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HIGHEST COEFFICIENTS OF WEIGHTED EHRHART

QUASI-POLYNOMIALS FOR A RATIONAL POLYTOPE

VELLEDA BALDONI, NICOLE BERLINE, AND MICHÈLE VERGNE

Abstract. We describe a method for computing the highest de-
gree coefficients of a weighted Ehrhart quasi-polynomial for a ra-
tional simple polytope.

1. Introduction

Let p be a rational polytope in V = Rd and h(x) a polynomial
function on V . A classical problem is to compute the sum of values of
h(x) over the set of integral points of p,

S(p, h) =
∑

x∈p∩Zd

h(x).

The function h(x) is called the weight. When p is dilated by an integer
n ∈ N, we obtain a function of n which is quasi-polynomial, the so-
called weighted Ehrhart quasi-polynomial of the pair (p, h)

S(np, h) =

d+M
∑

m=0

Emnm.

It has degree d+M , where N = deg h. The coefficients Em are periodic
functions of n ∈ N, with period the smallest integer q such that qp is a
lattice polytope.

In [4], Barvinok obtained a formula relating the kth coefficient of
the (unweighted) Ehrhart quasi-polynomial of a rational polytope to
volumes of sections of the polytope by affine lattice subspaces parallel
to k-dimensional faces of the polytope. As a consequence, he proved
that the k0 highest degree coefficients of the unweighted Ehrhart quasi-
polynomial of a rational simplex can be computed by a polynomial
algorithm, when the dimension d is part of the input, but k0 is fixed.
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The sum S(p, h) has natural generalizations, the intermediate sums
SL(p, h), where L ⊆ V is a rational vector subspace. For a polytope
p ⊂ V and a polynomial h(x)

SL(p, h) =
∑

x

∫

p∩(x+L)

h(y)dy,

where the summation index x runs over the projected lattice in V/L.
In other words, the polytope p is sliced along lattice affine subspaces
parallel to L and the integrals of h over the slices are added up. For
L = V , there is only one term and SV (p, h) is just the integral of h(x)
over p, while, for L = {0}, we recover S(p, h). Barvinok’s method was
to introduce particular linear combinations of the intermediate sums,

∑

L∈L

ρ(L)SL(p, h).

It is natural to replace the polynomial weight h(x) with an exponential
function x 7→ e〈ξ,x〉, and consider the corresponding holomorphic func-
tions of ξ in the dual V ∗. Moreover, one can allow p to be unbounded,
then the sums

SL(p)(ξ) =
∑

x

∫

p∩(x+L)

e〈ξ,y〉dy

still make sense as meromorphic functions on V ∗. The map p 7→
SL(p)(ξ) is a valuation. In [2], we proved that Barvinok’s valuation
∑

L∈L ρ(L)SL(p)(ξ) approximates S(p)(ξ) in a sense which is made
precise below. As a consequence, we recovered Barvinok’s main theo-
rem of [4] and we sketched a method for computing the highest degree
coefficients of the Ehrhart quasipolynomial of a rational simplex which
is hopefully easier to implement. The proof in [2] relied on our Euler-
Maclaurin expansion of these functions.

The main interest of the present article is to give a simpler formula-
tion and an elementary proof of the approximation result of [2], in the
case of a simple polytope.

In a forthcoming article, in collaboration with J. De Loera and M.
Koeppe, we plan to apply the results of this article to derive a poly-
nomial algorithm for computing the k0 highest degree coefficients of a
weighted Ehrhart quasi-polynomial relative to a simplex, when k0 and
the degree of the weight h(x) are fixed, but the dimension of the simplex
is part of the input. The article [1] dealt with the integral

∫

p
h(x)dx,

which is of course the highest coefficient, if h(x) is homogeneous.
To explain the main idea, let us assume in this introduction that

the vertices s of p are integral. Using a theorem of Brion, one writes
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S(p)(ξ) as a sum of the generating functions of the supporting cones
at the vertices s of p,

S(p)(ξ) =
∑

s∈V(p)

S(s + cs)(ξ).

Then the dilated polytope np has vertices ns with the same cone of
feasible directions cs, thus

S(np)(ξ) =
∑

s∈V(p)

en〈ξ,s〉S(cs)(ξ).

The generating function of a cone c is a meromorphic function of a
particular type, namely, near ξ = 0, it is a quotient of a holomorphic
function by a product of linear forms. Hence, it admits a decomposition
into homogeneous components. One shows that the lowest degree is
≥ −d.

Let us fix an integer k0 , 0 ≤ k0 ≤ d. Our goal is to compute the k0+1
highest degree coefficients of the Ehrhart quasi-polynomial of p for the

weight h(x) = 〈ξ,x〉M

M !
. As we explain in Section 3, this computation

amounts to computing the lowest homogeneous components

S(cs)[−d+k](ξ), k = 0, . . . , k0,

of the generating functions of the cones cs.
Our main result, Theorem 16, is an expression, depending on k0,

for the components S(s + c)[−d+k](ξ), k = 0, . . . , k0 in the particular
case where the cone s + c is simplicial. For a unimodular cone, the
generating function is given by a ”short” formula, thus its lowest degree
components are readily computed. In general, let vi ∈ Zd, i = 1, . . . , d,
be integral generators of the edges of c. The finite sum

f(ξ) =
∑

x∈(
Pd

i=1
[0,1[ vi)∩Zd

e〈ξ,x〉

is an analytic function of ξ. (If c is unimodular and the generators vi

are primitive, then f(ξ) = 1). The term of degree k of f(ξ) is given by

∑

x∈(
Pd

i=1
[0,1[ vi)∩Zd

〈ξ, x〉k

k!
.

A monomial of degree k in (ξ1, . . . , ξd) can involve at most k vari-
ables among the ξi. From this elementary remark, we deduce that
the terms of degree ≤ k0 of f(ξ) can be computed using a Moebius
type combination of sums similar to f(ξ), in dimension ≤ k0, and de-
terminants. As a consequence, we obtain an expression for the terms
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S(s + c)[−d+k](ξ), k = 0, . . . , k0, which involves the generating func-
tions of cones in dimension ≤ k0 only. This feature is useful because,
when the dimension is fixed, there is an efficient algorithm for decom-
posing a simplicial cone into a signed combination of unimodular cones,
due to Barvinok.

2. Notations and basic facts

2.1. We consider a rational vector space V of dimension d, that is to
say a finite dimensional real vector space with a lattice denoted by Λ.
We will need to consider subspaces and quotient spaces of V , this is
why we cannot just let V = Rd and Λ = Zd. The set Λ⊗Q of rational
points in V is denoted by VQ. A subspace L of V is called rational if
L ∩ Λ is a lattice in L. If L is a rational subspace, the image of Λ in
V/L is a lattice in V/L, so that V/L is a rational vector space. The
image of Λ in V/L is called the projected lattice.

A rational space V , with lattice Λ, has a canonical Lebesgue measure
dx, for which V/Λ has measure 1.

A convex rational polyhedron p in V (we will simply say polyhe-
dron) is, by definition, the intersection of a finite number of half spaces
bounded by rational affine hyperplanes. We say that p is solid (in V )
if the affine span of p is V .

In this article, a cone is a polyhedral cone (with vertex 0) and an
affine cone is a translated set s + c of a cone c.

A polytope p is a compact polyhedron. The set of vertices of p is
denoted by V(p). For each vertex s, the cone of feasible directions at s
is denoted by cs.

A cone c is called simplicial if it is generated by independent elements
of V . A simplicial cone c is called unimodular if it is generated by
independent integral vectors v1, . . . , vk such that {v1, . . . , vk} can be
completed to an integral basis of V . An affine cone a is called simplicial
(resp. simplicial unimodular) if it is the translate of a simplicial (resp.
simplicial unimodular) cone.

2.2. Generating functions.

Definition 1. We denote by H(V ∗) the ring of holomorphic functions
defined around 0 ∈ V ∗. We denote by M(V ∗) the ring of meromorphic
functions defined around 0 ∈ V ∗ and by Mℓ(V

∗) ⊂ M(V ∗) the subring
consisting of those meromorphic functions φ(ξ) such that there exists
a product of linear forms D(ξ) such that D(ξ)φ(ξ) is holomorphic.
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A function φ(ξ) ∈ Mℓ(V
∗) has a unique expansion into homogeneous

rational functions
φ(ξ) =

∑

m≥m0

φ[m](ξ).

If P is a homogeneous polynomial on V ∗ of degree p, and D a product
of r linear forms, then P

D
is an element in Mℓ(V

∗) homogeneous of

degree m = p−r. For instance, ξ1
ξ2

is homogeneous of degree 0. On this

example, we observe that a function in Mℓ(V
∗) which has no negative

degree terms need not be analytic.
Let us recall the definition of the functions I(p) and S(p) ∈ Mℓ(V

∗)
associated to a polyhedron p, (see for instance the survey [5]).

Proposition 2. There exists a unique map I which to every polyhedron
p ⊂ V associates a meromorphic function I(p) ∈ Mℓ(V

∗), so that the
following properties hold:

(a) If p is not solid or if p contains a straight line, then I(p)=0.
(b) If ξ ∈ V ∗ is such that e〈ξ,x〉 is integrable over p, then

I(p)(ξ) =

∫

p

e〈ξ,x〉dx.

(c) For every point s ∈ VQ, one has

I(s + p)(ξ) = e〈ξ,s〉I(p)(ξ).

Proposition 3. There exists a unique map S which to every polyhedron
p ⊂ V associates a meromorphic function S(p) ∈ Mℓ(V

∗), so that the
following properties hold:

(a) If p contains a straight line, then S(p)=0.
(b) If ξ ∈ V ∗ is such that e〈ξ,x〉 is summable over the set of lattice

points of p, then

S(p)(ξ) =
∑

x∈ p∩Λ

e〈ξ,x〉.

(c) For every point s ∈ Λ, one has

S(s + p)(ξ) = e〈ξ,s〉S(p)(ξ).

Moreover the maps p 7→ I(p) and p 7→ S(p) have additivity proper-
ties, with consequence the fundamental Brion’s theorem.

Theorem 4 (Brion, [7]). Let p be a polyhedron with set of vertices
V(p). For each vertex s, let cs be the cone of feasible directions at s.
Then

S(p) =
∑

s∈V(p)

S(s + cs) and I(p) =
∑

s∈V(p)

I(s + cs).
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2.3. Notations and basic facts in the case of a simplicial cone.

Let vi, i = 1, . . . , d be linearly independent integral vectors and let
c =

∑d

i=1 R+vi be the cone they span.

Definition 5. The semi-closed unit cell B of the cone (with respect to
the generators vi, i = 1, . . . , d) is the set

B =
d
∑

i=1

[0, 1[vi.

We recall the following elementary but crucial lemma.

Lemma 6. (i) The affine cone (s + c) ∩Λ is the disjoint union of the

translated cells s + B + v, for v ∈
∑d

j=1 Nvj.

(ii) The set of lattice points in the affine cone s+c is the disjoint union

of the sets x +
∑d

i=1 Nvi when x runs over the set (s + B) ∩ Λ.
(iii) The number of lattice points in the cell s+B is equal to the volume
of the cell with respect to the Lebesgue measure defined by the lattice,
that is

Card((s + B) ∩ Λ) = | det(vi)|.

Let s ∈ VQ. We have immediately

(1) I(s + c)(ξ) = e〈ξ,s〉 (−1)d| det(vi)|
∏d

i=1 〈ξ, vi〉
.

The study of the function S(s + c)(ξ) will be the main point of this
article. It reduces to the study of the holomorphic function S(s+B)(ξ)
defined by the following finite sum, over the lattice points of the unit
cell.

Definition 7.

S(s + B)(ξ) =
∑

x∈(s+B)∩Λ

e〈ξ,x〉.

Lemma 8.

(2) S(s + c)(ξ) = S(s + B)(ξ)
1

∏d

j=1(1 − e〈ξ,vj〉)
.

In particular, S(s + c) ∈ Mℓ(V
∗), thus it admits a decomposition into

homogeneous components,

(3) S(s + c)(ξ) = S[−d](s + c)(ξ) + S[−d+1](s + c)(ξ) + . . . ,

and the lowest degree term S[−d](s + c)(ξ) is equal to I(c)(ξ)
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Proof. (2) follows from Lemma 6 (ii). Next, we write

(4)
d
∏

j=1

1

1 − e〈ξ,vj〉
=

d
∏

j=1

〈ξ, vj〉

1 − e〈ξ,vj〉

1
∏d

j=1 〈ξ, vj〉
.

The function x
1−ex is holomorphic with value −1 for x = 0. Thus

S(s + c) ∈ Mℓ(V
∗). The value at ξ = 0 of the sum over the cell is the

number of lattice points of the cell, that is the volume | det(vi)|. This
proves the last assertion. �

3. Weighted Ehrhart quasipolynomials

Let p ⊂ V be a rational polytope and let h(x) be a polynomial
function of degree M on V . We consider the following weighted sum
over the set of lattice points of p,

∑

x∈p∩Λ

h(x).

When p is dilated by a non negative integer n, we obtain the quasi-
polynomial of the pair (p, h),

∑

x∈np∩Λ

h(x) =

d+M
∑

m=0

Em nm.

The coefficients Em actually depend on n, but they depend only on n
mod q, where q is the smallest integer such that qp is a lattice polytope.
If h(x) is homogeneous of degree M , the highest degree coefficient Ed+M

is equal to the integral
∫

p
h(x)dx.

Let us fix a number k0. Our goal is to compute the k0 + 1 highest
degree coefficients Em, for m = M + d, . . . , M + d − k0.

We concentrate on the special case where the polynomial h(x) is a
power of a linear form

h(x) =
〈ξ, x〉M

M !
.

Of course, any polynomial can be written as a linear combination of
powers of linear forms.

We will explain our results with the simplifying assumption that the
vertices of the polytope are lattice points.

Definition 9. We define the coefficients Em(p, ξ, M), m = 0, . . . , M+d
by

∑

x∈np∩Λ

〈ξ, x〉M

M !
=

M+d
∑

m=0

Em(p, ξ, M)nm.
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Proposition 10. Let p be a lattice polytope. Then, for k ≥ 0, we have

(5) EM+d−k(p, ξ, M) =
∑

s∈V(p)

〈ξ, s〉M+d−k

(M + d − k)!
S[−d+k](cs)(ξ).

The highest degree coefficient is just the integral

EM+d(p, ξ, M) =

∫

p

〈ξ, x〉M

M !
dx.

Remark 11. As functions of ξ, the coefficients Em(p, ξ, M) are poly-
nomial, homogeneous of degree M . However, in (5), they are expressed
as linear combinations of rational functions of ξ, whose poles cancel
out.

Proof. The starting point is Brion’s formula. As the vertices are lattice
points, we have

(6)
∑

x∈p∩Λ

e〈ξ,x〉 =
∑

s∈V(p)

S(s + cs)(ξ) =
∑

s∈V(p)

e〈ξ,s〉S(cs)(ξ).

When p is replaced with np, the vertex s is replaced with ns but the
cone cs does not change. We obtain

∑

x∈np∩Λ

e〈ξ,x〉 =
∑

s∈V(p)

en〈ξ,s〉S(cs)(ξ).

We replace ξ with tξ,
∑

x∈np∩Λ

et〈ξ,x〉 =
∑

s∈V(p)

ent〈ξ,s〉S(cs)(tξ).

The decomposition into homogeneous components gives

S(cs)(tξ) = t−dI(cs)(ξ) + t−d+1S[−d+1](cs)(ξ) + · · ·+ tkS[k](cs)(ξ) + · · · .

Hence, the tM -term in the right-hand side is equal to

M+d
∑

k=0

(nt)M+d−k t−d+k 〈ξ, s〉M+d−k

(M + d − k)!
S[−d+k](cs)(ξ).

Thus we have

(7)
∑

x∈np∩Λ

〈ξ, x〉M

M !
=
∑

s∈V(p)

nM+d 〈ξ, s〉
M+d

(M + d)!
I(cs)(ξ)

+ nM+d−1 〈ξ, s〉M+d−1

(M + d − 1)!
S[−d+1](cs)(ξ) + · · ·+ S[M ](cs)(ξ).
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On this relation, we read immediately that
∑

x∈np∩Λ
〈ξ,x〉M

M !
is a polyno-

mial function of n of degree M + d, and that the coefficient of nM+d−k

is given by (5). The highest degree coefficient is given by

EM+d(p, ξ, M) =
∑

s∈V(p)

〈ξ, s〉M+d

(M + d)!
I(cs)(ξ).

Applying Brion’s formula for the integral, this is equal to the term of

ξ-degree M in I(p)(ξ), which is indeed the integral
∫

p

〈ξ,x〉M

M !
dx. �

From Proposition 10, we draw an important consequence: in order
to compute the k0 + 1 highest degree terms of the weighted Ehrhart

polynomial for the weight h(x) = 〈ξ,x〉M

M !
, we need only the k0+1 lowest

degree homogeneous terms of the meromorphic function S(cs)(ξ), for
every vertex s of p. We compute such an approximation in the next
section.

4. Approximation of the generating function of a

simplicial affine cone

Let c ⊂ V be a simplicial cone with integral generators (vj ,j =
1, . . . , d), and let s ∈ VQ. Let k0 ≤ d. In this section we will obtain
an expression for the k0 + 1 lowest degree homogeneous terms of the
meromorphic function S(s + c)(ξ). Recall that if c is unimodular, the
function S(s + c)(ξ) has a ”short” expression, given by (2),

S(s + c)(ξ) = e〈ξ,s̄〉
d
∏

j=1

1

1 − e〈ξ,vj〉
,

where (vi, i = 1, . . . , d) are the primitive integral generators of the edges
and s̄ is the unique lattice point in the corresponding cell s + B. Thus
in the unimodular case, computing the lowest degree components is
immediate.

When c is not unimodular, it is not possible to compute efficiently
the Taylor expansion of the function S(s + B)(ξ) at order k0, if the
order is part of the input as well as the dimension d. In contrast, if

the order k0 is fixed, we are going to obtain an expression for the
terms of degree ≤ k0 which involves discrete summation over cones in
dimension ≤ k0 only, and determinants. For example, for k0 = 0, the
constant term S(s + B)(0) is the number of lattice points in the cell,
which is equal to a determinant, by Lemma 6 (iii).

We need some notations.
For I ⊆ {1, . . . , d}, we denote by LI the linear span of the vectors

(vi, i ∈ I). We denote by BI =
∑

i∈I [0, 1[vi the unit cell in LI .
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We denote by Ic the complement of I in {1, . . . , d}. We have V =
LI ⊕ LIc . For x ∈ V we denote the components by

x = xI + xIc .

Thus we identify the quotient V/LIc with LI and we denote the pro-
jected lattice by ΛI ⊂ LI . Note that LI ∩ Λ ⊆ ΛI , but the inclusion is
strict in general.

Example 12. v1 = (1, 0), v2 = (1, 2). Take I = {1}. Then ΛI = Zv1

2
.

We denote by cI the projection of the cone c on the space LI . Its
edges are generated by vj , j ∈ I, and the corresponding unit cell BI

is the projection of B. Remark that vj may be non primitive for the
projected lattice ΛI , even if it is primitive for Λ, as we see in the
previous example. This is the reason why in Lemma 6, we did not make
the (unnecessary) assumption that the generators vj are primitive.

For u = (u1, . . . , ud), we denote uI =
∑

i∈I ui.

We denote the binomial coefficient p!
k!(p−k)!

by
(

p

k

)

.

Definition 13. Given a function I 7→ λ(I) on the set of subsets I ⊆
{1, . . . , d} with cardinal |I| ≤ k0, we denote

T (s, c, k0, λ)(ξ) =
∑

|I|≤k0

λ(I) vol(BIc)S(sI + cI)(ξ)(−1)d−|I|
∏

j∈Ic

1

〈ξ, vj〉
.

Remark 14. The function S(sI + cI)(ξ) is a meromorphic function on
the space L∗

I . We extend it to V ∗ by the decomposition V = LI ⊕ LIc.

It is easy to see that the function T (s, c, k0, λ)(ξ) lies in Mℓ(V
∗),

and its expansion into homogeneous components has lowest degree −d.
Thus

T (s, c, k0, λ)(ξ) = T[−d](s, c, k0, λ)(ξ) + T[−d+1](s, c, k0, λ)(ξ) + · · · .

We will use functions I 7→ λ(I) which have the following property.

Definition 15. A (d, k0)-patchfunction is a function I 7→ λ(I) on the
set of subsets I ⊆ {1, . . . , d} of cardinal |I| ≤ k0 which satisfies the
following condition.

(8) eu1+···+ud ≡
∑

|I|≤k0

λ(I)euI mod terms of u-degree ≥ k0 + 1.
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Theorem 16. Let I 7→ λ(I) be a k0-patchfunction. Then we have

(9) S(s + B)(ξ) ≡
∑

|I|≤k0

λ(I) vol(BIc)S(sI + BI)(ξ)

mod terms of ξ-degree ≥ k0 + 1.

(10)
S(s+c)(ξ) ≡ T (s, c, k0, λ)(ξ) mod terms of ξ-degree ≥ −d+k0+1.

Proof. Using (2), we write

S(s + c)(ξ) =

(

S(s + B)(ξ)
d
∏

j=1

〈ξ, vj〉

1 − e〈ξ,vj〉

)

1
∏d

j=1 〈ξ, vj〉
.

Thus we need only the terms of ξ-degree at most k0 in the Taylor expan-

sion of the holomorphic function S(s + B)(ξ)
∏d

j=1
〈ξ,vj〉

1−e
〈ξ,vj 〉

, and finally

we need only the the terms of ξ-degree at most k0 in the Taylor expan-
sion of S(s + B)(ξ). Applying (8) to each term e〈ξ,x〉 = eξ1x1+···+ξdxd of
the finite sum S(s + B)(ξ), we have

S(s+B)(ξ) ≡
∑

|I|≤k0

λ(I)
∑

x∈(s+B)∩Λ

e〈ξ,xI〉 mod terms of ξ-degree ≥ k0+1.

For each I, the term
∑

x∈(s+B)∩Λ e〈ξ,xI〉 is the sum, over x ∈ (s+B) ∩Λ,
of a function of x which depends only on the projection xI of x in the
decomposition x = xI +xIc ∈ LI ⊕LIc

. When x runs over (s+B) ∩Λ,
its projection xI runs over (sI + BI) ∩ ΛI . Let us show that the
fibers have the same number of points, equal to vol(BIc). For a given
xI ∈ (sI + BI) ∩ ΛI , let us compute the fiber

{y ∈ (s + B) ∩ Λ; yI = xI}.

Fix a point xI + xIc in this fiber. Then y = xI + yIc lies in the fiber
if and only if yIc − xIc ∈ (sIc − xIc + BIc) ∩ Λ. By Lemma 6(ii), the
cardinal of the fiber is equal to vol(BIc). Thus, we have obtained (9).

Next we write the sum S(sI + cI)(ξ) over the projected cone sI + cI

in terms of the sum over the projected cell sI + BI . We obtain

S(s + c)(ξ) ≡
∑

|I|≤k0

λ(I) vol(BIc)S(sI + cI)(ξ)
∏

j∈Ic

1

(1 − e〈ξ,vj〉)

≡
∑

|I|≤k0

λ(I) vol(BIc)S(sI + cI)(ξ)(−1)d−|I|
∏

j∈Ic

1

〈ξ, vj〉

mod terms of ξ-degree ≥ −d + k0 + 1.
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�

Next we compute an explicit (d, k0)-patchfunction.

Lemma 17. If I ⊆ {1, . . . , d} has cardinal |I| ≤ k0, let

λd,k0
(I) = (−1)k0−|I|

(

d − |I| − 1

d − k0 − 1

)

.

Then λd,k0
satisfies Condition (8).

Proof. The trick is to write eu = 1 + t(eu − 1)|t=1. Thus

eu1+···+ud =

d
∏

1

eui =

d
∏

1

(1 + t(eui − 1))|t=1

Let us consider P (t) :=
∏d

1(1+ t(eui −1)) =
∑d

q=0 Cq(u)tq as a polyno-
mial in the indeterminate t. As eui − 1 is a sum of terms of ui-degree
> 0, we have

(11) eu1+···+ud ≡

k0
∑

q=0

Cq(u) mod terms of u-degree ≥ k0 + 1.

In order to compute the coefficient Cq(u), we write

P (t) =
d
∏

1

(1 + t(eui − 1)) =
d
∏

1

((1 − t) + teui).

By expanding the product, we obtain

Cq(u) =
∑

|I|≤q

(−1)q−|I|

(

d − |I|

q − |I|

)

euI .

Summing up these coefficients for 0 ≤ q ≤ k0, we obtain

k0
∑

q=0

Cq(u) =
∑

|I|≤k0





k0
∑

q=|I|

(−1)q−|I|

(

d − |I|

q − |I|

)



 euI .

For m0 ≤ d0, let us denote

F (m0, d0) =

m0
∑

j=0

(−1)j

(

d0

j

)

.

Thus
k0
∑

q=0

Cq(u) =
∑

|I|≤k0

F (k0 − |I|, d − |I|)euI .
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The sum F (m0, d0) is easy to compute by induction on m0, using the
recursion relation

(

d0

j

)

=

(

d0 − 1

j

)

+

(

d0 − 1

j − 1

)

.

We obtain

F (m0, d0) = (−1)m0

(

d0 − 1

m0

)

.

Hence,

F (k0 − |I|, d − |I|) = (−1)k0−|I|

(

d − |I| − 1

k0 − |I|

)

= (−1)k0−|I|

(

d − |I| − 1

d − k0 − 1

)

.

The claim follows now from Equation (11). �

Remark 18. As promised, the main feature of Formula (10) is that the
right-hand-side T (s, c, k0, λ) involves discrete summations in dimension
|I| ≤ k0 only.

Theorem 16 can be reformulated in terms of the intermediate valu-
ations introduced by Barvinok in [4]. The reformulation relies on the
next lemma, which shows that the (d, k0)-patchfunction condition is
equivalent to a Moebius-type condition for the function I 7→ λ(I).

Lemma 19. Let 0 ≤ k0 ≤ d be two integers. Let λ be a function on
the set of subsets I ⊆ {1, . . . , d} of cardinal |I| ≤ k0. The following
conditions are equivalent.
(i) For every I0 of cardinal |I0| ≤ k0,

∑

{I; |I|≤k0, I0⊆I}

λ(I) = 1.

(ii) For every integer k such that 0 ≤ k ≤ k0, we have the equality of
polynomials

(12) (u1 + · · ·+ ud)
k =

∑

|I|≤k0

λ(I)uk
I

(iii) The function λ is a (d, k0)-patchfunction.

Proof. Conditions (ii) and (iii) are clearly equivalent. Let us show that
(i) and (ii) are equivalent. We expand (u1 + · · · + ud)

k into a sum of
monomials. A monomial of degree k can involve at most k variables
ui, with k ≤ k0. Therefore we obtain

(13)
1

k!
(u1 + · · ·+ ud)

k =
∑

|I|≤k0

∑

(ki)i∈I
P

ki=k

∏

i∈I

uki

i

ki!
.
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We expand similarly each term in the right-hand side of (12). A given

monomial
∏

i∈I0

u
ki
i

ki!
, with ki 6= 0 for all i ∈ I0, occurs in the right-hand

side of (12) exactly for the subsets I such that I0 ⊆ I. Thus (i) implies
(ii). Conversely, Equation (12) for k = k0 implies (i). �

5. Computation of Ehrhart quasi-polynomials

We now apply the approximation of the generating functions of the
cones at vertices to the computation of the highest coefficients for a
weighted Ehrhart polynomial, when the weight is a power of a linear
form, as we explained in section 3.

Corollary 20. Let p be a simple lattice polytope. Fix ξ ∈ Rd and
M ∈ N. Let Em(p, ξ, M), m = 0, . . . , d + M , be the coefficients of the
weighted Ehrhart polynomial

∑

x∈np∩Λ

〈ξ, x〉M

M !
=

M+d
∑

m=0

Em(p, ξ, M)nm.

Fix 0 ≤ k0 ≤ d. Let λ be a (d, k0)-patchfunction. Then, for k =
0, . . . , k0, the Ehrhart coefficient EM+d−k(p, ξ, M) is given by the fol-
lowing formula.

(14) EM+d−k(p, ξ, M) =
∑

s∈V(p)

〈ξ, s〉M+d−k

(M + d − k)!
T (0, cs, k0, λ)[−d+k](ξ).

In the general case, when the vertices are not assumed to be lattice
points, we state the result without going through the details of the
computation.

Theorem 21. Let p be a simple polytope. For each vertex s of p, let
qs ∈ N be the smallest integer such that qss ∈ Λ. For n ∈ N, let ns be
the residue of n mod qs, so that 0 ≤ ns ≤ qs − 1. Fix ξ ∈ V ∗ and M a
nonnegative integer. Fix 0 ≤ k0 ≤ d. Let λ be a (d, k0)-patchfunction.

Then the Ehrhart quasi-polynomial

∑

x∈np∩Λ

〈ξ, x〉M

M !

coincides in degree ≥ M + d − k0 with the following quasi-polynomial

(15)

k0
∑

k=0

∑

s∈V(p)

(n − ns)
M+d−k 〈ξ, s〉M+d−k

(M + d − k)!
T[−d+k](nss, cs, k0, λ)(ξ).
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Observe that (15) is clearly a quasi-polynomial in n with coefficients
which depend only on the residues (n mod qs) = ns, s ∈ V(p).

Remark 22. In practice, we first reduce the vertices s mod Λ by using

S(s + cs)(ξ) = e〈ξ,v〉S(s − v + cs)(ξ), for v ∈ Λ.

Then we write an approximation similar to (15).

6. Conclusion

Let p ⊂ Rd be a rational simplex. Let 〈ξ, x〉 be a rational linear form
on Rd, and consider a power 〈ξ, x〉M . Let Em(p, ξ, M), m = 0, . . . , d +
M , be the coefficients of the weighted Ehrhart quasi-polynomial

∑

x∈np∩Λ

〈ξ, x〉M

M !
=

M+d
∑

m=0

Em(p, ξ, M)nm.

Fix an integer k0, 0 ≤ k0 ≤ d. The main consequence of this study is a
method for efficiently computing the k0 + 1 highest degree coefficients
Em(p, ξ, M), for m = M + d, . . . , M + d − k0. The method relies on
expanding (15) in Theorem 21 as a power series in ξ.

Furthermore, one can write any homogeneous polynomial weight
h(x) as a linear combination of powers of linear forms,

h(x) =
∑

k

ck〈ξk, x〉
M .

In a forthcoming article by the authors of [1], we will show how to
derive

- first, an algorithm for computing Em(p, ξ, M), for m = M +
d, . . . , M +d−k0. Hopefully this algorithm is polynomial, when the in-
put consists of the dimension d and the degree M , the rational simplex
p ⊂ Rd , the rational linear form ξ on Rd, provided k0 is fixed;

- second, an algorithm for computing the k0 + 1 highest degree coef-
ficients of a weighted Ehrhart quasi-polynomial relative to a simplex.
Hopefully this algorithm is polynomial when k0 and the degree of the
weight h(x) are fixed, but the dimension of the simplex is part of the
input.

[1] dealt with the case of the highest Ehrhart coefficient which is just
the integral of the weight over the simplex.
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