
HAL Id: hal-00374777
https://hal.science/hal-00374777v1

Preprint submitted on 9 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Confluence of Pure Differential Nets with Promotion
Paolo Tranquilli

To cite this version:

Paolo Tranquilli. Confluence of Pure Differential Nets with Promotion. 2009. �hal-00374777�

https://hal.science/hal-00374777v1
https://hal.archives-ouvertes.fr

Confluence of Pure Differential Nets with Promotion

Paolo Tranquilli

Laboratoire PPS – Université Paris Diderot - Paris 7
Case 7014 – 75205 Paris – France

ptranqui@pps.jussieu.fr

Abstract. We study the confluence of Ehrhard and Regnier’s differential
nets with exponential promotion, in a pure setting. Confluence fails with
promotion and codereliction in absence of associativity of (co)contractions.
We thus introduce it as a necessary equivalence, together with other op-
tional ones. We then prove that pure differential nets are Church-Rosser
modulo such equivalences. This result generalizes to linear logic regular
proof nets, where the same notion of equivalence was already studied in
the literature, but only with respect to the problem of normalization in a
typed setting. Our proof uses a result of finiteness of developments, which
in this setting is given by strong normalization when blocking a suitable
notion of “new” cuts.

1 Introduction

The inception of Linear Logic (LL, [1]) in the 80’s has reinforced the bridge
between logic and computer science already established by the Curry-Howard
correspondence years before. LL is in fact a refinement of intuitionistic and clas-
sical logic brought forth by a fine semantical analysis. One of its main features is
the introduction of two dual modalities, the exponentials ! and ?, regulating the
use of structural rules (weakening and contraction), which on the program side
correspond to erasure and duplication of resources.

This endeavour, among other things, led the way to a new, parallel syntax
of proofs, proof nets. These are the syntax of choice for LL, especially when
considering cut elimination. In fact one of the main advances of LL over classical
logic is that, though preserving an involutive negation (and therefore two-
sided sequents), it also preserves properties of intuitionistic logic lacking in
the classical framework. One of these, central to our work, is confluence of cut
elimination, i.e. the independence of the result of the cut elimination procedure
with respect to the actual cuts one decides to reduce.

A further semantical analysis led by Ehrhard [2] has recently provided LL

with new models based on topological vector spaces where we can take the
derivative of an object. The efforts of the same author and Regnier have permit-
ted to lift such operations to syntax, giving rise to Differential Linear Logic (DiLL,
[3]), and their syntax, differential nets. Three new rules are introduced to handle
the !-modality (coweakening, cocontraction and codereliction) which are duals to the
LL rules handling ?. In the proofs as programs paradigm, codereliction allows

2 Paolo Tranquilli

to introduce depletable resources, which may be asked for many times but may
be used just one time, nondeterministically choosing which query they satisfy.
This feature configures differential nets as a promising logical framework to ex-
tend the Curry-Howard correspondence to nondeterminism and concurrency
(see [4]).

Actually, [3] gives the syntax for the promotion free fragment of DiLL only,
giving rise to differential interaction nets, a nondeterministic example of Lafont’s
interaction nets [5]. By modelling nondeterminism by formal sums confluence
remains an important property, which is however straightforward in an inter-
action net paradigm, where no reduction can change the other ones. Here we
will extend such property to the whole of differential nets. Promotion in proof
nets is handled by boxes, synchronized areas of proofs enabling to mark what
is to be erased or duplicated. Boxes break the interaction net paradigm: there
are cuts (the commutative ones) which can be changed by other reductions, so
confluence is definitely more delicate.

Part of a previous work of ours [6] was focused on proving confluence for the
intuitionistic fragment, which used the recursive types needed to translate λ-
calculus. There we observed that confluence fails without keeping into account
some semantically grounded equivalences, namely associativity of contractions
and cocontractions. A fully quotienting syntax as the one used in [7] for LL is
seemingly out of reach in DiLL. Our solution in [6] was employing generalized
(co)contraction cells in the style of [8], and some additional reductions.

Here we generalize the result in three ways. By concentrating on the com-
putational contents rather than the logical one, we consider pure nets, where
types (i.e. formulae) play no role whatsoever, not even recursive ones. Fur-
therly, the needed equivalences are settled to the maximum extent by means
of. . . equivalences on nets. We thus generalize the equivalences and reductions
of [9], providing as a byproduct the first proof of confluence1 for such LL proof
nets with equivalences in the completely pure case, as previous works concen-
trated on normalization in the typed one. Finally, we are able to introduce one
more equivalence potentially giving the right to always consider boxes without
sums inside (the bang sum equivalence).

This result has several ramifications. As is evident in [10], this is the first
step in proving strong normalization in the typed case2. Furtherly, as can be
deducted from [9], this can be the ground for new work on calculi with explicit
substitutions: whether by extending some results to untyped calculi; or by
considering explicit substitutions for nondeterministic calculi akin to Boudol’s
λ-calculus with resources (see [6]).

Our technique, reminiscent of the work done on LL in [10], uses a finite
development theorem used to prove a strong confluence property of a suitable
notion of parallel reduction.

1 To be precise, the stronger result of being Church-Rosser modulo (see Section 1.1).
2 Actually the subject of a future submission by the author and Pagani.

Confluence of Pure Differential Nets with Promotion 3

1.1 Rewriting Theory Modulo Equivalence

The aim of this section is making the reader acquainted with the notion of
rewriting modulo equivalence, to the extent needed for our purposes. We refer
to [11, Section 14.3] for more indepth details and proofs.

Let (S,→) be an abstract reduction system and let∼be an equivalence relation

on S. As usual,
=
→ and

∗
→ denote the reflexive and reflexive-transitive closures

of→ respectively. Take also a symmetric relation 7− � such that 7− �
∗
= ∼, possibly ∼

itself. Let s ⊻ t (t and s are joinable modulo ∼) if s
∗
→∼

∗
← t. We say then that→

is

– locally confluent modulo ∼ if←→ ⊆ ⊻;

– confluent modulo ∼ if
∗
←∼

∗
→ ⊆ ⊻;

– locally coherent with 7− � if 7− �→ ⊆ ⊻;
– Church-Rosser modulo ∼ (or CR∼) if ≈ ⊆ ⊻, where ≈ := (→ ∪← ∪ ∼)∗;
– strongly normalizing modulo ∼ (or SN∼) if→∼ is SN, where3 →∼ := ∼→∼;
– strongly Church-Rosser modulo ∼ if ∼

=
←
=
→∼ ⊆

=
→∼

=
←;

The last definition is our terminology, while the rest follows [11]. Being Church-
Rosser modulo ∼ is the most important property of all those concerning conflu-
ence. In particular it implies the unique normal form modulo ∼ property, (≈ = ∼
on normal forms), which again implies that in order to compute the normal form
one can use just regular reductions, without ever be forced to∼-convert in order
to get the result4. Contrary to what happens in regular reduction, CR∼ is strictly
stronger than plain confluence in absence of WN [11, Remarks 14.3.6, Exercise
14.3.7]. Following are some important lemmas: the first is a generalization of
Newman’s Lemma, the last is a trivial result we did not find in the literature
which we will need in our proof.

Lemma 1 (Huet). If→ is SN∼, locally confluent modulo ∼ and locally coherent with
7−�, then it is CR∼.

Lemma 2 (van Oostrom).→ is CR∼ iff
∗
→ is strongly CR∼.

Lemma 3. If→ is strongly CR∼, then it is CR∼.

Proof. Straightforward induction: to show that ∼
∗
←
∗
→∼ is joinable, we proceed

by induction first on one side, then on the other.

2 The System

A net is intuitively a network of cells linked by wires connecting their ports. A
little more formally, a net π is given by the following data.

3 Here like in the rest of the paper, :=means “defined as”.
4 This also mean there is never the need to perform conversion steps in order to ready

some cuts, i.e. make them visible.

4 Paolo Tranquilli

– A set p(π) of ports.
– A set c(π) of cells; to each cell c is assigned a symbol σ(c) in a given alphabet,

a port in p(π) called principal, and a number of other, auxiliary ones. How
the latter are treated distinguishes between two kinds of cells: in non com-
mutative ones, auxiliary ports are a finite sequence, in commutative ones
they form a finite set. Every port in p(π) can be associated with at most one
cell; a port associated with a cell is called connected, otherwise it is free.
Free ports (also called conclusions) are denoted by fp(π). The number of
auxiliary ports is determined by the symbol σ(c).

– A set w(π) of wires, which can be either unordered pairs {p, q} of ports, or
deadlocks, i.e. wires not connecting any port (intuitively short circuited
wires). Each port is in exactly one wire. A directed wire is an ordered pair
(p, q) such that {p, q} is a wire. Terminal wires are the directed ones going to
the free ports.

An elementary path in π is one in the graph trivially obtained by taking cells
and free ports as nodes and directed wires as edges, which moreover does not
intersect itself5. A polynet is a formal sum of nets, or equivalently a multiset
of nets, all sharing the same free ports. At times we distinguish nets (thus
singletons) from polynets by calling them simple.

2.1 Statics

DiLL0 nets and polynets are built from all the symbols in Figure 1 but the box
one. These are exactly the differential interaction nets presented in [3]. For the
moment let us ignore the labels we assign to the ports in the figure, which will
be needed only later (see page 9). As usual, the apex of the cell represents the
principal port, while the auxiliary ones are depicted on the opposite side.

In order to add boxes, one proceeds by induction, by considering them as
cells having a whole polynet as symbol. Let DiLLk+1 nets and polynets be the
ones built from all the cells of Figure 1 where for each box its symbol is a polynet
π in DiLLk and there is a bijection between its ports and fp(π). The symbol σ(B)
of a box B is also called its contents. We will denote by !π a generic box having
π as contents. A DiLL polynet π is one of DiLLk for any k; if such k is minimal,
we say that k is the depth of π (in fact, the maximal number of nested boxes). A
port is active if it is either a principal one, or an auxiliary one of a box. A wire
linking two active ports is a cut.

Figures 4 and 5 will show examples of differential nets. The explicit marking
of ports is dropped as they can always be identified with the extremities of
wires.

Let p!(π), fp!(π) c!(π) and w!(π) be the set of all occurrences of ports, free
ports, cells and wires respectively occurring in π, including in all the contents
of the boxes in π. We can slice those sets by depth, so we will denote by pi(π),

5 Technically, one prohibits the repetition of unoriented wires and that three ports of
the same cell be crossed by the path.

Confluence of Pure Differential Nets with Promotion 5

⊗ ∗ ` ∗ ? ? ?2 ?
!

!
?0 ?

tensor par dereliction contraction weakening
(commutative)

1 ∗ ⊥ ∗ ! ! !2 !
?

?
!0 !

one bottom codereliction cocontraction coweakening
(commutative)

!
∑

i λi?
?

! box of DiLLk+1 (
∑

i λi polynet of DiLLk)

Fig. 1: The cells of differential nets. The labels in { !, ?, ∗ } assigned to ports will
be needed only later (see page 9).

fpi(π) ci(π) and wi(π) the corresponding elements of the nets contained in i
nested boxes, where i is called the depth of the element in π6.

Correctness criterion. As usual, the nets blindly built with the cells available
are not in general “correct”, where the word can take the meaning of unsequen-
tializable in sequent calculus, or having deranged computational behaviour.
Since [12] one of the most used correctness criteria for proof nets is that of
switching acyclicity. Given a DiLL net, a switching path is an elementary one
which does not traverse two auxiliary ports of any ` or contraction cell (does
not bounce “above” it). A DiLL polynet is called a DiLL proof net (or differential
proof net) if it is switching acyclic, i.e. it has no deadlocks nor switching cycles,
and inductively all box contents are also switching acyclic. In particular from
now on we can suppose all our polynets to be deadlock-free.

2.2 Dynamics

As with various calculi, the reduction of differential nets can be defined as the
context closure of a set of reduction rules, presented as pairs of redexes and
contracta. A linear context δ[] is a simple net δ together with a subset Hδ of
its free ports (the hole of δ[]). It is linear as it is not a sum and the hole is not
inside a box. Given a simple net λ and a bijection σ between Hδ and fp(λ), the
plugging δ[λ] of a simple net λ in the hole of δ[] amounts to identifying the

6 All of this can be defined more formally by an inductive definition. Nevertheless we
leave it to the reader as an easy exercise.

6 Paolo Tranquilli

` ⊗
m
→ ` ⊗ ⊥ 1

m
→ ?!π

e
→ π ?!

e
→

!π
α

e
→ !π

α
εε2

e
→ ε

ε0
+

ε0
ε εε0

e
→ 0

α ?2

e
→

?2

?2

α

α
α ?0

e
→

?0

?0

!π
!

e
→ !2

!π
!0

!π
!

?2

?2

Fig. 2: The multiplicative and exponential reduction rules of DiLL. ε and εdenote
either ? and ! or vice versa. α denotes any symbol among !2, !0 or a box symbol
π. In particular weakening against coweakening reduces to the empty net. We
make implicit use of the rule for context plugging of sums: the π inside boxes is
a polynet. For example the dereliction on box rule may introduce sums.

ports according to σ and welding the wires that come together in this way7.

δ

pkp1

Hδ

[

λ

σ(p1)σ(pk)

]

:= δ λ

This definition is then extended by linearity when we plug a polynet, by setting

δ
[

∑

i λi

]

:=
∑

i δ[λi].

Finally, contexts generalize the concept in the following way. A linear context
δ[] is a context; furthermore if ω[] is a context then:

– δ[ω[]] for δ[] linear is a context8;
– ω[] + π for π polynet is a context;
– !ω[] (i.e. a box containing a context) is a context.

Plugging is easily extended to all contexts. The context closure R̃ of a relation R
is then defined by π R̃ σ iff π = ω[λ], σ = ω[µ] and λ R µ.

We are now able to define multiplicative reduction
m
→ and the exponential

one
e
→ by context closure of the rules of Figure 2, which are pairs consisting

of a simple net (the redex) and a polynet (the contractum). Each redex here

is identified by a unique cut. The union
me
→ of the two reduction is the cut

elimination of DiLL.

2.3 Equivalences and Canonical Reductions

As we will show with Remark 5, the reductions just presented fail to give a con-
fluent system: we cannot ignore associativity of (co)contractions and neutrality

7 For the quite delicate technical details the reader is referred to [13].
8 Composition of contexts should be defined, but it is trivial once plain plugging is

defined.

Confluence of Pure Differential Nets with Promotion 7

ε2

ε2
a
7− � ε2

ε2

!π
?2

p

7−� !π
?2

!π + σ
s
7−� !2

!σ

!π

?2

?2

ε2

ε0
n
→ !

π
?0

+

̺

p

→ !2

!̺

!π

?2

?2

!0
z
→ !0

?0

?0

with π, σ , 0.

Fig. 3: Top: the rules for associative equivalence a
∼, the push one

p

∼ and the
bang sum one s∼; 7− � denotes a one-step conversion. Bottom: the rules for neutral

reduction
n
→, the pull one

p

→ and the bang zero one
z
→. The condition π, σ , 0

applies to all rules.

of (co)weakening over (co)contraction. This prompts us to introduce the former
as an equivalence and the latter as a reduction. As we need anyway to consider
reduction modulo an equivalence, we also study other equivalences (backed
by semantical and observational equivalence) which are optional though must
be taken together. Each equivalence is accompanied by a reduction which in a
sense settles a zeroary case of the equivalence. Reversing each of these gives
unwanted looping reductions. The associative, push and bang sum equiva-
lences, together with the neutral, pull and bang zero reductions (which do not
reduce cuts), are shown in Figure 3. The π, σ , 0 condition is needed: without
one would be able to spawn arbitrarily large trees of contractions, easily giving

again unwanted looping reductions. From now on ∼ and
c
→ (canonical reduc-

tion) will denote either a∼ and
n
→ or the union of the a, p and s conversions and

the npz-reduction respectively.

Proposition 4 (stability of correctness). If π is switching acyclic and π mec
−→ π′ or

π ∼ π′ then π′ is switching acyclic also.

Proof. Many cases belong to the literature of LL and to [3]. The new ones are
straightforward checks.

Let us spend some more words on ∼ and
c
→. The push equivalence9 has already

been studied in the literature on proof nets and explicit substitutions [8,9]. The
pull reduction may seem somewhat complicated, however it is a generalization
of the reduction pulling out weakenings from boxes [9]. The usual reduction
can be reobtained when having ̺ = 0, which by means of a z-reduction and
some n ones gives the expected result. Such form (which in fact contains a sort
of on-the-fly s-conversion) is required in order to get local coherence.

9 The name may be misleading, as an equivalence is not directed. It comes from [14]
and [6] where it was treated as a reduction, and we felt like keeping it because of the
good name pairing with the pull reduction.

8 Paolo Tranquilli

!π!

!

b

a
e
→ !2

!π!0

!π
!

?2

?2! e∗
→ !2

!π!0

!0

!π!

!

?2

+ !2!2

!π!0

!0

!π!

!0

!π!0

!

?2
?2

Fig. 4: Reduction of a box with two coderelictions on it. Starting with codere-
liction b swaps the two linear copies of !π and therefore both the cocontraction
and contraction trees in the last addend.

!

?1

⊥
me∗
←−

!

? 1

1

!

?⊥

⊥
me∗
−→

!

? ⊥

1

(a) Non-confluence in absence of switching acyclicity.

!?2
?

?2
? e
→ !?2

?
? ! ?2

? e
→ ?2

?
! ?2

?

(b) Non-termination of exponential reduction with switching acyclicity.

Fig. 5: Issues with confluence. Figure 5(a) shows the need for correctness. The
example shown is even simply typed. Figure 5(b) shows how in the pure case
even the exponential reduction alone is not terminating.

The part about sums inside boxes was already known to be valid semanti-
cally and observationally: we give here some sintactic ground to using it. From
the point of view of semantics it is interesting to note that it implements the well
known exponential isomorphism !A ⊗ !B � !(A & B) from linear logic (see [2]).

Examples and remarks. Figure 4 gives the reason to employ associative equiv-
alence, showing the reduction of the coderelictions on box critical peak. One
reduction only is shown, as the other is symmetric. One can already see two big
differences with respect to LL and the work done with it in [10]: firstly, sums may
arise even without the “logical” step of dereliction on box; moreover, the coder-
eliction on box rule, which reduces a commutative cut, changes the possible cuts
on all other cuts of the box. These problems prevent an immediate adaptation
of the measures used in [10]. The nets in Figure 5 are examples already known
in LL showing issues about correctness and types.

Remark 5. The net shown in Figure 4 is a counterexample to DiLL being confluent
without a∼. Other similar diagrams show we cannot also omit the n reduction.

Confluence of Pure Differential Nets with Promotion 9

3 The Finite Development Theorem

In [15], Danos proved the counterpart of the finite development theorem for
MELL, and Pagani and Tortora de Falco did the same for the whole of second
order LL in [10]. In this setting the actual definition of what a “new” redex is
gets more technical.

3.1 Marking New Cuts

We define a notion of new and old cuts, by leaving a mark on the new ones.
Marks are cells of a new symbol with two ports and no reduction rule, graphi-
cally depicted by little circles. Its main purpose is to block reductions and equiv-
alences (for example a mark between two contractions blocks the a-conversion).

Ideally, these marks are placed during reduction to block “new” wires. By
new we mean two kinds of wires: those that in a typed setting would decrease the
logical complexity of the cut formula, and those that before the reduction were
exponential clashes. The latter are peculiar to a truly untyped setting, and are
brought by the opening box and neutral reductions, which erase an exponential
port. For example, if we erase marks from the net shown in Figure 6, and we
fire the dereliction against box redex we end up with a valid multiplicative cut
which was a clash before. Rather than lock this special kind of “new” wires
during reduction, we can lock all potentially dangerous clashes since the start,
as markings will prevent new clashes from arising. We thus need to define what
an exponential clash is.

Let τ be the partial function from p!(π) to the labels { !, ?, ∗ } thus defined.
On ports of cells it gives the values already shown in Figure 1; on the ports of
marks it is undefined; for p ∈ fp!(π) we set τ(p) = ? if p is over an auxiliary port
of a box, we leave it undefined otherwise. τ provides for a sort of pre-typing. A
directed wire (p, q) is called a !-wire (resp. ?-wire) if τ(p) = ? and τ(q) = ! (resp.
vice versa), where however we let at most one of the two be undefined. In any
case ! and ?-wires are called exponential (which applies to undirected wires
also). An exponential clash (simply clash from now on) is a wire {p, q} such that
one of τ(p), τ(q) is ! (resp. ?) and the other is defined but not ? (resp. !)10.

DiLL◦ is the system given by polynets with marks and without clashes, and
by changing some rules to introduce the mark as depicted in Figure 7. It is
immediate to see that the absence of clashes is preserved by reduction, as the
new wires which could bring close unmatched ports are interrupted by marks.
From the point of view of DiLL, clash-freeness imposes just that some marks be
added: given any DiLL polynet π, we define the injection π◦ in DiLL◦ by placing
a mark interrupting each clash. Conversely, DiLL◦ can be clearly surjected on
DiLL by erasing all marks. We call this surjection π◦�. The net π in Figure 6(a) is
an example of DiLL◦ net enjoying (π◦�)◦ = π. On the other hand, if σ is the net in
Figure 5(b), then σ◦ = σ and it is strongly normalizing to the net in Figure 6(b).

10 More intuitively: !-wires and ?-wires are those that in a typing attempt would get an
outermost ! or ? respectively, while clashes would give a failure to unify an outermost
exponential modality.

10 Paolo Tranquilli

? ! ! ?2

(a) A DiLL◦ net πwhere marks are
compulsory, such that (π◦�)◦ = π.

?2
?

! ?2
?

(b) The normal form in DiLL◦ of the
non-terminating net of Figure 5(b).

Fig. 6: Examples for DiLL◦.

` ⊗
m
→ ` ⊗

? !
e
→

? ! π e
→ π

Fig. 7: The modified reduction rules of DiLL◦.

3.2 Measuring Exponential Reduction

Ideally, we may regard exponential reduction as a procedure that “slides” cells
along exponential paths in the net, with ! and ? cells sliding in opposite direction.
We thus assign to each cut a natural number, indicating how far the two cells
around it are from the end of the path they are sliding on. After a reduction
however many cuts may have arisen. So we will employ the multiset of the
weights of the cuts and the multiset order11. Global additive duplication poses
another problem. In [6] we settled it by employing multisets of multisets. Here
however we estimate how many addends can sprout during reduction, so we
can use this value and count each cut as many times as there can be addends
containing it. We will also need to get an estimate of the number of copies (both
regular and linear) of a box.

Exponential paths. An !-path (resp. ?-path) is an elementary path made only
of !-wires (resp. ?-wires), not traversing any mark, dereliction or codereliction
(though it may end on them). In either case, the path is called exponential. All
cells internal to an exponential path must necessarily be contractions, cocon-
tractions or boxes. The main technical advantage of DiLL◦ over DiLL is that in it
no reduction can open new exponential paths.

Next we define by mutual induction three basic measures on which we will
base the measure of the whole net. Two of them, the ?-weight ?(e) and the
!-weight !(e), are on wires. The third, the spread sp(λ), is defined on simple nets.

Weighting wires and estimating addends. First, ?(e) = !(e) = 1 if e is not exponential;
otherwise, let e be oriented so that it is an !-wire (resp. ?-wire), and let c be the
node (either a free port or a cell) to which e thus points. Table 1 provides the
laws for ?(e) (resp. !(e)), giving them depending on c. By eλ we denote the wire

11 Multisets over a well founded set, presented as [a1, . . . , ak] and additive notation,
have the well founded order given by the transitive closure of A + [a] > A + B with
∀b ∈ B : b < a.

Confluence of Pure Differential Nets with Promotion 11

e

e2

e2

?2 : ?(e) = ?(e1) + ?(e2);

f e

e

!2 : ?(e) = ?(f);

f
! π

e1

ek

: ?(ei) =

?(f)(1 +
∑

j !(e j)) if π = 0,

?(f)(1 +
∑

j !(e j))
∑

λ∈π sp(λ)?(eλ) otherwise;

otherwise: ?(e) = 1.

epf
: !(e) = !(f)

if p ∈ fp0(σ(B)) for a box B, p is above an auxiliary port,
and f is the wire corresponding to p outside the box,

e

e2

e2

!2 : !(e) = !(e1) + !(e2);

f e

e

?2 : !(e) = !(f);

e
!π

fk

f1

: !(e) =

1 +
∑

j !(f j) if π = 0,

(1 +
∑

i !(fi))
∑

λ∈π sp(λ) otherwise.

otherwise: !(e) = 1.

sp(λ) =
∏

c∈c0(λ)
σ(c)=?

!(c) ·
∏

c∈c0(λ)
σ(c)=!

?(c)

Table 1. Rules for the ?-weight (top), the ! one (middle) and the spread sp
(bottom). We remind that the subscripts of the products for the spread make
them range over the derelictions and coderelictions at depth 0.

corresponding to e inside a box, in the net λ of the box contents. At the bottom
we also show the law for the spread. Notice that there is a circular dependency
between the three measures, so the next lemma is not trivial.

Lemma 6. Given a DiLL◦ proof net π, ?(e), !(e) and sp(λ) are defined and unique for
all e ∈ w!(π) and all λ simple subnets of π at any depth. →tech.app.

Proof (sketch). Substituting the free port cases by assigning variables, we get all
the measures as polynomials in those variables (see the section on modularity).
One then proceeds by a primary induction on the depth: supposing all the
(polynomial) measures have been defined on strictly less depth, one can

– define !(e) by induction on the maximal length of ?-paths starting from e
(instantiating the variables of the ?-conclusions inside boxes in the process);

12 Paolo Tranquilli

– only then, define ?(e) by induction on the maximal length of !-paths (relying
also on measures at greater depth just instantiated);

– finally define the spread from the two. ⊓⊔

Weighting nets and polynets. The weight |e| of a wire is ?(e) + !(e). Let !cw0(λ)
(resp. b0(λ)) be the set of exponential cuts (resp. boxes) at depth 0 of a simple
net λ. Let us fix a polynet π. Then for each sum (i.e. multiset) of subnets of π
we define by induction on their depth the following multiset (λ will denote a
generic simple subnet):

‖σ‖ :=
∑

λ∈σ

sp(λ) ‖λ‖ , ‖λ‖ := [|e| | e ∈ !cw0(λ)] +
∑

B∈b0(λ)

#(B) ‖σ(B)‖ ,

where #(B), the count of the box, is ?(e)(1 +
∑

j !(f j)) with e and f j the wires on
the principal and the auxiliary ports respectively. In particular we just defined
the measure for the whole net.

Notice that this measure depends monotonously from the weight of each
part of the net. This intuition will be given a solid ground by the modularity
Lemma 8.

Intuitive ideas of the measures. Morally !(e) measures the size of the tree of cocon-
tractions above e (which is invariant under associativity). The most important
feature is that it counts all the coderelictions linked to e. On boxes we count

– the !-weight on the auxiliary ports because the codereliction against box rule
creates a contraction and a codereliction; plus one to count the box itself,
especially if it has no auxiliary ports;

– multiplied by the spread of the contents in order to be invariant by s-
conversion, and keep such invariants even if the sum inside. . . spreads.

Dually ?(e) measures the size of the tree of contractions above e. The rule when
e is on an auxiliary port of a box B contains:

– ?(f) because the contractions on the principal port of B may shift to auxiliary
ports during reduction;

– the sum of !-weights of the auxiliary wires because codereliction against
box creates contractions; plus 1 to provide something to decrease when a
cut enters a box (box against box and those similar);

– the ?-measures inside because either by opening the box or by p-conversion
the contraction trees inside can pour outside; summed to respect both p-
conversion and s-conversion; however the sum is weighted with the internal
spread to avoid that a reduction generating a sum inside could raise such
weight.

As already hinted, sp(λ) estimates how many addends may have a reduct of
λ. This is achieved by morally multiplying all the possible number of choices
potentially to be done in λ. Now sums arise

Confluence of Pure Differential Nets with Promotion 13

– on (co)dereliction against co(co)ntraction reductions, so the size of the tree
of co(co)ntractions on the principal port of a (co)dereliction should estimate
what choices that (co)dereliction may do;

– on (co)dereliction against box rules, when the box contains an actual sum;
however the spread of a box contents are already accounted for in both
“moral” contraction and cocontraction trees.

Finally the cuts inside a box B count #(B) times as this number estimates how
many regular and linear copies of its contents may be done, and all cuts count
sp(λ) times to account for additive duplication.

Replacement and modularity lemmas. For the purpose of working modularly
with the measure, we introduce variables on the terminal wires over fp0(π). So
for each terminal ?-wire d (resp. !-wire), we consider variables !(d) (resp. ?(d)). All
measures become then polynomials with natural coefficients; in the following,
we will consider the extensional (i.e. pointwise) order ≤ on non-zero values for
such variables.

For different simple nets λ, µ, we distinguish the weights calculated on one
or the other by putting them as superscripts, as in ?λ(e). Suppose λ and µ are
two nets with identified terminal wires C. We say that λ can replace µ if for
each terminal wire d we have that !λ(d) ≤ !µ(d) and ?λ(d) ≤ ?µ(d) (one of the
comparisons may be a trivial one among the same variables).

Lemma 7 (replacement). Suppose λ can replace µ, ω[] is a linear context with ω[λ]
and ω[µ] proof nets. Then for each e wire in the context ω, ?ω[µ](e) ≤ ?ω[λ](e) and
!ω[µ](e) ≤ !ω[λ](e). →tech.app.

Proof (sketch). By easy induction on ω[]. One gradually moves cells from ω to λ
and µ, and then all the wires which loop on the hole of ω (where the acyclicity
condition saves us from circular dependencies).

In the following the weight |D| of a set of wires D is the multiset of the weights
of its wires. A terminal wire is dormant if it connects an active port or two free
ones. Dormant wires are those that can become cuts when glued in a context.

Lemma 8 (modularity). Take λ and µ1, . . . , µn with simple modules and ω[] a
context such that ω[λ] and ω[µi] are all DiLL◦ pure proof nets. Suppose the following
points are satisfied:

– for every i we have that µi can replace λ;
–
∑

i sp(µi) ≤ sp(λ);

– if n = 0, then ‖λ‖ > []; otherwise, for every i we have
∥

∥

∥µi

∥

∥

∥ + ‖Di‖
µi < ‖λ‖, (resp.

≤) where Di is the set of active wires in µi that are not dormant in λ.

Then we have the pointwise inequality
∥

∥

∥ω
[

∑

i µi

]∥

∥

∥ < ‖ω[λ]‖ (resp. ≤). →tech.app.

Proof (sketch). By induction on the depth of the hole inω[]. The base step is little
more than the replacement lemma. The inductive step shows that the deepest
box where the substitution happens satisfies all the hypotheses.

14 Paolo Tranquilli

Lemma 9. ‖ . ‖ has the following properties.

– if π e
→ π′ then ‖π′‖ < ‖π‖;

– if π mc→ π′ then ‖π′‖ ≤ ‖π‖;
– if π ∼ π′ then ‖π′‖ = ‖π‖. →tech.app.

Proof (sketch). Thanks to the modularity lemma, it suffices to consider each pair
of redex and contractum, assign variables to their terminal wires as explained,
and mechanically check the hypotheses of the lemma. For equivalences it is
enough to check the same hypotheses replacing inequalities by equalities.

Theorem 10 (finite developments). Reduction on DiLL◦ is SN. →tech.app.

Proof (sketch). Only m and c remain to be settled. For all reductions, the pair given

by
(

‖π‖ , #m(π)+#c(π)
)

strictly decreases for lexicographic ordering, where #m just

counts the multiplicative cells in π, and #c weights coweakenings, weakenings
and boxes contining 0 in the following inductive way:

#c(π) := 1 + #!0 (π) + #?0
(π) +

∑

B∈b0(π)

(1 + deg(B)) #c(σ(B))

where #!0 and #?0
count coweakenings and weakenings at depth 0, and the degree

deg(B) is the number of ports of B. This accounts both for 0-boxes becoming
(co)weakenings, and for weakenings pulls splitting boxes. #c by the way can be
used to prove that c-reduction is strongly normalizing.

4 Proving Confluence

Recall that∼ andcmay bea-equivalence andn-reduction, or fullasp-equivalence
andnzp-reduction. Some of the diagrams show we cannot separates-equivalence
from the p one (and their associated reductions).

Proposition 11. Reduction on DiLL◦ is CR∼. →tech.app.

Proof (sketch). The proof relies on Lemma 1 and the strong normalization of DiLL◦

we proved in the previous section. One has therefore to prove local confluence
modulo ∼ and local coherence with the generating relation 7− �, by going through
all the (numerous) critical pairs. As for multiplicative reductions, we can even
be more specific, as m is strongly confluent and commutes with e (in particular
m
←
e
→ ⊆

e
→
m∗
←).

Figure 4 has already shown one of the most interesting cases for local con-
fluence, two coderelictions on a box. The other critical pairs for both confluence
and coherence can be joined by a long exercise in reductions.

We can finally arrive to the main theorem of the work.

Main Theorem. Reduction on DiLL pure proof nets is CR∼, and so are m and ec
taken alone.

Confluence of Pure Differential Nets with Promotion 15

Proof. Using DiLL◦ we define a parallel reduction→q . Let π →q σ iff π◦ mec∗−→ ̺ in
DiLL◦ and σ = ̺◦�. Then

–
mec
→ ⊆→q ⊆

mec∗
−→, so that→q ∗ =

mec∗
−→ (notice π◦ cannot block any reduction);

– →q is strongly CR∼ because
mec∗
−→ is so in DiLL◦.

Then we conclude, as →q is CR∼ by Lemma 3 (→q is reflexive), which means

that→q ∗=
mec∗
−→ is strongly CR∼, which in turn by Lemma 2 gives Church-Rosser

modulo ∼ for the ordinary reduction12. It is not hard to give parallel reductions
for the ec and m ones and do the same.

References

1. Girard, J.Y.: Linear logic. Th. Comp. Sc. 50 (1987) 1–102
2. Ehrhard, T.: Finiteness spaces. Mathematical. Structures in Comp. Sci. 15(4) (2005)

615–646
3. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2)

(2006) 166–195
4. Ehrhard, T., Laurent, O.: Interpreting a finitary pi-calculus in differential interaction

nets. In Caires, L., Vasconcelos, V.T., eds.: CONCUR. Volume 4703 of Lecture Notes
in Computer Science., Springer (2007) 333–348

5. Lafont, Y.: Interaction nets. In: POPL ’90: Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, New York, NY, USA,
ACM (1990) 95–108

6. Tranquilli, P.: Intuitionistic differential nets and lambda calculus. Conditionally
accepted to Theor. Comput. Sci. (2008)

7. Regnier, L.: Lambda-Calcul et Réseaux. Thèse de doctorat, Université Paris VII
(1992)

8. Di Cosmo, R., Guerrini, S.: Strong normalization of proof nets modulo structural
congruences. Lecture Notes in Comput. Sci. 1631 (1999) 75–89

9. Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. Math.
Structures Comput. Sci. 13(3) (jun 2003) 409–450

10. Pagani, M., Tortora de Falco, L.: Strong normalization property for second order
linear logic. To appear on Theor. Comput. Sci. (2008)

11. Terese: Term Rewriting Systems. Volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press (2003)

12. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28 (1989) 181–203

13. Vaux, L.: λ-calcul différentiel et logique classique : interactions calculatoires. Thèse
de doctorat, Université de la Méditerranée (2007)

14. Di Cosmo, R., Kesner, D.: Strong normalization of explicit substitutions via cut
elimination in proof nets. In: LICS, IEEE Computer Society (1997) 35

15. Danos, V.: La Logique Linéaire appliquée à l’étude de divers processus de nor-
malisation (principalement du λ-calcul). Thèse de doctorat, Université Paris VII
(1990)

12 Notice that we cannot infer CR∼ of →q directly from the same property in DiLL◦, as
chained parallel reductions are not necessarily in DiLL◦

16 Paolo Tranquilli

Technical Appendix

Let us denote by λ 4 µ the relation “λ can replace µ”. In the following we will
use measures on free ports: these must be intended as the measures (possibly
variables) of the terminal wires above such ports. Also, just for the technical
appendix, we here use the notation

ε := ε2
ε

:=
ε0

.

Lemma 6. Given a DiLL◦ proof net π, ?(e), !(e) and sp(λ) are defined and unique for
all e ∈ w!(π) and all λ simple subnets of π at any depth. ←back

Proof. Uniqueness is clear. We prove that we can define all of the measures by
a nested induction. Suppose we have defined them for all DiLL◦ proof nets of
depth strictly less than d(π). Acyclicity ensures no looping dependencies can be
established.

First we show that !(e) is defined for all w!(π), and at the same time that ?(e)
and sp(λ) are for e ∈ wk(π) and λ ∈ ℘k(π) (simple subnets at depth k) with k ≥ 1.
This is done by induction on the length of maximal ?-paths: starting with e for
e ∈ w0(π), or with the wire f on the principal port of the box B ∈ b0(π) containing e
orλ otherwise. In fact all measures inside boxes are already defined by induction
hypothesis, but they depend on variables ?(p) and !(p) with p ∈ fp1(π). However
by clash-freeness:

– all the variables ?(p) upon which the measures depend must be on the ports
over a principal port of a box, and we can instantiate them with 1;

– all the variables !(p) are over auxiliary ports, and we can instantiate them
with !(f) with f ∈ w0(π), defined by secondary induction hypothesis, as
these are wires further down ?-paths than the wire on the principal port.

In the other case, e ∈ w0(π), !(e) is defined from the !-weight on wires further
down ?-paths, and possibly the spread of nets inside a box which have just been
seen to be defined, all by secondary induction hypothesis.

Next, ?(e) for e ∈ w0(π) can now be defined by induction on the maximal
length of !-paths starting with e, as they depend: on !-weights; on weights ?(f)
with either f ∈ w1(π) or further down !-paths; and on sp(λ) with λ ∈ ℘1(π).

Finally, taken any λ ∈ ℘0(π), its spread depends on ! and ?-weights. ⊓⊔

Lemma 7 (replacement). Suppose λ can replace µ, ω[] is a linear context with ω[λ]
and ω[µ] proof nets. Then for each e wire in the context ω, ?ω[µ](e) ≤ ?ω[λ](e) and
!ω[µ](e) ≤ !ω[λ](e). ←back

Proof. We reason by induction on the size of ω: if there is a cell c with a wire
on the internal interface, detach it from ω obtaining a smaller context ω′. One
must then check that glueing c to both simple nets obtaining λ′ and µ′ yields

Confluence of Pure Differential Nets with Promotion 17

still µ′ 4 λ′. This really poses no problem because we are adding cells with a
single wire attached to the hole for now, and all the measures are defined with
monotonous operations. For example in

f
!σ~f ~e

when we check the replacement condition on ~e we get (if ei is a terminal !-wire)
that

!µ
′

(ei) = !µ(ei)
[

(1 +
∑

!(~f))
∑

ν∈σ sp(ν)
/

?(f)
]

(where [x/y] denotes substitution as usual) and similarly for ?, which by the

hypothesis µ 4 λ is less than !λ
′

. Then checking the ?-weight for ~f , we have

?µ
′

(fi) =
(

(1 +
∑

!(~f))
∑

ν∈σ sp(ν)?(f ν)
)

?µ
′

(f)

which again is right as ?µ
′

(f) = ?µ(f) ≤ ?λ(f) = ?λ
′

.
The slightly harder part comes if ω has no cells on Hω, and we suppose that

there is a wire e which connects Hω to itself. Supposing that glueing e to λ/µ
yields an exponential wire (otherwise it is trivial), the situation can be depicted
by the following picture.

~d
e f

g

As e is not a clash, e and f cannot be terminal wires of the same kind (in the sense
of !-wires and ?-wires). Wlog we can suppose e a ?-wire and f an !-one (if one
of the two is not exponential it is trivial). There cannot be then any exponential
path linking e and f in neither λ nor µ, as it would form an exponential loop
with e. Therefore the variable !(e) (resp. ?(f)) does not appear in !λ(f) and !µ(f)
(resp. ?λ(e) and ?µ(e)). We can therefore safely write

!µ
′

(~d) = !µ(~d)
[

!µ(p)/!(q)
]

≤ !λ(~d)
[

!λ(p)/!(q)
]

= !λ
′

(~d),

?µ
′

(~d) = ?µ(~d)
[

!µ(p)/!(q), ?µ(q)/?(p)
]

≤ ?λ(~d)
[

!λ(p)/!(q), ?λ(q)/?(p)
]

= ?λ
′

(~d).

If in ω there are no cells nor wires on the hole, it means that ω[λ] is just a
juxtaposition of λ and the net ωwithout the wiring on the hole. In any case it is
done. ⊓⊔

Lemma 8 (modularity). Take λ and µ1, . . . , µn with simple modules and ω[] a
context such that ω[λ] and ω[µi] are all DiLL◦ pure proof nets. Suppose the following
points are satisfied: ←back

– for every i we have that µi can replace λ;

18 Paolo Tranquilli

–
∑

i sp(µi) ≤ sp(λ);

– if n = 0, then ‖λ‖ > []; otherwise, for every i we have
∥

∥

∥µi

∥

∥

∥ + ‖Di‖
µi < ‖λ‖, where

Di is the set of active wires in µi that are not dormant in λ.

Then we have the pointwise inequality

∥

∥

∥ω
[

∑

i µi

]∥

∥

∥ < ‖ω[λ]‖ .

Proof. Let us reason by induction on the depth of the hole in ω[]. Let µ =
∑

i µi.

Base step. If ω[] = δ[] + π with δ[] linear, then it suffices to show the thesis for
δ[]. If n = 0 then trivially

‖δ[λ]‖ ≥ ‖λ‖ > [] = ‖0‖ = ‖δ[0]‖ .

Suppose therefore n ≥ 1. By the replacement lemma we have that for every i,

all the weights of wires in δ are less in δ[µi] than in δ[λ], so ‖δ‖δ[µi] ≤ ‖δ‖δ[λ].
If moreover C denotes the set of cuts of δ[λ] that are on the interface, and Ci

the same for δ[µi], then clearly Ci ⊆ C ∪ Di, and |Ci \Di|
δ[µi] ≤ |C|δ[λ], as such

wires are in δ and the replacement lemma applies. For the same reason when

we instantiate the variables we get
∥

∥

∥µi

∥

∥

∥

δ[µi]
+ |Di|

δ[µi] < ‖λ‖δ[λ]. We thus have

∥

∥

∥ω[µi]
∥

∥

∥ = ‖ω‖δ[µi] + |Ci|
δ[µi] +

∥

∥

∥µi

∥

∥

∥

≤ ‖ω‖δ[λ] + |Ci \Di|
δ[µi] + |Di|

δ[µi] +
∥

∥

∥µi

∥

∥

∥

< ‖ω‖δ[λ] + |C|δ[λ] + ‖λ‖δ[λ] = ‖δ[λ]‖ .

As for the spread, we have

∑

i

sp(δ[µi]) = spδ[µi](δ)
∑

i

spδµi ≤ spδ[λ](δ) · spδλ = sp(δ[λ]).

So we conclude this step by

∥

∥

∥δ
[

∑

i µi]
∥

∥

∥ =
∑

i sp(δ[µi])
∥

∥

∥δ[µi]
∥

∥

∥ <
(

∑

i sp(δ[µi])
)

·‖δ[λ]‖ ≤ sp(δ[λ]) ‖λ‖ = ‖λ‖ .

Clearly replacing ≤ for < is still valid.

Inductive step. Suppose now that ω has the hole at non-zero depth. Let B[] ∈
b!(ω) be the box containing the hole at maximal depth, so that its contents is
δ[] + π with δ[] linear, and let ψ[] be the context in ω such that ω[] = ψ[B[]].
If n = 0 by inspecting the laws of the measures one easily sees that B[π] 4
B[δ[λ] + π], sp(B[π]) = 1 = sp(B[δ[λ] + π]) and

‖B[π]‖ = #(B) ‖π‖ < #(B)(‖δ[λ]‖ + ‖π‖) = ‖B[δ[λ] + π]‖ ,

Confluence of Pure Differential Nets with Promotion 19

so we can apply inductive hypothesis and get the result.

If n ≥ 1, applying the replacement lemma we get that the measures in δ[µi]
are pointwise lower than the ones in δ[λ], and we can instantiate them with the
variables of B[] (and 1 for the one above the principal port). The measures in π
are clearly oblivious of the changes. Let ̺ = B[

∑

i δ[µi]+π], σ = B[δ[λ]+π], and

B[] = ! p
rk

r1

qk

q1

We have

!̺(p) = (1 +
∑

j !(q j))
(

∑

i sp̺(δ[µi]) +
∑

ν∈π sp(ν)
)

= (1 +
∑

j !(q j))
(

sp̺(δ)
∑

i sp̺(µi) +
∑

ν∈π sp(ν)
)

≤ (1 +
∑

j !(q j))
(

spσ(δ)
∑

i spσ(λ) +
∑

ν∈π sp(ν)
)

= !σ(p),

?̺(qh) = ?(p)(1 +
∑

j !(q j))
(

∑

i sp̺(δ[µi])?
̺(rh) +

∑

ν∈π sp(ν)
)

≤ ?(p)(1 +
∑

j !(q j))
(

spσ(δ)
(

∑

i sp̺(µi)
)

?σ(rh) +
∑

ν∈π sp(ν)
)

≤ (1 +
∑

j !(q j))
(

spσ(δ) spσ(λ)?σ(rh) +
∑

ν∈π sp(ν)
)

= ?σ(qh),

so that ̺ 4 σ. We can see here how the sum weighted with the spread value
makes sure that the measures do not grow if the number of addends inside the
box grows. As for the rest of the hypotheses, sp(̺) = 1 = sp(σ), there are no new
dormant wires and in fact

∥

∥

∥̺
∥

∥

∥ = #(B)
∥

∥

∥

∑

i δ[µi] + π
∥

∥

∥ < #(B) ‖δ[λ] + π‖ = ‖σ‖ ,

using the base step. The box count depends solely on the variables outside the
box. We can now apply inductive hypothesis, and get that

∥

∥

∥ω
[

∑

i µi

]∥

∥

∥ =
∥

∥

∥ψ[̺]
∥

∥

∥ <
∥

∥

∥ψ[σ]
∥

∥

∥ = ‖ω[λ]‖ .

Again replacing < with ≤ poses no problems. ⊓⊔

Lemma 9. ‖ . ‖ has the following properties.

– if π e
→ π′ then ‖π′‖ < ‖π‖;

– if π mc→ π′ then ‖π′‖ ≤ ‖π‖;
– if π ∼ π′ then ‖π′‖ = ‖π‖. ←back

Proof. We here report some of the cases. The full list can be consulted in http:
//www.pps.jussieu.fr/~ptranqui/content/docs/phd.pdf.

http://www.pps.jussieu.fr/~ptranqui/content/docs/phd.pdf
http://www.pps.jussieu.fr/~ptranqui/content/docs/phd.pdf

20 Paolo Tranquilli

Codereliction against box.

λ :=

d

!
∑

i νi

!
p

~q

r
e
→
∑

i

d

d
ν j

!

! νi

!

!
∑

j ν j

!

?

?

p
~q

r

=:
∑

i µi

No new dormant wires. We may suppose
∑

i νi , 0, as otherwise it is trivial. In
µi both the νi outside the box and the ν js inside get the same measures. If B is
the box, then

#λ(B) = ?(p)(2 +
∑

h !(qh)) = ?(p) + #µ(B) ≥ 1 + #µ(B).

Replacement hypothesis:
!µi (p) = 1 + (1 +

∑

h !(qh))
∑

j sp(ν j) ≤ (2 +
∑

h !(qh))
∑

j sp(ν j) = !λ(p),

?µi (qh) = ?µi (qνi

h
) + #µi (B)

∑

j sp(ν j)?
µ(q

ν j

h
)

≤
∑

j sp(ν j)?
λ(q

ν j

h
) + #µi (B)

∑

j sp(ν j)?
λ(q

ν j

h
)

≤ #λ(B)
∑

j sp(ν j)?
λ(q

ν j

h
) = ?λ(qh),

?µ(r) = 1 = ?λ(r).
Spread hypothesis:
∑

i sp(µi) =
∑

i ?(p) sp(νi)?
µi (d) = ?(p)

∑

i sp(νi)?
λ(dνi)

≤ ?(p)(1 +
∑

h !(qh))
∑

i sp(νi)?
λ(dνi) = ?λ(d) = sp(λ).

Weight hypothesis:

|d|µi = ?µi (d) + 1 = ?λ(dνi) + 1 < ?λ(d) + 1 = |d| ,

|dν j |µi = ?µi (dν j) + 1 = ?λ(dν j) + 1 < |d| ,
∥

∥

∥µi

∥

∥

∥ ≤ ‖νi‖ + [|d|µ] + #µ(B)
∑

j sp(ν j)([|d
ν j |] + |ν j|)

≤ [|d|µ] + #µ(B)
∑

j sp(ν j)[|d
ν j |] + (1 + #µ(B))

∑

j sp(ν j)|ν j|

< [|d|λ] + #λ(B)
∥

∥

∥

∑

j ν j

∥

∥

∥ = ‖λ‖ .

Box against box.

λ := d

!
∑

i νi

! σ

p

~q

~r

e
→ dνi

! νi

! σ

∑

i ν
′
i

p

~q

~r

=: µ

No new dormant wires. All measures inside both boxes are constant during this
reduction. We suppose

∑

i νi , 0, or else the step is trivial. Let ν′
i

be the addend

Confluence of Pure Differential Nets with Promotion 21

inside the second box in µ, corresponding to νi. If B is the box with the νis inside
in both nets then

#λ(B) = ?(p)(1 + !λ(d) +
∑

k(rk)) = ?(p)(1 + (1 +
∑

h !(fh)) sp(σ) +
∑

k !(rk))

> ?(p)(1 +
∑

h !(fh) +
∑

k !(rk)) = #µ(B),

where sp(σ) = 1 if σ = 0, and the sum of its spreads otherwise.

Replacement:
?µ(q j) = #µ(B)

∑

i sp(ν′
i
)?µ(qν

′
i)

= #µ(B)
∑

i

(

sp(νi)?
µ(dνi)(1 +

∑

h !(qh))
∑

κ∈σ ?µ(qκ)
)

<
(

#λ(B)
∑

i sp(νi)?
λ(dνi)

)

(1 +
∑

h !(qh))
∑

κ∈σ ?λ(qκ)

= ?λ(d)(1 +
∑

h !(qh))
∑

κ∈σ ?λ(qκ) = ?λ(q j),

?µ(r j) = #µ(B)
∑

i sp(ν′
i
)?µ(rν

′
i) < #λ(B)

∑

i sp(νi)?
λ(rνi) = ?λ(r j).

Spread:
sp(µ) = 1 = sp(λ).
Weight:

|dνi |
µ
= ?µ(dνi) + !µ(dνi) < #λ(B)

∑

i sp(µi)?
λ(dνi) + !λ(d) = |d|λ ,

∥

∥

∥µ
∥

∥

∥ ≤ #µ(B)
∑

i sp(ν′
i
)
(

‖νi‖ +
[

|dνi |
µ]
+ ?µ(dνi)(1 +

∑

h !(qh)) ‖σ‖
)

< #λ(B)
∑

i sp(νi) [‖νi‖] + #λ(B)
∑

i sp(νi) ‖νi‖

+
(

#λ(B)
∑

i sp(νi)?
λ(dνi)

)

(1 +
∑

h !(qh)) ‖σ‖

< |d|λ + #λ(B)
∥

∥

∥

∑

i νi

∥

∥

∥ + ?λ(d)(1 +
∑

h !(qh)) ‖σ‖ = ‖λ‖ .

Contraction against cocontraction

λ := d
? !p2

p1 q1

q2

e
→

e1 f1

e2 f2

! ?

! ?

p1

p2

q1

q2

=: µ

The new dormant wires are all e1, e2, f1 and f2.

Replacement:
!µ(pi) = !(q1) + !(q2) = !λ(pi), ?µ(qi) = ?(p1) + ?(p2) = ?λ(qi).
Spread:
sp(µ) = 1 = sp(λ).
Weight:

|ei|
µ = !(pi)(?(q1) + ?(q2)) < (!(p1) + !(p2))(?(q1) + ?(q2)) = |d|λ ,

∣

∣

∣ fi
∣

∣

∣

µ
= ?(qi)(!(p1) + !(p2)) < (?(q1) + ?(q2))(!(p1) + !(p2)) = |d|λ ,

∥

∥

∥µ
∥

∥

∥ +
[

|e1| , |e2| ,
∣

∣

∣ f1
∣

∣

∣ ,
∣

∣

∣ f2
∣

∣

∣

]

< [] + |d|λ = ‖λ‖ .

22 Paolo Tranquilli

Push conversion.

λ := !
∑

i νi

?
d
e

p

~q

r
p

∼ !
∑

i νi

?
dνi

eνi

p

~q

r

=: µ

Here we have only to check for ?(r), as the rest is trivial.

?µ(r) = #µ(B)
∑

i sp(νi)(?
µ(dνi) + ?µ(eνi))

= #λ(B)
∑

i sp(νi)?
λ(dνi) + #λ(B)

∑

i sp(νi)?
λ(eνi) = ?λ(r).

Bang sum conversion.

λ := !

∑

i νi

+

∑

j κ j

p ~q
s
∼ !

!
∑

i νi

!
∑

j κ j

?

?

p ~q =: µ

The conversion does not create new dormant wires. Moreover if B is the box on
the left, then #λ(B) is the count also of both boxes on the right. Also the contents
of the boxes, which we denote by B′ and B′′, get the same measures. Recall that
such contents are required to be non zero.
Replacement:

?µ(qh) = #µ(B)
(

∑

i sp(νi)?(eµ(qνi

h
) +
∑

j sp(κ j)?(eµ(q
κ j

h
)
)

= ?λ(qh),

!µ(p) = (1 +
∑

h !(qh))
(

∑

i sp(νi) +
∑

j sp(κ j)
)

= !λ(p),
Spread:
sp(µ) = 1 = sp(λ);
Weight:
∥

∥

∥µ
∥

∥

∥ = #µ(B′)‖
∑

i νi‖ + #µ(B′′)‖
∑

j κ j‖ = #λ(B)(‖
∑

i νi‖ + ‖
∑

j κ j‖) = ‖λ‖ ⊓⊔

Theorem 10 (finite developments). Reduction on DiLL◦ is SN. ←back

Proof. Only m and c remain to be settled. For all reductions, the pair given by
(

‖π‖ , #m(π) + #c(π)
)

strictly decreases, where #m just counts the multiplicative

cells in π, and #c weights coweakenings, weakenings and boxes contining 0 in
the following inductive way:

#c(π) := 1 + #!(π) + #?0
(π) +

∑

B∈b0(π)

(1 + deg(B)) #c(σ(B))

where #!0 and #?0
count coweakenings and weakenings at depth 0, deg(B) is the

number of ports of B.

Confluence of Pure Differential Nets with Promotion 23

– if π e
→ π′ the first component strictly decreases;

– if π m
→ π′ then ‖π′‖ = ‖π‖, #m(π′) < #m(π) and #c(π) = #c(π′);

– if π n
→ π′ then a (co)weakening disappears, so #c(π′) < #c(π), and the rest is

unchanged;

– if π
p

→ π′ let B the box for which is happening, and B′ and B′′ the two
corresponding boxes in π′. First note that apart the weakenings, all other
cells are preserved, possibly splitted between the boxes. Let k ≥ 1 be the
number of addends in B′ (i.e. the number of pulled weakenings). Then

deg(B) #c(σ(B)) = (1 + deg(B))
(

k − 1 + #c(σ(B′)) + #c(σ(B′′))
)

≥ (1 + deg(B)) #c(σ(B′)) + (1 + deg(B)) #c(σ(B′′))

> (1 + deg(B′)) #c(σ(B′)) + (1 + deg(B′′)) #c(σ(B′′)),

where the −1 at the beginning is due to counting two times the 1 added by
default to #c. The rest is unchanged.

– if π z
→ π′ then let B be the reduced box: and deg(B) (co)weakenings are

created, but the deleted box weighted 1 + deg(B).
– if π ∼ π′ then all multiplicative, weakening and coweakening cells are in

both polynets, in boxes with the same degree, so also that also the second
component is invariant. ⊓⊔

Proposition 11. Reduction on DiLL◦ is CR∼. ←back

Proof. We here a couple of more cases for local confluence.

Codereliction on box on dereliction: the confluence diagram is shown in Fig-
ure 8. We use the fact that

?!
!

e∗
→

?

as the other addend reduces to 0. Notice that we must use the neutral
reduction of weakening.

Codereliction on box on contraction: Figure 9 shows this confluence diagram.
Here we need both the neutral rule of coweakening and associativity of
contraction. ⊓⊔

Following is a less formal description of the remaining cases (which are all
accounted for).

– Box on box on dereliction, weakening or contraction, or two boxes on a
third: these are in LL and therefore are known. The one with dereliction just
needs to take into account the sums that may have arisen. One just takes

uses the
Σe
→ version of the steps taken in LL.

24 Paolo Tranquilli

?!π!

π!

→

e

π!

?
?

d n∗

?!

!π!

!π!

?
?

?!

!π!

!π!

?

d

e∗

→e

c
e∗

Fig. 8: Confluence diagram of codereliction on box on dereliction.

– Any combination of substituting boxes with coweakenings and cocontrac-
tions in the cases above: coweakenings and cocontractions on a box behave
the same way as a box, so the confluence diagrams are identical.

– Codereliction and either box, coweakening or cocontraction on box: easy
by duplicating the box, coweakening or cocontraction with the contraction
created by the codereliction, and making a copy enter inside the box (all this
on each addend created by the codereliction).

– Codereliction on box on weakening: both sides of the peak reduce to 0.

– Neutral reduction against a reduction on the relative (co)contraction: join-
able using (co)weakening steps.

– z reducible box against (co)dereliction: bothsides reduce to 0, either by open-
ing (a linear copy of) the 0 box or by (co)dereliction against (co)weakening.

– z reducible box on contraction or weakening: easy, the former needs n-
reductions.

– z reducible box on box: straightforward, but needs a total pull reduction, as
if we z-reduce the box inside we need to get the created weakenings outside.

– Every other reduction on a z-reducible box: easy, anything entering a 0 box
disappears, but so does when cutting against a weakening.

– Pull reduction and a reduction on the same box but not the same wire: the
diagrams are almost identical to the ones for bang sum equivalence.

– Pull reduction and a codereliction on the same wire: both reduce as if the
addends in the box with the weakening were not there (they are reduced to
0).

– Pull reduction and any other cell on the same wire: on one side, the cell (box,
cocontraction or coweaekening) enters the box and is erased in the addends
with the weakening, possibly leaving behind multiple pull redexes. Pulling
out these weakenings, together with some other c-reductions, gives the
same result as the other branch.

Confluence of Pure Differential Nets with Promotion 25

!π!
?

!π

!π
?!

?

→

e

!π!

!π!

!π!

?
? !

d

e∗

!π!

!π!

!π!

?
? !

!π!

!π!

!π!

?
?

?

!

!

!

!π!

!π!

?
?

· · ·+ + · · ·

d

e∗

d

en∗

e
→

a
∼

Fig. 9: Confluence diagram of codereliction on box on contraction. The + . . . part
indicates a symmetric addend.

As for the coherence diagram, Figure 10 shows an example of a typical coherence
diagram, serving both sides of a conversion against a certain reduction. Another
list of sketched descriptions follows. The last point shows the necessity of the
particular shape of neutral reduction.

– All critical pairs with associativity: trees of contractions and cocontractions
are known to behave like generalized n-ary (co)contractions. In particular
when dealing with a tree of two nested (co)contraction, it suffices to complete
the reduction on both to join the peak. Neutrality on associativity is trivial.

– Box, coweakening or cocontraction on a s conversion: on one side they enter
the box getting additively duplicated inside, while on the other they are
duplicated by a contraction before entering. In any case another s conversion
closes

– Dereliction on a s conversion: on one side the net is additively split by
opening the box, on the other the net is split first by the dereliction on
cocontraction rule, then depending on the box chosen the other gets deleted,
and finally closing with n-reductions we obtain the same net.

26 Paolo Tranquilli

∑

i=0,1

!2

!
π0
+
π1

!πi
!

!2
!0

e
← !

π0
+
π1

! p

7− � !2

!π1

!π0

!2

!2!
e
→
∑

i=0,1

!2

!π1−i

!πi
!

!2

!0

∼ s e∗

←

∑

i=0,1

!2!2

!π1
!0

!π0
!0

!πi
!

?2
?2

a
∼
∑

i=0,1

!2!2

!π1
!0

!π0
!0

!πi
!

?2?2

!2 !2

Fig. 10: Coherence diagram between the bang sum equivalence and a coderelic-
tion.

– Contraction or weakening on a s conversion: both traverse the two sides
doing the same operations, on one side by being duplicated by the leading
cocontraction.

– s-convertible box on another box: both sides may enter the box, safe for the
trailing contractions, which must be settled by a push conversion.

– Codereliction on a s conversion: on one side, the net splits additively on the
box contents on the box, with the linear copy being a single net taken from
inside. On the other one, the choice of which addend of the box to extract
is done at the contraction, while the other gets a coweakening exactly as
with codereliction on box reduction. In any case we join in the end by
s-converting the remaining boxes.

– Reduction to zero taking an addend of the conversion: on the side where
the box is split, we z-reduce the box and by n-reductions we get exactly to
the other side.

– Pull reduction on s-conversion: the pull is designed to integrate a sort of
s-conversion step, so that it may be always performed on two sides of a
conversion. n-conversion does the rest.

– Box, coweakening or cocontraction on a p conversion: the cell gets dupli-
cated and enters the box on both sides, but in opposite order.

– Dereliction on a p conversion: the reductions on the two sides are equal.
– Contraction or weakening on a p conversion: the way in which contrac-

tions are stacked may change, but a-conversion (and n-reduction) ensures
joinability.

– p-convertible box on another box: apart from having to exit/enter two boxes
on one side, the two are the same.

– Codereliction on a p conversion: additive splitting and box opening happen
on both sides, but in different order.

– Reduction to zero of the p-converted box: by c-normalization we get just
weakenings and coweakenings on both sides.

– Pull reduction on p-conversion, on different auxiliary ports: we can p-
convert all boxes involved, we just have to reorganize the stack of con-
tractions by a-conversion.

Confluence of Pure Differential Nets with Promotion 27

– Pull reduction on p-conversion, with the weakening on an auxiliary port
interested by the conversion: pull and neutral reductions join the two sides.

– Neutral reduction on p-conversion: n-reduction can block the conversion
on one side by destroying the contraction of an addend. This is joined by
a p-reduction and then by a full asp conversion. This is exaclty the point
where the particular shape of the p-reduction is needed. ⊓⊔

	Confluence of Pure Differential Nets with Promotion
	Paolo Tranquilli
	Introduction
	Rewriting Theory Modulo Equivalence

	The System
	Statics
	Correctness criterion.

	Dynamics
	Equivalences and Canonical Reductions

	The Finite Development Theorem
	Marking New Cuts
	Measuring Exponential Reduction
	Exponential paths.
	Replacement and modularity lemmas.

	Proving Confluence
	References
	Technical Appendix

