we have more equations than parameters to fihd.sblution of this system can only be approached.
Thus an error exists. This error, between the sigmad the model y[k|, we denoted bye[k]. Then

y[K] = ¥ K +&[ K. Eq. (21) becomes
iqp y[k- p]:inps[ k-d Ok= RN and N2 | (B.1)

This turns out to be an ARMA (P,P) model whd3eMA coefficients are identical t& AR coefficients. Thus the first
step is to solve Eq. (B.1) for coefficienyg by minimizing the error power

N
n, | Z|‘s[k]|2 minimum (B.2)
k=P
Exactly as for the exact model, poles can be deduced from Eq. (A.2) and amplitudgsare calculated from Eq. (18)

using a least-squares method. Erﬂ[)k] also contains the noise included in the signanif. The least-squares Prony
method - or extended Prony — more often introd@cesxtra approximation when calculating coefficsenf from an

AR model. An AR model of signay[k] can be written as
[=]
Sn,yk-p=¢[§ Ok= PN and N2 | (B.3)
p=0

with &, [ k] the prediction error power. Coefficientg can be found by minimizing the error power wheedueting

e,[K| instead ofe[k]. Such an approach is equivalent to whitening theres [K] in Eq. (B.3) whereas this noise
theoretically results from an MA process, see Bql), which is not white of course.
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Appendix C: Resolution of the two steps correlation Prony

In the first step, the least-squares solution af(28) is writtenn. Then

n=-T" y (C.1)
where I* =(I'" T)™ I'" is the pseudo-inverse matrix df. According to Eq. (18) the poleg,, roots of the
characteristic function (A.2) give the frequencaesl damping factors for each mode)(

{ap = —In(|zp|)/te c2)
f, =angle z)/2m

For a real signal, the AR coefficients are realughthe poles are either real (this correspondsoto oscillating
solutions) or complex conjugate (oscillating sala.

In the second step, when the poles, are substituted in Eq. (18), the system is nowedin

1 .. 1) (a y[]
2
s a2| & z || al_|v[2|_
27 .. 27 a) Y[N]
where Z is a NxP Vandermonde matrix. The least-squares solutioficpf(C.3) which we denoté, can be written
as follows

y (C.3)

a=z"y (C.4)
whereZ* = (z" z)™* z" is the pseudo-inverse &f. Using Eq. (18) we get
Al e
®, =anglg g)

The amplitudes are real or complex conjugate, abttie mode linear combinations give real functions
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