
HAL Id: hal-00374603
https://hal.science/hal-00374603

Submitted on 12 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the role of essential orders on feedback decoupling
and model inversion : bond graph approach

Mariem El Feki, Michaël Di Loreto, Eric Bideaux, Daniel Thomasset, Wilfrid
Marquis-Favre

To cite this version:
Mariem El Feki, Michaël Di Loreto, Eric Bideaux, Daniel Thomasset, Wilfrid Marquis-Favre. On the
role of essential orders on feedback decoupling and model inversion : bond graph approach. ECMS,
Jun 2008, Nicosie, Cyprus. pp.457-463. �hal-00374603�

https://hal.science/hal-00374603
https://hal.archives-ouvertes.fr


ON THE ROLE OF ESSENTIAL ORDERS ON FEEDBACK DECOUPLING 
AND MODEL INVERSION: BOND GRAPH APPROACH 

 
Mariem El Feki, Michael Di Loreto, Eric Bideaux, Daniel Thomasset, Wilfrid Marquis-Favre  

Laboratoire Ampère (UMR 5005), INSA Lyon, France 
Bât. St Exupéry 

25, Avenue Jean capelle, Villeurbanne, 69621 
E-mail: mariem.el-feki@ec-lyon.fr 

 
 

 
KEYWORDS  

Bond Graph, structure analysis, essential order, inverse 
model, decoupling, dynamic extension  
 
ABSTRACT 

The essential orders have an important role in the study 
of the systems decouplability as well as in the inverse 
model characterization. The aim of this paper is first to 
define essential orders on the bond graph model. 
Secondly, static and dynamic decoupling by bond graph 
approach is discussed and the dynamic extension order 
is defined. Finally, the dynamic compensation is 
physically located on the bond graph model and an 
approach to synthesize a model statically decouplable is 
suggested in order to define an adequate structure to the 
control requirements. 
 
INTRODUCTION 

Since its apparition the bond graph has been an efficient 
graphic support modelling for complex and 
multidisciplinary systems (Rosenberg et al. 1996; 
Karnopp et al. 2000; Gawthrop and Bevan 2007). 
However, modelling is not the only contribution of 
Bond graphs. Several works were achieved to develop 
system analysis using causal bond graphs, like stability 
analysis (Margolis 1984) or flatness study (Junco et al. 
2005). The structure analysis by bond graph approach of 
linear time-invariant systems was introduced by 
(Rahmani et al. 1996; Dauphin-Tanguy, et al., 1999; 
Karim et al. 2003) to simplify decouplability study of 
these systems and without making any calculation. So, 
static decoupling conditions were defined on the bond 
graph model. The structural properties were generally 
used to the control problems (Loiseau 1986). 
Nevertheless some structural properties like essential 
orders (Commault et al 1986) have a very important 
significance when studying inverse model and 
consequently when modelling the systems to be 
controlled. 
 
The purpose of this paper is to expand structure analysis 
by bond graph approach to define essential orders in 
order to interpret these orders on the inverse model and 
to discuss the system decouplability and the dynamic 
compensation if the system is invertible but not 
decouplable by static feedback.  
 

 In a first section, we recall preliminary results on the 
power lines, causal paths and model inversion. In 
second part, brief results on the infinite structure 
analysis are given and the extension of this analysis by 
bond graph approach is presented. In the next section, 
decoupling conditions are defined. Then, an approach to 
synthesize a model statically decouplable is discussed 
on the bond graph model. A mechanical example is 
established and treated in the different sections of the 
paper. The conclusion is given in the last section. 
 
MODEL INVERSION: PRELIMINARY RESULTS  

The inversion of bond graph model uses the bicausality 
concept which was introduced formally by Gawthrop 
(Gawthrop 1995 and 1997). This concept established 
new rules for causal assignment and it has contributed at 
the study of inverse problems (Gawthrop 2000; 
Ngwompo et al. 2005; Bideaux et al. 2006) and at 
design and sizing problems (Ngwompo et al. 1999 and 
2001). The bicausality propagation is done according to 
SCAPI procedure (Ngwompo et al. 2005). This 
procedure uses the concept of independent power lines 
and disjoint Input-Output (I/O) causal paths. 
 
Definition1 (Wu and Youcef-Toumi 1995) 
A power line between two components is a series of 
power bonds and junction structure elements connecting 
these two components.  
 
Definition2 (Ngwompo et al. 2001) 
A causal path between two variables is a set of variables 
successively connected according to the causality 
assignment. 
 
Definition3 (Sueur and Dauphin-Tanguy 1989; Sueur 
and Dauphin-Tanguy 1991) 
An I/O causal path (uj, yi) is a path starting from a 
modulated command element (MSe, MSf, MR,..) and 
going to a detector yi (De or Df). Note that the power 
lines are an acausal concept while causal paths are 
defined for causal bond graphs. 
 
Definition4 (Ngwompo et al. 2005) 
Two I/O power lines are independent if they do not 
share a common variable: no effort or flow variable in 
common.  
 
 



Definition5 (Ngwompo 1997) 
Two I/O causal paths are said to be disjoint if they have 
no variable in common. Thus, “independent” is a 
property of power lines while “disjoint” is a property of 
causal paths. 
 
Definition6 (Rahmani et al. 1992). 
The length of a causal path between an output yi and an 
input uj is equal to the number of dynamic elements in 
integral causality met along this path in the bond graph 
in preferential integral causality (BGI). 
 
The system is not structurally invertible if the bond 
graph model contains no set of independent I/O power 
lines. If the bond graph model contains a unique set of 
independent I/O power lines then a necessary and not 
sufficient condition of the structurally invertibility is 
verified (Ngwompo et al. 2005). If the bond graph 
model contains multiple sets of independent I/O power 
lines, then the necessary condition of the structurally 
invertibility consists of finding a minimal-length set of 
disjoint I/O causal paths. If a non-solvable causal cycle 
appears after the propagation of the O/I bicausality 
along the minimal length set of I/O causal paths, then it 
must choose an alternative minimal- length or a longer 
set of I/O causal paths and the bicausality propagation 
repeated. If a non-solvable causal cycle remains in the 
model then we can not conclude on the system 
invertibility. (Ngwompo et al. 2001). In this case, a 
modification of the system structure can be an adequate 
solution to synthesize a system with a bond graph model 
verifying the invertibility condition (For example, 
adding an action chain). Otherwise, by applying the 
SCAP (Karnopp et al, 1990) or eventually the MSCAP 
(Van Dijk, 1990), the causality assignment must be 
completed to the remaining acausal part of the bicausal 
bond graph model. 
 
INFINITE STRUCTURE ANALYSIS 

In this part, we recall some results on infinite structure 
analysis. From some works done on structural analysis 
by bond graph approach, we define the essential orders 
on bond graph model. 
 
Let us consider the square linear time-invariant system 
described by state equations (1). 
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With x ∈ Rn  denotes the state vector, u ∈ R p denotes 
the control vector, and y ∈ R p  denotes the output vector. 
The relative degree of the ith output is defined by:  
 
         in′  = inf {k ∈  N / ciA

k-1B�0,  k=1,…, n}           (2) 
 

where ci is the ith row of C.  
 

The relative degree in′  is equal, on a bond graph model, 
to the length il  of the shortest causal path between the 
ith output (De or Df) and all the inputs (Se or Sf) 
(Rahmani et al. 1996). The order in′  represents the 
minimal and necessary number of derivations of this 
output to make appear explicitly at least in one of the 
inputs, see (Bertrand et al. 1997; Dauphin-Tanguy et al. 
2000). 
 
Let us suppose that the system (1) is invertible with a 
transfer matrix )(sT  strictly proper, of rank p  and 
defined by:                        
                           BAsICsT 1)()( −−=                          (3) 
 
The Smith-McMillan form at infinity of )(sT  permits 
the determination of the infinite zero orders, it is given 
by:   
                           )()()()( 21 sBssBsT Λ=                     (4)      

                      
Where )(1 sB  and )(2 sB  are biproper (proper with 

proper inverse): 0)(limdet ≠��
�

�
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→∞s
i sB , i=1,2 and 

Λ =diag(��s
−n1 ,�,s−n p ). Thus, the transfer matrix )(sT  

has only zeros whose orders are pnn ,,1 � . 

 
On the bond graph model, the number of the infinite 
zeros of (A, B, C) is equal to the number of disjoint I/O 
causal paths and their orders are computed as in 
equation (5), where kL  is the lowest sum of the lengths 
of the k I/O disjoint causal paths (Dauphin-Tanguy, et 
al., 1999 and 2000). 
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Thus, the following property is deduced:  
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The essential orders ien were defined by (Commault et 
al. 1986) for solving row by row decoupling problems. 
They are determined from the Toeplitz matrices µΓ (for 

µ ≥ 1) defined by: 
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Let us recall that a row wi of a given matrix W is said to 
be essential if it is not linearly dependent of other rows 
of W (Cremer 1971). 
 
For a right-invertible system (A, B, C), with supn  its 

supremal order of infinite zeros (nsup= sup{ni}, i=1,…,p), 
the essential order of the ith output is defined by 
(Commault et al. 1986): 
 

    ien = inf {k ∈ N / [ciA
k-1B|…|ciB|0…0] 

                          is essential in
supnΓ }                       (7)                                                 

 
Then, the following proprieties are deduced:  

 (i) iie nn ′≥  ∀  i=1,…,p 

     (ii) supnnie ≤  ∀  i=1,…,p 

     (iii) { } supsup nnie = ∀  i=1,…,p 

 
For any right-invertible system, the essential orders can 
be expressed as follows (Commault et al. 1986): 
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  ∀ i ∈ {1,…p}      (8)                               

 
The essential orders have an important signification on 
the inverse model. Let us recall that the transfer matrix 

)(sT  has only infinite zeros. Thus we can deduce that 

the transfer matrix of the inverse system )(1 sT −  has 
only infinite poles. From this fact, Commault, et al. 
(1986) showed that the essential order ien  corresponds 
to the order of the pole at infinity of the ith column of 

)(1 sT − . Thus, we can deduce that the essential order 

ien  is defined as the highest derivation order of the ith 
output appearing in the inverse model  
 
In order to simplify the determination of essential orders, 
a new method is established to determine these orders 
directly from the bond graph model and without making 
any computation. 
 
Property1 
On the bond graph model, the essential order of the ith 
output is determined as follows:  
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     ∀ i ∈  {1,…p}      (9)     

                   
On the bicausal bond graph model, the essential order of 
the ith output can be determined directly:  
 
                           )/( jihie IOOn =     ∀ j ∈  {1,…p}   (10) 

 
)/( jih IOO corresponds to the highest order of the 

causal paths between the ith output and all the inputs on 
the bicausal bond graph. The order of a causal path on 

bicausal bond graph corresponds to the difference 
between the number of the dynamic elements (I or C) in 
derivative causality and the number of the dynamic 
elements in integral causality met on this path. 
 
The property (10) is a conjectural and enables the 
essential orders, directly from the bicausal bond graph, 
to be deduced. Its efficiency has been proved on several 
examples but a demonstration proving its generality will 
be the topic of a coming work.  
 
Let us consider the mechanical system illustrated by 
Figure 1. The state, input and output vectors are given 

by: [ ]Tqqpppx 21321= ; [ ]TFFu 21= and [ ]TVVy 21= .  
 

 
Figure 1: Mechanical system 

 
Let us consider that the shock absorber R2 has a 
negligible effect on the system. The bond graph model 
in preferential integral causality without considering this 
element is shown on Figure 2.  
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Figure 2: Bond graph model in preferential integral 

causality 
 
This system has two independent I/O power lines: (F1, 
V1) and (F2, V2), then necessary condition of the 
invertibility is satisfied. The disjoint I/O causal paths 
are (F1, V1): (1) and (F2, V2): (2). This lead 
to 2L =1+3=4 as length of the disjoint I/O causal paths. 

The relative degrees of the outputs are 111 =′= nl  ; 

222 =′= nl , the essential orders are: 2221 =−= lLn e  ; 

3122 =−= lLn e  and the orders of the infinite zeros are: 

111 == Ln  ; 3122 =−= LLn .  
 
Let us define the bicausal bond graph model on Figure 3 
by replacing each input, respectively each output, by a 
double detector, respectively a double source, and by 
propagating the bicausality along the O/I power lines. 



 
 

Figure 3: Bicausal bond graph model 
 
The causal path (V1, F2): (1) is the causal path of the 
highest order connecting the output V1 to an input, then 

2),( 211 == FVOn he . In the same way, The causal path 
(V2, F2): (2) is the causal path of the highest order 
connecting the output V2 to an input, then 

3),( 222 == FVOn he . Thus, we can conclude that 
defining the essential orders on the bicausal bond graph 
model is easier than defining these orders on the bond 
graph model in preferential integral causality. The 
inverse model is directly computed from the bicausal 
bond graph model (Figure 3). 
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Let us denote by id  i =1,2 the necessary number of 

derivations of outputs in the inverse model, then 21 =d  

and 32 =d . We remark that 111 )( nnd e ′≥=  

and 222 )( nnd e ′≥= , so the highest derivation order of 
each output in the inverse model is different from the 
relative degree. This number corresponds to the 
essential order ien . 

 
FEEDBACK DECOUPLING ANALYSIS 

In this section, static decoupling conditions will be 
presented by algebraic and bond graph approaches and 
the case of dynamic extension will be treated. 
 
Let us recall that the invertibility implies the decoupling 
of the square linear system (1). Thus, after verifying the 
system invertibility, we can be interested by feedback 
decoupling. 

The square system (p × p) defined by the triplet (A, B, 
C) is decouplable by a static feedback of the form 

LvKxu += with L  a non-singular matrix if and only if 
one of these three equivalent conditions is satisfied: 
 
(i) The decoupling matrix ∗B  is non-singular (Falb and 
Wolovich 1967): 
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(ii) (Dion and Commault 1993): 
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(iii) (Commault et al. 1986): 
      
                                 iie nn ′=       ∀ i ∈ {1,..,p}         (13)                           
 
Gilbert (1969) showed that there is a class of invertible 
systems not decouplable by static feedback but which 
require a dynamic extension to achieve decoupling by 
feedback. In this case, the essential order ien  of the ith 

output is strictly superior to its relative degree in′ . 
 
An invertible system represented by a bond graph model 
is decouplable by a static feedback if the following 
equivalent conditions are verified (Rahmani et al. 1996): 
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i
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                              (14)   

                   

(ii)                                { } { }ii nn ′=                              (15) 
 
Then an invertible model is decouplable by a static 
feedback if the lowest sum of the lengths of the p I/O 
disjoint causal paths is equal to the sum of the lengths of 
the shortest causal paths between every output i and all 
the inputs. 
 
Property2 
The bond graph model is decouplable by a static 
feedback if the following condition is satisfied: 
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    ∀ i ∈ {1,…p}        (16) 

 
If this decoupling condition is not satisfied, it is always 
possible to find the inverse model. In this case, a natural 
dynamic extension occurs during the construction of the 
inverse model. 



Property3 
If the system is not statically decouplable then the 
dynamic extension order is calculated on the model 
bond graph as follows: 
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Let us study the decouplability of the mechanical 
system (Figure1). In fact, we remark that 11 nn e ′≠  and  

22 nn e ′≠ , then we can deduce that the system is not 
decouplable by static feedback. A dynamic 
compensation is necessary to decouple the model and its 
order is computed as follows: 

1214212 =−−=−−= llLnde . 

 
FEEDBACK DECOUPLING SYNTHESIS 

In this section, a method will be given to synthesize a 
statically decouplable system by bond graph approach. 
 
Obviously, if a system is not statically decouplable, then 
a dynamic compensation is necessary. The dynamic 
compensation consists of adding dynamics in the model. 
The classic method of dynamic compensation consists 
on the insertion of additional integrators in order to 
delay the effect of the fastest entry. This mathematical 
method enables automatically to increase the model 
order and is made independently from the physical 
phenomena of the system. The dynamic extension 
orders will be used here to determine what phenomena 
has to be considered or added in the initial model to 
obtain a new system that is statically decouplable. A 
new design can be applied to simplify the command 
without using mathematical methods. The synthesis of 
the new design is closely linked to the structure and the 
nature of the system under study. This enables the 
system to be reviewed and considers the physical 
phenomena that have been neglected or adds physical 
phenomena having insignificant effects on the system 
(e.g. adding a low inductance coil in an electric network 
and which does not affect the system behaviour). This 
approach is an aid to design systems statically 
decouplable (that will be easier to control) and it does 
not require any calculation. 
 
From the bond graph model, we can deduce a number of 
informations that will help to analyze the initial system 
and identify the bond graph structure that make it not 
statically decouplable. In fact, if the system is not 
statically decouplable then for one or several outputs 
there is an I/O causal path shorter than the disjoint I/O 
causal path associated to this output. In order to identify 
these outputs, the I/O causal paths (uj, yi) which have 
served to compute the relative degrees (the shortest I/O 
causal paths associated to the outputs) must be located. 
For each output, the length of the shortest path (uj, yi) 
must be compared at the length of the disjoint I/O causal 
path (uk, yi) associated to this output; if the length of the 
I/O causal path (uj, yi) is the inferior one, then one of 

this two causal paths must be modified in order to delay 
the fastest input. According to the modelling 
hypotheses, the possible modifications of the system 
consist in the addition or the deletion of a bond graph 
structure with only one set of junctions, dissipative and 
dynamic elements in order to increase the length of the 
shortest I/O causal path or to reduce the length of the 
disjoint I/O causal path. The order of this modification 
corresponds to the dynamic extension order (17).  
 
Let us synthesize a decouplable model by a static 
feedback from the initial model (Figure 2). This model 
is not decouplable because the I/O causal path (F1, V2) 
is shorter than the disjoint I/O causal path (F2, V2). So 
the length of the causal path (F1, V2) must be increased 
or the length of the causal path (F2, V2) must be 
shortened. The consideration of the shock absorber R2 
(that has been neglected in the beginning) in the model 
renders the causal path (F2, V2) shorter, then the 
associated bond graph model in preferential integral 
causality is defined by Figure 4 and the associated 
bicausal bond graph model is defined by Figure 5. 
 

 
 

Figure 4: Bond graph model with the consideration of 
the shock absorber R2 

 

 

 
 

Figure 5: The associated bicausal bond graph model 
 



The model is still structurally invertible and the unique 
set of disjoint I/O causal paths is {(F1, V1); (F2, V2)}, its 
length is then 2L = 1+2 = 3. The structural properties 

are: 111 =′= nl  ; 222 =′= nl  ; 11 =en  ; 22 =en ; 

111 == Ln  ; 2122 =−= LLn . Note that 11 nn e ′=  

and 22 nn e ′= , then the model is decouplable by static 
feedback. 
 
The inverse model is the following:  
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The highest derivation order of each output corresponds 
now to the relative degree. The model order has not 
been increased. In fact, it was enough to consider a 
simple dissipative element to decouple the model. 
 
It shows that modifying the modelling hypotheses may 
be a possible way to change the structural properties of 
the system and enables the static decoupling of the 
system (It is the case of the shock absorber R2 in the 
proposed example).   
 
CONCLUSION 

It has been shown that the essential orders of each 
output system can be graphically obtained from the 
bond graph model. This approach enables to deduce, 
directly after the bond graph modelling, relevant 
information on the design and the control of the system. 
 
 A new condition for decoupling by static feedback 
(using essential orders) has been defined on the bond 
graph model. The decoupling by dynamic extension was 
discussed. The dynamic extension order can be directly 
deduced from the bond graph model. Finally, an 
approach enabling the synthesis a model statically 
decouplable has been defined. This approach is linked 
to the structure and the behaviour of the system; It 
enables the system reviewing: Analyze all the neglected 
physical phenomena and add others elements to the 
system if it is necessary. The contribution of this 
approach appears at the design step where it is easy to 
modify the model and consequently the system in order 
to define an adequate structure to the command 
requirements. 
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