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Abstract 

This paper presents a spectral density estimator based on a Normalized Minimum Variance (MV) 

estimator as the one proposed by Lagunas. With an equivalent frequency resolution, this new 

estimator preserves the amplitude estimation lost in Lagunas one. This proposition comes from a 

theoretical study of MV filters that highlights this amplitude lost. Two signal types are taken into 

account: periodic deterministic signals (narrow band spectral structures) and stationary random 

signals (broad band spectral structures). Without selecting a smoothing window, the proposed 

estimator is an alternative to Fourier based estimator and, without modeling the signal, is a concurrent 

to high resolution estimators. 

 

Résumé 
Cet article présente un estimateur de densité spectrale défini à partir d’un estimateur du Minimum de 
Variance (MV) Normalisé tel que celui proposé par Lagunas. Avec une résolution fréquentielle 
équivalente, l’objectif de ce nouvel estimateur est de préserver l’estimation de l’amplitude 
contrairement à l’estimateur de Lagunas. Cette proposition s’appuie sur l’étude de la fonction de 
transfert du filtre MV. Deux types de signaux sont considérés: des signaux déterministes périodiques 
(dont la structure spectrale est à bande étroite) et des signaux aléatoires stationnaires (dont la 
structure spectrale est à large bande). Sans avoir à choisir une fenêtre d’apodisation, l’estimateur 
proposé est une alternative aux estimateurs de Fourier, et, sans appliquer de modèle au signal, est un 
concurrent des estimateurs paramétriques  
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Introduction 

In spectral analysis, the Minimum Variance (MV) method holds an important place with regard to 

classic Fourier based methods. The method was first developed by J. Capon [2] for frequency 

wavenumber analysis in seismic array processing, then by R. T. Lacoss [7]. Capon’s method 

estimates the signal power from a filter bank calculated from the signal itself. The filters are 

constrained in order to reject the signal power at all frequencies but the desired one. M.A. Lagunas 

[8] has proposed an estimation of the spectral density from Capon’s power estimator by introducing 

the filter bandwidth. 

The wide application of these methods comes from the fact that no model is applied to the signal. The 

filter signal dependency implies optimal properties for its design which is not the case for Fourier 

analysis [7]. The use of the MV estimator has been conclusive in many situations : in acoustics to 

characterize hydrodynamic fluids [12], in room acoustics to analyze the impulse response of concert 

halls [11] and in geophysics [10]. All these applications concern non-stationary signals. In this case, 

MV methods can be extended to non-stationary signals by mean of a gliding time window under the 

assumption of local stationarity [1]. Thus, the properties of these estimators are all deduced from 

those of the stationary case. This justifies the interest of the here presented study for finite duration 

signals. 

Our paper copes with the analysis of filters induced by MV constraints. In particular, the designed 

filter nature is of interest to study the normalization proposed by Lagunas. Many statistical studies 

had been carried on the MV estimator [3], [13], [15], [5]. Little of them have considered it as a filter 

adapted to the data set [6]. Due to the signal dependency, this study relies on analytical developments 

and also on simulated filters from finite duration signals. From these results, we explain the behavior 

of these estimators, mainly for the amplitude estimation, and we deduce a new MV estimator. Its 

principle is close to Lagunas one but a different scaling significantly improves the performance. A 

statistical study illustrates the preservation of the amplitude value and the increase of the frequency 

resolution. 

Section 1 briefly recalls the MV filters design and the derivation of the normalized estimator. In 

section 2, the frequency response of the MV filter is studied for a complex exponential signal 
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embedded in an additive white noise. This filter design is analyzed according to the signal to noise 

ratio and the exponential frequency value. These filters are empirically generalized for mixed 

spectrum. From these results, the properties of the normalized estimator are deduced in the third 

section. In a last section, we propose a new estimator which properties are illustrated on simulations 

from a mixed spectrum. 

1- Minimum Variance (MV) and Normalized Minimum Var iance (NMV) methods 

1.1- Minimum Variance method (Capon's method) 

The MV estimator here presented references to the data filtering concept [2] [5] [4] [7]. Let {x(n)} be 

a wide-sense stationary random process sampled at te and Sx ν( ) its power spectral density function 

(PSD) at the frequency ν. Let us apply x(n) as a filter signal input, this filter is designed at a 

frequency νF in order to estimate the signal power at this frequency. Two constraints are assigned to 

the filter : 

1 - The frequency response ( )A
Fν ν

 must be equal to 1 at frequency νF :   ( ) 1A =FF
νν  (1) 

2 - The power out of the filter due to other frequencies than νF must be minimized. This is equivalent 

to minimizing the global output power PMV(νF) [6] : 
FF x

H
FMV ννν AA R=)(P    (2) 

with ( ) ( ) ( )( )1-Ma,...,1a,0aT =
FνA  as the impulse response coefficients vector at νF, 

and Rx  as the M×M autocorrelation matrix of the input signal x. 

Notice that ( ) ( ) ( ) ( ) .e1-Ma...e1a0aA ee t)1(j2tj2

FFF

HM
νν

νπνπ
ν ν AE=⋅++⋅+= −−−

  (3) 

where  ( )ee t1)-(Mj2tj2T e,...,e,1 FF

F

νπνπ
ν =E  

The superscripts  ( )T  and  ( )H denote transpose and Hermitian transpose.  

The minimization of (2) under the constraint (1) by Lagrange multiplier technique [3] yields the 

impulse response and the output power. This defines the MV filter: 

FF
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F
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EE
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−
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  (4)  and ( )
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1
P −=

R    
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This filter is evaluated at all frequencies νF  lying between 0 and Shannon frequency νe = et/1 . The 

autocorrelation matrix Rx must be estimated but the choice of such an estimator is not the purpose of 

that paper. 

This filter design assumes no hypothesis on the signal itself. No model and no a priori information are 

needed. In Fourier analysis, the impulse response at each frequency is equal to an exponential at this 

frequency. The exponential is limited in time by a window equal to the width of the analyzed signal. 

Capon’s filter behaves as a window calculated from an estimate of the covariance matrix of the 

signal. This dependency upon the signal ensures better properties compared with Fourier analysis. A 

comparative study is discussed in [7] and [11]. 

1.2- Links with a Linear Minimum Variance Unbiased Estimator 

For the particular case of a complex exponential embedded in a complex gaussian noise, a Linear 

Minimum Variance Unbiased (LMVU) estimator can be defined [6] and is closely connected to 

Capon’s estimator. The exponential amplitude is estimated by the output of a filter which impulse 

response is also defined by equation (4) but by setting the noise instead of the signal correlation 

matrix. The variance of this estimator is given by equation (5) by setting the noise correlation matrix 

too. When the signal is composed by more than one exponential, the matrix in equations (4) and (5) 

for the LMVU estimator is the correlation matrix of the noise plus all the exponentials which are not 

at the frequency of the filter. To do that, the exponential frequency and the noise correlation matrix 

need to be known. The LMVU estimator leads to a Maximum Likelihood estimation of the amplitude 

which is not the case of Capon’s one. Being defined for a stationary random process and evaluated at 

all frequencies, Capon is more general than LMVU. The filter output power gives an estimate of the 

input signal power at the filter frequency and whatever the signal is. As one might expect, this 

estimate at a defined frequency strongly depends on the signal content at the other frequencies, 

therefore on the noise, and on the number of filter coefficients. 

1.3- Normalized Minimum Variance method (Lagunas method) 

( )PMV Fν  is homogeneous to power but not to a spectral density function since the area under the 

estimated function does not represent the total power of the analyzed signal. M.A. Lagunas [8] 
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proposed a method to derive the spectral density from the MV power. Assuming that the true power 

density Sx(ν) is flat around νF and is roughly equal to Sx(νF), equation (2) can be written: 

∫∫
+

−

+

−

≈=
2/

2/

2
2/

2/

2
)()()()()(

e

e

F

e

e

F
dASdSAP FXXFMV

ν

ν
ν

ν

ν
ν ννννννν      (6) 

Note that this formula assumes that the filter is a narrow bandpass one. So the MV filter output power 

is linked to the spectral density of the input signal by a factor which is the noise equivalent bandwidth 

Be of the filter owing to the MV constraint equation (1). Using Parseval relation, this factor is written 

as: 

e
e

B
t

dA
FF

e

e

F
==∫

+

−
νν

ν

ν
ν νν AA H

2/
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2 1
)(
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Combining (6), (7), (4) and (5), the NMV PSD estimator SNMV(νF) is finally written as:  

( )
FF

FF

x

x
eFNMV tS

νν

ννν
EE

EE
2H

1H

−

−

=
R

R
         (8) 

2 - Analysis of the MV filter 

A MV estimator study was already performed in [14]. It shows how the estimation converges to the 

true spectrum with regard to the filter order M and the noise level. We aim here to point out specific 

properties of the MV filter for explaining the NMN estimator behavior. 

The MV filter depends on the signal so that the frequency response has a different shape and then 

different properties according to signal characteristics. An analytical derivation of the filter should 

have been considered for each type of signal. We derived it only for a complex exponential embedded 

in white noise. Finally, we discuss the case of a simulated mixed spectrum. 

2.1 - Analytical study of the MV filter 

The MV filter is examined for a signal x(n) which is a complex exponential of frequency νexp in an 

additive complex white noise w(n) of power σ2. Let the complex amplitude of the exponential be CejΦ 

where Φ is a uniformly distributed random phase: 

WEX += Φ
exp

jeC ν   where XT = (x(0), x(1), ... ,x(M-1)) and WT = (w(0), w(1), ... ,w(M-1)) 

The autocorrelation matrix of the signal X writes as : 
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IR 2H2

expexp
C σνν += EEx     where I  is the M×M identity matrix. 

Using Sherman-Morrison formula [4], the inverse of the autocorrelation matrix turns out to be 









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22
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EEIR x        (10) 

Let Q equal 
C2 σ 2

1 + MC2 σ 2  and note that C2 / σ2 represents the signal to noise ratio. Substituting 

equation (10) into equation (4) yields the impulse response at frequency νF: 

2
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The filter frequency response adapted to the signal x(n) at frequency νF is then deduced: 

( ) ( ) ( ) ( )
( ) 2
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where Dirichlet Kernel D(νk - νi) is equal to: 

D(νk-νi) = 
( ) ( )( ) ( )( )

( )( )e

eeik
1-M

0

eH

tsinM
tMsint1-Mjtj2

e
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1
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If the filter frequency ννννF is equal to the exponential frequency ννννexp, equation (11) becomes: 

( ) 2

exp
ννA  =D(νexp-ν )2          (12) 

The exponential is filtered by a narrow band filter centered at the exponential frequency with its 

maximum equal to 1 (Figure 1-b). In this particular case of one exponential in noise, MV method at 

the exponential frequency is reduced to Fourier estimator with a filter length fixed by the order M and 

a -3 dB bandwidth equal to 1/(M te).We can notice that this quantity is frequently used for scaling 

Capon power at all frequencies eventhough the signal is more complex that one exponential [5], [6]. 

If the  signal to noise ratio is small (C2 / σ2 <<1), Q tends to 0 and the squared modulus of the 

frequency response (11) is: ( ) ( ) 22
D νννν −≈ FF

A       (13) 



7 

In this latter case, the filter frequency response modulus is also a Dirichlet’s kernel centered at the 

filter frequency. This case is similar to Fourier analysis. The MV filter rejection is the same at all 

frequencies since the signal power is high at all frequencies. 

If the signal to noise ratio is greater than 1 (C2 / σ2 >>1), QM tends to 1 and equation (11) shows 

that the filter is no longer a Dirichlet’s kernel as in Fourier analysis. In this simple case of a single 

exponential frequency, the structure of the frequency response clearly explains the MV principle. The 

denominator in (11) is only a constant whereas the numerator is the difference between two 

Dirichlet’s kernels. The first is centered at the filter frequency νF and the second at the exponential 

frequency νexp. The second kernel is smoothed by a factor which depends on (νF - νexp). We developed 

the MV filter shape in two cases to highlight its behavior. 

Figure 1 

2.2 - Case 1 : The filter frequency ννννF is far from the exponential frequency ννννexp 

The smoothing factor D(νF-νexp) tends to zero. Then, equation (11) is reduced to equation (13) when ν 

is different from νexpand vanishes when ν tends to νexp. 

In this case, the response is a Dirichlet’s kernel except at the exponential frequency where the 

response is minimized. This latter point makes the difference with Fourier estimator according to the 

MV constraint. This case is illustrated by figure 1-c which compares the theoretical curve to a 

simulated one. 

2.3 - Case 2 : the filter frequency ννννF is close to the exponential frequency ννννexp 

Given that (νF-νexp) is low, the smoothing factor D(νF-νexp) in (11) plays a prominent part and the 

frequency response can have two main lobes as shown in figure 1-d. Furthermore, as soon as ν < min(νF, 

νexp) and ν > max(νF, νexp), ( ) 2
νν F

A  is greater than 1 (cf. algebra details in appendix). The frequency 

response is not maximum at νF but at a frequency which lays outside the frequency range νexp to νF.. This 

property is shown in figure 1-d. In this case, we would like to emphasize that the filter is no more a 

narrow band pass filter centered at νF and that the maximum of the frequency response can be more than 

unity. 

2.4- Synthesis of the MV filter’s analysis 
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The filter's behavior is the same whether its frequency belongs to a band where the signal power level 

is maximum or minimum (case 1). In the neighborhood of this filter frequency, the frequency 

response is that of a narrow band filter centered at this frequency and with its maximum equal to 1. 

Outside this neighborhood, the response is minimized at each frequency where the signal power level 

is high. This result was known, but, moreover, when the signal power is small, the frequency 

response can have secondary lobes with maxima much greater than one. The areas of these lobes 

could even be greater than the area of the lobe containing the filter frequency. Note that this situation 

could not appear in the analytical example, but such a behavior is encountered when the response is 

constraint at more than one frequency. 

For illustrating this point of view, we present the analysis of a more complex signal composed of a 

sum of a noised sine wave and a broad band signal simulated by a white noise filtered by a low-pass 

filter. The MV power estimation of this simulated signal is plotted in figure 2-a. Figure 2-d shows the 

response in a frequency range where the signal power is small, figure 2-b that for the broad band 

signal and figure 2-f the response at the exponential frequency. 

When the filter frequency is close to a maximum of the signal power, the filter is no longer narrow 

band. The constraint of unity at the filter frequency is maintained but there is no relation for 

constraining the filter to be maximum at this frequency. On the contrary, such a response is 

constrained to be minimum at a frequency close to this filter frequency. So a greater maximum 

should be at a frequency on the other side of that frequency. This behavior detailed in case 2 is due 

to the filter structure be the filter frequency close to an exponential frequency (figure 2-e) or close 

to a broad band (figure 2-c). The other parts of the frequency response are similar to case 1. 

Figure 2 

In conclusion, Capon's filters are not always narrow band filters centered at the filter frequency νF. 

In fact, the design constraints, the unit gain at νF and the rejection of the signal power at the other 

frequencies, are not the only relevant constraints to designing a narrow band filter. At frequencies 

where signal power is small, the filter is free and the frequency response can be very high. But, the 

output power is always representative of the signal power due to the fact that the product 

A ν( )2
Sx ν( ) is almost equal to zero whatever the value of the frequency response may be. 
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This particular behavior of Capon's filter was not previously pointed out. More often, the filter was 

explicitly or implicitly considered as a narrow band filter [9 p.351], [6 p.370], [8]. Therefore, the 

normalization of the MV method by the bandwidth as defined in (7) is only actual in the case of a 

narrow band filter. In the other cases, the measurement of the bandwidth includes the area of huge 

lobes which are not significant. This conclusion explains why the noise equivalent bandwidth 

cannot be considered as a measure of the frequency resolution as in Fourier analysis. 

3-Properties of NMV method 

The main property of the NMV method is a refining of power peaks. Each power variation of the MV 

estimator is enhanced by unrealistic transformations. This estimation has an interest as a frequency 

estimator but not as an amplitude one. This spectral refinement property can be explained from the 

previous study by evaluating the amplitude ratio 
)(

)(

ν
ν

NMV

MV

S

P
 at the exponential frequency νexp and at a 

close frequency (νexp + ε) when ε tends to 0. 

According to Lagunas assumption (section 1.3), the power PMV(ν ) defined in (5) and the PSD SNMV(ν 

) defined in (8) are linked by the noise equivalent bandwidth Be defined in equation (7). When the 

filter frequency νF equals the exponential frequency νexp, the frequency response is given by equation 

(A2). So the bandwidth noticed Be exp in this case is:   

 ννν
ν

ν
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2

2
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e
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When the filter frequency νF equals νexp+ε, the frequency response is given by equation (A2). The 

bandwidth noticed Be ε becomes:
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When ε tends to 0, we can show that:   Be exp<< Beε 

This fundamental relation means that the bandwidth greatly increases close to the maximum of a 

peak. So, the amplitude ratio of the two estimators can be deduced: 

S

P

S

P
NMV

MV

NMV

MV

( )

( )

( )

( )

ν ε
ν ε

ν
ν

+
+

<<   



10 

Close to each maximum signal peak, the NMV method refines the spectral peak without keeping up 

the amplitudes. These different points are illustrated in figure 3-a which shows the NMV estimate of 

the same simulated signal as in figure 2. We clearly see the refining of the sinusoid peak compared 

with the MV estimation in figure 2-a, but, in the broad band, some differences with the true PSD too. 

Figure 3-b shows the variations of the bandwidth versus frequency. We can observe an increase just 

around the maximum of the sinusoid frequency. These figures show the way the frequency resolution 

is improved. 

Figure 3 

4- A new Estimator 

If we maintain the objective of defining a PSD estimator from a MV one, previous results must be 

considered when equation (6) is applied. Due to the basic relation between a PSD and a power, we 

can’t pass round the notion of integral and of its integration support. But, due to the extreme 

particularity of the filter shape, we may not consider a classical bandwidth definition. The integration 

support must be adapted to the designed filter. In this section, we propose a definition of this support 

which leads us to define a new estimator. The performance of this estimator is then evaluated by a 

statistical study in order to compare it with MV and NMV ones. 

4.1- Definition 

The meaningful part of the frequency response at the filter frequency νF lies in a band where the first 

constraint of the MV filter is actual, so we propose to only consider the lobe containing νF. The other 

lobes are meaningless, since they are in frequency bands where there is no high power. Let ∆B be the 

bandwidth of the lobe including νF. If ν is outside ∆B, the affected part of the integral defined in (2) 

is equal to 0, because either Sx ν( ) ≈ 0  or ( ) 0
2

≈νν F
A . We thus can write: 

( ) ( ) ( )∫
∆

≈
B

xFMV dSAP
F

νννν ν
2

         (14) 

Let us assume Sx ν( ) is flat over ∆B range i.e. ( ) ( )Fxx SS νν ≈ . Therefore, equation (14) writes as: 

νννν ν dASP
B

FxFMV F

2
)()()( ∫

∆

≈         (15) 
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Substituting equation (5) into (15), we define a new estimator Smod(νF) as: 

S
E R E BF H

XF F

mod
mod

( )
.

ν
ν ν

= −

1
1    where  ( )∫

∆

≈
B

F
AB ννν d

2

mod   (16) 

The last integral must be evaluated. To be adapted to all signals, we propose a numerical definition: 

( ) 2
maxmod νν F

ABB ⋅∆=   where ( ) 2

max
νν F

A is the maximum of the lobe containing νF. (17) 

The band ∆B = [ν-, ν+] is precisely defined by ( ) ( ) ( ) 2
2

max

22
ννν ννν FFF

AAA == +−  

The chosen solution is the most simple to carry out. It should be possible to use the noise equivalent 

bandwidth definition too, but only on the lobe including the filter frequency and without using 

Parseval's equality. In any case, a numerical solution cannot be avoided. The quantity Bmod must be 

considered as a support of integration more than an estimation of a bandwidth. 

This definition is illustrated in figure 4 in two cases. When the filter frequency is equal to the 

exponential frequency, that definition turns out to be exactly to the definition of the -3 dB bandwidth 

because νF is at the maximum of the focused lobe as shown in figure 4-a. When the filter frequency is 

closer to a signal power peak the lobe is no longer centered at νF and ( ) 2

max
νν F

A  is greater than 1 as 

shown in figure 4-b. So, the support Bmod adapts to this configuration. 

Figure 4 

We test this estimator with the same signal as the one simulated in section 2.4. Figure 3-c shows the 

PSD obtained with the new estimator. We observe that the sinusoid peak is always refined but, in the 

broad band, the estimation is closed to the true PSD all along the band. Figure 3-d shows the support 

Bmod versus frequency as computed from (17). We observe a value increase when the filter frequency 

lies beside the sinusoid frequency or close to the broad band. Compared with the NMV estimator 

(figure 3-a and 3-b), fluctuations in the broad band are suppressed. At a sinusoid frequency, there is 

always a local minimum which implies a peak refining. 

Furthermore, at frequencies where the signal power is high, the support Bmod lies in the correct order 

of magnitude as we might expect. For instance: 

- at the sinusoid frequency   Bmod = 0.127 Hz, 
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- at νF = 0.111 Hz within the broad band  Bmod = 0.068 Hz. 

Whereas with the NMV estimator, in the last case, Be equals to 1.626 Hz, which is greater than 0.5, 

the full frequency range of the signal ! The filter shape and, more particularly, the value of the 

maximum which is no more equal to 1, induces that unrealistic number which has really no meaning. 

It is important to notice that the support Bmod, such as we defined it, cannot be considered as an 

estimation of the frequency resolution. It also has no relation with the sampling frequency or the 

signal frequency range. If Bmod is large, it does not mean that the frequency resolution is small, but 

more often, that around this frequency the signal has no energy. This explains why Bmod at the 

sinusoid frequency is relatively large, whereas if we measure the -3 dB bandwidth of Capon's peak 

(figure 2-a), we get 0.008 Hz. 

4.2- Statistical Study 

In order to compare the different MV estimators, hundred realizations of always the same signal as in 

section 2.4 were simulated. Figure 5 -a, b and c shows the overlaid estimations of the MV power, the 

NMV DSP and the new NMV DSP. The obtained biases are identical to those presented in figure 2-a 

for MV, 3-a for NMV and 3-c for the new NMV. The normalized variances of these estimates are 

displayed in figures 5 –d, e and f. These simulations corroborate the previously described behavior. 

Compared with the MV estimator, the peak refining of the NMV estimator is also preserved in the 

new one. With regard to the estimate level in the broad band, the MV estimator has a bias of –10 dB 

with respect to the true level. The NMV estimate is even lower whereas the new NMV one tracks 

correctly the true amplitude. The variances of the MV and new NMV estimators are nearly the same 

and lower than the NMV one except at the exponential frequency and close to the broad band. 

Figure 5 

Conclusion 

This paper showed the importance of the filtering interpretation of MV method. We saw how the 

constraints influence the filter design. Consequently, we deduced that MV filters are not always 

narrow band filters. This was not previously noticed. 

Our study explained how the normalization introduced by Lagunas can produce interesting results but 

some artifacts too. The amplitude variations are unrealistically enhanced, leading to a strongly biased 
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PSD estimation. We can state that the NMV method is more adapted to narrow spectral band signals 

and that the frequency resolution is improved compared with the MV estimator. But the NMV 

estimator is not adapted to track the amplitude and to ensure a good PSD estimation. In contrast, the 

new estimator we propose in this paper increases the frequency resolution compared with the MV 

method, sometimes less efficiently than the NMV method, but always preserves the PSD with lower 

bias and variance for any kind of signals even for mixed spectrum. 

It relies on a scaling more adapted to Capon's filter behavior. Note that computation is a little harder 

and more time-consuming than Lagunas’ method given that Parseval's equality could no longer be 

used. It is not possible to deduce the frequency resolution from this scaling factor and, at the moment, 

the only way to get a value of the frequency resolution is to measure it directly from the estimated 

power, as R.T. Lacoss did with a noised single sine wave [7]. 

Appendix 

In order to understand the effect of the smoothing factor in equation (11), this term is approximated at 

order 2: D(νF-νexp) ≈ 1 - 
( ) ( )

6

tM 2
expF

2
e ννπ −

 and D(νF-νexp)
2 ≈ 1 - 

( ) ( )
3

tM 2
expF

2
e ννπ −

 (A1) 

Substituting (A1) into (11) gives the squared frequency response in case 2: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )










→−≈>>
−

−−−−−
≈

0M,1Q,1C

3tM

6tM1DD

Fexp
22

2

2
expF

2
e

2
expF

2
eexpF2

ννσ
ννπ

ννπνννν
νν F

A
    (A2) 

A stronger approximation can point out the property of this filter. In the frequency range close to νF 

and νexp, we can limit all Dirichlet’s functions to second order given that (νexp-νF) → 0,  

(νexp-ν) → 0 and (νF-ν) → 0. So, equation (11) becomes: 

( )










→−→−→−≈>>





























−
−+

+≈

0,0,0M1Q,1C

2
1

4

1

expexp
22

2

exp

Fexp2

ννννννσ
νν

ννν
νν

FF

F
F

A
 

This strong approximation is correct because the two MV constraints (1) and (2) are always respected
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