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Abstract

This paper presents a spectral density estimator based on a normalized minimum variance (MV) estimator as the one

proposed by Lagunas. With an equivalent frequency resolution, this new estimator preserves the amplitude estimation

lost in Lagunas one. This proposition comes from a theoretical study of MV "lters that highlights this amplitude lost.

Two signal types are taken into account: periodic deterministic signals (narrow-band spectral structures) and stationary

random signals (broad-band spectral structures). Without selecting a smoothing window, the proposed estimator is

an alternative to Fourier-based estimator and, without modeling the signal, it is a concurrent to high-resolution

estimators. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Dieser Artikel stellt einen SchaK tzer fuK r die Spektraldichte vor, der auf einem SchaK tzer normierter minimaler Varianz

(MV), wie der von Lagunas vorgschlagene, basiert. Dieser neue SchaK tzer erhaK lt die AmplitudenschaK tzung, die in dem

Ansatz von Lagunas verlorenging, waK hrend die Frequenzau#oK sung gleich bleibt. Der Vorschlag stammt aus einer

theoretischen Studie von MV Filtern, die den Amplitudenverlust betont. Es werden zwei Signalarten betrachtet:

periodische deterministische Signale (schmalbandige spektrale Strukturen) und stationaK re Zufallssignale (breitbandige

spektrale Strukturen). Ohne Auswahl eines GlaK ttungsfensters ist der vorgeschlagene SchaK tzer eine Alternative zu

SchaK tzern, die auf Fourier-Methoden basieren, und ohne Signalmodellierung ein Konkurrent zu hochau#oK senden

SchaK tzern. ( 2000 Elsevier Science B.V. All rights reserved.

Re2 sume2

Cet article preH sente un estimateur de densiteH spectrale deH "ni à partir d'un estimateur du Minimum de Variance (MV)

NormaliseH tel que celui proposeH par Lagunas. Avec une reH solution freH quentielle eH quivalente, l'objectif de ce nouvel

estimateur est de preH server l'estimation de l'amplitude contrairement à l'estimateur de Lagunas. Cette proposition

s'appuie sur l'eH tude de la fonction de transfert du "ltre MV. Deux types de signaux sont consideH reH : des signaux

deH terministes peH riodiques (dont la structure spectrale est à bande eH troite) et des signaux aleH atoires stationnaires (dont la

structure spectrale est à large bande). Sans avoir à choisir une fene( tre d'apodisation, l'estimateur proposeH est une

alternative aux estimateurs de Fourier, et, sans appliquer de modèle au signal, est un concurrent des estimateurs

parameH triques. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In spectral analysis, the minimum variance (MV)

method holds an important place with regard

to classic Fourier-based methods. The method

was "rst developed by Capon [2] for frequency

wavenumber analysis in seismic array processing,

then by Lacoss [7]. Capon's method estimates the

signal power from a "lter bank calculated from the

signal itself. The "lters are constrained in order to

reject the signal power at all frequencies but the

desired one. Lagunas [8] has proposed an estima-

tion of the spectral density from Capon's power

estimator by introducing the "lter bandwidth.

The wide application of these methods comes

from the fact that no model is applied to the signal.

The "lter signal dependency implies optimal prop-

erties for its design which is not the case for Fourier

analysis [7]. The use of the MV estimator has been

conclusive in many situations: in acoustics to char-

acterize hydrodynamic #uids [12], in room acous-

tics to analyze the impulse response of concert halls

[11] and in geophysics [10]. All these applications

concern non-stationary signals. In this case, MV

methods can be extended to non-stationary signals

by mean of a gliding time window under the as-

sumption of local stationarity [1]. Thus, the prop-

erties of these estimators are all deduced from

those of the stationary case. This justi"es the inter-

est of the study presented here for "nite duration

signals.

Our paper copes with the analysis of "lters

induced by MV constraints. In particular, the

designed "lter nature is of interest to study the

normalization proposed by Lagunas. Many statist-

ical studies had been carried on the MV estimator

[3,5,13,15]. Little of them have considered it as

a "lter adapted to the data set [6]. Due to the signal

dependency, this study relies on analytical develop-

ments and also on simulated "lters from "nite

duration signals. From these results, we explain the

behavior of these estimators, mainly for the ampli-

tude estimation, and we deduce a new MV es-

timator. Its principle is close to Lagunas one but

a di!erent scaling signi"cantly improves the perfor-

mance. A statistical study illustrates the preserva-

tion of the amplitude value and the increase of the

frequency resolution.

Section 2 brie#y recalls the MV "lters design and

the derivation of the normalized estimator. In Sec-

tion 3, the frequency response of the MV "lter is

studied for a complex exponential signal embedded

in an additive white noise. This "lter design is

analyzed according to the signal-to-noise ratio and

the exponential frequency value. These "lters are

empirically generalized for mixed spectrum. From

these results, the properties of the normalized es-

timator are deduced in Section 4. In Section 5, we

propose a new estimator whose properties are illus-

trated on simulations from a mixed spectrum.

2. Minimum variance (MV) and normalized

minimum variance (NMV) methods

2.1. Minimum variance method (Capon's method)

The MV estimator here presented references to

the data "ltering concept [2,4,5,7]. Let Mx(n)N be

a wide-sense stationary random process sampled at

t
%

and S
x
(l) its power spectral density function

(PSD) at frequency l. Let us apply x(n) as a "lter

signal input; this "lter is designed at a frequency

l
F

in order to estimate the signal power at this

frequency. Two constraints are assigned to the

"lter:

(1) The frequency response A
lF

(l) must be equal

to 1 at frequency l
F
:

A
lF

(l
F
)"1. (1)

(2) The power out of the "lter due to other

frequencies than l
F

must be minimized. This is

equivalent to minimizing the global output power

P
MV

(l
F
) [6]:

P
MV

(l
F
)"AH

lF
R
x
A
lF

, (2)

with AT
lF

"(a(0), a(1),2, a(M!1)) as the impulse

response coe$cients vector at l
F
, and R

x
as the

M]M autocorrelation matrix of the input signal x.

Notice that

A
lF

(l)"a(0)#a(1)e~2p+lt%#2

#a(M!1)e~2p+(M~1)lt%

"EH
lF

A
lF

, (3)
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where

ET
lF

"(1,e2p+lF t% ,2,e2p+(M~1)lF t%).

The superscripts ( )T and ( )H denote transpose and

Hermitian transpose.

The minimization of (2) under the constraint (1)

by Lagrange multiplier technique [3] yields the

impulse response and the output power. This de-

"nes the MV "lter:

A
lF

"
R~1
x

E
lF

EH
lF

R~1
x

E
lF

(4)

and

P
MV

(l
F
)"

1

EH
lF

R~1
x

E
lF

. (5)

This "lter is evaluated at all frequencies l
F

lying

between 0 and half of Shannon frequency l
%
"1/t

%
.

The autocorrelation matrix R
x

must be estimated

but the choice of such an estimator is not the

purpose of this paper.

This "lter design assumes no hypothesis on the

signal itself. No model and no a priori information

are needed. In Fourier analysis, the impulse re-

sponse at each frequency is equal to an exponential

at this frequency. The exponential is limited in time

by a window equal to the width of the analyzed

signal. Capon's "lter behaves as a window cal-

culated from an estimate of the covariance matrix

of the signal. This dependency upon the signal

ensures better properties compared with Fourier

analysis. A comparative study is discussed in

[7,11].

2.2. Links with a linear minimum variance unbiased

estimator

For the particular case of a complex exponential

embedded in a complex Gaussian noise, a linear

minimum variance unbiased (LMVU) estimator

can be de"ned [6] and is closely connected to

Capon's estimator. The exponential amplitude is

estimated by the output of a "lter whose impulse

response is also de"ned by Eq. (4) but by setting the

noise instead of the signal correlation matrix. The

variance of this estimator is given by Eq. (5) by

setting the noise correlation matrix too. When the

signal is composed of more than one exponential,

the matrix in Eqs. (4) and (5) for the LMVU es-

timator is the correlation matrix of the noise plus

all the exponentials which are not at the frequency

of the "lter. To do that, the exponential frequency

and the noise correlation matrix need to be

known. The LMVU estimator leads to a maximum

likelihood estimation of the amplitude which is

not the case of Capon's one. Being de"ned for a

stationary random process and evaluated at all

frequencies, Capon is more general than LMVU.

The "lter output power gives an estimate of

the input signal power at the "lter frequency what-

ever the signal is. As one might expect, this estimate

at a de"ned frequency strongly depends on the

signal content at other frequencies, and there-

fore on the noise, and on the number of "lter

coe$cients.

2.3. Normalized minimum variance method

(Lagunas method)

P
MV

(l
F
) is homogeneous to power but not to

a spectral density function since the area under the

estimated function does not represent the total

power of the analyzed signal. Lagunas [8] pro-

posed a method to derive the spectral density from

the MV power. Assuming that the true power den-

sity S
x
(l) is #at around l

F
and is roughly equal to

S
x
(l

F
), Eq. (2) can be written as

P
MV

(l
F
)"P

`l% @2

~l% @2

DA
lF

(l)D2S
X
(l) dl

+S
X
(l

F
)P

`l% @2

~l% @2

DA
lF

(l)D2dl. (6)

Note that this formula assumes that the "lter is

a narrow bandpass one. So the MV "lter output

power is linked to the spectral density of the input

signal by a factor which is the noise-equivalent

bandwidth B
%

of the "lter owing to the MV con-

straint equation (1). Using Parseval relation, this

factor is written as

P
`l% @2

~l% @2

DA
lF

(l)D2dl"
1

t
%

AH
lF

A
lF

"B
%
. (7)
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Combining (4)}(7) the NMV PSD estimator

S
NMV

(l
F
) is "nally written as

S
NMV

(l
F
)"t

%

EH
lF

R~1
x

E
lF

EH
lF

R~2
x

E
lF

. (8)

3. Analysis of the MV 5lter

An MV estimator study was already performed

in [14]. It shows how the estimation converges to

the true spectrum with regard to the "lter order

M and the noise level. Our aim here is to point out

speci"c properties of the MV "lter for explaining

the NMN estimator behavior.

The MV "lter depends on the signal so that the

frequency response has a di!erent shape and then

di!erent properties according to signal character-

istics. An analytical derivation of the "lter should

have been considered for each type of signal. We

derived it only for a complex exponential em-

bedded in white noise. Finally, we discuss the case

of a simulated mixed spectrum.

3.1. Analytical study of the MV xlter

The MV "lter is examined for a signal x(n) which

is a complex exponential of frequency l
%91

in an

additive complex white noise w(n) of power p2. Let

the complex amplitude of the exponential be Ce+U

where U is a uniformly distributed random phase:

X"Ce+UE
l%91

#W

where

X T"(x(0), x(1),2,x(M!1)) and

W T"(w(0), w(1),2, w(M!1))

The autocorrelation matrix of the signal X is writ-

ten as

R
x
"C2E

l%91
EH
l%91

#p2I,

where I is the M]M identity matrix.

Using the Sherman}Morrison formula [4], the

inverse of the autocorrelation matrix turns out

to be

R~1
x

"
1

p2AI!
C2/p2

1#MC2/p2
E
l%91

EH
l%91B. (10)

Let Q"(C2/p2)/(1#MC2/p2) and note that C2/p2

represents the signal-to-noise ratio. Substituting

Eq. (10) into Eq. (4) yields the impulse response at

frequency l
F
:

A
lF

"
E
lF

!QE
l%91

EH
l%91

E
lF

M!QDEH
lF

E
l%91

D2
.

The "lter frequency response adapted to the signal

x(n) at frequency l
F

is then deduced:

A
lF

(l)"EH
l
A

lF
"

EH
l
E
lF

!QEH
l
E
l%91

EH
l%91

E
lF

M!QDEH
lF

E
l%91

D2

"
D(l

F
!l)!QMD(l

%91
!l)D(l

F
!l

%91
)

1!QMDD(l
F
!l

%91
)D2

,

(11)

where Dirichlet kernel D(l
k
!l

i
) is equal to

D(l
k
!l

i
)"

1

M
EH

li
E

lk
"

1

M

M~1
+
l/0

e2p+(lk~li )lt%

"ep+(lk~li )(M~1)t%
sin(p(l

k
!l

i
)Mt

%
)

M sin(p(l
k
!l

i
)t
%
)
.

If the xlter frequency l
F

is equal to the exponential

frequency l
%91

, Eq. (11) becomes

DA
l%91

(l)D2"D(l
%91

!l)2. (12)

The exponential is "ltered by a narrow-band "lter

centered at the exponential frequency with its max-

imum equal to 1 (Fig. 1b). In this particular case of

one exponential in noise, MV method at the ex-

ponential frequency is reduced to Fourier estimator

with a "lter length "xed by the order M and a !3

dB bandwidth equal to 1/(Mt
%
). We can notice that

this quantity is frequently used for scaling Capon

power at all frequencies even though the signal is

more complex than one exponential [5,6].

If the signal-to-noise ratio is small (C2/p2@1),

Q tends to 0 and the squared modulus of the fre-

quency response (11) is

DA
lF

(l)D2+DD(l
F
!l)D2. (13)

In this latter case, the "lter frequency response

modulus is also a Dirichlet's kernel centered at

the "lter frequency. This case is similar to Fourier

analysis. The MV "lter rejection is the same at all
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frequencies since the signal power is high at all

frequencies.

If the signal-to-noise ratio is greater than

1 (C2/p2<1), QM tends to 1 and Eq. (11) shows

that the "lter is no longer a Dirichlet's kernel as in

Fourier analysis. In this simple case of a single

exponential frequency, the structure of the fre-

quency response clearly explains the MV principle.

The denominator in (11) is only a constant whereas

the numerator is the di!erence between two Dirich-

let's kernels. The "rst is centered at the "lter

frequency l
F

and the second at the exponential

frequency l
%91

. The second kernel is smoothed by

a factor which depends on (l
F
!l

%91
). We de-

veloped the MV "lter shape in two cases to high-

light its behavior.

3.2. Case 1: the xlter frequency l
F

is far from the

exponential frequency l
%91

The smoothing factor D(l
F
!l

%91
) tends to zero.

Then, Eq. (11) is reduced to Eq. (13) when l is

di!erent from l
%91

and vanishes when l tends

to l
%91

.

In this case, the response is a Dirichlet's kernel

except at the exponential frequency where the re-

sponse is minimized. This latter point makes the

di!erence with Fourier estimator according to

the MV constraint. This case is illustrated by

Fig. 1c which compares the theoretical curve to

a simulated one.

3.3. Case 2: the xlter frequency l
F

is close to the

exponential frequency l
%91

Given that (l
F
!l

%91
) is low, the smoothing fac-

tor D(l
F
!l

%91
) in (11) plays a prominent part and

the frequency response can have two main lobes

as shown in Fig. 1d. Furthermore, as soon as

l(min(l
F
,l
%91

) and l'max(l
F
,l
%91

),DA
lF

(l)D2 is

greater than 1 (cf. algebra details in Appendix A).

The frequency response is not maximum at l
F

but

at a frequency which lays outside the frequency

range l
%91

to l
F
. This property is shown in Fig. 1d.

In this case, we would like to emphasize that the

"lter is no more a narrow-band pass "lter centered

at l
F

and that the maximum of the frequency re-

sponse can be more than unity.

3.4. Synthesis of the MV xlter's analysis

The "lter's behavior is the same whether its fre-

quency belongs to a band where the signal power

level is maximum or minimum (case 1). In the

neighborhood of this "lter frequency, the frequency

response is that of a narrow-band "lter centered at

this frequency and with its maximum equal to 1.

Outside this neighborhood, the response is mini-

mized at each frequency where the signal power

level is high. This result was known, but, moreover,

when the signal power is small, the frequency re-

sponse can have secondary lobes with maxima

much greater than one. The areas of these lobes

could even be greater than the area of the lobe

containing the "lter frequency. Note that this situ-

ation could not appear in the analytical example,

but such a behavior is encountered when the re-

sponse is constraint at more than one frequency.

For illustrating this point of view, we present the

analysis of a more complex signal composed of

a sum of a noised sine wave and a broad-band

signal simulated by a white noise "ltered by a low-

pass "lter. The MV power estimation of this

simulated signal is plotted in Fig. 2a. Fig. 2d shows

the response in a frequency range where the signal

power is small, Fig. 2b that for the broad-band

signal and Fig. 2f the response at the exponential

frequency.

When the "lter frequency is close to a maximum

of the signal power, the "lter is no longer a narrow

band. The constraint of unity at the "lter frequency

is maintained but there is no relation for constrain-

ing the "lter to be maximum at this frequency. On

the contrary, such a response is constrained to be

minimum at a frequency close to this "lter fre-

quency. So a greater maximum should be at a

frequency on the other side of that frequency. This

behavior detailed in case 2 is due to the "lter

structure of the "lter frequency which is close to an

exponential frequency (Fig. 2e) or close to a broad

band (Fig. 2c). The other parts of the frequency

response are similar to case 1.

In conclusion, Capon's "lters are not always nar-

row-band "lters centered at the "lter frequency l
F
.

In fact, the design constraints, the unit gain at

l
F

and the rejection of the signal power at the other

frequencies, are not the only relevant constraints to

M. Durnerin, N. Martin / Signal Processing 80 (2000) 2597}2608 2601



Fig. 1. Comparison of the squared magnitude of simulated MV frequency responses with our theoretical derivation at various "lter

frequencies l
F
. Signal: l

%91
"0.1875 Hz, unit amplitude, signal-to-noise ratio 10 dB, frequency sampling 1 Hz, 1024 points. (a) MV

power estimate, order 20, (b) l
F
"0.1875 Hz, at the exponential frequency, theoretical derivation given by (12), (c) l

F
"0.365 Hz, far

from the exponential frequency, case 1 of the theoretical derivation, (d) l
F
"0.176 Hz, close to the exponential frequency, case 2 of the

theoretical derivation, (e) l
F
"0.176 Hz as in (d) but zoom in [0.14 Hz, 0.24 Hz], theoretical derivation given in Appendix A.

designing a narrow-band "lter. At frequencies

where signal power is small, the "lter is free and the

frequency response can be very high. But, the out-

put power is always representative of the signal

power due to the fact that the product DA(l)D2S
x
(l) is

almost equal to zero whatever the value of the

frequency response may be.

This particular behavior of Capon's "lter was not

previously pointed out. More often, the "lter was

explicitly or implicitly considered as a narrow-band

"lter [9, p.351, 6, p.370, 8]. Therefore, the normaliz-

ation of the MV method by the bandwidth as

de"ned in (7) is only actual in the case of a narrow-

band "lter. In the other cases, the measurement of

2602 M. Durnerin, N. Martin / Signal Processing 80 (2000) 2597}2608



Fig. 2. Squared magnitude of simulated MV frequency responses at various "lter frequencies l
F
. Signal: sum of a sine (0.4 Hz,

magnitude 0.5, signal-to-noise ratio 25 dB) and of a white noise (variance 1) "ltered by an elliptic low-pass "lter (order 12, attenuation

80 dB from 0.22 Hz to 0.25 Hz), frequency sampling 1 Hz, 256 points. (a) MV power (order 12), (b) "lter frequency 0.15 Hz in the broad

band, (c) "lter frequency 0.24 Hz close to the broad band, (d) "lter frequency 0.33 Hz in the small power band, (e) "lter frequency 0.38 Hz

close to the exponential frequency, (f ) "lter frequency 0.4 Hz at the exponential frequency.

the bandwidth includes the area of huge lobes

which are not signi"cant. This conclusion explains

why the noise-equivalent bandwidth cannot be

considered as a measure of the frequency resolution

as in Fourier analysis.

4. Properties of NMV method

The main property of the NMV method is a re-

"ning of power peaks. Each power variation of the

MV estimator is enhanced by unrealistic trans-

formations. This estimation has an interest as a fre-

quency estimator but not as an amplitude one. This

spectral re"nement property can be explained from

the previous study by evaluating the amplitude

ratio P
MV

(l)/S
NMV

(l) at the exponential frequency

l
%91

and at a close frequency (l
%91

#e) when e tends

to 0.

According to Lagunas assumption (Section 2.3),

the power P
MV

(l) de"ned in (5) and the

M. Durnerin, N. Martin / Signal Processing 80 (2000) 2597}2608 2603



B
ee

"P
`l% @2

~l% @2
K
D(l

%91
#e!l)!D(l

%91
!l)(1!(pMt

%
)2e2/6)2

(pMt
%
)2e2/3 K

2
dl.

Fig. 3. The NMV DSP and the new one for the same signal as in Fig. 2. Filters order 12. (a) Overlaid NMV and true PSD, (b) B
%
used for

computing the NMV PSD, (c) overlaid new NMV and true PSD, (d) B
.0$

used for computing the new NMV PSD.

PSD S
NMV

(l) de"ned in (8) are linked by the noise-

equivalent bandwidth B
%

de"ned in Eq. (7). When

the "lter frequency l
F

equals the exponential fre-

quency l
%91

, the frequency response is given by Eq.

(12). So the bandwidth noticed B
e %91

in this case is

B
e%91

+P
`l% @2

~l% @2

DD(l
%91

!l)D2 dl.

When the "lter frequency l
F
"l

%91
#e, the fre-

quency response is given by Eq. (A.2). The band-

width noticed B
ee

becomes

When e tends to 0, we can show that B
e %91

@B
ee
.

This fundamental relation means that the band-

width greatly increases close to the maximum of

a peak. So, the amplitude ratio of the two es-

timators can be deduced:

S
NMV

(l#e)

P
MV

(l#e)
@

S
NMV

(l)

P
MV

(l)
.

Close to each maximum signal peak, the NMV

method re"nes the spectral peak without keeping

up the amplitudes. These di!erent points are illus-

trated in Fig. 3a which shows the NMV estimate of

the same simulated signal as in Fig. 2. We clearly

see the re"ning of the sinusoid peak compared with

the MV estimation in Fig. 2a, but, in the broad

band, some di!erences with the true PSD too. Fig.

3b shows the variations of the bandwidth versus

frequency. We can observe an increase just around

the maximum of the sinusoid frequency. These

"gures show the way the frequency resolution is

improved.

5. A new estimator

If we maintain the objective of de"ning a PSD

estimator from a MV one, previous results must be
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Fig. 4. De"nition of the support integration B
.0$

, (a) l
F

at a signal power peak, (b) l
F

close to a signal power peak.

considered when Eq. (6) is applied. Due to the basic

relation between a PSD and a power, we cannot

pass round the notion of integral and of its integra-

tion support. But, due to the extreme particularity

of the "lter shape, we may not consider a classical

bandwidth de"nition. The integration support

must be adapted to the designed "lter. In this sec-

tion, we propose a de"nition of this support which

leads us to de"ne a new estimator. The perfor-

mance of this estimator is then evaluated by a sta-

tistical study in order to compare it with MV and

NMV ones.

5.1. Dexnition

The meaningful part of the frequency response at

the "lter frequency l
F

lies in a band where the "rst

constraint of the MV "lter is actual, so we propose

to only consider the lobe containing l
F
. The other

lobes are meaningless, since they are in frequency

bands where there is no high power. Let *B be the

bandwidth of the lobe including l
F
. If l is outside

*B, the a!ected part of the integral de"ned in (2) is

equal to 0, because either S
x
(l)+0 or DA

lF
(l)D2+0.

We can thus write

P
MV

(l
F
)+P

*B

DA
lF

(l)D2S
x
(l) dl. (14)

Let us assume S
x
(l) is #at over *B range, i.e.

S
x
(l)+S

x
(l

F
). Therefore, Eq. (14) is written as

P
MV

(l
F
)+S

x
(l

F
)P

*B

DA
lF

(l)D2dl. (15)

Substituting Eq. (5) into (15), we de"ne a new es-

timator S
.0$

(l
F
) as

S
.0$

(l
F
)"

1

EH
lF

R~1
X

E
lF

B
.0$

where B
.0$

+P
*B

DA
lF

(l)D2dl. (16)

The last integral must be evaluated. To be adapted

to all signals, we propose a numerical de"nition

B
.0$

"*BDA
lF

(l)D2
.!9

where DA
lF

(l)D2
.!9

is the maximum of

the lobe containing l
F
. (17)

The band *B"[l
~

,l
`

] is precisely de"ned by

DA
lF

(l
~

)D2"DA
lF

(l
`

)D2"DA
lF

(l)D2
.!9

/2.

The chosen solution is the most simple to carry

out. It should be possible to use the noise-equiva-

lent bandwidth de"nition too, but only on the lobe

including the "lter frequency and without using

Parseval's equality. In any case, a numerical solu-

tion cannot be avoided. The quantity B
.0$

must be

considered as a support of integration more than

an estimation of a bandwidth.
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Fig. 5. Spectral estimation of hundred realizations of the signal used in Fig. 2. Filters order 12. (a) Overlaid MV power estimates, (b)

overlaid NMV DSP estimates, (c) overlaid new NMV DSP estimates, (d) normalized variance of the MV power estimation, (e)

normalized variance of the NMV DSP estimation, (f ) normalized variance of the new NMV DSP estimation.

This de"nition is illustrated in Fig. 4 in two cases.

When the "lter frequency is equal to the exponen-

tial frequency, that de"nition turns out to be ex-

actly to the de"nition of the !3 dB bandwidth

because l
F

is at the maximum of the focused lobe as

shown in Fig. 4a. When the "lter frequency is closer

to a signal power peak the lobe is no longer

centered at l
F

and DA
lF

(l)D2
.!9

is greater than 1 as

shown in Fig. 4b. So, the support B
.0$

adapts to

this con"guration.

We test this estimator with the same signal as the

one simulated in Section 2.4. Fig. 3c shows the PSD

obtained with the new estimator. We observe that

the sinusoid peak is always re"ned but, in the broad

band, the estimation is closed to the true PSD all

along the band. Fig. 3d shows the support B
.0$

vs.

frequency as computed from (17). We observe

a value increase when the "lter frequency lies

beside the sinusoid frequency or close to the

broad band. Compared with the NMV estimator

(Figs. 3a and 3b), #uctuations in the broad band

are suppressed. At a sinusoid frequency, there

is always a local minimum which implies a peak

re"ning.
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Furthermore, at frequencies where the signal

power is high, the support B
.0$

lies in the correct

order of magnitude as we might expect. For in-

stance,

f at the sinusoid frequency, B
.0$

"0.127 Hz,

f at l
F
"0.111 Hz within the broad band,

B
.0$

"0.068 Hz.

Whereas with the NMV estimator, B
%

equals to

1.626 Hz in the last case. This value is greater than

0.5, which is the full frequency range of the signal!

The "lter shape and, more particularly, the value

of the maximum which is no more equal to 1,

induces that unrealistic number which has really no

meaning.

It is important to notice that the support B
.0$

,

such as we de"ned it, cannot be considered as an

estimation of the frequency resolution. It also has

no relation with the sampling frequency or the

signal frequency range. If B
.0$

is large, it does not

mean that the frequency resolution is small, but

more often, that around this frequency the signal

has no energy. This explains why B
.0$

at the

sinusoid frequency is relatively large, whereas if we

measure the !3 dB bandwidth of Capon's peak

(Fig. 2a), we get 0.008 Hz.

5.2. Statistical study

In order to compare the di!erent MV estimators,

hundred realizations of always the same signal as in

Section 3.4 were simulated. Figs. 5a}c show the

overlaid estimations of the MV power, the NMV

DSP and the new NMV DSP. The obtained biases

are identical to those presented in Fig. 2a for MV,

Fig. 3a for NMV and Fig. 3c for the new NMV. The

normalized variances of these estimates are dis-

played in Figs. 5d}f. These simulations corroborate

the previously described behavior. Compared with

the MV estimator, the peak re"ning of the NMV

estimator is also preserved in the new one. With

regard to the estimate level in the broad band, the

MV estimator has a bias of !10 dB with respect to

the true level. The NMV estimate is even lower

whereas the new NMV one tracks correctly the true

amplitude. The variances of the MV and new NMV

estimators are nearly the same and lower than the

NMV one except at the exponential frequency and

close to the broad band.

6. Conclusion

This paper showed the importance of the "ltering

interpretation of MV method. We saw how the

constraints in#uence the "lter design. Conse-

quently, we deduced that MV "lters are not always

narrow-band "lters. This was not previously

noticed.

Our study explained how the normalization

introduced by Lagunas can produce not only inter-

esting results but some artifacts too. The amplitude

variations are unrealistically enhanced, leading to

a strongly biased PSD estimation. We can state

that the NMV method is more adapted to narrow

spectral band signals and that the frequency resolu-

tion is improved compared with the MV estimator.

But the NMV estimator is not adapted to track the

amplitude and to ensure a good PSD estimation. In

contrast, the new estimator we propose in this

paper increases the frequency resolution compared

with the MV method, sometimes less e$ciently

than the NMV method, but always preserves the

PSD with lower bias and variance for any kind of

signals even for mixed spectrum.

It relies on a scaling more adapted to Capon's

"lter behavior. Note that computation is a little

harder and more time-consuming than Lagunas'

method given that Parseval's equality could no

longer be used. It is not possible to deduce the

frequency resolution from this scaling factor and, at

the moment, the only way to get a value of the

frequency resolution is to measure it directly from

the estimated power, as Lacoss did with a noised

single sine wave [7].

Appendix A

In order to understand the e!ect of the smooth-

ing factor in Eq. (11), this term is approximated at

order 2

D(l
F
!l

%91
)+1!

(pMt
%
)2(l

F
!l

%91
)2

6

and D(l
F
!l

%91
)2+1!

(pMt
%
)2(l

F
!l

%91
)2

3
.

(A.1)
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Substituting (A.1) into (11) gives the squared fre-

quency response in case 2:

DA
lF

(l)D2+

K
D(l

F
!l)!D(l

%91
!l)(1!(pMt

%
)2(l

F
!l

%91
)2/6)

(pMt
%
)2(l

F
!l

%91
)2/3 K

2

C2/p2A1, Q+1/M, l
%91

!l
F
P0. (A.2)

A stronger approximation can point out the prop-

erty of this "lter. In the frequency range close to

l
F

and l
%91

, we can limit all Dirichlet's functions

to second order given that (l
%91

!l
F
)P0,

(l
%91

!l)P0 and (l
F
!l)P0. So, Eq. (11) be-

comes

DA
lF

(l)D2+
1

4A1#A
l
%91

#l
F
!2l

l
%91

!l
F
BB

2
,

C2/p2A1,

Q+1/M

l
%91

!l
F
P0, l

%91
!lP0, l

F
!lP0.

This strong approximation is correct because

the two MV constraints (1) and (2) are always

respected. See Fig. 1e.
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