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On Timing Analysis of Combinational Circuits*

Ramzi Ben Salah, Marius Bozga and Oded Maler

VERIMAG, 2, av. de Vignate, 38610 Gieres, France
Ramzi.Salah@imag.fr Marius.Bozga@imag.fr Oded.Maler@imag.fr

Abstract. In this paper we report some progress in applying timed aatam
technology to large-scale problems. We focus on the problginding maximal
stabilization time for combinational circuits whose inpaehange only once and
hence they can be modeled using acyclic timed automata. Waagbea “divide-
and-conquer” methodology based on decomposing the ciirtgitsub-circuits
and using timed automata analysis tools to build conservadtiw-complexity
approximations of the sub-circuits to be used as inputdi@rést of the system.
Some preliminary results of this methodology are reported.

1 Introduction

It is well known that timed automata (TA) [AD94] are well sedt for model-
ing delays in digital circuits [D89,L89,MP95]. Althoughee applications of
TA technology for solving timing-related problems for sugircuits have been
reported [MY96,BMPY97,TKB97,TKY 98,BMT99,BIJMY02], the state- and
clock-explosion associated with such models, restridiecapplicability of TA
to small circuits. In this work we try to treat larger comtioaal circuits by
using the old-fashioned recipe of abstraction and appration. When viewed
from a purely-functional point of view, combinational aiits realize instanta-
neous Boolean functions. However, when gate delays ara tat@account, the
computation of that function is not considered anymore ast@mic action but
rather as a process where changes in the inputs are gragugpiggated to the
outputs. The gquestion of finding the worst-case propagalidey of the circuit,
that is, the maximal time that may elapse between a change inputs and the
last change in the outputs, is of extreme practical impadaas it determines,
for example, the frequency of the clock with which a circ@hmperate. Static
techniques currently practiced in industry are based ornirfinthe longest (in
terms of accumulated delays) path from inputs to outputléncircuit. While
these bounds are easy to compute (polynomial in the sizeaiittuit), they can
be over pessimistic because they abstract from the patitagdic of the circuit
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which may prevent such longest paths from being exerdiglthe other hand,
models based on timed automata do express the interactimedre logic and

timing and hence can lead to more accurate results. Alasaged techniques
are still very far from being applicable to industrial-stzecuits.

The present paper attempt to find a better trade-off betweemracy and
tractability by using timed automata as an underlying sdimanodel and by
applying abstraction techniques to parts of the circuitriteo to build for them
small over-approximating timed automata that can be pldggenputs to other
parts of the circuit. Our abstraction technique takes adgpnof the acyclic
nature of the circuits and their corresponding automataciwimplies, among
other things, that every variable changes finitely many $ibbefore stabilization
in every run of the automaton.

The rest of the paper is organized as follows: in Section 2 me & formal
definition of circuits, their “languages” and the maximaltstization time prob-
lem. In section 3 we explain the modeling of such circuitsied automata.
Section 4 is devoted to our abstraction technique, its ptigseand the way it is
implemented using the tools IF/Kronos and Aldebaran. Piigkry experimen-
tal results are reported in Section 5 followed by a discussfoelated work and
future directions.

2 Timed Boolean Circuits

Throughout this paper we restrict ourselves to acyclicuiisc

Definition 1 (Boolean Circuits).A Boolean circuit isC = (V,~», F') whereV’
is a set of nodes,» is an irreflexive and anti-symmetric binary relation ahd
is a function that assigns to every non-input nedeBoolean functiorf,,

Herev ~ v’ means that influences/’ directly. The transitive closure ef,
5, induces a strict partial ordé¥/, ~») where the minimal elements are called
input nodes and are denoted b¥. The rest of the nodes are called non-input
nodes and denoted By,. A subsetl’, of V' consists of output nodes, those that
are observable from the outside. An example appears in€&ija). The set of
immediatepredecessorsf a node isr(v) = {v' : v' ~ v} and the set of its
predecessors (backward coneyigv) = {v' : v/ ~> v}.

By substitution we define for every node functionG, defined on the in-
puts in its backward cone, for exampl&,, (z1, z2) = f3(z1, fo(z1,22)). We
will use X = BIY=l, v = BIY»| andZ = BI"*I to denote the sets of possible

1 A lot of effort has been invested in the problem of detectinghs‘false paths”.
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Fig. 1. (a) A Boolean circuit; (b) A timed Boolean circuit.

assignments to input, non-input and output nodes, respdctiThe whole cir-
cuit can be viewed as computing a functi@n X — Y. Thestable statef the
circuit associated with an input vectore X isy = G(X).

This concludes the formalization of Boolean circuits anelitfiunctions.
These functions armstantaneousvith no notion of time. The next step is to
lift them to functions (operators) on signals, that is, ondtions that specify the
evolution of a value over (continuous) time.

Definition 2 (Signals).Let A be a set and lef” = R, be a time domain. An
A-valued signal ovefT is a partial functiona : 7 — A whose domain of
definition is an interval0, ) for somer € 7.

We useqx|t] to denote the value of att¢, andaft] = L to denote the fact that

a is not defined at. When A is finite, signals are piecewise-constant and make
discontinuous jumps at certain points in time. This is fdineal as follows. The
left limit of a signala at timet is defined asy[t~] = limy_,; «[t’]. For every
piecewise-constant signalwe define:

— The ordered set gtimp points 7 («) = {t : a[t™] # alt]} = {to, t1,.. .}
— The set ofmaximally-uniform intervalg (o) = {I, Io,...} wherel; =
[ti—l, ti) for ti—1,t; € j(a)

Clearly, the value ofv is uniform over any subset of a maximally-uniform inter-
val. We restrict our attention to well-behaving signalsti®se for which7 («)
has finitely-many elements in any finite interval. We denb&eget ofA-valued
signals byS(A).

When a gate or any other I/O device gets a signal as an ingranigforms
it into an output signal. This is captured mathematicallywiyat is called a
transducery or asignal operatoy a function that maps signals to signals. We
restrict such functions to beausal that is, the value of the output at timean



depend only on the value of the input in tin@st] and not on later values. The
simplest type of operators are memoryless (instantanepéasators defined as
follows.

Definition 3 (Memoryless Operators).A memoryless signal operator is a func-
tion f : S(A) — S(B) obtained as a pointwise extension of a functfonA —
B, thatis,3 = f(«) if 5[t] = f(«[t]) for everyt in the domain ofv.

In reality, since gates are realized by continuous physicaiesses, it takes
some time to propagate changes from input to output portdelioe this phe-
nomenon mathematically we need the basic operator with mefaodiscrete-
valued signals, the delay, which takes a signal and “shifftsi’ time. One can
define a variety of delay operators differing from each otheomplexity and in
physical faithfulness. The class of models that we conssdealledbi-bounded
inertial delays [BS94] and is characterized by an intefval [/, u| which gives
lower and upper bounds on the propagation delay. For theoparpf this pa-
per we will use the model introduced in [MP95] but since theicé of the
delay model is orthogonal to the rest of the methodology wedefer the ex-
act definition of the operator to Section 3 where it will be defl in terms of
its corresponding timed automaton and use meanwhile a glesemi-formal
definition.

Definition 4 (Delay Operators).A delay operator is a non-deterministic func-
tion of the formD; : A x S(A) — 25(4) wherel = [I, u] is a parameter of the
operator withl > 0. A signalg is in Az (b, «) if

1. The value off is b at the initial interval|0, t);

2. Changes inv are not propagated t@ beforel time elapses;

3. Changes imx must be propagated {6 if they persist for, time;

4. Changes i that persist for less thehtime are not propagated at all t8.

Figure 2 illustrates such an operator which, typically,| Wwéve uncountably-
many output signals for an input signal. All signal operatrean be lifted natu-
rally into operators on sets of signals.

A timed circuit model is obtained from a Boolean circuit bynoecting
the output of every non-input node to a delay operator whiodets the delay
associated with the computation of that node (see Figut®.1+ other words,
a gate with a propagation delay is modeled as a compositi@anoémoryless
Boolean operator and a delay operator (see [MP95]).

Definition 5 (Timed Boolean Circuits).A timed Boolean circuiti§’ = (V,~
,F,I) where(V,~, F) is a Boolean circuit and is a function assigning to
every non-input node a delay intervall,, = [l,,, u,] such thatd < [, < u, <
Q.
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Fig. 2. An input signalo and few of the elements db; 3)(0, «).

The semantics of a timed circuit is given in terms of a noredsinistic
transducefF; : Y x S(X) — 250) such that3 € Fo(y, a) if o andg3 satisfy
the set of signal inclusions associated naturally with theut [MP95] andy is
the initial state of the non-input part of the circuit.

The stabilization time problem is motivated by the use of IBan circuits
in synchronous sequential machines (the hardware nameifomata). At the
beginning of every clock cycle new input values togethehwtite values of
memory elements (computed in the previous cycle) are fadtir circuit and
the changes are propagated until the circuit stabilizestiamdlock falls. The
“width” of the clock needs to be large enough to cover the &stgossible stabi-
lization time of the circuit over all admissible inputs. laranodeling approach
we will consider primary inputs that change at most once aititinva bounded
amount of time and hence, due to acyclicity and the finite tippends associ-
ated with the delays, they induce finitely many changes tiinout the circuit.

Definition 6 (Ultimately-Constant Signals).A signal« is ultimately-constant
(u.c.) if it has a finite number of jump points (i.e. there isngotimet such
that the signal remains constant afté¢ The minimal such for « is called
its stabilization time and is denoted By«). This definition extends to sets of
signals by letting(L) = max{f(a) : « € L}.

The following properties hold for eveny.c. signala:

1. The signalf(«) is also u.c. for every Boolean functigh
2. For a delay operatdd; with I = [I,u] and for everys € D;(«), (3) <
0() + u.

Consequently, u.c. inputs to acyclic timed circuits praducc. outputs. Con-
stant signals constitute a special class of u.c. signalswanavill use ax to
denote a signal whose value is constamtly

We can now define the problem of maximal stabilization time @ircuit
with respect to a pair of input vectoxsandx’ wherex is the input presented in
the preceding cycle, and which determines the initial (s)edtate, and’ is the



value of a new constant signal. We denotelliy”, x, x) the set ofY'-signals
B € Fo(y, ax) when the circuit is initialized with the stable state= G(x).

Definition 7 (Stabilization Time of a Circuit). Given a timed Boolean circuit
C = (V,~, F,I) and two input vectorg, X’ € X the stabilization time associ-
ated with(x, x) is 8(C, x,X") = max{6(3) : § € L(C,x,x’)} and the maximal
stabilization time of the circuit i8(C) = max{6(C,x,X’) : x, X' € X}.

3 Modeling with Timed Automata

Timed automata are automata augmented with continuouls eéoiables whose
values grow uniformly at every state. Clocks can be resedtto at certain transi-
tions and tests on their values can be used in conditions)edvlang transitions.

Definition 8 (Timed Automaton). A timed automaton isA = (Q,C,I,A)
where @ is a finite set of stateg}' is a finite set of clocks] is the staying
condition (invariant), assigning to evetye @ a conjunction/, of inequalities
of the forme < u, for some clock and integern., and A is a transition relation
consisting of elements of the fofq ¢, p, ¢') whereq andq’ are statesp C C
and¢ (the transition guard) is a conjunction of formulae of thenfio(c > 1) for
some clock: and integeri.

A clock valuationis a functionv : C' — R U {0} and aconfigurationof
the automaton is a paft, v) consisting of a discrete state (location) and a clock
valuation. Every subsgt C C' induces a reset functioReset, on valuations
which resets to zero all the clocks jnand leaves the other clocks unchanged.
We usel to denote the unit vectd, . .., 1) andO for the zero vector. We will
use the terntonstraintsto refer to both guards and staying conditionsst&p
of the automaton is one of the following:

— Adiscrete step(q, v) LN (¢',V'), for some transition = (¢, ¢, p,q’) € A,
such thav satisfiesp andv’ = Reset, (V).

— Atime step:(q,v) —— (q,v + t1), t € R, such thaw + ¢1 satisfiesl,,.

A run of the automaton starting from a configuratiag, vy ) is a finite sequence

of steps
t1 t tn

£: (go,Vo) = (q1.V1) == -+ = (qn, Vn).
We model timed circuits as a composition of timed automaté sat each
automaton may observe the states of other automata andtoefleem in its
transition guards and staying conditich¥he automaton for a Boolean gate of

2 To avoid over-formalization we do not define “open” intefagtautomata. Such definitions
can be found in [MP95].



the formy = f(x1, x2) is just a trivial one-state automaton that has self-looping
transitions for all tuple$x1, 2, y) that satisfy the equation. In fact, this is not
really an automaton but an instantaneous logical constitzh must always be
satisfied. The automaton for the delay operdqr, (Figure 3) has four states,
0,0, 1, 1. The0 and1 states are stable, that is, the values of the output of the
delay is consistent with its input When at staté, if the input changes tb, the
automaton moves to an unstable stdtand resets a clodak' to zero. It can stay
at(0’ as long ag” < u and can switch to stable stateas soon a§’ > |. If the
input changes back tobefore the transition tb the automaton returns to We

call these three types of transitiomecite stabilizeandregret, respectively. Note
that state® and0’ are indistinguishable from the outside and another automat
will see a change frorfi to 1 only after the “stabilize” transition.

x=1/C:=0

r=1NC<u
=

Fig. 3. The timed automaton for a delay element. Theariable refers to the observable state of
the input automaton which &at{0,0'} and1 at{1,1'}.

Composing all the automata, together with the model of tinputs we ob-
tain a closed automaton as in Definition 8 whose semanticeittical to that
of the timed circuit [MP95]. To be more precise, an automathnse semantics
is L(C,x,X’) is obtained by letting the initial state be the stable staieec
sponding ta&(x) and composing it with a static automaton for the ingufThe
obtained automaton is acyclic and all paths converge irefinite to the only
stable state that corresponds¢x’). The maximal stabilization time is hence
the maximal time that the automaton can stay in any unstaate.Note that



in such a state at least one of the components isiinoa 1’ state and hence its
staying condition forces it to leave the state.

We recall some definitions commonly-used in the verificatbtimed au-
tomata [HNSY94,Y97,LPY97,BDM98,A99]. A zoneis a set of clock valua-
tions consisting of points satisfying a conjunction of inalfities of the form
ci—cj > dore; > d. A symbolic statés a pair(g, Z) whereg is a discrete state
andZ is a zone. It denotes the set of configurati¢(g z) : z € Z}. Symbolic
states are closed under the following operations:

— Thetime successaf (¢, Z) is the set of configurations which are reachable
from (¢, Z) by letting time progress without violating the staying citieh
of ¢:

Post'(q,Z) = {(¢,z+7rl):z€ Z,r > 0,z+rLl € I,}.

We say thatq, Z) is time-closedf (¢, Z) = Post!(q, Z).
— The ¢-transition successoof (¢, Z) is the set of configurations reachable
from (¢, Z) by taking the transitiod = (¢, ¢, p, ¢’) € A:

Post’(q, Z) = {(¢, Reset,(2)) : € Z N ¢}.

— Thed-successoof a time-closed symbolic state, ) is the set of configu-
rations reachable by&transition followed by passage of time:

Suec’(q, Z) = Post!(Post’(q, Z)).

The forward reachability algorithm for TA starts with antial zone and gener-
ates all successors until termination, while doing so itegates theeachability
graph(also known as the simulation graph).

Definition 9 (Reachability Graph). The reachability graph associated with a
timed automaton starting from a statds a directed graphS = (N, —) such
that NV is the smallest set of symbolic states contairfgt! (s, {0}) and closed
underSucc’. The edges are all pairs of symbolic states relatedbyc’.

The fundamental property of the reachability graph is thatlimits a path from
(q,Z)to (¢, Z") if and only if for everyv’ € Z’ there existy € Z and a run of
the automaton fronig, v) to (¢/,v'). Hence the union of all reachable symbolic
states gives exactly the reachable configurations.

To compute the maximal stabilization time we add an auxilidlock T°
which is never reset to zero and hence in every reachablegcwafion its value
represents the total time elapsed since the beginning afutheThe maximal
value ofT over all reachable symbolic states Z) with ¢ unstable is the max-
imal stabilization time (note that due to acyclicity thewalofT" is bounded in
all unstable states). Hence, the problem of maximal sttibn time can, in
principle, be solved using standard TA verification tools.



4 The Abstraction Technique

Given the complexity of TA verification we move to an absti@timethodology
based on the following simple idea. We decompose the cimttgitsub-circuits
small enough to be handled completely by TA verification $odle take the
automatonA which corresponds to such a sub-circuit and use its realyabi
graph to construct an automatghhaving two important properties:

1. The set(.A) of signals that it generates is a reasonable over-approxima
of the projection ofZ(.A) on the output variables of the circuit.
2. Itis much smaller thapl in terms of states and clocks.

Hence if we replaced by A as a model of the sub-circuit we are guaranteed
to over-approximate the semantics of the circuit and hemos¢r-approximate
the stabilization time.

Cy € [l1,u1] Cs € [l2,uz] T € [l1,uq] T € [l1 +1l2,u1 + uz2]
i : /C2 :=0 i : i : i : i : i :
@ (b)

Fig. 4. Projection on the absolute time introduces spurious runs.

To better understand the technique it is worth looking atréechability
graph from a different angle. In timed automata, as in angrdlutomata aug-
mented with auxiliary variables, the transition graph isledding because a
discrete state stands for many possible clock valuatiorchvimiay differ in the
constraints they satisfy and hence in the behaviors thabeagenerated from
them. It might be the case that a stateill never be reached with a clock val-
uation satisfying some transition guard and hence the sporaling transition
will never be taken. By performing the reachability algomit for A starting
from an initial state we obtain a graph which represents thasible part” of
A, excluding behaviors that violate timing constraints.ufeg5-(a) shows the
reachability graph for the circuit of Figure 1-(b) where thputs change from
(0,1) to (1, 0). In fact the reachability graph can serve as a skeleton ¢dhano
timed automatopd’ whose semantics in terms of runs is equivalent to that.of
To see that, one just has to associate with each symbolé(gtdt) the staying

conditionZ and label each transitidi, Z) 2, (¢’, Z') by the guard and reset
of 4. The resulting automatad’ differs from.A in two aspects: certain states of
A are split into several copies according to clock values,ahimansitions that
are not possible il due to timing constraints do not appeardhat all.



Now if we relax some timing constraints id’ we may introduce spuri-
ous behaviors that violate these constraints, however Wenai add any new
gualitative behavior (sequence of events) that was not possiblé lrecause
such behaviors have already been eliminated while comptiia reachability
graph. The most straightforward way to relax timing coristsais to project
the constraints on a subset of the clocks and discard thdmgsrticular if we
throw away all clocks except which measures the absolute time, the relaxed
guard for any transition will be of the forf € [t1,t2]. Clearly, a transition
can be taken in the new automaton iff there is a run of the maigautomaton
in which the corresponding transition could be taken at stmet < [t1,t2].
However, this abstraction can add additional runs whichirapossible in the
original automaton as the following example shows. Conditeautomaton of
Figure 4-(a) where the first transition could take placginu;| while the sec-
ond can take place betwegnandu, afterthe occurrence of the first. Applying
the above procedure we obtain the automaton of Figure 4feyevthe second
transition could be taken anywhere[in+ l2, u; + u2] regardless of the time of
the first.

The next step is to hide transitions which are not observiabte the out-
side, i.e. all transitions of non-output variable and alh+isible transitions
(“excite” and “regret”) of the output variablegs andz. The one-clock automa-
ton thus obtained for our example appears in Figure 5-(b)Xhéke apply a min-
imization algorithm which merges states that are indistisigable with respect
to the remaining visible transitions. More formally we coles the congruence
relation~ on the nodes of the labeled reachability graph defined asatbedt
relation satisfying:

; e, / Ten / /

q~qiff V6,1 ¢ — ¢ =3¢ st.gg — ¢ A di~a) (1)
Here(d, I') stands for a transition-interval pair antito an arbitrary sequence of
unobservable transition. This relation is the “safetyrbigiation” of [BFG"91].
The minimized automaton, whose states are congruenceeslass-, can be
seen in Figure 6-(a).

Relation (1) looks at transition labels in a purely-synitaotanner, that is,
the label—y2[20, 30] in Figure 6-(a) is considered distinct frory,[20, 40] and
hence the transitions are not merged. To obtain a more agjggeabstraction
we define a weaker equivalensé that ignores differences in intervals:

/ ; Ten. ’ogt @, ror
@~ q iff Vo,I @ — q = (3gs, I' St.qga — g5 N ¢4 ~ ¢5). (2)
The states of the minimized automaton are equivalenceedasfs-’ and the
transitions between these classes are labeldd,dy wherel is the join (con-
vex hull) of all the intervald/; such that there are transition labeled (dy!;)



between elements of the corresponding classes (see Fiyaréhe result of
minimization with respect te-’ appears in Figure 6-(b) and one can see that it
gives a succinct over-approximation of the behaviog-oandz.

We have implemented the above mentioned technique. Ouchaah starts
with a circuit description as Boolean equations with delayd generates from
it automatically a network of interacting timed automatatten in the IF for-
mat [BGMO02]. After generating the reachability graph witletinterval labels
we apply the Aldebaran tool set ((BFKM97]), slightly moddi¢o implement
minimization with respect te-’ to obtain the abstract model.

5 Experimental Results

We have conducted some preliminary experiments with ourcgmh on some
sample circuits that we have constructed. First, to dematesthe semantic ad-
vantage of timed automata we analyzed the circuit of Figusi8h has a false
path. We use delays @3, 85] for all gates (except the inverters that have zero
delay) and compare our results with static timing analys$iEtvgives stabiliza-
tion time of 7 x 85 = 594. Since our method works for the moment for one pair
of input vectors, we repeat the analysis for Bl pairs and obtain the results
of Table 1. As one can see, the TA-based analysis discovarshté maximal
stabilization time is only x 85 = 510.

X 00 01 10 11
x' 10} 01} 11§ 11} OO 10| 00j11 01} 0110| 00
stab-time510340340(170510425|510 0(255/|255 0[510

Table 1. Maximal stabilization time for all input pairs for the ciritof Figure 8.

The major set of experiments was conducted on circuits sbingiof a se-
quential concatenation of an increasing number of copigke€ircuit of Fig-
ure 1-(a) (theys andy, of stagen are ther; andxs of stagen + 1). We assume
that inputz; may rise anywhere ifil0, 35] andzs in [15,63]. In general, the
complexity of the reachability graph is sensitive to theich®f delay bounds:
for an intervalll, u|, the larger is the rati¢u — [)/l, more “scenarios” are pos-
sible and transitions at “deep” gates can precede transifio gates closer to
the input? Table 2 shows the performance of our technique (computéitios
and size of the reachability graph) as a function of the nurabstages for three

3 Another choice might be to join only intervals that have a-eompty intersection.
4 In fact, if we assume no lower-bound on the delay (the “upratea” model of [BS94]), events
can happen in any order.



-z :[30,90]

)
(b)

Fig. 5.(a) The reachability graph for the circuit of Figure 1-(bheltransition labelsxc z,r eg
z,+z and- z correspond, respectively, to excitation, regret, risind falling of the variable. (b)
The corresponding one-clock automaton after hiding irstienansitions. The labeiz[ 20, 30]

means that may change frond to 1 anytime inside the intervd20, 30].




+z :[20,40] +z :[20,40]

-y2 :[20,40] -y2 :[20,40] | -y2 :[20,40]

-z :[30,90] -z :[30,90]
(a) (b)

Fig. 6. () The results of applying standard minimization. (b) Thsutt of minimization with
interval fusion.

Fig. 7. Minimization by joining intervals.

AR i

B2

D=
i f

Fig. 8. A circuit with a false path.



choices of gate delay intervdls 2], [10, 12] and[100, 102]. All the experiments
were stopped upon memory overflow (1GB). For tt#), 102] interval we were
able to analyze up t22 stages &8 gates).

[1,u] 1,2] [10,12] [100, 102]
no.|statesmin|time|| statesmin(time|| statesmin| time
1 71 4|0:01 65 3|0:01 65 3| 0:01
2|| 934 12/0:02 270 7/0:02 270 7| 0:02
3 -| —| - 2690 11/0:03| 2690 11/ 0:04
4 5397 23|0:05| 4080 16/ 0:06
5 217951144{9:44|| 21498 30| 0:12
6 —-| —| - 50543 39 0:30
7 73502 48 1:01
8 95619 57| 1:54
9 117736 66| 3:12
10 139853 75 5:08
11 161970 84 7:32
12 184087 93 10:05
13 206204102 14:42
14 228321111 20:39
15| 250438120 28:15
16 272555129 36:46
17| 117736138 49:36
18 316789147/1:04:04
19 338906156/1:21:48
20 361023165/1:42:59
21 383140174/1:58:56
22 4052571832:30:31
23 - - -

Table 2. Testing our technique with varying delay bounds. The ‘statelumn indicates the
number of symbolic states in the model of stagbefore the last minimization and the ‘min’
columns indicate the number of states after minimizatidre Time’ column indicates the time
for computing the abstraction of all stages umte- 1 and the reachability graph for stage

As the results show, currently the analysis of circuits viév dozens of
gates for one pair of input vectors is feasible using ourniggke. This is a sig-
nificant improvement for TA technology but still a small stevard industrial-
size circuits. The current bottleneck is the memory congignpvhile generat-
ing the reachability graph and we believe the situation @aimiproved signifi-
cantly if we modify the algorithm to take advantage of thedicynature of the
automata.



6 Discussion

There have been numerous publications on abstraction iergeand abstrac-
tion of timed systems in particular, e.g. [AIKY95,WD94,BB&€KP00], some
based on relaxing the timing constraints and refining thesoessively if the ab-
stract system cannot be verified. In [TAKB96] an assume-ayuae framework
is defined for timed automata, which is used later to verifyutinstage asyn-
chronous circuit [TB97] by using small abstractions forleatage. These ab-
stractions are generated manually. The closest work tois(iZdqMM03] which
uses timed Petri nets for describing circuits and theirréddgproperties. To ab-
stract a circuit they apply “safe transformations” thatsishof hiding of inter-
nal actions and clocks, and possibly over-approximatirgstet of behaviors.
This work does is not specialized to acyclic circuits andftimenal properties of
the abstraction (defined in termstadice theory seem to be more complicated.
Other attempts to solve the maximal stabilization time gigiA are reported in
[TKB97,TKY +98].

Due to space limitation we do not discuss here possible ti@niaf the
techniques such as different abstraction styles, nor atmgortant ingredients
of the methodology such as the partitioning strategy. Ttatdion of the tech-
nique to cyclic circuits and to open systems in general isyaseallenging goal
whose achievement can have a big impact on the design of Systdms.
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