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Equilibrium-like fluctuations in some boundary-driven open diffusive systems

A. Imparatd?), V. Lecomté? and F. van Wijlant?)
(UDepartment of Physics and Astronomy, University of Aarhus,
Ny Munkegade, Building 1520, 8000 Aarhus, Denmark
(?)Departement de Physique de la Matiére Condensée, Usitéedle Genéve,
24 quai Ernest Ansermet, 1211 Geneve, Switzerland and
() Laboratoire Matiére et Systemes Complexes (CNRS UMR)708ifversité Paris Diderot,
10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 1a&nde

There exist some boundary-driven open systems with diffudynamics whose particle current fluctuations
exhibit universal features that belong to the Edwards-iWil&n universality class. We achieve this result by
establishing a mapping, for the system’s fluctuations, te@uivalent open —yet equilibrium— diffusive sys-
tem. We discuss the possibility of observing dynamic pheaesttions using the particle current as a control
parameter.

PACS numbers: 05.40.-a, 05.70.Ln

I.  INTRODUCTION

In this work we consider systems of interacting particledargoing diffusive dynamics, such as the Symmetric Simple
Exclusion Process (SSEFﬂ [ﬂv, @[13 4]. Such systems, thabeatescribed by the theory of fluctuating hydrodynamics, a
coarse-grained description in terms of continuous degoédseedom living in a continuous space, have already been th
subject of intense investigation. For instance, Begiral. [, |']'|]3|]3] have relied on fluctuating hydrodynamics tovime a
guantitative analysis of large deviation properties ofudifve systems taken out of equilibrium by means of a boundeve.
Among the various large deviation properties investigatethr, those of the particle current play a special roleeétj current
fluctuations have been known for a long time to be a centrahtifyasince the work of Einsteirm@ll] which establishbdit

in equilibrium the current variance is proportional to th#usion constant; current fluctuations characterize tkelihess of,
and quantify, the system’s excursions out of equilibriumthle last decade, generic properties of these large davifatnctions
were discovered such as the fluctuation theorem which detesnmow the large deviation function of the current is cleghg
under time reversa[ [1, [LB,]14] 5] 16] L7, 18.[1b, 20]. Rampproached [21, P, PB.]44] 25] 26] which have been eredloy
have revealed the possibility of new types of phase tramsitwhere the particle current plays the role of a contrcupeter. It
must also be mentioned that some results regarding theleactirrent statistics originate from exact solutionss ikithe case
for the totally asymmetric exclusion proce@ [27] —a vergibthe SSEP where the particles’ motion is strongly biasader

the SSEP|[48], with periodic boundary conditions.

Fluctuating hydrodynamics not only encompasses interggiarticle systems, but also applies to models involving at
the microscopic level already continuous degrees of freedsuch as the Kipnis-Marchioro-Presu[29] (KMP) modél o
interacting harmonic oscillators that has served as adsstbto investigate the statistical properties of heat gotidn. Both
the SSEP and the KMP models will be the main focus of our effiorthe sequel, though we shall strive to keep our discussion
general when possible.

Our central motivation is to investigate the role of finiteeseffects in one-dimensional open driven diffusive syste We
have been inspired by the results of Appettal. [@] and by those of Derrida and Lebowi27]. In the formeiversal
properties were seen to emerge in the statistics of thecfgactirrent for an equilibrium diffusive system with periodoundary
conditions, with the possibility, for certain classes dfuliive systems, to exhibit a current-driven dynamic phasesition. In
the latter, where mutually excluding particles are sulgi@éto a bulk electric field that drives the system far from Eogum,
universal features belonging to a different universaligss have also been observed. Besides, Bodineau and D@i@]
have shown that for a weakly bulk and boundary driven SSEfnardic phase transition takes place.

In the present work our interest goes to open systems, nia@ctaut of equilibrium by putting them in contact with paké
reservoirs at unequal chemical potentials, but the bulkadyins itself remains reversible. Thus the nonequilibritature of
our systems does not arise from an external bulk field but fsaty a boundary drive. We ask the following questions: (i) Do
universal features in the particle current appear in an ggstem? If so, do they depend on the system being possivigrdri
out of equilibrium by a chemical potential gradient? (ii)the existence of a particle current capable of inducing aadyo
phase transition?

Before entering the technicalities of our work, we woulceklio phrase the answers we have come up to issues (i) and(ii). T



guestion (i) we have the partial answer that at least for ssald systems —to which the SSEP and the KMP model belong— the
current distribution does indeed display universal fezguil he latter do not depend on the system being in or out alfl@gum,

and, quite remarkably, they are the same for an open systéwn aslosed systerrmZS]. They belong to the Edwards-Wilins
universality cIass|EO]. To question (ii) the answer is nodightforward: we have found at least a family of physigaltems
(among which the SSEP) in which the current large deviatimtfion displays some singularity, indicating the existenf a
dynamic phase transition depending on the scaling of theentione forces through.

We shall begin in sectioEl Il by recalling what is known on thatistics of the current in an open boundary driven diffasiv
system. SectioEIII is devoted to careful analysis of fisitee effects leading to establishing that in some caseafitions
exhibit universal features. This section is supplemenyeaihbappendix that describes the cases of the SSEP and the K& m
in detail. Our conclusions and yet open problems are gaﬂhamectio@.

IIl. CURRENT LARGE DEVIATIONS IN DIFFUSIVE IN BOUNDARY-DRIV  EN OPEN SYSTEMS

We consider a one-dimensional lattice witfsites, whose state at tiniés characterized by the local numberst)’s (which
may be discrete or continuous variablegs); 1, ..., L. Our starting point is the assumption that, in the largad L limit, with
t/L? fixed, there exists a Langevin equation for a density figld 7) = n;(¢'), with z = j/L andr = t'/L? defined over
z € [0,1] andr € [0,¢/L?] which evolves according to

0-p = 0.(D(p(x,))uplz, 7) — E(x, 7)) @

where the Gaussian white noigénas correlationgé(x, 7)&(a’, 7)) = M&(w — a’)é(r — 7') that decay to zero as the
inverse system size. The phenomenological coefficiexiiy (the diffusion constant) and(p) depend on some of the details
of the underlying microscopic dynamics. The system dizend the observation timeare large with respect to microscopic
space and time scales. The system is in contact at both etfusaservoirs that fix the value pfat all times to bepg atz = 0
andp; atx = 1.

Our interest lies in the statistics of the total particlerent@(¢) accumulated up until timeand its large deviation properties,
which, in terms of the fielg, is formally expressed as

1 t/L>
Qv =12 [ dr [ dr (~Dipla.1)up(z. ) + ¢(2.7)) @
0 0
Our purpose is to determine

(j) = Tim InProb{Q(t) = j t}

t—o00 t

®3)

or, equivalently, its Legendre transforr{s) = max;{=(j) — sj} that can be obtained from the generating functior)odis
follows

b(s) = lim )

t—o0

(4)

Using the Janssen-De Dominicis formalis@[31], we see thatgenerating functiote *2(*)) can be cast in the form of a
path-integral over two fields,

(e Q)Y — / DpDp LSl )
where the actior$' is given by
1 t/L? o
Slpl = [ do [ [p0rp+ D(p)0.p0p — 5 (0~ NP~ ADL) (6)
0 0

where\ = sL, and the path-integral runs over functions verifying theraary conditions(0,7) = po, p(1,7) = p1, and
p(0,7) = p(1,7) = 0. Itis very clear from the expression of the noise [h (1) omfrthe path-integral[[5) that a semi-
classical-like expansion is valid in the weak-noise limihich, translated in our language, is synonymous for a laygeem-size
expansion. In short, the path—integr@l (5) is dominatechieysaddle point of. The reader is referred to Kurchan’s Iectu@ [32]
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for a pedagogical account exploiting this language. We dinsinge the response field ini@r, 7) = p(z, 7) — Az. We write
the saddle-point equations and we assume the saddle ierefchime-independent profilgs(z), p.(x). Sufficient conditions
under which this is so have been discussed by Beetiril. [E]. Assuming this is indeed the case, the saddle point &t
98 — 0,92 = (read

op ' op

/

~ ~ ~ o ~
arp = aw(Dawp) - am(aamp)a —0rp = Ox (Damp) + 5(8mp)2 (7)

which, assuming a stationary solution, lead to

D(pc)azpc + Kl

D*(pe)(0upe)® = Ki + K20(pe), Oupe =
(pe)

(8)

whereK; and K, are \-dependent constants. With these equations, one may veaifyhe action evaluated at the saddle reads
S[pe, pe] = (t/L?)K4/2. We shall denote by(\) = — K5 /2 (our definition ofy differs from that of [2#[33] by a factar/ L).
With these notations, for the large deviation functionadinced in ﬂ4), we thus hawe(s) = @ In practice, to determine
() explicitly, one must solve the differential equatiorﬂs (8ddix the constantd; and K, by means of the appropriate
boundary conditions. A few comments are in order: theseltseave not new and they were first derived by Bodineau and
Derrida ]. We propose as an illustration the expliciteegsion foru(A) when the diffusion constari® is independent of the
local density (we také> = 1) and when the noise strengttip) is a simple quadratic function. Fet(p) = cap? + ¢1p we find

that (see appendix A)

—2Z (arcsinh yw)?  forw >0
) = { + (arcsin —w)? forw <0 ©)
wherew(A, po, p1) is the auxiliary variable given by
C
w(A, po, p1) = 6—3(1 — /) (Cl(pl — e M2pg) — cp(e N2 - 1)/)001) (10)
1

Foréhe SSER;(p) = 2p(1 — p) and one recovers the knowjn [43] 34] result (the notatiene™ is used in the formula (2.14)
of [B]]), namely

w(X, po, p1) = (1 —e) (e pg — p1 — (€ — 1)pop1) (11)

Another solvable model is the KMP chain of coupled harmosiil@tors, for whichD = 1 ando(p) = 4p? (for KMP, p stands
for the local potential energy field), for which we also h@)ak(ut where the variable is now given by

w(A, po, p1) = A(2(po — p1) — 4Apop1) (12)

The case» > 0 andcy < 0 are qualitatively different. In the latten,()) is defined over the whole real axis and is unbounded
from above, while in the formei()\) is defined over a finite interval of whose ends correspond to infinite currents produced
by the build-up of infinite densities. For example, with= 4 andc; = 0, that is for the KMP model,—ﬁ <AL ﬁ.

Finally, it is important to realize thai()\) is the leading order term in a large system-size series aipanThe origin of
finite-size corrections is twofold. Of course there will b@té-size corrections arising from integrating out the e®describing
fluctuations around the optimal profilg.., p.}. However, fluctuating hydrodynamics, by definition, is uleato capture the
details of the microscopic systems it describes. It musefioee be expected that model-dependent finite-size dawrescwill
also emerge. We now proceed with determining the finite-s@dribution of fluctuations around the saddle of the ac(@n
within the framework of fluctuating hydrodynamics (that ismporarily omitting contributions arising from the uniyérg
discreteness of the lattice).

I, FLUCTUATIONS AND UNIVERSAL BEHAVIOR
A. Evaluating a determinant

As in any saddle point calculation, we obtain finite sizereotions to the leading order resyt @) ~ e“(sL)t py in-
troducing, in the path-integraf](5), the fluctuations ambuhe optimal profiles. and p.: é(x,7) = p(x,7) — pe(z) and



o(x,7) = p(x,7) — pe(z). Then we expand the actio[] (6) to quadratic ordes and¢:

"

+ /dxdT <¢5T¢ + D0y 0y + D'y pepOpp + D' 0y pedudp + %3mﬁ5mp¢2

At
S = “532)
(13)

"

(0.0 T 0pu00,0 - 0.5

whereD, o, and their derivatives with respect to the density, areuatel afp.(z). The goal is to integrate out the quadratic
action ) with respect to the fieldsand¢. This is the procedure that was followed [28] and that weycaut here as
well. However, unlike the case of periodic boundary condisidealt with in], in the present case, the quadratiomés not
readily diagonalizable for its coefficients are space-ddpat. It so happens that for one particular family of modélsse for
which D(p) is constant and (p) is quadratic irp, this can actually be achieved. This remains a nontrivigh tgiven that the
guadratic form to diagonalize irﬂllS) still possesses splependent coefficients. We have not been able deal wittranpiD
ando.

B. ConstantD and quadratic ¢

We specialize the actioﬂl?)) to a constahand a quadratie. After performing the change of fields

we note that@S), after tedious rearrangements, becomes

pA)t - - 2 0

S=- L2 + /dxdT (1[18.,-’!/) + Dazdjamw - ,u(/\)(az'l/)) - Zuj ) (15)

It is remarkable thatm5) is now a quadratic form that can lagahalized with standard stationary wavigsn gz}, with
Fourier modes indexed hy= 7n, n € N*. By comparison to|E3) we can |nterpr.(15) as being theacorresponding to
anequilibriumopen system whose current fluctuations we study as a funetitre conjugate vanabléi Performing the
change of var|ableﬂ|14) has allowed us to map the fluctuatioito those of an open system in contact with two reservbirs a
equal densities.

After integrating out the) and fields, one arrives at

1 D o
s) = pulst) + 5o (oD ) (16)
where the FH index stands for “Fluctuating Hydrodynamick®&ne the functiorv has the expression

Fluy=-4 Y (q\/m P+ u) (17)

g=nm,n>1

Equation ) is the first new result of this work. It indicatiat for systems whose fluctuating hydrodynamics desonipt
relies on a constant diffusion constabtand a quadratic noise strengtfip), current fluctuations involve a universal scaling
functionF. It is remarkable that exactly the same functibinas appeared in the study of current fluctuations in closssys
in equilibrium, with a different scaling variable though. As can be seemfits explicit expressiormj), the scaling functidn
has a singularity when its argument approactre® from the right real axis. Inﬁd::IBS] this was interpretedtas presence of
a first-order dynamic phase transition, for systems witlogés boundary conditions. In the present case, this alemspip the
possibility of a similar phase transition on condition ttiegre exists a regime of for which

o' 7.‘_2

(N > & (18)

Before we discuss whether a phase transition can indeed, @eeunust address another pending issue.

C. Microscopic details matter

The expression foye,(A/L) = %M()\) + 8%}‘ (%/L(/\)) obtained from fluctuating hydrodynamics ignores the palgsib

that finite-size corrections of the sar¥ L ~2) order as the universal corrections will appear when oneseain the original
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model defined on a lattice. In the appendix, which is based upethods developed by Tailleat al. [, @], we are able to
evaluate the contribution of lattice effects for two speaifiodels. We show that for the SSEP and for the KMP model they do
introduceO(L~?2) terms that add up to the universal contribution found froratfiating hydrodynamics. Let us look into those
microscopic details more precisely, first for the SSEP, foethe KMP model.

The open and driven SSEP consist of particles hopping terititheir nearest neighbor sites on a latticé @ites, in contact
with particle reservoirs connected to sitegnd L. Particles are injected into site(resp. L) with a rate« (resp. d) and are
removed from sitd (resp.L.) with ratey (resp.3). These reservoirs impose densitigs— a—iw andp; = % at sitesl and
L. While in the fluctuating hydrodynamic formulation the nesgrs enter current statistics through andp; only, when one
wishes to capture phenomena beyond leading order, laffeet®and microscopic details start playing a role. FOrSB&P, as
presented in appendix B, introducing the auxiliary constan= —— andb = -, we find that

oty B+s’
U(s) () — 2L + 0L
- o (19)
) = L) + e (e ) + 0L

Note that this result is compatible with the exact expressif the first three cumulants of the current obtaine@].[SCﬂ]
The KMP model is also a lattice model in whidh harmonic oscillators whose positions are coupled (we use the It0
convention and the Giardiret al. [] version of the KMP model)

dl‘j

2<j<N-1, o = + LM 541 — Tj—1Mj-1,5 (20)

and the chain is in contact at both ends with heat baths imgasmperature®; and7},,

dx 1 dx 1
d_tl = - (71 + 5) 1 — /27T & + xam 2, d—tL =- (5 + 7L> rr + 2y Trén — xp—1mn-1.L (21)

where¢y, &1, n;,5+1 (for 1 < j < L — 1) are Gaussian white noises with variance unity, andy,, set the time-scale of the
energy exchange with each reservoir. We refer the readeiaialiGaet al. [,] for further details and connections between
the SSEP and KMP. It is also shown in appendix B that for the Kiviielel we have

S — o'
0(6) = pu) = BB + 7 (Sann) + o) @2)

Both ) and@Z) reveal that taking into account microgcdptails of the systems leads, as expected, to nonunhcensac-
tions to the current large deviation function. Whateverftren of these nonuniversal contributions#ds), it can be seen that
the relevant piece of information regarding the possibdita phase transition is contained in the universal patiofs).

D. Is adynamic phase transition possible?

For systems having a constant diffusion consfarftvhich we set taD = 1) and a quadratie(p) = c2p® + c1p, the explicit
expression of:(\) obtained in K|9) allows us to probe the criteri(18) for tRstence of a phase transition. Working at fixed
A = sL, nofirst-order phase transition can occur because thettimm@), or equivalentlyy (A, po, p1) = 1, cannot be fulfilled
on the real axis of\. In the original variable, however, things are different, since in the large system lgnit, and forcs < 0
only, the singularity in the complex plane o&ventually hits the real axis at= 0. To be more explicit, usind:@O), one naotices
that forc, < 0

2
A= 00, p(A) =~ L2 (23)
202
so that, after inserting intc[|(9) and taking the asymptotioe arrives at
2 2 3
LILH;O —¢Qlfs) = CL;SQ + ;—;|s|3 + o(s%) (24)

The singularity ats = 0 reflects the existence of a dynamic transition in terms otaked particle current, but of higher order.
The same transition existed for systems with periodic bamndonditions (see (62) OH]ZS]) and was noted earlier bydvetr



6

and Spohn (in (A.12) of|ﬂ5]). The effects of this transitioan be seen on the correlation functio@ [35] which become
long-ranged. Note also that in this scaling Ii(24) does depend on the reservoir densities anymore, because the op
timal profile able to carry such large currents settles t(stlly&é, but in vanishingly small region around the system’s bouieda

For systems withe; > 0, that is systems with attractive interactions, such as th#Knodel (for whicho (p) = 4p?), no
phase transition can be observed, but the trivial one oicpat infinite densities (akin to a Bose condensation). &leaists a
set of numerical simulations by Hurtado and Garr@ [401ther KMP model which actually confirm that no phase transiison
observed. This negative result is in contrast with —but dedsontradict— that of Bertiret al. [E, ] in which it was shown
that a phase transition exists, for periodic boundary d@ds, wherns” > 0.

IV. OUTLOOK

We have shown that in a family of diffusive systems driven ofuequilibrium by a chemical potential gradient, the total
particle current exhibits universal fluctuations. Theslhg to the Edwards-Wilkinson universality class and they af the
same form as that previously found in closed equilibriuntesys. Our results apply to diffusive systems characterized
constantD and a quadratie. We have used a mapping of the system’s fluctuations to thibae equivalent open system in
equilibrium. We have hints that this mapping can be extermgend quadratic fluctuations: for the SSEP, we can actually
prove that a similar mapping applies to the full proc.[@}r main concern lies in that our results are indeed lintitetthe
caseD constant and quadratic. It would be of great interest to find out whetherilsir universal properties hold for generic
D ando. Perhaps is this a fortuitous coincidence, but Tailleual. [, @] ran into similar restrictions when mapping the
density profile large deviations in boundary-driven diffessystems onto their equilibrium counterparts. We see babjects
for future research.

AcknowledgmentWe thank Bernard Derrida and Thierry Bodineau for counttkssussions and critical comments. VL was
supported in part by the Swiss NSF under MaNEP and DivisioAlllgratefully acknowledges the hospitality and support of
Laboratoire Matiere et Systemes Complexes-UniveRstgs Diderot while this work was done.

Appendix A

In this appendix we prov¢]@©]10). We assume that
D(p)=1 ;  a(p)=cop’+c1p (25)

with ¢; > 0 and the boundary conditiong0) = po, p(1) = p;. In order to find the explicit expression pf\) we start from
the implicit equation found in [24] specialized fo = 1, namely

p1 1 2
W) = - { i dpﬁ} (26)
with K determined by
A= [Nt ;_1] @
v 0| Vit2Ko
We know that the optimal profile verifies
dpp =qV1+2Ko (28)
the solution of which takes the form
pz) = —Z—; + fsinh [2(60 + (61 — 60))] (29)
providedf, 6, andd; verify
(6~ 60)? = 502K’ (30)
200 — 3K

1= (31)

4ciK



and the boundary conditiong0) = pg, p(1) = p1. One performs the change of variable

1 dp
do = ———— 32
. a1+ 2Ko (32)
in () and [2]7). This yields
2
pA) = —5(91 — 6p)* (33)
5= +z 1 C1P0 cosh260; — \/c? + 4¢3 f? po sinh 26, (34)
¢ c¢yprcosh20g — /¢ + 4¢3 f? py sinh 26
where we have useﬂSl) to elimindtein favor of f, together with the boundary conditions
po=——X 4 fsinh20p,  p1= —— 4 fsinh26, (35)

202 202

We are left with eliminating’, 6, andd, from (33{3%). Isolating firsi2 from (B4) one obtains

2= &} 2%p} — 22pop1 cosh2(61 — o) + p? (36)

4cs (z po sinh 260, — py sinh 290)2

where we have set = e “1*/2, Groupingf? with the square at the denominator(36), one elimingtasing the boundary
conditions [[35). This enables us to isolateh 2(8, — 6,) in (Bg) and one getsnh?(4; — 6y) = w with
C
w= c_g(l — zfl) (cr(p1 — zpo) — c2(z — 1)pop1) (37)
1
and finally
— 2 (argsinh y/&)> forw >0
u(y) = { g lemesinh V) (39)
+5 (arcsm —w) forw <0
In the limit ¢; — 0 which is relevant for KMPv becomes
1
w = 102/\(2@0 — p1) = c2aApop1) (39)

Appendix B
A. Simple Symmetric Exclusion Process

We consider a SSEP on a one-dimensional lattice witfites, in which particles are injected to the leftmost gite 1 (resp.
rightmost sitej = L) with ratea (resp.d), and removed with rate (resp.3). The master operator governing the evolution of a
microscopic configuration of occupation numbérs };—1. .. 1, can be written in the form

Ws)= > (€ofon, +eopon, — il —fug1) — e (1 — i)
1<k<L-—1 (40)
+ale ol — (1 —m)) +v(e0; —) +0(e o) — (1 —ng)) + 3 (fop —ny)

In (@) we are using a spin basis: the eigenvalue of the Patlixw? is 1 if site j is occupied, ane-1 if itis empty (2; = 1’;”7
has the eigenvalue; = 0 or 1). We now remark that ‘
e Tic W (\)e s imt it = W (s(L + 1)) (41)
whereW  is the operator counting the total current acrosskitaly, the expression of which reads
Wi(s') = Z (0f o3y + 05 03y — (1 — A1) — Apga (1 — 7))
1<k<L—1 (42)

+a(of — (1 —n1)) +7 (o7 — 1) + 5(85,02' —(1-nn)+p (875,02 — nL)
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with s’ being conjugate to the time-integrated current through sit L. Owing to ), The largest eigenvalueWdf, (s(L+1))
is1)(s), that is the largest eigenvalue ¢f [40). We use, for eacicdasite, a Holstein-Primakoff like representatipn [37]

ot =1-F+F"-2FF" + F?’F" o~ =F - F?F* (43)
which also leads té = F' + FF+ — F2F*. The bulk contribution to the evolution operat(42) noads

Webuk(A) = =Y ((Fjon = (L = Ff) + (Fa — F)F}PEf) (44)
J

We represent™®: (<) by means of a path-integrdl |37] 41] involving coherentestatlated to the operatoFsand F+, which
we shall denote by(7) and(7). This leads to an action

S1bukl¢, ¢] = / di [Z 0005 + Z (D1 — 9) (D1 — 03) + (Pj1 — 0)°0jbj41] (45)
while the boundary terms are given by

t
S1 pouncanf, 6] = — /0 dt [ad1 — (a +1)d1c]
(46)

+ ef"’ /Ot dt [((efs,ﬁ + 5)¢L — 5) (_e*S’ + ((efsl - 1)¢L " 1)¢—5L n 1)}

Since we are interested in the large-time behavior, we graieed with a saddle point approximation at fixedut as
L — oo, keeping the system sizk fixed (this is possible due to our saddle-point equationadsetationary). We use the
notationV,¢ = ¢;+1 — ¢;. The saddle point equation obtained by differentffigwith respect tap; reads

(Vo +2V;00;h541) — (Vi—10 + 2V, 100 16;) =0 (47)

and thus there exisi&; such that

—V,¢+ 2K,
Vjp=—7>"— "+ 48
i 27, (48)
Writing the variational equation with respect¢e and using |@8), we obtain
¢7+1 + (b] 1 2 72 n n
—————— 4Ky — ¢; + ¢j+10;-1) =0 (49)
¢J+1¢ ¢7 ) ( 1 j j+1%j 1)
which we multiply by
Gj41 — Pj—1
r -1 50
S ; (50)
so that
[4&2— <vj¢>2} ) [4K% - (V0] _, -
Pj+19; Pjbj—1
which leads to the existence of another consfansuch that
(Vj9;)? = 4K} + Ko¢ i1 (52)
We thus obtain that when evaluated at the sadglle, ¢] = —t%Kg. Besides, it is possible to solve the bulk saddle point
equations[(48) and (52):
2<j<L-1, ¢; =—Asinh[(j —1)B+C], ¢; = F + 1 ianh G-DB+C (53)

2A
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where A, B andC are related td<; and Ks by K1 = —% sinh B, K5 = 4sinh? %. At this stage we write the saddle point
equations corresponding to the fields located at the boiesjar 1 and;j = L. At j = 1 this leads to

0= ¢ — o1+ 2(d2 — ¢1) P21 — 1 — Y (54)

and
0= —¢1— (¢ — d1)’P2 + (1 — ¢1) — v (55)
This immediately sets the constafitappearing in@S) td = a;jw = po, and further imposes that= a%m = :;gﬁg. Due

to the latter relation betweeli andC, only two unknownsA and B remain to be determined. This is done by writing the two
saddle point equations gt= L and by substituting the solutiolﬂ53). The additional caaists onA and B (or C') are

2 _ (z = Dfz(p1 = 1) — p1] PR
A = D s en = D=l ~~° (56)
and
sinh[(L —1)B 4 C +¢] + g sinh C' = 0 (57)

wheresinh? 5=w,p1= # is also the density at site and where the variable is exactly that defined irm.l) witkl instead
of \. Finally, we eliminate” to obtainB as the solution to

sinh® [(L — 1)B +¢] = (a® + b* + 2abcosh [(L — 1)B + €] ) sinh® B (58)

Equation ) can be solved in powersiofL: to leading orderB andC are O(1/L), while ¢ is O(1), and thus one has
B = %a = £ arcsinh /w. To the next order one has

L
’ 1 . 2 1 . 2
P (s) :2—(—1 + V14 a?sinh” B) + %(—1 + V' 1+ b%sinh” B)
a

B
+ (L — 1) sinh® 3 (59)

i) at+b-1
L L?

This proves the result announced@(lg).

u(s') + O(L™?)

B. Kipnis-Marchioro-Presutti model

For the KMP process, one writes a Langevin equatiorzfor %xf based on@O). Using the Itd discretization scheme, this
leads to
de;
— = ji— i 60
G~ i im (60)

where the local energy currentjis.1 = ¢; — €i+1 + 2\/Ei€it1mi,i+1 (1 < i < L —2), andj; = 111 — 2vie1 + 2T,
jr+1 = =1L + 2vrer + 2y Trér. Using the Janssen-De Dominicis formalism, one is agaitded

(759 = / Dz De e 5] (61)
where the action has the expression
L L—-1
S Z/dtzéjaﬂj + /dt Do En =& = 9) (e — &) — 285854151 — &5 — 5)°]
Jj=1 Jj=1
_ _ _ (62)
+ 271 [ dt[-Th(e1 — s)((€1 — s)e1 + 1/2) + (&1 — s)eq]

+ 27L/dt [—TrL(EL + 8)((EL + 8)er +1/2) + (L + s)er]
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With the change’; = &; — sj, and dropping the primes, the action becomes

L L—1
S Z/dfzéjat&j + /df > [Eir1 — &) (i1 — €5) — 2658541 (Ej41 — &)
=1 =

+ 2y /dt [—Tlgl(élgl + 1/2) + 5161] (63)

+ 2'yL/dt [—Tr(EL+s(L+1)((Er+s(L+1))er +1/2) + (6 +s(L +1))er]

which shows that thée—*?) = (e~*(E+1)Qc) whereQ, is the time-integrated current flowing between ditand the right
thermal bath. We shall denote b{y= (L + 1)s. An additional change of fields, which leaves the bulk paraiant (see|E7]),

allows to further simplify the boundary terms: we set= 1+2§55 andé’ = %5(1 + 2é¢), and we obtain (dropping the primes)

L L—1
S Z/dtszjatﬁj + /dt > [Er1 — &) (i1 — &5) — 2658541 (Ej1 — &5)°)]
=1 =1

+ 27 /dt [—T181 + 5181] (64)
— YL /dt [(S/ + 2€L(1 + S/&:L))(TL + E_‘L(S/TL — 1))]
We differentiateS given in (6}#) with respect te;:
|:Vj8 — 4Vj§€j€j+1} — |:ij18 — 4Vj71§ Ejflé“j:| =0 (65)
where we used the notation; X = X;,; — X;. One thus has a constaii; such that
Ky +V;
V,E= Kt Vye (66)
dejejta
Differentiating now [[6}4) with respect tg; one has
Vjé:— ijlé—F 2(Vj5_‘)2€j+1 + 2(Vj71§)26j71 =0 (67)
and substitutinﬂG) to get an equation on4his only, one obtains
Eit1 T Ei-1 2 2
= - (K] — &3 ir1€-1) =0 68
€j+1€5€j-1 (KY =&+ eimaes-a) (58)
The trick is to multiply [6B) by
Ejt+1 —Ej—1
e 69
€j+1 t €51 J ( )
which leads to
2 2
|:[(12 B (Vje) ] _ |:[(12 B (ijla) :| -0 (70)
Ej+1€j €j€j—1
and thus there exists a constdfi such that
(vle)Q = K12 + 4K2€j€j+1 (71)
We substitute[(§6) into the bulk part of the acti$n](64), ardarive at
2
1 K? — (Vje) L—-1
tSbqu Z Ry 5 2 (72)

1<j<L-1
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We differentiate the action with respect to the fields at thertdaries, , ;:

—(62 —81) +4(E_‘2 —51)615‘24—2’}/161 =0 (73)
—(52—51)—2(52—51)2624-2’}/1(51 —Tl) =0 (74)

Differentiating with respect té;, andes, one gets
(EL — EL—l) — 4(<§L — &:L—I)ELEL—I + L {26[/ + (1 —4Trer, + 45L<§L)/\ — TL(l + 4EL§L)812} =0 (75)
((—,TL — 5[‘71) — 2(§L — 5L—1)25L—1 — 2"YL(1 + S/EL)(TL + &:L(/\TL — 1)) =0 (76)
We now proceed with solving the microscopic equati (Gﬁ)@). We search for a solution in the form
1
gj=Asinh [2((j -1)B+C)] , &g=E+ 1 tanh [(j —1)B+C] (77)

whereA, B, C and E are four constants to be determined by the four saddle pqimst®ns at the boundaries. We first note
that, quite remarkably] (/'7) is an exact solution of the mcopic bulk saddle point equatiofis](66) ahd (71), on cimdihat

K, = —Asinh(2B) ; K, =sinh’B (78)

One checks that the saddle equations atlséee solved by

1sinh 2B
E=T ; —— = 79
L% Q%mn2c ™ (79)
Eliminating~,, between the saddle equations at ditgields
"(Tps' —1
A? = o (Tps' — 1) (80)

- 16(T18' + 1)(TL + Tl(TLSI — 1))
Substituting this result intd (5), one gets

sinh [2((L = 1)B + C +2)] + T-sinh2C = 0 (81)
YL
wheree is such that
sinh?e = w (82)
andw is given by
w= Ty —Tr — NT1Ty) (83)

in accordance witH (2). One can now eliminateising [7P) and this gives an equation involviBgnly

7;2 + 722 +2(y172) ! cosh [Q(L —1)B+ 25]
4

The large deviation function is given by the valueWt,, at saddle. Combining the bulk contributi(72) togetheahviine
boundary terms read fror (64), one obtains

1 1 1 1
Yo, (\) = 3N~ 5\/’712+Sinh223 + 57— 5\/Wf+sinh223

-1
sinh? B (85)

sinh? 2B (84)

sinh? [2(L — 1)B + 2¢| =

whereB is solution of [8}4).

Though the expressions are cumbersome, one can still sktd\fﬂquation@4) perturbatively in powerslofby writing B in
the formB = By /L+ B;/L?+.. .. To lowest orderB is of orderl / L ande of orderl: in @), the right-hand term is negligible
and one obtain®, = —e = — arcsinh \/w, which yields the macroscopic fluctuation theory regl) = —1 (arcsinh \/w)?
found previously in[[§,32), as expected. To the next ordee,gets

o) = 7u) + 75 | (1= 50— 5 ) uv)] + 027 (36)



12

which matches the announced res@ (22).
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