N
N

N

HAL

open science

Simple Algorithm for Simple Timed Games

Yasmina Abdeddaim, Eugene Asarin, Mihaela Sighireanu

» To cite this version:

Yasmina Abdeddaim, Eugene Asarin, Mihaela Sighireanu. Simple Algorithm for Simple Timed Games.

2008. hal-00374700v2

HAL Id: hal-00374700
https://hal.science/hal-00374700v2

Preprint submitted on 13 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00374700v2
https://hal.archives-ouvertes.fr

Simple Algorithm for Simple Timed Games*

Y. Abdeddaim!, E. Asarin?, and M. Sighireanu?

! Department of Embedded Systems, ESIEE Paris, University of Paris-Est
Cité Descartes, BP 99, 93162 Noisy-le-Grand Cedex, France
2 LIAFA, University Paris Diderot and CNRS, 75205 Paris 13, France.
y.abdeddaim@esiee.fr, {asarin,sighirea}@liafa.jussieu.fr

Abstract. We propose a subclass of timed game automata (TGA),
called Task TGA, representing networks of communicating tasks where
the system can choose when to start the task and the environment can
choose the duration of the task. We search to solve finite-horizon reach-
ability games on Task TGA by building strategies in the form of Simple
Temporal Networks with Uncertainty (STNU). Such strategies have the
advantage of being very succinct due to the partial order reduction of
independent tasks. We show that the existence of such strategies is an
NP-complete problem. A practical consequence of this result is a fully
forward algorithm for building STNU strategies. Potential applications
of this work are planning and scheduling under temporal uncertainty.

1 Introduction

Timed Game Automata (TGA) model has been introduced in [20] in order to
represent open timed systems, and is nowadays extensively studied both from a
theoretical and applied viewpoints. As usual in the game theory, main problems
for timed games are (1) search for winning strategies that allow to the protagonist
player (or the controller) to reach his or her aims whatever the opponent player
(or the environment) does, and (2) search for winning states (from which such
a strategy exists). A winning strategy can be interpreted as a control program
that respects its specification (or maximizes some value function) for any actions
of the environment, and for this reason game-solving for TGA is often referred
to as controller synthesis. Such a synthesis finds applications to, e.g., industrial
plants [23], robotics [1], or multi-media documents [16].

A large class of applications of timed games, relevant to this work, is schedul-
ing and planning under temporal uncertainty (see [3,11]). For this kind of ap-
plications, the protagonist masters all the behaviour of the system, except the
durations of its actions. The aim is to ensure a good functioning of the system
for any timing (decided by the opponent/environment player in some prede-
fined bounds). Thus a strategy is a control program, schedule or plan robust
to timing variations in the controlled process. During the last decade, the plan-
ning community has developed several techniques for timed planning problems.

* This work has been supported by the French ANR project AMAES.

These techniques (e.g., [17]) are based on constraint programming and give good
performances in practice.

On the other hand, during first years of timed games, a major difficulty
was related to the fast state explosion and non-scalability of algorithms and
tools. Theoretically, this is not surprising since the upper bound complexity of
solving reachability games on TGA has been proved EXPTIME [15]. But the
main reason of these bad performances was that most algorithms explored (in a
backward way [20, 2], or in a mixed one [23]) almost all the huge symbolic state
space of the timed game automaton. Four years ago, an important practical
progress in timed strategy synthesis has been attained by Cassez et al. [8], who
adapted to the timed case a forward on-the-fly game-solving algorithm from [18§],
and implemented the resulting algorithm in the tool UPPAAL-TIGA [6]. This tool
has a performance comparable to reachability analysis of timed automata, and
thus makes timed game solving only as difficult as timed verification. However,
in many practical cases, even this solution is not always satisfactory. One issue is
still the state explosion preventing the tool from finding a strategy. Another issue
is a big size and complexity of the strategy synthesized. It is often too heavy to
be deployed on the controller. For distributed systems, the controller has to be
centralized because the strategy obtained is difficult to distribute. Partial order
based methods [7,19] could help, but as far as we know, they have not yet been
applied to timed games.

In this paper, we give a formal explanation of the good results obtained by
the planning community by (1) identifying a game model for the timed planning
problems and by (2) showing that the complexity of solving such games becomes
NP-complete if we search to build strategies of a special form. As a consequence,
we obtain a fully forward algorithm for solving timed games by building compact
and easy to distribute strategies.

More precisely, we consider games played on a special kind of TGA, so-called
task timed game automata (TTGA). Such an automaton is a parallel composition
of several TGA called tasks. In every task, the controller executes a (possibly
infinite) sequence of steps. At each step, the controller decides when to launch
some actions whose durations are chosen by the environment and it waits the
end of actions launched before starting the next step. Figure 1 gives an example
of a TTGA with five tasks. The task Move repeats three steps infinitely, at each
step the controller launches one action using the controllable transition (solid
arrow); the duration of this action is chosen by the environment in the interval
given on the uncontrollable transition (dashed arrow). Notice that, in our games,
the environment (the opponent player) has no discrete choice, it determines only
some durations. The controller has only the choice of the task to execute, but
tasks cannot do discrete choices. The aim of the controller is to reach some set
of goal states before some deadline (the horizon of the game), and never leave
the set of safe states until this goal.

For such games, we will consider strategies of a certain form. First, we dis-
allow “conditional moves”, i.e., the discrete choices of the controller are fixed,
and the only way that it reacts to the choices of the environment is by adapting

the time at which it launches its actions. This requirement limits somewhat the
power of the controller. For example, we are not able to obtain optimality like
in [2] because this needs conditional schedulers. Second, instead of a memory-
less strategy saying for each state what to do (like in almost all the papers/tools
on timed games), we represent a strategy by a compact data structure, called
STNU [24], and a computational procedure saying for every game history what
are possible next moves for the protagonist. In [1] we show that such a strat-
egy is, by its nature, a more complex object than the usual “state feedback”
(or memory-less), but it is in most cases smaller wrt the number of transitions
needed to reach the goal, more permissive wrt the number of runs included, and
easier to distribute in a multi-component timed system (although some parts of
the execution shall be centralized).

Related work. A data structure similar to STNU, called event zones, has been
used in [19] for the verification of timed automata. STNU extend event zones with
uncontrollable edges. The IXTET planner [13] uses the STNU data structure
and an A*-like search algorithms to obtain STNU plans from constraint-based
specification. Our work gives a TGA model sufficient and yet more expressive
for modeling pure' timed planning problems considered by IXTET. Moreover,
the completeness of the algorithm used by IXTET, even for pure timed planning
problems, has been a conjecture. We provide here a proof of this conjecture.
Finally, our work fulfills the study of the relation between STNU and TGA
started by Vidal in [25]. In his work, Vidal shows that TGA are more expressive
than STNU and provides a semantics for the execution of STNU strategies in
terms of reachability games on TGA.

Move Pic Arm Com Vw

.2 Move@3& AN Vw@sk

« rel :
@ @ Arm@3 V€ 3] Move@1 ze .0l
g op J Q
V € [3,6] ze [2,4]; zels, 10];
Arm@? D, @ @ 2 € [40,5

Fig. 1. TTGA network for the Explore rover.

L IXTET models are in fact hybrid since they may relate timed variables (clocks) and
discrete variables.

2 Task Timed Game Automata

A TTGA is the parallel composition of a finite set of special TGA called tasks.
In each task, the transitions form a sequence with a (possibly empty) final cycle.
The sequence of transitions is built from subsequences where a controllable tran-
sition is followed by zero or more uncontrollable transitions. These subsequences
model a step of the controller starting zero or more tasks with uncontrollable
durations but with totally ordered finishing times. When executing a control-
lable transition, a task may synchronize with its peers only by inspecting their
location.

First, let us recall the classical definition of TGA. Let X be a finite set of
clocks with values in R>g. We note by B(X) the set of rectangular constraints
on variable in X which are possibly empty conjuncts of atomic constraints of
the form a ~ k where k € N, ~€ {<, <, >, >}, and 2 € X. A constraint in B(X)
defines an interval in R>q for any z € X.

Definition 1. [20] A Timed Game Automata (TGA) is a tuple A =
(L, 0y, X, E,Inv) where L is a finite set of locations, €y € L is the initial lo-
cation, X is a finite set of real-valued clocks, E C L x B(X) x {c,u} x 2% x L
is a finite set of controllable (label c¢) and uncontrollable (label u) transitions,
Inv: L — B(X) associates to each location its invariant.

For simplicity, this classical definition does not include discrete variables. How-
ever, TGA can be extended with discrete variables whose values can be tested
and assigned in transitions. Also, TGA can be composed in parallel to form net-
works of TGA. The synchronization between parallel TGA can be done using
shared clocks or discrete variables.

Then, a TTGA is a network of TGA where (1) each TGA has a special form,
called task, (2) the clocks are not shared between parallel tasks, and (3) the
synchronization is done only using location constraints. A location constraint
i@Q[m, n] requires that the task i is in any location between locations m and n.
Let I be a finite set of tasks identifiers. We denote by Z(I) the set of possibly
empty conjunctions of locations constraints over the set of tasks I. Wlog, we
consider that all location constraints in Z(I) are well formed, i.e., they refer to
existing locations in these tasks.

Definition 2. A task timed game automaton (TTGA) is a finite set of tasks,
A = ||;e1Ty, each task T; being a tuple (L;, €9, x;, E;) where L; is a finite set of
locations, E? € L; is the initial location, x; is the local clock, and F; : L; —
T(I\{i}) x B(z;) x {c,u} x L; is a finite set of transitions satisfying the following
constraints:

(i) (chain or lasso) at most one location has no successor by E;, i.e., |L;| —1 <
|Dom(E)|,

(ii) (no synchronization for the environment) for any transition ¢ —
(94, gz, u, 0') € E; the constraint gq is empty (true),

(#ii) (no time blocking for the environment) for any two consecutive transitions
v (94, 9,0, ') and ' — (g4, 9,,d',0") s.t. a = u, g, defines an interval
in R>o which precedes the interval defined by gl,.

Compared to TGA, tasks have only one clock and a transition relation of
a special form (partial function). Moreover, it follows from (i) that a task is
either a finite sequence (when |L;| — 1 = |Dom(E;)|) or a sequence with a
final cycle (when |L;| = |Dom(E;)|). For this reason, we will denote locations
{ € L; by a natural number representing the size of the shortest path between
9 and ¢; by convention, we denote £ by 1. The transitions of tasks have a
(discrete) location constraint, but no set of clocks to be reset. Instead, this set is
implicitly determined by the kind of transitions, since x; is reset iff the transition
is controllable. Another implicit definition in tasks is the invariant labeling for
locations, Inv. For any ¢ € L;, the invariant of ¢ is implicitly z; < M, where
M is the upper bound of the interval defined by the timed guard g, in the
transition ¢ — (g4, gz, a,¢") in E; (or empty if such transition does not exists).
With this implicit definition for Inv, the constraint (iii) ensures that when the
environment executes an uncontrollable transition, it can not be blocked by
the invariant of the target location. Moreover, uncontrollable transitions are
executed in a strict sequence and a controllable transition is executed after the
termination of all previous uncontrollable transitions. This constraint has an
important consequence: the cycle of a task shall contain at least one controllable
transition to reset the clock. Wlog, we will suppose that cycles always start
with a controllable transition. Also, like for TGA, we consider only tasks with
non-Zeno cycles.

Since TTGA is a subclass of TGA, we omit the definition of its semantics
(see Appendix A for details). We only recall some notions needed to define game
semantics. A run of a TGA is a sequence of alternating time and discrete transi-
tions also represented by a timed words (a1, 71) ... (Gm, Tm) Where ay, . .., an, are
discrete transitions and 7y, . .., 7, are the real values corresponding to the global
time at which each discrete transition is executed. A normal run is a timed word
such that when ¢ < j then 7; < 7;. We denote by p[0], p[i], and last(p) the first
state, the i*" state (i.e., after the i*" discrete action), and resp. the last state?
of a run p. Runs(A4, s) denotes the set of normal runs of A starting in state s.

Ezample 1. Our running example is an instance of the Ezplore system inspired
from a Mars rover [4]. The rover explores an initially unknown environment and
it can (a) move with the cameras pointing forward; (b) move the cameras (fixed
to an arm); (c¢) take pictures (while still) with the cameras pointing downward,
and (d) communicate (while still). The mission of the rover is to navigate in
order to take pictures of predefined locations, to communicate with an orbiter
during predefined visibility windows, and to return to its initial location before
14 hours. There is a lot of temporal uncertainties, especially in the duration of
moves and communications. A TTGA model of this rover is given on Figure 1.

2 A state of an automaton is given by the locations of components and valuations of
clocks.

Task Move models navigation between three predefined locations reached in
locations 1, 3, resp. 5. Task Pic models tacking a picture at the second location.
Task Arm models arm moving between two positions: forward (location 1) and
downward (location 3). Task Com models the communication with an orbiter
when the rover is at the first location (the base) and the visibility window is
active. Task Vw models the visibility window whose start and end are controlled
by the environment and it is active in location 3.

3 Simple Games

The games we consider on TTGA belong to a special subclass of reachability
games. We first provide general definitions about reachability games [14].

A reachability game structure is a tuple G = (A,Z,G,S) where A is an
automaton with edges labeled by controllable and uncontrollable actions, an
initial state T in A, a goal set of states G, and a safe set of states S. The
game starts in the initial state Z and, in every state, the controller and the
environment choose between waiting or taking a transition they control. The
state evolves according to these choices. If the current state is not in S, then the
environment wins. If the current state is in G, then the controller wins. Solving a
game G consists in finding a strategy f such that the automaton A starting from
7 and supervised by f satisfies at any point the constraints in S and reaches G.
A special class of reachability games are finite horizon games where the game
stops after some finite horizon B. In TCTL, this means that A supervised by f
satisfies the formula Z A A[S U<p (S A G)].

In this work, we consider a finite horizon reachability game defined as follows:

Definition 3. A simple game is a finite horizon game G = (A,Z,G,S) such
that:
-~ Ais a TTGA and T is its initial state,
- G is specified using a (non empty) conjunction of location constraints i@[m,n|
saying that any location of task i between m and n is part of the goal,
- S is specified using a conjunction of constraints of the form:

0 i{@[m,n] = jQ[k,] (embedding) which requires that if task i is in a lo-
cation in [m,n] then task j is in a location in [k, £], and

0 i@[m,n] § jQ[k,] (mutex) which requires mutual exclusion between loca-
tions in [m,n| of task i and locations in [k, {] of task j.

Wlog, we consider that safety and goal constraints are minimal, i.e., all redun-
dant conjuncts are eliminated.

Example 2. G for the Explore example is specified by the constraint:

v = Move@1 A Pic@3 A Com@3
specifying that the rover has to take the picture, to communicate with the or-
biter, and to return at its initial location. The horizon is B = 14 and the set S
is given by the constraint § below. In d, the first two conjuncts forces the rover
to take the picture (Pic@2) when the arm is downward (Arm@3) and the rover

is still at the second location (Move@3); the next conjuncts ask that rover is
moving (Move at locations 2, 4, or 6) with the arm oriented forwardly (Arm@1).
0 = (Pic@2 = Arm@3) A (Pic@2 = Move@3)A
Neego,4,6y(Move@l => Arm@1)A
(Com@2 = Move@1) A (Com@2 =— Vw@3)

4 Strategies and STNU

We first recall some definitions concerning strategies. A strategy for a controller
playing a game G is a relation f between Runs(A,Z) and the set of controllable
transitions in A extended with a special symbol \. Its semantics is given by
the following three rules: (1) if (p,\) € f, the controller may wait in the last
state of p, (2) if (p,e) € f, the controller may take the controllable transition
e, (3) if p is not related by f, the controller has no way to win for p with the
strategy f. Given a strategy f, we define the plays of f, plays(f), to be the set of
normal runs that are possible when the controller follows the strategy f. Given
a reachability game structure G, a strategy f is a winning strategy for the game
G if for all p € plays(f) such that p[0] € Z, there exists a position ¢ > 0 such
that p[i] € G, and for all positions 0 < j <1, p[j] € S.

4.1 STNU

For finite horizon games, the winning strategies have a finite representation (in
absence of Zeno runs). A compact way to represent such strategies is the Simple
Temporal Network with Uncertainties (STNU) [24]. We present shortly STNU,
further details can be found in [24, 22].

An STNU is a weighted oriented graph in which edges are divided into two
classes: controllable (or requirement) edges and uncontrollable (or contingent)
edges. The weights on edges are non-empty intervals in R. The nodes in the graph
represent (discrete) events, called time-points. The edges correspond to (interval)
constraints on the durations between events. The time-points which are target of
an uncontrollable edge are controlled by the environment, subject to the limits
imposed by the interval on the edge. All other time-points are controlled by the
controller, whose goal is to satisfy the bounds on the controllable edges.

Definition 4. An STNU Z is a 5-tuple (N, E,C, 1, u), where N is a set of nodes,
FE is a set of oriented edges, C is a subset of E containing controllable edges,
andl: E — RU{—o0} and u : E — RU {+o0} are functions mapping edges
into extended real numbers that are the lower and upper bounds of the interval
of possible durations. Each uncontrollable edge e € E\C' is required to satisfy
0 < le) < ule) < oo. Multiple uncontrollable edges with the same finishing
points are not allowed.

Each STNU is associated with a distance graph [10] derived from the upper
and lower bound constraints. An STNU is consistent iff the distance graph does

not contain a negative cycle, and this can be determined by a single-source
shortest path propagation such as in the Bellman-Ford algorithm [9].

Choosing one of the allowed durations for each edge in an STNU Z corre-
sponds to a schedule of time-points and gives a distance graph which can be
checked for consistency. Then schedules of Z represent finite normal runs over
the events in Z. Choosing one of the allowed durations for each uncontrollable
edge in an STNU Z determines a family of distance graphs called projections
of Z. Each projection determines a set of finite runs where uncontrollable time-
points are executed always at the same moments. An execution strategy f for
an STNU Z is a partial mapping from projections of Z to schedules for Z such
that for any choice p of execution time for uncontrollable time-points, f assigns
an execution time for all time-points in Z such that (1) if the time-point is
uncontrollable, the execution time is equal to one chosen in p, and (2) if the
time-point is controllable, the execution time satisfies the constraints on edges
in Z. An execution strategy is said viable if it produces a consistent schedule for
any projection of Z. So an STNU represents several execution strategies.

Various types of execution strategies have been defined in [24]. We consider
here the dynamic execution strategies which assign a time to each controllable
time-point that may depend on the execution time of uncontrollable edges in
the past, but not on those in the future (or present). An STNU is dynamically
controllable (DC) if it represents a dynamic execution strategy. For this reason,
we call in the following an STNU strategy an STNU having the DC property.

Definition 5. An STNU strategy Z is winning if any schedule of Z is a winning
TUN.

In [22,21] is shown that the DC property is tractable, and that a polynomial
(O(n®) with n = |N|) algorithm exists defined as follows:

procedure IIpc (STNU Z) returns Z’ or L

The algorithm applies iteratively on Z a set of rewriting rules including the
ones in the shortest path algorithm [9]. These rules introduce controllable edges
and tighten the bounds of controllable edges in the input STNU. The algorithm
returns the rewritten STNU Z’ if it is DC, or an empty STNU L otherwise.
Figure 2 shows four STNU with the same nodes and edges, but with different
labels and properties (uncontrollable edges are represented by dashed arrows).

4.2 Interfacing STNU with simple games

In order to be a strategy for a simple game G, an STNU shall speak about
the transitions of the TTGA A done before reaching some goal state in G. We
formalize here this relation by defining (1) the interface of a game G and (2) the
satisfaction relation between an STNU and a game interface.

Intuitively, the interface of a simple game is an STNU containing a time-
point for each transition of the game that can take place until the horizon of the
game is reached; these time-points are related with edges labeled by the timing

[0,7] [5,7] [5,7]

Fig. 2. STNU (a) DC but not reduced, (b) reduced wrt shortest path, (c¢) reduced wrt
DC, (d) not DC.

constraints in the TTGA of the game. For tasks with cycles, a transition may
appear several times until the game end. Due to the special form of tasks, we can
unfold these tasks and compute (see Appendix B for details) for each transition
m of a task ¢ its maximal number of occurrence in the horizon B, denoted by
p(i)(m) > 0. Thus, we can identify each transition e that can be executed during
the game horizon by a triple (i, m,u) where ¢ € I is the identifier of the task
owning e, m € L; is the source location of e, and u € [1, u(4)(m)] is the occurrence
number computed for e. In the following, we denote by prec(i, m, u) the transition
preceding (i, m,w) in the unfolding of task <. Similarly, prec.(i, m, u) denotes the
last controllable transition before (i, m,u) in the unfolding of task 4. If no such
preceding transition exists, both notations return (,0,1).

The interface of a simple game G with horizon B is an STNU Zg =
(Ng, Ec,Cq,la, ug) and a labeling of time-points o¢ : I x Nx N — Ng defined
as follows:

— N¢g contains two special time-points ty and to corresponding respectively to
the initial moment and to the goal moment. These two time-points are related by
an edge (to,tq) € Cq labeled by [0, B] to model the finite horizon constraint of
the game. Since the time-point #; is the initial moment on all tasks, it is labeled
by (¢,0,1) for any i € 1.

— For each task ¢ and each transition m of i, Ng contains a number of time-points
given by p(i)(m).

— FE¢ relates the nodes in Ng wrt timing constraints and ordering of transi-
tions in A. For example, a transition e = m +— (g4, 9z, a,n) in some task i
defines in E¢ a first set of edges {prec,(i,m,u) i(i,m,u) |1 <u<p(@)(m)}
where I, is the interval on the local clock defined by g,. This set is included
in Cg iff a = ¢; it models the timing constraint g, which defines a delay
from the last reset of the local clock. The second set of edges defined by e is
{(i,m,u) M>(i,n,u) | 1 <u < p(i)(m)} C Cq and it models the ordering
of transitions starting from m and n in task q.

Ezxample 3. Figure 3 gives the interface of the game considered in Example 2.
The time-points are put in clusters recalling the task owning the transitions
represented by these time-points. Controllable edges without labeling intervals
are implicitly labeled by [0, +00).

The interface is the “largest” STNU for G wrt the time-points represented
and the constraints on edges, but it can not represent a strategy for G because

[0,14 Move

[0,0]

Fig. 3. Interface for the Explorer game with horizon B = 14.

neither goal nor safety constraints are satisfied. In fact, the interface is used as
a sanity check for candidate STNU strategy: a candidate strategy shall contain
a “consistent” subset of time-points and edges in the interface of G. Formally,
an STNU Z = (N, E,C,l,u) is said to satisfy the interface (Zg,o0q) of a game
G, denoted by Z = G, iff (1) N contains ¢y and tg, (2) N contains a subset
of N¢ closed by the precedence relation, i.e., if the time-point (i,m,u) is in N
then all its predecessors in the unfolding of ¢ are also present, and (3) the edges
defined in Eg between the nodes in N are also defined in F with the same kind
(controllable or uncontrollable) and the same labeling intervals for uncontrollable
edges; for controllable edges, the labeling interval in Z shall be included in the
corresponding one in Zg. Intuitively, Z satisfies the interface of the game G if
it puts exactly the same constraints as Zg on common uncontrollable edges and
it may squeeze the constraints on controllable edges.

5 Computing STNU Strategies

We consider the following two problems for simple games GG with horizon B given
in unary:

G-Solve: Decide if a winning strategy exists for G.
G-Solve-STNU: Decide if a winning STNU strategy exists for G.

Our first result is that, despite the simplicity of the game considered, the problem
of finding strategies for such games is still NP-hard.

Theorem 1. The G-Solve problem is NP-hard.

Proof. The proof consists in reducing the CLIQUECOVER problem [12] to the
synthesis of a strategy for simple games. An instance of the CLIQUECOVER
problem is an integer k and an undirected graph P = (V, E) with n vertices
(V| = n) numbered 1 to n. The CLIQUECOVER problem is to decide whether a
graph can be partitioned into k cliques. We explain how to reduce this problem
to G-Solve problem, where Gy, is a simple game. The TTGA of G is built as
follows: for each vertex i € [1,n] of P, we define a task indexed by ¢ with the form:
1 mzbelnd, o 020<luld, 3 The set S of Gy is specified by A,)z 102 £ @2,
i.e., for each pair of vertices (7, j) such that there is no edge in E between i and j
we ask mutual exclusion between the locations 2 of the corresponding tasks. The
set G of G, is specified by A;i@3, i.e., all tasks shall reach location 3. The horizon
of Gy, is fixed to k. It follows (details in Appendix C) that P can be covered by
k cliques or less iff the instance of the Gi-Solve problem has a strategy to win.
Moreover, an STNU strategy can be built for Gy.

A direct consequence of the proof above is:
Corollary 1. The G-Solve-STNU problem is NP-hard.

The upper bound of complexity for G-Solve is given by the upper bound of
solving reachability game problems for TGA, i.e., EXPTIME in [15]. This tight
upper bound is obtained for general TGA with safety games and state based
(memory less) strategies.

The following theorem says that this upper bound decreases for G-Solve-
STNU problems to NP.

Theorem 2. The G-Solve-STNU problem is NP-complete.

Proof idea. We show that it exists a correct and complete polynomial test to
check that an STNU strategy Z satisfying the interface of a simple game G is a
winning STNU strategy. Then, the theorem follows since for a horizon B given
in unary, the description of a candidate STNU strategy is polynomial in the
number of transitions in G and in the horizon B (Lemma 5).

The polynomial test is given on Figure 4. First (line 1), Z is filled with
the missing time-points and edges in the interface of G thus obtaining a new
STNU Z. Second (line 2), the DC algorithm is applied on Z to test its dynamic
controllability and to compute its reduced form. Third (line 6), Z is tested for
satisfaction of goal and safety constraints in G. This test is done by searching in Z
a set of edges (called shapes) for each goal constraint in G, for each discrete guard
on controllable transitions of the TTGA of G, and for each safety constraint in
S.

The technical point in the proof is the definition of shapes such that the test
is correct and complete. A shape is a positive boolean composition of precedence

Require: STNU Z s.t. Z = G.
Ensure: Returns true if Z is a winning strategy for G.
Z «— ZUZg
7 — II Dc(?)
if Z= 1 then
return false
end if R
return Z |= shapeg,, and Z = shapeg,,;,

Fig. 4. Test for winning STNU strategy.

relations between two time-points. A time-point ¢ precedes the time-point ¢’ in
an STNU Z, denoted by Z ¢ < t/, iff Z contains an edge from ¢ to t' labeled
by an interval included in (0, 400). For example, the shape used to test that the
goal constraint i@Q[m,n] is satisfied by 7 is prec(i,m,u) < tg ANtg < (i,n,u)
(see Figure 7). The test succeeds if such shape exists in Z for some u. To test

i
! prec(i,m,u)

\E/ (i,n,u)

Fig. 5. Shape for goal constraint {@Q[m, n].

safety constraint and discrete guards on transitions, the shapes shall be carefully
defined in order to obtain completeness. For example, the shape for a constraint
iQ[m,n] = jQlk,] is the disjunction of three cases which are not disjoint (see
Figure 8). Intuitively, the constraint is satisfied if for any occurrence u of tran-
sitions in task 4 leading to location m (time-point prec(i,m,u)) and leaving the
location n (time-point (i,n,u)) there exists an occurrence u’ of the transition in
task j leading to location k (time-point prec(j, k,u’)) and leaving the location [
(time-point (4,1, u’)) such that one of the following cases holds:
(i) the safety constraint is entirely satisfied since prec(j,k,u’) precedes
prec(i,m,u) and (i, n,u) precedes (j,1,u’),
(ii) the safety constraint is satisfied at the beginning of the interval [m,n] for i
but nothing is asked for the end because the goal (time-point ¢¢) is reached be-
fore the end of the interval jQ[k,[]; indeed, the game semantics asks that safety
constraints are satisfied until the goal is reached but not beyond,
(ili) the safety constraint is not satisfied because the considered time-points are
after the goal.

The correctness proof follows easily from the definition of shapes. The com-
pleteness is based on the convexity of the STNU strategies and the fact that the

j j i

prec(j.k,u’) prec(j.k,u’) .
| | I I .
prec(i,m,u) 'YA/‘: prec(i,m u) ' ! prec(i,m,u) :

>i,n,u) I

v

(b)

Fig. 6. Shape for safety constraint i{@[m,n] = jQ[k,I].

shapes defined can not exclude correct but convex STNU. The full proof is given
in Appendix D.

To finish the proof, we compute the complexity of the proposed algorithm.
If the horizon B is given in unary, the number of points in the interface of G is
polynomial, so the first two steps of the algorithm (lines 1-2) are also polynomial
(DC is polynomial in the number of time-points in Z). Testing shapes (line 5) is
also polynomial. Indeed, to test the satisfaction of some constraint (in guards,
goal, or safety), one has to find a set of edges of constant size (the shape) in the
STNU. But the number of edges in STNU is quadratic wrt the number of nodes,
so we obtain the following result:

Lemma 1. Given an STNU Z satisfying the interface of a game G, the problem
of deciding if Z is a winning strategy for G is in PTIME.

Now, let us compute the size of a representation for STNU that are candidate
strategies for a game G. If the TTGA of G has n transitions, the maximal
number of time-points in the interface of G is n x B 4 2, limit reached when
each transition takes one time unit. Then, the maximal number of edges that
has to be specified for the STNU candidate is O(n? x B?). Each of these edges
is labeled by an interval given by two integer numbers. However, these numbers
are limited by the horizon B.

Lemma 2. The size of describing a candidate STNU strategy for a game G is
O(n? x B3) where n is the number of transitions in the network N and B is the
horizon of the game.

6 Algorithm for solving simple games

The proof of Theorem 2 gives also the sufficient conditions for an STNU to be
a winning strategy for a simple game G: (1) it has to satisfy the interface of G,
(2) it has to be DC, and (3) its reduced form by ITpc has to implement some
precedence relations (i.e., some shape) for each time-point concerned by a guard,
goal, or safety constraint. The last condition defines a combinatorial space W
for building winning STNU strategies: each strategy represents a choice of the

tG

(©)

@ —— .

-

shapes implementing the constraints of G for each time-point in the interface of
G.

Therefore, we propose a fully forward algorithm for building winning STNU
strategy, called in the following Win_STNU, which does a backtracking search
in the combinatorial space W. The algorithm starts with the STNU interface of
G, Z¢ (see Section 4.2). For each choice step in W, it builds a partial solution
by adding to Zg the controllable edges given by the shape chosen. The algo-
rithm may use IIpc as a selection (cut off) test for the partially built solutions.
Otherwise, when all choices are done, ITp¢ is applied to test the DC property
of the solution built.

Win_STNU does not find all winning strategies of G but only “standard”
ones, i.e., STNU strategies which contain all the time-points of the interface and
have maximal intervals on controllable transitions (see Appendix E). Moreover,
the number of time-points of a solution is bounded by B times the number of
transitions in G. The properties of our algorithm are summarized by the following
proposition which proof is given in Appendix E.

Proposition 1. The algorithm Win_STNU is correct and complete wrt standard
STNU strategies. It builds solutions of size (number of nodes and edges) quadratic
in the size of the game.

7 Conclusion

We define a class of timed games for which searching winning strategies in STNU
form is NP-complete. As a corollary, we obtain a fully forward algorithm for
solving the finite horizon reachability timed games. This algorithm builds STNU
strategies which are finite memory strategies with no discrete choices but includ-
ing several orderings between independent actions of the controller. Moreover,
the size of these strategies is small, i.e., quadratic in the size of the game. Fur-
ther works focus on providing a good implementation of our algorithm and on
comparing the strategies obtained using other criteria, e.g., their volume [5].

References

1. Y. Abdeddaim, E. Asarin, M. Gallien, F. Ingrand, C. Lessire, and M. Sighire-
anu. Planning Robust Temporal Plans A Comparison Between CBTP and TGA
Approaches. In ICAPS. AAAT, 2007.

2. Y. Abdeddaim, E. Asarin, and O. Maler. On optimal scheduling under uncertainty.
In TACAS, volume 2619 of LNCS, pages 240-253. Springer-Verlag, 2003.

3. Y. Abdeddaim, E. Asarin, and O. Maler. Scheduling with timed automata. Theor.
Comput. Sci., 354(2), 2006.

4. M. Ai-Chang, J. Bresina, L. Charest, A. Jénsson, J. Hsu, B. Kanefsky, P. Maldague,
P. Morris, K. Rajan, and J. Yglesias. MAPGEN: Mixed initiative planning and
scheduling for the Mars 03 MER mission. In ISAIRAS, 2003.

5. E. Asarin and A. Degorre. Volume and entropy of regular timed languages. HAL
preprint hal-00369812, 2009.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime. Uppaal-
Tiga: Time for playing games! In CAV, volume 4590 of LNCS. Springer-Verlag,
2007.

J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed
systems. In CONCUR, volume 1466 of LNCS, pages 485-500. Springer-Verlag,
1998.

F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime. Efficient on-the-fly al-
gorithms for the analysis of timed games. In CONCUR, volume 3653 of LNCS.
Springer-Verlag, 2005.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The
MIT Press, 1997.

R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Network. Artificial Intel-
ligence, 49(1-3):61-95, 1991.

A. Fehnker. Guiding and Cost-Optimality in Model Checking of Timed and Hybrid
Systems. PhD thesis, KUNijmegen, 2002.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

M. Ghallab and H. Laruelle. Representation and control in IxTeT, a temporal
planner. In AIPS, 1994.

E. Griadel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of LNCS. Springer-Verlag, 2002.

T. Henzinger and P. Kopke. Discrete-time control for rectangular hybrid automata.
Theor. Comput. Sci., 221:369-392, 1999.

N. Layaida, L. Sabry-Ismail, and C. Roisin. Dealing with uncertain durations in
synchronized multimedia presentations. Multimedia Tools Appl., 18(3):213-231,
2002.

Solange Lemai and F. Ingrand. Interleaving temporal planning and execution in
robotics domains. In AAAI San Jose, CA, USA, 2004.

X. Liu and S. Smolka. Simple linear-time algorithms for minimal fixed points
(extended abstract). In ICALP, volume 1443 of LNCS. Springer-Verlag, 1998.

D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to the
clock explosion problem of timed automata. Theor. Comput. Sci., 345(1):27-59,
2005.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STACS, volume 900 of LNCS. Springer-Verlag, 1995.

P. Morris. A structural characterization of temporal dynamic controllability. In
CP, volume 4204 of LNCS. Springer-Verlag, 2006.

P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal
uncertainty. In IJCAI 2001.

S. Tripakis and K. Altisen. On-the-fly controller synthesis for discrete and dense-
time systems. In FM, volume 1706 of LNCS. Springer-Verlag, 1999.

T. Vidal. A unified dynamic approach for dealing with temporal uncertainty and
conditional planning. In ICAPS, Breckenridge, CO, USA, 2000.

T. Vidal and H. Fargier. Handling contingency in temporal constraint networks:
from consistency to controllabilities. JETAI 11(1), 1999.

A Semantics of TTGA

A state of a task Tj is a triple (¢, s,v) € L x N x RZ such that s[i] = ¢; (£,s) is
called the discrete part of the state. From a state (¢, s,v) such that v = tc[f] <,
a task can either let time progress or do a discrete transition and reach a new

state. This is defined by the transition relation — built as follows:

—For a = ¢ ({sv)->, s) iff there exists a transition
(¢,9d,9z,a,{x;},¢') € E; such that s E g4, v E ¢., & = s[i@Qf],
v = v[{x;}], and v E tc(¢')< (i.e., the upper bound of constraints in
te(€')<).

—For a = wu, ({sv)-=,s v) iff there exists a transition

(L, true, gz, a,{x;},¢) € E; such that v |= g, s = s[i@Q¢'], and v |= te(¢) <.
— For § € R>g, (4,5,v) 250, 5,v') if ' = v+ 6 then v, v € [te[f]<].

Thus, the semantics of a task T; is a labeled transition system (LTS) St, =
(Q,q0,—) where @ = L x NI x RE |, go = (¢?2,51,0), and the set of labels is
{c,u} UR>. B

The semantics of TTGA is defined similarly. A state of the TTGA is a tuple
(£, s,v) such that for any task i s[i] = £[i] and v | A;ertc[€[i]] <. The transition
relation — is defined as above for discrete transitions. For timed transitions,
all timed constraints of transitions starting from £ shall be verified: if § € R>,
(£,5,0) (€, 5,0") if v/ = v+ 6, and v/, v € [Asertcleli]]<].

A run of a TTGA is a sequence of alternating time and discrete transitions
in its LTS. Runs can also be represented by timed words (a1,71) ... (Gm, Tm)
where aq,...,a, € Act and 7,...,7T, are the real values corresponding to
the time at which each discrete action is executed. Then, a normal run has a
timed word such that when ¢ < j then 7; < 7;. We denote by last(p) the last
state of a run p. We denote by Runs(N, (£, s,v)) the set of normal runs of a
network N starting in state (£,s,v). A mazimal run is a run where time is not
blocked by the time constraints, i.e., either it is an infinite run or it ends in a
state which location has no discrete successor by any FE; or in a state such that
s = guard(?) for any ¢ of the state. The constraint (iv) of the definition gives a
necessary syntactic condition on the timed constraints of transitions in order to
obtain complete runs. Indeed, it implies that for any two successive transitions

of a task Tj, ¢ 21101, g1 Y2:02:02 g och that ay # ¢ we have that if, e.g.,
p1 = x; € [ml,Ml] and o = x; € [mz,Mg] then My < mo < Ms. Then, by
firing the first transition we are sure that the state invariant of ¢ is satisfied.

B Computing Unfolding of Tasks

Due to the form of TTGA, the minimum execution time of each TTGA is given
by the following formula:

6(Ti)(w) = 01(Ti) +w x 0.(T3)

where §1 (T;) is the minimum time taken to execute the first time all transitions
of the task T;, w is the number of iterations of the loop of T}, and 6, (T;) is the
minimum time taken to execute the next iterations of the loop of T;. All these
times are computed only from the timed constraints on the transitions of T;
and the computation does not consider the dependences implied by the discrete
guards of transitions.

The minimum execution time for the first execution of all transitions of T is
given by:

81(T3) = Ty crt. 01() + 61(T)

01(t) = max({I[L] U {l[t — 1] | (t — 1) unctrl})
o 0, EZ(‘L” - 1) ctrl.
0(Ti) = {I[Li| 1), Ey(|Li] — 1) unctrl.

where [[t] is the lower bound (stronger constraint ¢ < z;) in the timed guard of
transition t. Intuitively, the minimum time for the first execution of T; is com-
puted from the lower bounds given by the time constraints on the controllable
and uncontrollable transitions of T;. Recall that transitions are indexed by their
source locations, so t — 1 represent the transition before ¢ in the TTGA. Also,
since controllable transitions reset the local clock, the minimal execution time
of the task is the sum of minimal times elapsed between two controllable transi-
tions plus the residue due to the en of the task which may be not a controllable
transition. The time elapsed between two successive controllable transitions
and ¢y is given either by the maximum between the lower bound of ¢5 and the
lower bound of the uncontrollable transition just before ts, i.e., to — 1 if it is
uncontrollable.

The minimum execution time of the second and next iterations of the loop of
T; is computed similarly by tacking the lower bounds of time constraints on the
controllable transitions of the loop. However, when considering the predecessor
of a controllable transition in the loop ¢, we have to stay in the loop, i.e., t — 1
has to be in the loop. Then, for the first controllable transition of the loop we
have to consider the last uncontrollable transition in the loop (given by |L;|) if
it exists:

5* (ﬂ) - Zt ctrl. in loop of Ti(s* (t)
+6.(T3)
64(t) = maz ({I[t]}U
{l[t = 1] | t — 1 is unctrl. in the loop}
P () |L;| is ctrl.
60.(T3) = {l[LiH, |L;] is unctrl.

We define the mapping ¢ : I — N — N which gives for each transition
J (j = 1) of the task 4 the maximum number of unfolding in order to cover
the horizon B. Moreover, ((i)(0) returns the maximum number of complete

executions of the loop of T; to cover B.

min{w) < if 0, (T;
H@D©) = {o e ot = 57 cftﬁegllj '
0 if 7 & loop of T;
1(i)(0) if j € loop of T;

but 6(u)(7)(j) > B and
p(i)(F) =1+ S(w@)(i—1)>1B
w(2)(0) + 1 if j € loop of T;

and d(u)(4)(j) < B or

S()i—-1)<B

where

5(n)()(4) = 61(T3) + p(i)(0) x 6.(T;)
+Et<j ctrl. in loop of T} 5* (t) + l[j]

Ezample 4. The computation of unfoldings for the Explorer rover (see Figure 1)
is given on Table 1. The table pictured in this figure gives for each task and
for each transition (named by its source location) the number of time-points
represented for this transition in the game interface.

Transitions (j)
Task (4)|p(0)@)|0(Ti)(w)] 1 | 2 | 3| 4|5 |6
Move 009+9w | 2 | 2 | 2|2 | 1|1
Pic 0 3 1 I e e
Arm 3/34+3w | 5| 5|5 |4 ||~
Com 0 8 1 1| - - | -
Vw 0] 40 1 1 11 - -1 -

Table 1. Unfolding computation for Explore example.

C Proof of Theorem 1

Let k be an integer and P be an undirected graph P = (V, E) with n vertices
(V| = n) numbered 1 to n. Let G}, be the game built at Theorem 1. We show
that P can be covered by k cliques or less iff the Gj-Solve problem has a strategy
to win.

(=) If P has at most k cliques, let V = Up<g<r—1Ve with V4 the set of £t"
clique. By definition of Gy, for any ¢, all tasks indexed by vertices in V; can be
in their location 2 at the same time. Then, the first transition of these tasks can
be executed at the same time without invalidating the safety property of G and
they have to leave location 2 after one time unit at most. A winning strategy

for Gy, is to take at moment ¢ the controllable transition of the tasks indexed by
the vertices in V;. By construction of G, all tasks will end in location 3 before
k time units and the safety constraints are satisfied.

(<) If the game Gy, has a winning strategy, this strategy shall start all tasks
in the interval [0, k]. Since each task takes at most one time unit, then there
are at most k groups of tasks executed simultaneously (i.e., in their location 1)
during [0, k]. By construction of G, these tasks correspond to vertices related by
an edge in P, so P has at most k cliques.

D Proof of Theorem 2

The proof gives a polynomial test to decide if an STNU strategy Z satisfying the
interface of a simple game G is a winning strategy for G (Lemma 3 and 4 below).
Then, the theorem follows since for a horizon B given in unary, the description
of potential STNU candidate for a winning strategy is polynomial in the size of
the game and the bound B (Lemma 5 below).

The algorithm testing when an STNU is a winning strategy for a simple game
is given on Figure 4.

The shapes used in the test algorithm are defined from the goal G, the guards
in the network N, and the safety constraints S.

An atomic shape is a precedence constraint between two time-points, denoted
by ¢ < t/, saying that the time-point ¢ precedes time-point ¢'. An STNU Z
containing the time-points ¢ and ¢’ satisfies the atomic shape ¢ < t’, denoted by
Z =t <t iff Z contains a link from ¢ to ¢’ whose label is an interval with strictly
positive lower bound (i.e., an interval in (0, +00)). Atomic shape constraints are
combined using conjunctions, disjunctions and quantification over time-points
to form shape constraints.

More precisely, the time-points in shape constraints belong to STNU satisfy-
ing the interface of G, so they are labeled (due to o') by triples (i, m,u) with
1 € I the index of the task, m > 1 the order number of the state source of the
transition, and v > 1 the occurrence of the transition. Quantification in shapes
is done over the occurrence numbers u in time-points labels.

Shapes (without quantification) can be represented graphically as shown on
Figures 7 and 8. Time-points are labeled by their tuple (tasks index, transition
index, occurrence number). Dashed lines are used to show time-points belonging
to the same task.

Formally, the syntax of shape constraints is:

Atomic shape 3 a == (i,m,u) ~ tg | (i,m,u) ~ (4,k,1)
Shape 3 s:i=a|sAs|sVs|Iu s|Vu. s

where 4,7 € I, m,k > 1 are index of transitions in 7; resp. T}, u,l > 1 are
occurrences of these transitions, and ~€ {<,>}.

For example, the shape constraint of Figure 7 is prec(i,m,u) < taA(4, n,u) >
te where we use prec(i, m,u) to represent the time-point for the transition pre-
ceding the transition (i, m,u) on T;.

i
! prec(i,m,u)

\E/ (i,n,u)

Fig. 7. Shape for i@Q[m,n| € G.

The shape constraints used in the algorithm to test the goal are built from
the goal constraints as follows:

shapeg ,q; == /\ Ju. prec(i,m,u) < tg Ntg < (i,n,u)
i1@Q[m,n]€g

which means that for each constraint in the goal, v = i@[m, n], there exists an
occurrence number for the transitions preceding transition (¢, m) (which leads
to the m!" state of T;) and the transition (j,n) (which goes out from the n'”?
state of T;) such that the goal is reached at ¢t between these two moments.
Shapes used to test safety are generated from safety constraints as follows:

shapeg e 1= /\ /\ shape ; my | N /\ shape

i€l act[(i,m)]EAct, 0€S

where the first set of conjuncts gives shape constraints from the guards of con-
trollable transitions in each TTGA, while the second set represents shapes from
the safety constraints S of G. In defining these shapes, a special treatment shall
be considered for points succeeding the goal time-point t; because the safety
constraints shall be satisfied until reaching the goal but they are not mandatory
afterwards.

Consider now a controllable transition (z,m) and some of its occurrence u.
Then, the safety constraint corresponding to the guard of (¢, m) may be ignored
if time-point corresponding to (i, m,u) is after the goal. Otherwise, for each
indexed interval constraint jQ[k,[] in the guard of (i, m), the time-point (i, m,u)
shall be between some occurrence v’ of the transition leading to the state k of T
(i.e., prec(j, k,u’)) and the transition going out from the state [. Then, shape ; m)
is defined by:

Yu. tg < (i,m,u) V
/\j@[k,l]eguard[(i,m)] (Eul prec(j,k,u’) = (Z ’I’I’L,U)
A (i,m,u) < (4,1,u")
The shapes for safety constraints in i@[m,n] = jQ[k,[]| are generalization
of shapes for guards:

Yu. tg < prec(i,m,u)V
', prec(j, k,u’) < prec(i, m,u) A
((Gn,u) < (4,1 0) V te < (j,1,u))

Intuitively, the i*» TTGA is between states m and n while the j* TTGA is
between states k and [if for any occurrence w of transitions leading to state m
(prec(i,m,u)) and the one leaving the state n ((i,n,u)) there exists an occur-
rence v’ of transitions of T} leading to state k (prec(j, k,u')) and leaving the
state I ((4,1,u’)) such that one of the following cases is true:

— the safety constraint is entirely satisfied by the u occurrence of the execution
of T; between states m and n and by the u’ occurrence of the execution of
T; between states k and I,

— the safety constraint is satisfied at the beginning of these executions but not
at the end of the intervals due to the fact that the goal is reached before
execution of T; between k and [ends, or

— the safety constraint is not satisfied because the considered occurrences are
after the goal.

Figure 8 gives an illustration of each case above. Note that the above cases are
not disjoint and this is an important fact for the proof of completeness of our
test procedure (Lemma 1).

i] i] i
! prec(j.k,u’) ! prec(j.k,u’) ,
I I I I .
prec(i,m,u) IPA/? prec(i,m,u) IPA/? prec(i,m,u) '
(inw ! Pl v

I I I

I I I

|

-
-

Fig. 8. Shape for safety i@Q[m,n] = jQ[k,!] of S.

Finally, the shapes for mutual exclusion safety constraints i@Q[m,n] § jQ[k,]
are defined as follows:

(Vu. tg < prec(i,m,u)
v, (4,1,u —1) < prec(i,m, u)
A (i,n,u) < prec(j, k,u'))
A (Vu. te < prec(j, k,u)
vau'. (i,n,u’ — 1) < prec(j, k,u)
A (G, L u) < prec(i,m,u’))

where for any i € I and any state m in T;, (i,m,0) represents ¢y. Intuitively,
the safety constraint i@[m,n] § jQ[k,] is satisfied if for each occurrence u of an
execution between states m and n in T; (and k and [in T}) one of the following
conditions holds:

()

@ ——

-

— this occurrence is after the goal, i.e., the u occurrence of the transition leading
to the m (resp. k) is after the goal, or

— the execution takes place strictly between occurrences v’ — 1 and u’ of exe-
cution of Tj from state k to I (resp. T; from state m to n) for some v’ > 1.

Like for inclusion constraints, these two cases are also overlapping.
The following lemma states the correctness and the completeness of our al-
gorithm.

Lemma 3. An STNU Z satisfying the interface of a game G is a winning strat-
egy iff the algorithm Is WinningStrategy returns true.

Proof. (<) Let Z be an STNU such that Z - G and the test algorithm returns
true. The algorithm builds from Z an STNU which is DC and satisfies all the
goal and safety constraints. By definition of winning strategies, the result follows.

(=) The proof of completeness uses the convexity of the STNU strategies
and the fact that the shape tested cannot exclude correct but convex STNU.
Let Z be a winning strategy satisfying the interface of G. Then Z is already DC
and satisfies the goal and safety constraints.We suppose that Z is in the reduced
form of DC.

The algorithm first completes Z to obtain the full interface of G. However,
the time-points added are only appended to the last time-point of each task so
they can not influence the links in Z. Then, the DC algorithm applied to Z only
introduces more controllable links involving the newly introduced time-points,
but does not change the original part of Z.

Then, since Z is contained in Z and it is a winning strategy, it means that
each schedule of Z determines a play which goes through a goal configuration.
Since (1) STNU can not represent union of goal states and (2) the constraints on
states in G are disjoint imply that only one possibility to satisfy state constraints
in G is present in Z. This configuration can be used to satisfy the shape for the
goal.

All plays of Z already satisfy the safety constraints (guards and constraints in
S). Since the added points in Z are all after the goal configuration, they trivially
satisfy the safety shapes since all these shapes are trivial for points after ¢¢. For
time-points before tg, we claim that these time-points satisfy exactly one of the
disjunction of the shapes in shapeg,s. The idea is to show that (1) the shapes
considered correspond to disjoint set of plays and (2) the plays of Z cannot be
in two such shapes due to convexity of Z.

Figure 9 gives an intuition of the point (1) for the shapes corresponding
to inclusion safety constraints i@[m,n| = jQlk,]. The plan represents in z
axis the beginning of executions (prec(i, m,u) and prec(j, k,u')) and in the y
axis the end of theses executions ((i,n,u) and (j,I,u’)). Then all considered
points shall be in the second half of the first quadrant. Points A, B,C and D
represent occurrences of the executions in 7Tj respectively, i.e., the the first,
second, third, and fourth occurrences of prec(j, k,u') and (j,1,«’). In fact, these
points are DBM zones in Z, but they can be abstracted to points dues to the
following property: the consecutive occurrences of executions of T} are disjoint

and moreover, (j,1,u’) < prec(j,k,u + 1). The zones attached to points A-C'
and G correspond to executions on 7; allowed by the shape for safety constraint
iQ@Q[m,n] = jQ[k,!]. For points A and B situated before the goal (z and y are
less than t¢), the executions on T; shall satisfy prec(j, k,u’) < prec(i,m,u) and
(i,m,u) < (j,0,u'). For point C, although the beginning of execution of 7} is
before ¢, this execution ends after tg, so the executions allowed for T; satisfy
prec(j, k,u’) < prec(i,m,u). Finally, all points greater than tg correspond to
valid executions. It is important to see that we have only convex regions and
any DBM covering these regions is fully included in one of them.

=Y

G

Fig. 9. Proof of completeness.

If Z is winning, it shall satisfy every safety constraint § of the form
iQ[m,n] = jQ[k,I], that is for every moment ¢, if ¢ is in ¢ between states
m and n, then either ¢ is after g or task j is between states k and [. The inter-
vals in which j is between states k and [are disjoint (they are the hypotenuse
of the triangle determined by the point attached to this point) because they
correspond to different occurrences of this interval. Then, to satisfy the safety
constraint J, the hypotenuse for intervals i¢@[m, n] shall be contained in the hy-
potenuse of triangles for points A—C or after tg. These zone are those defined
by the safety shape for this constraint.

To finish the proof, we compute the complexity of the proposed algorithm.
If B (the game horizon) is given in unary, the number of points in the interface
of G is polynomial, so the first two steps of the algorithm (lines 1-2) are also
polynomial (DC is polynomial in the number of time-points in Z). Testing shapes
(lines 5 and 7) is also polynomial. Indeed, for each constraint (in guards, goal or
safety), to test its satisfaction one has to find a (small) set of links in the graph
defined by the STNU. The number of links in this graph is quadratic wrt the

number of vertices. We obtain then the following lemma which is a first step in
establishing the complexity of our problem.

Lemma 4. Given an STNU Z satisfying the interface of a game G, the problem
of deciding if Z is a winning strategy for G is in PTIME.

Now, let us compute the size of a representation for STNU that are candidate
strategies for a game G. If the TTGA of G has n transitions, the maximal number
of time-points in the interface of G is n x B+2, limit reached when each transition
takes one time unit. Then, the maximal number of edges that has to be specified
for the STNU candidate is O(n? x B?). Each of these edges is labeled by an
interval given by two integer numbers which are limited by the horizon B. Then,
we obtain the following result which finishes the proof of NP completeness.

Lemma 5. The size needed for describing a candidate STNU strategy for a game
G is O(n? x B3) where n is the number of transitions in the TTGA of G and B
is the horizon of the game given in unary.

E Properties of the simple algorithm

Proposition 2. All controllable edges in a SWS for a game G are mazimal wrt
the game interface and constraints.

An STNU Z is included in some SWS iff (1) Z contains all time-points of
the interface of G, (2) Z it is minimized using DC (so consistent), and (3) all
controllable edges in Z are labelled by intervals included in the interval labeling
the same edge in SWS.

Corollary 2. An STNU Z satisfying the interface of G is a winning strategy iff
Z is included in some standard solution for the game G.

where Z is built as shown in Figure 4, i.e., by adding to Z all time-points and
edges in the interface of G and then applying DC.

Proof. = 1f Z is a winning strategy for G, then it satisfies the goal and safety
constraints in G and for any choice of the environment. Z is obtained from Z
by adding time-points which are not useful for satisfying safety and goal (since
these time-points are related only with the last time-points of Z on each task...).
Moreover, the DC algorithm does not change the controllability property. From
the completeness result of Lemma 3, it results that in order to satisfy the goal
and safety constraints of G, Z (and so Z) shall include some combination of
safety and goal shapes. This combination gives the SWS to be chosen. But SWS
is the maximal STNU with interface of G implementing the shapes and being
controllable, so Z shall be included in this SWS.
< By the correctness of result of Lemma 3.

A direct consequence of the above property is given in the following corollary
and it will be used to prove the relative completeness of our algorithm for solving
simple games:

Corollary 3. The G-Solve-STNU has a solution iff there exists a “standard”
solution for G.

Let B the set of standard winning strategies (SWS) built for the game G.
From the definition of SWS, the elements of B are STNU containing all points
of the interface of GG, implementing different shapes for each goal and safety
constraints, and being DC. The maximal size of B is given by the maximal
number of choices for the implementation of goal and safety constraint for each
occurrence of transitions/states in the interface of G. For example, if i@[m,n] €
G and p(i)(m) is the number of occurrences of the mt" transition on task i,
the number of choices to implement this (part of the) goal is given by wu(z)(m).
For a safety constraint i@[m,n]| = jQ[k,], the number of choices is given by
(3u(5) (k)™ In general the maximal size of B is exponential in the size
(number of points) of the interface of G.

