Marius Bozga
email: fbozga@imag.fr

Susanne Graf
email: graf@imag.fr

Laurent Mounier
email: mounierg@imag.fr

Automated validation of distributed software using the IF environment

This paper summarizes our experience with IF, an open validation environment for distributed software systems. Indeed, face to the increasing complexity of such systems, none of the existing tools can cover by itself the whole validation process. The IF environment was built upon an expressive intermediate language and allows to connect several validation tools, providing most of the advanced techniques currently available. The results obtained on several large case-studies, including telecommunication protocols and embedded software systems, con rm the practical interest of this approach.

Introduction

Automated validation of distributed software is a desirable objective to improve the industrial production of correct systems like communication protocols or embedded systems. In spite of the numerous on going researches and tool developments carried out in this area, this activity remains di cult in practice: on one hand the initial software description is usually provided in a high-level formalism (either a programming language or a formal design notation like Lotos 23], Sdl 25] or Uml 30]), and, on the other hand, a wide range of tools are necessary to cover the whole development process, operating at di erent levels of program descriptions. Even if several interesting tools are currently available, either commercial or academic ones, none of them can ful ll in itself all the practical needs. Commercial tools (such as ObjectGeode 32], Tau 1], StateMate 22], Rational Rose 31], etc.) provide several development facilities, like editing, code generation and testing. However, they are usually restricted to basic veri cation techniques (exhaustive simulation, deadlock detection, etc) and are \closed" in the sense that there are only limited possibilities to interface them with others. On the other hand, there exist numerous academic tools (like Smv 28], Hytech 19], Kronos 34], Uppaal 27], Spin 20], InVeSt 2], etc.) o ering a broad spectrum of quite e cient veri cation facilities (symbolic veri cation, on-the-y veri cation, abstraction techniques, etc.), but often supporting only low-level input languages. This may restrict their use at an industrial scale. This situation motivated the development of IF, an intermediate representation for distributed software together with an open validation environment. This environment ful lls several requirements. First of all, it is able to support di erent validation techniques, from interactive simulation to automatic property checking, together with test case and executable code generation. Indeed, all these functionalities cannot be embodied in a single tool and only tool integration facilities can provide all of them. For a sake of e ciency, this environment supports several levels of program representations. For instance it is well-known that model-checking veri cation of real life case studies usually needs to combine di erent optimization techniques to overcome the state explosion problem. In particular, some of these techniques rely on a syntactic level representation (like static analysis and computations of abstractions) whereas others techniques operate on the underlying semantic level. Another important feature is to keep this environment open and evolutive. Therefore, tool connections are performed by sharing either input/output formats, or libraries of components. For this purpose several well-de ned application programming interfaces (apis) are provided. The IF validation environment is quite similar in its philosophy to the one proposed in the Bandera project 12], which also relies on a dedicated intermediate format to translate (abstract) Java source code into the input language of existing model-checkers (like Spin or Smv). However, currently we mainly address with IF distributed software validation from design formalisms (like Sdl or Uml) which are widely used in the application area we consider (communication protocols and embedded systems).

The IF validation environment relies on three levels of program representation: the speci cation level, the IF intermediate level, and the Lts semantic model level. Figure 1 describes the overall architecture and the connections between the toolbox components. The implicit enumerative representation consists in a set of C functions and data structures allowing to compute on demand the successors of a given state (following the Open/C sar 16] philosophy). This piece of C code is generated by the if2c compiler, and it can be linked with a \generic" exploration program performing on-the-y analysis.

In the symbolic representation sets of states and transitions of the Lts are expressed by their characteristic predicates over a set of nite variables. These predicates are implemented using decision diagrams (Bdds). Existing applications based on this api are symbolic model-checking and minimal model generation.

Finally, the explicit enumerative representation simply consists in an Lts le with an associated access library. Although such an explicit representation is not suitable for handling large systems globally, it is still useful in practice to minimize some of its abstractions with respect to bisimulation based relations.

The intermediate level components. if2if 6] implements several algorithms based on static analysis to transform an IF speci cation. A rst transformation concerns dead variable resetting (a variable is dead at some control point if its value is not used before being rede ned). This optimisation can be also applied to bu er contents (a message parameter is dead if its value is not used when the message is consumed). Although very simple, such optimisation is particularly e cient for state space generation (reductions up to a factor 100 were frequently observed), while preserving the exact behaviour of the original speci cation

Case studies

The IF environment was used in several case studies, including as well telecommunication protocols and embedded software. The most relevant ones, from the complexity point of view, and the results obtained are summarized below.

SSCOP Protocol

The Sscop (Service Speci c Connection Oriented) protocol is standardized under reference itu-t q2110 24]. Originally, it was conceived to reliably transfer data between two high bandwidth network entities. Although its design makes it ready to treat signi cant volumes of data, currently its use is con ned in ones of the underlayers of the aal layer (Atm Adaptation Layer). The services it provides are connection control (establishment, ow-control, release), data transfer, and error detection.

The Sscop standardization document contains an Sdl description of the protocol. This description has been coded by France Telecom R&D using ObjectGeode. It consists in approximately 2000 lines of Sdl textual code which describes the protocol as one single process with 10 control states, 134 variables, and 4 timers. The description was centered on signaling and some simpli cations have been made according to Sscop implementations available in France Telecom R&D. Our main goals were the formal validation of the specication and, in addition, automatic test-case generation starting from it. Clearly, the size and complexity of this speci cation made any brute force validation approach not applicable. In particular the data part was very large, and each state of the underlying model could not be stored in less than 2kB. Therefore only a small part of the state space could be explored from this initial speci cation, not su cient to verify interesting properties. Consequently, we adopted a more incremental veri cation strategy. A rst step was to apply a very rough abstraction by (automatically) eliminating all the variables in the speci cation. Thus, it was possible to compare this very abstract speci cation with the one supplied by the standard to model the interactions between adjacent layers of Sscop, to check if the abstract speci cation provides at least the expected behaviour. This comparison was performed using Aldebaran, with respect to the so-called safety preorder 5]. Some subtle errors, such as omission of timers setting, were found using this method. After this debugging phase, the second step was to \prepare" the initial Sdl specication for a more accurate state space analysis. It consisted in basic static analysis techniques like dead code elimination and live variable detection using if2if. The bene ts were really spectacular on this example, and, in particular, the amount of memory required to store a model state fell to 0.2 kB. Finally, these optimisations made possible the use of exhaustive simulation techniques. More precisely we considered a system consisting in a pair of entities, communicating through a bounded fo channel, and we concentrated our validation e ort to a set of representative distinct scenarios (connection establishment, disconnection, data transfer, : : :). Using speci c slicing criteria, it was therefore possible to (automatically) simplify even more the speci cation, depending on the property under veri cation or the test purpose. The underlying models obtained were about 20 000 states large, and errors were found in the data transfer phase of the speci cation. The complete experiment is reported in 9].

Mascara Protocol

The Mascara(Mobile Access Scheme based on Contention And Reservation for Atm) protocol is a special medium access control protocol designed for wireless Atm communication and developed by the wand(Wireless Atm Network Demonstrator) consortium 13]. A wireless Atm network extends transparently services to mobile terminals (mt) via a number of geographically distributed access points (ap). The task of the Mascara protocol is to mediate between aps and mts via a wireless link. The protocol has a layered structure, where we consider only the highest layer, the Mascara control layer. The overall description of the Mascara protocol which we got is 300 pages of Sdl textual code. We concentrate on the veri cation of the Mascara control layer, for which the Sdl description could be made reasonably complete. Here we brie y present the veri cation of the dynamic control. For complete information, we refer the reader to 17] which reports the complete experiment on the dynamic part. In addition, another veri cation experiment has been carried out on static control 4]. Veri cation should be carried out under a general environment with realistic restrictions. As we have not obtained information on the Mascara upper layer, we considered initially an open system with an unconstrained upper layer, which would allow us to obtain the most general veri cation results. But communication via unbounded channels, leads to in nitely growing channel contents and thus an in nite state model in case that the environment sends requests too often. This is typically the case in reactive systems always ready to treat requests from the environment. The approach we have chosen to provide a more restricted, but still realistic envi-ronment consists in limiting the number of requests it can make per time unit. We assume that within one time unit, no more than N requests can be sent by the environment. The system has never to deal with more than N requests simultaneously which leads, in the Mascara protocol, to bounded channel contents. The success of the method depends on the use of a realistic bound. We use N=4. Unfortunately, even with such a restricted environment, it was impossible to generate the state graph of the global system as a whole. However, we have applied two di erent types of compositional veri cation: the rst one is based on property decomposition 26], and the second one is based on compositional generation of a state graph minimized with respect to a behavioral equivalence 18]. In particular, using in addition both live analysis and partial order reduction for the generation of the subsystems, we were able to compositionally generate a reduced model of the global system using compositional generation. Table 4.2 gives an overview of a subset of the models we have generated using different reduction techniques and allows to compare their sizes and generation times. Finally, several properties ranging for generic ones such as deadlocks and livelocks to more speci c such as association establishment, connection, disconnection, were veri ed on the generated models.

Ariane-5 Flight Program

The work on this experiment was initiated by Eads Launch Vehicles to better evaluate the applicability of formal validation techniques on an existing software, the Ariane-51 Flight Program. This is the embedded software which solely controls the Ariane-5 launcher during its ight, from the ground, through the atmosphere and up to the nal orbit.

The veri cation experiment is reported in 11]. First, this software has been formally speci ed in Sdl by reverse engineering from the existing code. Then, following a set of general methodological guidelines, the speci cation has been continuously improved and all the initial requirements were veri ed on the nal version. In particular, the combination of di erent optimisation techniques, operating either at the source level (like static analysis or slicing) or at the semantic level (like partialorder reductions) happened to be particularly useful in order to deal with large size state spaces. For example, the initial Sdl version of the ight program used no less than 130 timers. Using our static analysis tool we were able to reduce them to only 55 timers, functionally independent ones. Afterward, the whole speci cation was rewritten taking into account the redundancies discovered by the analyzer. The main di culty of this case-study comes from the combination of various kind of time constraints. On one hand, the functionality of the ight program strongly depends on an absolute time: coordination dates are frequently exchanged between components in order to synchronise their behaviour during the whole ight. On the other hand, this system has to be veri ed within a partially constrained environment, reacting with some degree of temporal uncertainty. In this experiment, this expressivity problem was solved at the IF level thanks to explicit urgency attributes. Clearly, such features should be made available at speci cation level. In particular, ongoing work address the introduction of high-level time and performance annotations in Sdl 10]. In practice, we have considered two di erent situations regarding the environment. The rst one is time-deterministic, which means that all environment actions (in particular the control part) take place at precise moments in time. The second one is time-nondeterministic which means that environment actions take place with some degree of time uncertainty (within a prede ned time interval). From the environment point of view, the later situation corresponds to a whole set of scenarios, whereas the former situation focus only on a single one. Table 2 presents the sizes of both models generated according to di erent generation strategies. It gives also the average time required for verifying each kind of property (by temporal logic model checking and model minimisation respectively).

Conclusion and Perspectives

The IF environment has already been used to analyze some representative Sdl speci cations such as Sscop, an Atm signalisation protocol, Mascara, an Atm wireless transport protocol and Ariane-5 ight program, a part of the embedded software of Ariane-5 launchers. It is currently used in several on going industrial case-studies, including respectively real-time multicast protocols Pgm and Rmtp-ii, and the session initiation protocol Sip. The bene ts of combining several techniques, working at di erent program level, were clearly demonstrated. In particular, traditional model-checking techniques were not su cient to complete on these large size examples. Several directions can be investigated to improve this environment. The rst direction of improvement concerns the IF language. As currently de ned, it allows only the description of static systems, were the number of components (processes and bu ers) as well as their interactions are xed throughout the execution. This strongly limits our ability to handle complex dynamic speci cations. We work on a less restrictive de nition, were both parameterized descriptions (containing some xed number of replicated components) as well as general dynamic creation and destruction of components are allowed. Furthermore, some improvements will be made regarding the description of components itself, such as the possibility to express structured control using composed states (like in statecharts).

A second direction of improvement concerns the IF simulator, the core component allowing to construct and to explore the underlying semantic model of IF specications. Currently, this model is labeled transition systems, and its construction and exploration are quite restricted: rst, only pure asynchronous execution (by interleaving) is possible and second, no access is provided to the state of the system (e.g, current values of variables, current states of processes). We envisage to improve these points, by implementing a exible simulator able, for instance, to deal with both synchronous and synchronous components, or more generally, to take into account some scheduling policy over components during the simulation. In addition, this simulator will interact with running components through a well-de ned abstract interface, thus allowing to integrate also external components (for example, directly expressed as executable code). A third direction of improvement concerns the validation methods. Clearly, we will continue to adapt and to improve our static analysers as well as our model checkers to handle the extended IF descriptions. Also, some work must be done to reduce the manual overhead, yet important, needed by sophisticated techniques such as compositional veri cation. Finally, another important issue concerns the validation of non-functional requirements. In particular, performance evaluation becomes crucial for an important part of internet protocols (such as Pgm or Rmtp-ii) which are not necessarily designed to achieve full reliability, but only an average correct behaviour with respect to probabilistic assumptions on their execution environment (e.g, propagation delays, message loss, network elements speed, etc). At middle term, we plan to connect to IF environment to simulation environments like Opnet 29] and Ses/Workbench 21]. The IF package can be downloaded at http://www-verimag.imag.fr/DIST SYS/IF.

 The semantic model level components. Cadp 14] is a toolset for the veri cation of Lotos speci cations. It is developed by the Vasy team of Inria Rhône-Alpes and Verimag. Two of its model-checkers are connected to the IF environment: Aldebaran (bisimulation based), and Evaluator (alternating-free -calculus). For both tools, diagnostic sequences are computed on the Lts level and they can be translated back into Msc to be observed at the speci cation level. Kronos 34] is a model-checker for symbolic veri cation of Tctl formulae on communicating timed automata. The current connection with the IF environment is as follows: control states and discrete variables are expressed using the implicit enumerative representation, whereas clocks are expressed using a symbolic representation (particular polyhedra).Tgv 15] is a test sequence generator for conformance testing of distributed systems (joint work between Verimag and the Pampa project of Irisa). Test cases are computed during the exploration of the model and they are selected by means of test purposes.

. A second transformation is based on the slicing technique 33]. It allows to automatically abstract a given speci cation by eliminating some irrelevant parts w.r.t. a given property or test purpose 7]. if2pml 4] is a tool developed at Eindhoven TU to translate IF speci cations into Promela.

Table 1 .

 1 Mascara veri cation results

	generation strategy	ap model time size	mt model time size	ap + mt model size
	-live reduction 7 308 400 st. 207 0 35 00 4 388 765 st. 171 0 58 00 -partial order 30 689 244 tr. 12 811 961 tr. + live reduction 351 202 st. 12 0 22 00 63 628 st. 1 0 03 00 -partial order 1 536 699 tr. 325 312 tr. + live reduction 28 069 st. 1 0 53 00 6 580 st. 7 00 218 130 st. + partial order 52 983 tr. 20 913 tr. 1 142 215 tr. + live reduction 1 630 st. 9 00 977 st. 3 00 + partial order 2 885 tr. 2 845 tr. + slicing

Table 2 .

 2 Ariane-5 Flight Program veri cation results.

			time deterministic non-deterministic time
	-live reduction -partial order model + live reduction 2 201 760 st. na generation -partial order 18 706 871 tr. + live reduction 1 604 st. + partial order 1 642 tr.	na na 195 718 st. 278 263 tr.
	model veri cation	model minimisation model checking	1 00 15 00	20 00 2 0 00 00

Components descriptionWe brie y present here the main components of the environment, together with some external tools for which a strong connection exists.The speci cation level components. ObjectGeode 32] is a commercial toolset developed by Telelogic supporting Sdl, Msc and Omt. In particular, this toolset provides an api to access the abstract tree generated from an Sdl speci cation. We have used this api to implement the sdl2if translator, which generates operationally equivalent IF speci cations from Sdl ones. Given the static nature of the current version of IF, this translation does not cover yet the dynamical features of Sdl (e.g., process instances creation).

Ariane-5 is an European Space Agency Project delegated to CNES France.

Acknowledgements

We gratefully thank Guoping Jia and Lucian Ghirvu for their help on tools development and experimentations.