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Abstract

This paper presents a spectral density estimateedoan a Normalized Minimum Variance (MV)
estimator as the one proposed by Lagunas. With canvaent frequency resolution, this new
estimator preserves the amplitude estimation ledtagunas one. This proposition comes from a
theoretical study of MV filters that highlights shamplitude lost. Two signal types are taken into
account: periodic deterministic signals (narrow tapectral structures) and stationary random
signals (broad band spectral structures). Withalecsing a smoothing window, the proposed
estimator is an alternative to Fourier based estimrend, without modeling the signal, is a concutre

to high resolution estimators.

Résumé

Cet article présente un estimateur de densité specéfini a partir d’'un estimateur du Minimum de
Variance (MV) Normalisé tel que celui proposé pagiinas. Avec une résolution fréquentielle
équivalente, l'objectif de ce nouvel estimateur es préserver I'estimation de I'amplitude
contrairement a lI'estimateur de Lagunas. Cette gsitipn s’appuie sur I'étude de la fonction de
transfert du filtre MV. Deux types de signaux soahsidérés: des signaux déterministes périodiques
(dont la structure spectrale est a bande étroitejes signaux aléatoires stationnaires (dont la
structure spectrale est a large bande). Sans avoiroisir une fenétre d’apodisation, I'estimateur
proposé est une alternative aux estimateurs dedfpat, sans appliquer de modéle au signal, est un
concurrent des estimateurs paramétriques
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Introduction

In spectral analysis, the Minimum Variance (MV) hed holds an important place with regard to
classic Fourier based methods. The method was destloped by J. Capon [2] for frequency
wavenumber analysis in seismic array processingn thy R. T. Lacoss [7]. Capon’s method
estimates the signal power from a filter bank dal@d from the signal itself. The filters are
constrained in order to reject the signal powealbfrequencies but the desired one. M.A. Lagunas
[8] has proposed an estimation of the spectralidefrem Capon’s power estimator by introducing
the filter bandwidth.

The wide application of these methods comes franfdbt that no model is applied to the signal. The
filter signal dependency implies optimal properties its design which is not the case for Fourier
analysis[7]. The use of the MV estimator has been conclusiveany situations : in acoustics to
characterize hydrodynamic fluids [12], in room asfies to analyze the impulse response of concert
halls [11] and in geophysics [10]. All these apations concern non-stationary signals. In this case
MV methods can be extended to non-stationary ssgoglmean of a gliding time window under the
assumption of local stationarity [1]. Thus, the gedies of these estimators are all deduced from
those of the stationary case. This justifies therast of the here presented study for finite domat
signals.

Our paper copes with the analysis of filters indliby MV constraints. In particular, the designed
filter nature is of interest to study the normaiiaa proposed by Lagunas. Many statistical studies
had been carried on the MV estimator [3], [13],][15]. Little of them have considered it as adflt
adapted to the data set.[Blue to the signal dependency, this study reliearalytical developments
and also on simulated filters from finite duratigignals. From these results, we explain the behavio
of these estimators, mainly for the amplitude eatiom, and we deduce a new MV estimator. Its
principle is close to Lagunas one but a differasaliag significantly improves the performance. A
statistical study illustrates the preservationhe amplitude value and the increase of the frequenc
resolution.

Section 1 briefly recalls the MV filters design atite derivation of the normalized estimator. In

section 2, the frequency response of the MV filerstudied for a complex exponential signal



embedded in an additive white noise. This filtesige is analyzed according to the signal to noise
ratio and the exponential frequency value. Thedterdi are empirically generalized for mixed
spectrum. From these results, the properties ofntivenalized estimator are deduced in the third
section. In a last section, we propose a new egimwehich properties are illustrated on simulations
from a mixed spectrum.

1- Minimum Variance (MV) and Normalized Minimum Var iance (NMV) methods

1.1- Minimum Variance method (Capon's method)

The MV estimator here presented references todteefdtering concept [2] [5] [4] [7]. LetX(n)} be

a wide-sense stationary random process sampledaatiS,(v) its power spectral density function
(PSD) at the frequency. Let us applyx(n) as a filter signal input, this filter is designed a
frequencyuk in order to estimate the signal power at this feaguy. Two constraints are assigned to

the filter :

1 - The frequency responsg, (v) must be equal to 1 at frequenay: A, (VF) =1 (1)
2 - The power out of the filter due to other freqcies thany must be minimized. This is equivalent

to minimizing the global output powefAVve) [6] : Pw (Ve) = AVHFRXAVF (2)

with AIF = (a(O), a(l), a(M 1)) as the impulse response coefficients vectogat
and R, asthe MM autocorrelation matrix of the input signal

Notice that A, (V) = al0)+a(l)e?™ +. +a(M -1) @M =g} A . (3)

where = :(1 g*vete ..,ez”j(M'l)“Fte)

The superscripts ()and () denote transpose and Hermitian transpose.
The minimization of (2) under the constraint (1) bygrange multiplier techniquEs] yields the

impulse response and the output power. This deflres/V filter:

RE, 1
= - F (4) and P.lWe)z=——— 5
E::R;]_EVF MV( F) EEFR;lEVF ( )

Ve



This filter is evaluated at all frequencies lying between 0 and Shannon frequengy 1/t,. The

autocorrelation matriR, must be estimated but the choice of such an estingnot the purpose of
that paper.

This filter design assumes no hypothesis on theasigself. No model and no a priori informatiorear
needed. In Fourier analysis, the impulse respohsach frequency is equal to an exponential at this
frequency. The exponential is limited in time bywimdow equal to the width of the analyzed signal.
Capon'’s filter behaves as a window calculated framestimate of the covariance matrix of the
signal. This dependency upon the signal ensurdsri@bperties compared with Fourier analysis. A
comparative study is discussed in [7] and [11].

1.2- Links with a Linear Minimum Variance Unbiased Estimator

For the particular case of a complex exponentiadbemided in a complex gaussian noise, a Linear
Minimum Variance Unbiased (LMVU) estimator can befided [6] and is closely connected to
Capon’s estimator. The exponential amplitude igmeged by the output of a filter which impulse
response is also defined by equation (4) but btingethe noise instead of the signal correlation
matrix. The variance of this estimator is givendmuation (5) by setting the noise correlation matri
too. When the signal is composed by more than aperential, the matrix in equations (4) and (5)
for the LMVU estimator is the correlation matrix thfe noise plus all the exponentials which are not
at the frequency of the filter. To do that, the @xgntial frequency and the noise correlation matrix
need to be known. The LMVU estimator leads to a ihamn Likelihood estimation of the amplitude
which is not the case of Capon’s one. Being defiioec stationary random process and evaluated at
all frequencies, Capon is more general than LMVUbe Tilter output power gives an estimate of the
input signal power at the filter frequency and valvar the signal is. As one might expect, this
estimate at a defined frequency strongly dependshensignal content at the other frequencies,
therefore on the noise, and on the number of fdtefficients.

1.3- Normalized Minimum Variance method (Lagunas mthod)
PMV(VF) is homogeneous to power but not to a spectraliggehsction since the area under the

estimated function does not represent the totaleposi the analyzed signal. M.A. Lagunas [8]



proposed a method to derive the spectral density the MV power. Assuming that the true power

densityS(v) is flat aroundv: and is roughly equal t8(vx), equation (2) can be written:
Ve 12 +Ve /2
2 2
Pve)= [ |A ) Scwdv=sve) | [A, W) dv (6)
Ve l2 Ve l2
Note that this formula assumes that the filter imerow bandpass one. So the MV filter output power
is linked to the spectral density of the input silgoy a factor which is the noise equivalent barttkvi

B. of the filter owing to the MV constraint equati@l). Using Parseval relation, this factor is writte

as:

+V 12
2 o _1 4 _

J A .w[dv=—A0A, =B, (7)

Ve /2 €

Combining (6), (7), (4) and (5), the NMV PSD estioré5yu/( k) is finally written as:

E, RE,,

ELRVE, X

Suwv (VF) =t

2 - Analysis of the MV filter

A MV estimator study was already performed in [I4]shows how the estimation converges to the
true spectrum with regard to the filter order M ahd noise level. We aim here to point out specific
properties of the MV filter for explaining the NMéktimator behavior.

The MV filter depends on the signal so that theydiency response has a different shape and then
different properties according to signal charasters. An analytical derivation of the filter shdul
have been considered for each type of signal. Viigedkit only for a complex exponential embedded
in white noise. Finally, we discuss the case ahakted mixed spectrum.

2.1 - Analytical study of the MV filter

The MV filter is examined for a signa(n) which is a complex exponential of frequengy, in an

additive complex white noiss(n) of powera®. Let the complex amplitude of the exponential [e C

where® is a uniformly distributed random phase:

X=Ce®E, +W whereX = (x(0), x(1), ... x(M-1)) andW ™ = (w(0), w(1), ... w(M-1))

Vexp

The autocorrelation matrix of the signal X writes:a



=C’E expEH +07l wherel is the MkM identity matrix.

Vexp

Using Sherman-Morrison formu[d], the inverse of the autocorrelation matrix turnsto be

2 2
R -1 p%EV = (10)
1+ M CZ/O.Z exp exp

c?|o?

Let Q equalm and note that £/ o represents the signal to noise ratio. Substituting
+ o

equation (10) into equation (4) yields the impuisgponse at frequenay:

Q E exp HexpEVF
M- Q|E

Ve

VF Vexp
The filter frequency response adapted to the sigfmylat frequencyre is then deduced:

N EVE, -Q EEEVeXPE%XpEVF _ D[V =1)=QM Dy =v) DV ~Viery) a

M_Q‘EH 1- QM |[Dy ~vey)|

where Dirichlet Kernel Dy - v;) is equal to:

v 1w 18 27(v, v ity __zi(w-v, )M -1)t, sin(zz(v, -v, M t,)
D(V-u) = MEMEVk—Mze K =e MSin(ﬂl'((Vk_Vi)te)

1=0

If the filter frequency Ve is equal to the exponential frequencyk,,, equation (11) becomes:

A, W) =Dlegvy (12)

The exponential is filtered by a narrow band filmntered at the exponential frequency with its
maximum equal to 1 (Figure 1-b). In this particutase of one exponential in noise, MV method at
the exponential frequency is reduced to Fouriémedbr with a filter length fixed by the order Md&n
a -3 dB bandwidth equal to 1/(M)We can notice that this quantity is frequentligdigor scaling
Capon power at all frequencies eventhough the igmaore complex that one exponential [5], [6].

If the signal to noise ratio is small(C?/ o <<1), Q tends to 0 and the squared modulus of the

frequency response (11) i‘sA,F (V)‘2 =|D(ve -V)|° (13)



In this latter case, the filter frequency respoms®lulus is also a Dirichlet’'s kernel centered & th
filter frequency. This case is similar to Fourigralysis. The MV filter rejection is the same at all
frequencies since the signal power is high atrafjdiencies.
If the signal to noise ratio is greater than (C?/ ¢® >>1), QM tends to 1 and equation (11) shows
that the filter is no longer a Dirichlet’'s kerned @ Fourier analysis. In this simple case of @lgin
exponential frequency, the structure of the fregyeesponse clearly explains the MV principle. The
denominator in (11) is only a constant whereas rinenerator is the difference between two
Dirichlet’s kernels. The first is centered at thieef frequencyv: and the second at the exponential
frequencyve,, The second kernel is smoothed by a factor whegredds on: - ve,,). We developed
the MV filter shape in two cases to highlight ieshlavior.

Figurel
2.2 - Case 1 : The filter frequency is far from the exponential frequencyvey,
The smoothing factor D V) tends to zero. Then, equation (11) is reduced tateon (13) wherv
is different fromve,,and vanishes whemtends toveyp,
In this case, the response is a Dirichlet's kemwetept at the exponential frequency where the
response is minimized. This latter point makesdifference with Fourier estimator according to the
MV constraint. This case is illustrated by figurec Which compares the theoretical curve to a
simulated one.
2.3 - Case 2 : the filter frequencyk is close to the exponential frequencyey,

Given that (rVey) is low, the smoothing factor D¢-ve.) in (11) plays a prominent part and the

frequency response can have two main lobes as stmofigure 1-d. Furthermore, as soonias min(us,
Vexp) @aNd V > Max(Ve, Vexp), ‘A/; (v)‘2 is greater than 1 (cf. algebra details in appéndike frequency

response is not maximum gt but at a frequency which lays outside the frequeangeve,, to Ve.. This
property is shown in figure 1-d. In this case, weuld like to emphasize that the filter is no more a
narrow band pass filter centeredvatand that the maximum of the frequency responsébeanore than
unity.

2.4- Synthesis of the MV filter's analysis



The filter's behavior is the same whether its fezgry belongs to a band where the signal power level
is maximum or minimum (case 1). In the neighborhaddthis filter frequency, the frequency
response is that of a narrow band filter centetethia frequency and with its maximum equal to 1.
Outside this neighborhood, the response is minithaesach frequency where the signal power level
is high. This result was known, but, moreover, whba signal power is small, the frequency
response can have secondary lobes with maxima muwedter than one. The areas of these lobes
could even be greater than the area of the lob&irong the filter frequency. Note that this sifoat
could not appear in the analytical example, buhsaibehavior is encountered when the response is
constraint at more than one frequency.
For illustrating this point of view, we present thealysis of a more complex signal composed of a
sum of a noised sine wave and a broad band signaladed by a white noise filtered by a low-pass
filter. The MV power estimation of this simulateigrsal is plotted in figure 2-a. Figure 2-d shows th
response in a frequency range where the signal pmwvamall, figure 2-b that for the broad band
signal and figure 2-f the response at the expoakingquency.
When the filter frequency is close to a maximunthef signal power, the filter is no longer narrow
band. The constraint of unity at the filter freqaogris maintained but there is no relation for
constraining the filter to be maximum at this fregay. On the contrary, such a response is
constrained to be minimum at a frequency closehi® filter frequency. So a greater maximum
should be at a frequency on the other side offteguiency. This behavior detailed in case 2 is due
to the filter structure be the filter frequencysdao an exponential frequency (figure 2-e) orelos
to a broad band (figure 2-c). The other parts efftequency response are similar to case 1.

Figure2
In conclusion, Capon's filters are not always narband filters centered at the filter frequengy
In fact, the design constraints, the unit gaimvaand the rejection of the signal power at the other
frequencies, are not the only relevant constramidesigning a narrow band filter. At frequencies
where signal power is small, the filter is free @nel frequency response can be very high. But, the

output power is always representative of the sigmalier due to the fact that the product

2
|A(W)" §,(v) is almost equal to zero whatever the value of teguiency response may be.



This particular behavior of Capon's filter was pogviously pointed out. More often, the filter was
explicitly or implicitly considered as a narrow labfilter [9 p.351], [6 p.370], [8]. Therefore, the
normalization of the MV method by the bandwidthda$ined in (7) is only actual in the case of a
narrow band filter. In the other cases, the measent of the bandwidth includes the area of huge
lobes which are not significant. This conclusiorplains why the noise equivalent bandwidth
cannot be considered as a measure of the frequesalution as in Fourier analysis.

3-Properties of NMV method

The main property of the NMV method is a refinirfgpower peaks. Each power variation of the MV
estimator is enhanced by unrealistic transformatidrhis estimation has an interest as a frequency

estimator but not as an amplitude one. This speatfemement property can be explained from the

previous study by evaluating the amplitude raﬁM at the exponential frequenwoy,, and at a
vV
NMV

close frequencyg,,+ €) whene tends to 0.

According to Lagunas assumption (section 1.3) piheerPw/(v ) defined in (5) and the PS8wu/(V

) defined in (8) are linked by the noise equivaleanhdwidthB, defined in equation (7)Vhen the
filter frequencyv: equals the exponential frequengy, the frequency response is given by equation

(A2). So the bandwidth noticegl ., in this case is:
+Ve/2
J“D(I/

_e/z

B -I/)‘ZdV

eexp = exp

When the filter frequencyr equalsvegté, the frequency response is given by equation (ARg

Ve 12 _ _ _ _ 2 2 2
bandwidth notice®, , becomeSBeg _ .[ D(Vexp +& V) D(Vexp _ VZ) (1 (77Mte) & /6)| dv

Ve /2 (the) £ /3 ‘
Whene tends to 0, we can show that: ¢ eF<< Be

This fundamental relation means that the bandwitatly increases close to the maximum of a

peak.So, the amplitude ratio of the two estimators canléduced:

Suw (V+€) < S (V)
Puv (V +€) Puv (V)




Close to each maximum signal peak, the NMV metlesthes the spectral peak without keeping up
the amplitudes. These different points are illustlan figure 3-a which shows the NMV estimate of
the same simulated signal as in figure 2. We glesek the refining of the sinusoid peak compared
with the MV estimation in figure 2-a, but, in theoad band, some differences with the true PSD too.
Figure 3-b shows the variations of the bandwidtfswe frequency. We can observe an increase just
around the maximum of the sinusoid frequency. Tligsees show the way the frequency resolution
is improved.

Figure3
4- A new Estimator
If we maintain the objective of defining a PSD ewttor from a MV one, previous results must be
considered when equation (6) is applied. Due tobthsc relation between a PSD and a power, we
can't pass round the notion of integral and of ifteegration support. But, due to the extreme
particularity of the filter shape, we may not calesia classical bandwidth definition. The integrati
support must be adapted to the designed filtethibisection, we propose a definition of this suppo
which leads us to define a new estimator. The pedoce of this estimator is then evaluated by a
statistical study in order to compare it with MVdaNMV ones.
4.1- Definition
The meaningful part of the frequency responseafitter frequencyyr lies in a band where the first
constraint of the MV filter is actual, so we propds only consider the lobe containing The other
lobes are meaningless, since they are in frequieagis where there is no high power. A8 be the

bandwidth of the lobe including:. If vis outsideAB, the affected part of the integral defined in (2)

is equal tdD, because eitheB, (V) = 0 or ‘A,F (V)‘Z = 0. We thus can write:

Puclve)= [, V] s av (14)
AB
Let us assum&, (V) is flat overAB rangei.e. S, (v)=S,(v¢ ). Therefore, equation (14) writes as:

P V6) = S,v¢) | A, )] av (15)

10



Substituting equation (5) into (15), we define avrestimatorS,.q( V) as:

1

2
Sioa(Ve) = - where Broa = ||A, V)| dv (16)
d F El:l: Rxl EVF ) Bmod d AJ-B‘ ( )‘

The last integral must be evaluated. To be adaptad signals, we propose a numerical definition:

B,.q =AB MF (V)‘ 2 Where‘A,F (v)‘zmaxis the maximum of the lobe containimg ~ (17)

The bandAB = [v., v.] is precisely defined by‘A,F (v_)‘2 = ‘A,F v,)

“=[a, V)[,./2

The chosen solution is the most simple to carry bwhould be possible to use the noise equivalent

bandwidth definition too, but only on the lobe imding the filter frequency and without using
Parseval's equality. In any case, a numerical isoludannot be avoided. The quantity,Bmust be
considered as a support of integration more thagséimation of a bandwidth.

This definition is illustrated in figure 4 in twoases. When the filter frequency is equal to the
exponential frequency, that definition turns oubtexactly to the definition of the -3 dB bandwidt

because is at the maximum of the focused lobe as showigime 4-a. When the filter frequency is
. . 2 .
closer to a signal power peak the lobe is no lowgeatered av: and‘A,F (v)‘max is greater than 1 as

shown in figure 4-b. So, the support.Badapts to this configuration.

Figure4
We test this estimator with the same signal aotiesimulated in section 2.4. Figure 3-c shows the
PSD obtained with the new estimator. We observettigasinusoid peak is always refined but, in the
broad band, the estimation is closed to the true &5along the band. Figure 3-d shows the support
Bmoa Versus frequency as computed from (17). We obsemedue increase when the filter frequency
lies beside the sinusoid frequency or close tohitead band. Compared with the NMV estimator
(figure 3-a and 3-b), fluctuations in the broad dane suppressed. At a sinusoid frequency, there is
always a local minimum which implies a peak reftin
Furthermore, at frequencies where the signal pasvhigh, the support Bq lies in the correct order
of magnitude as we might expect. For instance:

- at the sinusoid frequency m&= 0.127 Hz,

11



- atve= 0.111 Hz within the broad band mda= 0.068 Hz.
Whereas with the NMV estimator, in the last casee@uals to 1.626 Hz, which is greater than 0.5,
the full frequency range of the signal ! The filtenape and, more particularly, the value of the
maximum which is no more equal to 1, induces tmaealistic number which has really no meaning.
It is important to notice that the support.B such as we defined it, cannot be considered as an
estimation of the frequency resolution. It also hasrelation with the sampling frequency or the
signal frequency range. If By is large, it does not mean that the frequencyluéiso is small, but
more often, that around this frequency the sigred ho energy. This explains why,J at the
sinusoid frequency is relatively large, whereawéf measure the -3 dB bandwidth of Capon's peak
(figure 2-a), we get 0.008 Hz.
4.2- Statistical Study
In order to compare the different MV estimatorsndined realizations of always the same signal as in
section 2.4 were simulated. Figure 5 -a, b andoevstthe overlaid estimations of the MV power, the
NMV DSP and the new NMV DSP. The obtained biases@entical to those presented in figure 2-a
for MV, 3-a for NMV and 3-c for the new NMV. The nnalized variances of these estimates are
displayed in figures 5 —d, e and f. These simulegtioorroborate the previously described behavior.
Compared with the MV estimator, the peak refiniighe NMV estimator is also preserved in the
new one. With regard to the estimate level in tr@at band, the MV estimator has a bias of —10 dB
with respect to the true level. The NMV estimatesi®n lower whereas the new NMV one tracks
correctly the true amplitude. The variances ofMhé and new NMV estimators are nearly the same
and lower than the NMV one except at the exponkfrdguency and close to the broad band.
Figure5
Conclusion
This paper showed the importance of the filterintgiipretation of MV method. We saw how the
constraints influence the filter design. Consedyeme deduced that MV filters are not always
narrow band filters. This was not previously natice
Our study explained how the normalization introdlibg Lagunas can produce interesting results but

some artifacts too. The amplitude variations aneaiistically enhanced, leading to a strongly biase

12



PSD estimation. We can state that the NMV methaddse adapted to narrow spectral band signals
and that the frequency resolution is improved camepavith the MV estimator. But the NMV
estimator is not adapted to track the amplitude tanehsure a good PSD estimation. In contrast, the
new estimator we propose in this paper increasedrédguency resolution compared with the MV
method, sometimes less efficiently than the NMV hoet but always preserves the PSD with lower
bias and variance for any kind of signals evemioted spectrum.

It relies on a scaling more adapted to Capong&rfilehavior. Note that computation is a little teard
and more time-consuming than Lagunas’ method dilrahParseval's equality could no longer be
used. It is not possible to deduce the frequensglugion from this scaling factor and, at the motmen
the only way to get a value of the frequency resofuis to measure it directly from the estimated
power, as R.T. Lacoss did with a noised single siagee[7].

Appendix

In order to understand the effect of the smootfaagor in equation (11), this term is approximaa¢d

(ﬂMte)z(VF _Vexp)2 and D(VF-Vexp)Z: 1- (ﬂMte)z(VF _Vexp)2

order 2: D{eVexp) = 1 - 5 3

(A1)

Substituting (A1) into (11) gives the squared frexey response in case 2:

() <] =) =Dlcy )t
o (Mt J{ve —ve /2 | (A2)
CZ/O-Z >>1 Q:]/M, Vexy Ve 0

A stronger approximation can point out the propeityhis filter. In the frequency range closeuto
and Vex, We can limit all Dirichlet’s functions to secondder given thatiey:Ve) — O,

(VexrV) —» 0 and ¢=v) — 0. So, equation (11) becomes:

2
A0 = 711{“[—%3’ = ZVB

exp

C?*/0? >>1Q=YMV¢y, Vg — OVep =V - OV =V - 0

This strong approximation is correct because theMNV constraints (1) and (2) are always respected

13
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