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A. Imparato(1), V. Lecomte(2) and F. van Wijland(3)
(1)Department of Physics and Astronomy, University of Aarhus,

Ny Munkegade, Building 1520, 8000 Aarhus, Denmark
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There exist some boundary-driven open systems with diffusive dynamics whose particle current fluctuations
exhibit universal features that belong to the Edwards-Wilkinson universality class. We achieve this result by
establishing a mapping, for the system’s fluctuations, to anequivalent open –yet equilibrium– diffusive sys-
tem. We discuss the possibility of observing dynamic phase transitions using the particle current as a control
parameter.

PACS numbers: 05.40.-a, 05.70.Ln

I. INTRODUCTION

In this work we consider systems of interacting particles undergoing diffusive dynamics, such as the Symmetric Simple
Exclusion Process (SSEP) [1, 2, 3, 4]. Such systems, that canbe described by the theory of fluctuating hydrodynamics, a
coarse-grained description in terms of continuous degreesof freedom living in a continuous space, have already been the
subject of intense investigation. For instance, Bertiniet al. [5, 6, 7, 8, 9] have relied on fluctuating hydrodynamics to provide a
quantitative analysis of large deviation properties of diffusive systems taken out of equilibrium by means of a boundary drive.
Among the various large deviation properties investigatedso far, those of the particle current play a special role. Indeed, current
fluctuations have been known for a long time to be a central quantity since the work of Einstein [10, 11] which established that
in equilibrium the current variance is proportional to the diffusion constant; current fluctuations characterize the likeliness of,
and quantify, the system’s excursions out of equilibrium. In the last decade, generic properties of these large deviation functions
were discovered such as the fluctuation theorem which determines how the large deviation function of the current is changed
under time reversal [12, 13, 14, 15, 16, 17, 18, 19, 20]. Parallel approaches [21, 22, 23, 24, 25, 26] which have been employed
have revealed the possibility of new types of phase transitions where the particle current plays the role of a control parameter. It
must also be mentioned that some results regarding the particle current statistics originate from exact solutions; this is the case
for the totally asymmetric exclusion process [27] –a version of the SSEP where the particles’ motion is strongly biased–or for
the SSEP [28], with periodic boundary conditions.

Fluctuating hydrodynamics not only encompasses interacting particle systems, but also applies to models involving at
the microscopic level already continuous degrees of freedom, such as the Kipnis-Marchioro-Presutti [29] (KMP) model of
interacting harmonic oscillators that has served as a testbench to investigate the statistical properties of heat conduction. Both
the SSEP and the KMP models will be the main focus of our efforts in the sequel, though we shall strive to keep our discussion
general when possible.

Our central motivation is to investigate the role of finite-size effects in one-dimensional open driven diffusive systems. We
have been inspired by the results of Appertet al. [28] and by those of Derrida and Lebowitz [27]. In the former universal
properties were seen to emerge in the statistics of the particle current for an equilibrium diffusive system with periodic boundary
conditions, with the possibility, for certain classes of diffusive systems, to exhibit a current-driven dynamic phasetransition. In
the latter, where mutually excluding particles are subjected to a bulk electric field that drives the system far from equilibrium,
universal features belonging to a different universality class have also been observed. Besides, Bodineau and Derrida[25, 26]
have shown that for a weakly bulk and boundary driven SSEP, a dynamic phase transition takes place.

In the present work our interest goes to open systems, maintained out of equilibrium by putting them in contact with particle
reservoirs at unequal chemical potentials, but the bulk dynamics itself remains reversible. Thus the nonequilibrium nature of
our systems does not arise from an external bulk field but onlyfrom a boundary drive. We ask the following questions: (i) Do
universal features in the particle current appear in an opensystem? If so, do they depend on the system being possibly driven
out of equilibrium by a chemical potential gradient? (ii) Isthe existence of a particle current capable of inducing a dynamic
phase transition?

Before entering the technicalities of our work, we would like to phrase the answers we have come up to issues (i) and (ii). To
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question (i) we have the partial answer that at least for a class of systems –to which the SSEP and the KMP model belong– the
current distribution does indeed display universal features. The latter do not depend on the system being in or out of equilibrium,
and, quite remarkably, they are the same for an open system asfor a closed system [28]. They belong to the Edwards-Wilkinson
universality class [30]. To question (ii) the answer is not straightforward: we have found at least a family of physical systems
(among which the SSEP) in which the current large deviation function displays some singularity, indicating the existence of a
dynamic phase transition depending on the scaling of the current one forces through.

We shall begin in section II by recalling what is known on the statistics of the current in an open boundary driven diffusive
system. Section III is devoted to careful analysis of finite-size effects leading to establishing that in some cases fluctuations
exhibit universal features. This section is supplemented by an appendix that describes the cases of the SSEP and the KMP model
in detail. Our conclusions and yet open problems are gathered in section IV.

II. CURRENT LARGE DEVIATIONS IN DIFFUSIVE IN BOUNDARY-DRIV EN OPEN SYSTEMS

We consider a one-dimensional lattice withL sites, whose state at timet is characterized by the local numbersnj(t)’s (which
may be discrete or continuous variables),j = 1, . . . , L. Our starting point is the assumption that, in the larget andL limit, with
t/L2 fixed, there exists a Langevin equation for a density fieldρ(x, τ) = nj(t

′), with x = j/L andτ = t′/L2 defined over
x ∈ [0, 1] andτ ∈ [0, t/L2] which evolves according to

∂τρ = ∂x(D(ρ(x, τ))∂xρ(x, τ) − ξ(x, τ)) (1)

where the Gaussian white noiseξ has correlations〈ξ(x, τ)ξ(x′ , τ ′)〉 = σ(ρ(x,τ))
L δ(x − x′)δ(τ − τ ′) that decay to zero as the

inverse system size. The phenomenological coefficientsD(ρ) (the diffusion constant) andσ(ρ) depend on some of the details
of the underlying microscopic dynamics. The system sizeL and the observation timet are large with respect to microscopic
space and time scales. The system is in contact at both ends with reservoirs that fix the value ofρ at all times to beρ0 atx = 0
andρ1 atx = 1.

Our interest lies in the statistics of the total particle currentQ(t) accumulated up until timet and its large deviation properties,
which, in terms of the fieldρ, is formally expressed as

Q(t) = L2

∫ 1

0

dx
∫ t/L2

0

dτ (−D(ρ(x, τ))∂xρ(x, τ) + ξ(x, τ)) (2)

Our purpose is to determine

π(j) = lim
t→∞

ln Prob{Q(t) = j t}
t

(3)

or, equivalently, its Legendre transformψ(s) = maxj{π(j) − sj} that can be obtained from the generating function ofQ as
follows

ψ(s) = lim
t→∞

ln〈e−sQ(t)〉
t

(4)

Using the Janssen-De Dominicis formalism [31], we see that the generating function〈e−sQ(t)〉 can be cast in the form of a
path-integral over two fields,

〈e−sQ(t)〉 =

∫

Dρ̄Dρ e−LS[ρ̄,ρ] (5)

where the actionS is given by

S[ρ̄, ρ] =

∫ 1

0

dx
∫ t/L2

0

dτ
[

ρ̄∂τρ+D(ρ)∂xρ̄∂xρ−
σ

2
(∂xρ̄− λ)2 − λD∂xρ

]

(6)

whereλ = sL, and the path-integral runs over functions verifying the boundary conditionsρ(0, τ) = ρ0, ρ(1, τ) = ρ1, and
ρ̄(0, τ) = ρ̄(1, τ) = 0. It is very clear from the expression of the noise in (1) or from the path-integral (5) that a semi-
classical-like expansion is valid in the weak-noise limit,which, translated in our language, is synonymous for a largesystem-size
expansion. In short, the path-integral (5) is dominated by the saddle point ofS. The reader is referred to Kurchan’s lectures [32]
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for a pedagogical account exploiting this language. We firstchange the response field intõρ(x, τ) = ρ̄(x, τ) − λx. We write
the saddle-point equations and we assume the saddle is reached for time-independent profiles̃ρc(x), ρc(x). Sufficient conditions
under which this is so have been discussed by Bertiniet al. [9]. Assuming this is indeed the case, the saddle point equations
δS
δρ = 0, δS

δρ̃ = 0 read

∂τρ = ∂x(D∂xρ) − ∂x(σ∂xρ̃), −∂τ ρ̃ = ∂x(D∂xρ̃) +
σ′

2
(∂xρ̃)

2 (7)

which, assuming a stationary solution, lead to

D2(ρc)(∂xρc)
2 = K2

1 +K2σ(ρc), ∂xρ̃c =
D(ρc)∂xρc +K1

σ(ρc)
(8)

whereK1 andK2 areλ-dependent constants. With these equations, one may verifythat the action evaluated at the saddle reads
S[ρ̃c, ρc] = (t/L2)K2/2. We shall denote byµ(λ) = −K2/2 (our definition ofµ differs from that of [24, 33] by a factor1/L).
With these notations, for the large deviation function introduced in (4), we thus haveψ(s) = µ(sL)

L . In practice, to determine
µ(λ) explicitly, one must solve the differential equations (8) and fix the constantsK1 andK2 by means of the appropriate
boundary conditions. A few comments are in order: these results are not new and they were first derived by Bodineau and
Derrida [24]. We propose as an illustration the explicit expression forµ(λ) when the diffusion constantD is independent of the
local density (we takeD = 1) and when the noise strengthσ(ρ) is a simple quadratic function. Forσ(ρ) = c2ρ

2 + c1ρ we find
that (see appendix A)

µ(λ) =

{ − 2
c2

(arcsinh
√
ω)2 for ω > 0

+ 2
c2

(arcsin
√
−ω)2 for ω < 0

(9)

whereω(λ, ρ0, ρ1) is the auxiliary variable given by

ω(λ, ρ0, ρ1) =
c2
c21

(1 − ec1λ/2)
(

c1(ρ1 − e−c1λ/2ρ0) − c2(e−c1λ/2 − 1)ρ0ρ1

)

(10)

For the SSEP,σ(ρ) = 2ρ(1 − ρ) and one recovers the known [33, 34] result (the notationz = e−λ is used in the formula (2.14)
of [33]), namely

ω(λ, ρ0, ρ1) = (1 − eλ)(e−λρ0 − ρ1 − (e−λ − 1)ρ0ρ1) (11)

Another solvable model is the KMP chain of coupled harmonic oscillators, for whichD = 1 andσ(ρ) = 4ρ2 (for KMP, ρ stands
for the local potential energy field), for which we also have (9) but where the variableω is now given by

ω(λ, ρ0, ρ1) = λ(2(ρ0 − ρ1) − 4λρ0ρ1) (12)

The casec2 > 0 andc2 < 0 are qualitatively different. In the latter,µ(λ) is defined over the whole real axis and is unbounded
from above, while in the formerµ(λ) is defined over a finite interval ofλ whose ends correspond to infinite currents produced
by the build-up of infinite densities. For example, withc2 = 4 andc1 = 0, that is for the KMP model,− 1

2ρ1

< λ < 1
2ρ0

.

Finally, it is important to realize thatµ(λ) is the leading order term in a large system-size series expansion. The origin of
finite-size corrections is twofold. Of course there will be finite-size corrections arising from integrating out the modes describing
fluctuations around the optimal profile{ρ̃c, ρc}. However, fluctuating hydrodynamics, by definition, is unable to capture the
details of the microscopic systems it describes. It must therefore be expected that model-dependent finite-size corrections will
also emerge. We now proceed with determining the finite-sizecontribution of fluctuations around the saddle of the action(6)
within the framework of fluctuating hydrodynamics (that is,temporarily omitting contributions arising from the underlying
discreteness of the lattice).

III. FLUCTUATIONS AND UNIVERSAL BEHAVIOR

A. Evaluating a determinant

As in any saddle point calculation, we obtain finite size-corrections to the leading order result〈e−sQ〉 ≃ eµ(sL)t by in-
troducing, in the path-integral (5), the fluctuations around the optimal profileρ̃c and ρc: φ(x, τ) = ρ(x, τ) − ρc(x) and
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φ̄(x, τ) = ρ̃(x, τ) − ρ̃c(x). Then we expand the action (6) to quadratic order inφ andφ̄:

S = −µ(λ)t

L2
+

∫

dxdτ

(

φ̄∂τφ+D∂xφ̄∂xφ+D′∂xρ̃cφ∂xφ+D′∂xρc∂xφ̄φ+
D′′

2
∂xρ̃∂xρφ

2

−σ
2

(∂xφ̄)2 − σ′∂xρ̃cφ∂xφ̄− σ′′

4
(∂xρ̃c)

2φ2

) (13)

whereD, σ, and their derivatives with respect to the density, are evaluated atρc(x). The goal is to integrate out the quadratic
action (13) with respect to the fields̄φ andφ. This is the procedure that was followed in [28] and that we carry out here as
well. However, unlike the case of periodic boundary conditions dealt with in [28], in the present case, the quadratic action is not
readily diagonalizable for its coefficients are space-dependent. It so happens that for one particular family of models, those for
whichD(ρ) is constant andσ(ρ) is quadratic inρ, this can actually be achieved. This remains a nontrivial task, given that the
quadratic form to diagonalize in (13) still possesses space-dependent coefficients. We have not been able deal with arbitraryD
andσ.

B. ConstantD and quadratic σ

We specialize the action (13) to a constantD and a quadraticσ. After performing the change of fields

φ = (∂xρ̃c)
−1ψ + ∂xρcψ̄, φ̄ = ∂xρ̃cψ̄ (14)

we note that (13), after tedious rearrangements, becomes

S = −µ(λ)t

L2
+

∫

dxdτ

(

ψ̄∂τψ +D∂xψ̄∂xψ − µ(λ)(∂xψ̄)2 − σ′′

4
ψ2

)

(15)

It is remarkable that (15) is now a quadratic form that can be diagonalized with standard stationary waves{sin qx}q with
Fourier modes indexed byq = πn, n ∈ N

∗. By comparison to (13), we can interpret (15) as being the action corresponding to
anequilibriumopen system whose current fluctuations we study as a functionof the conjugate variableµ(sL)

L . Performing the
change of variables (14) has allowed us to map the fluctuations onto those of an open system in contact with two reservoirs at
equal densities.

After integrating out theψ andψ̄ fields, one arrives at

ψFH(s) =
1

L
µ(sL) +

D

8L2
F

(

σ′′

2D2
µ(sL)

)

(16)

where the FH index stands for “Fluctuating Hydrodynamics” where the functionF has the expression

F(u) = −4
∑

q=nπ, n≥1

(

q
√

q2 − 2u− q2 + u
)

(17)

Equation (16) is the first new result of this work. It indicates that for systems whose fluctuating hydrodynamics description
relies on a constant diffusion constantD and a quadratic noise strengthσ(ρ), current fluctuations involve a universal scaling
functionF . It is remarkable that exactly the same functionF has appeared in the study of current fluctuations in closed systems
in equilibrium, with a different scaling variable though. As can be seen from its explicit expression (17), the scaling functionF
has a singularity when its argument approachesπ2/2 from the right real axis. In [28, 35] this was interpreted as the presence of
a first-order dynamic phase transition, for systems with periodic boundary conditions. In the present case, this also opens up the
possibility of a similar phase transition on condition thatthere exists a regime ofλ for which

σ′′

2D2
µ(λ) >

π2

2
(18)

Before we discuss whether a phase transition can indeed occur, we must address another pending issue.

C. Microscopic details matter

The expression forψFH(λ/L) = 1
Lµ(λ) + D

8L2F
(

σ′′

2D2µ(λ)
)

obtained from fluctuating hydrodynamics ignores the possibility

that finite-size corrections of the sameO(L−2) order as the universal corrections will appear when one relies on the original
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model defined on a lattice. In the appendix, which is based upon methods developed by Tailleuret al. [36, 37], we are able to
evaluate the contribution of lattice effects for two specific models. We show that for the SSEP and for the KMP model they do
introduceO(L−2) terms that add up to the universal contribution found from fluctuating hydrodynamics. Let us look into those
microscopic details more precisely, first for the SSEP, thenfor the KMP model.

The open and driven SSEP consist of particles hopping to either of their nearest neighbor sites on a lattice ofL sites, in contact
with particle reservoirs connected to sites1 andL. Particles are injected into site1 (resp.L) with a rateα (resp. δ) and are
removed from site1 (resp.L.) with rateγ (resp.β). These reservoirs impose densitiesρ0 = α

α+γ andρ1 = δ
β+δ at sites1 and

L. While in the fluctuating hydrodynamic formulation the reservoirs enter current statistics throughρ0 andρ1 only, when one
wishes to capture phenomena beyond leading order, lattice effects and microscopic details start playing a role. For theSSEP, as
presented in appendix B, introducing the auxiliary constantsa = 1

α+γ andb = 1
β+δ , we find that

ψ(s) =ψFH(s) −
a+ b− 1

L2
µ(λ) + O(L−3)

=
1

L
µ(λ) − a+ b− 1

L2
µ(λ) +

D

8L2
F

(

σ′′

2D2
µ(λ)

)

+ O(L−3)
(19)

Note that this result is compatible with the exact expressions of the first three cumulants of the current obtained in [33].
The KMP model is also a lattice model in whichL harmonic oscillators whose positionsxj are coupled (we use the Itô

convention and the Giardinàet al. [38] version of the KMP model)

2 ≤ j ≤ N − 1,
dxj

dt
= −xj + xj+1ηj,j+1 − xj−1ηj−1,j (20)

and the chain is in contact at both ends with heat baths imposing temperaturesT1 andTL,

dx1

dt
= −

(

γ1 +
1

2

)

x1 −
√

2γ1T1ξ1 + x2η1,2,
dxL

dt
= −

(

1

2
+ γL

)

xL +
√

2γLTLξL − xL−1ηL−1,L (21)

whereξ1, ξL, ηj,j+1 (for 1 ≤ j ≤ L − 1) are Gaussian white noises with variance unity, andγ1, γL set the time-scale of the
energy exchange with each reservoir. We refer the reader to Giardinàet al. [38, 39] for further details and connections between
the SSEP and KMP. It is also shown in appendix B that for the KMPmodel we have

ψ(s) =
1

L
µ(λ) −

1
2γ1

+ 1
2γL

− 1

L2
µ(λ) +

D

8L2
F

(

σ′′

2D2
µ(λ)

)

+ O(L−3) (22)

Both (19) and (22) reveal that taking into account microscopic details of the systems leads, as expected, to nonuniversal correc-
tions to the current large deviation function. Whatever theform of these nonuniversal contributions toψ(s), it can be seen that
the relevant piece of information regarding the possibility of a phase transition is contained in the universal part ofψFH(s).

D. Is a dynamic phase transition possible?

For systems having a constant diffusion constantD (which we set toD = 1) and a quadraticσ(ρ) = c2ρ
2 + c1ρ, the explicit

expression ofµ(λ) obtained in (9) allows us to probe the criterion (18) for the existence of a phase transition. Working at fixed
λ = sL, no first-order phase transition can occur because the condition (18), or equivalently,ω(λ, ρ0, ρ1) = 1, cannot be fulfilled
on the real axis ofλ. In the original variables, however, things are different, since in the large system size limit, and forc2 < 0
only, the singularity in the complex plane ofs eventually hits the real axis ats = 0. To be more explicit, using (10), one notices
that forc2 < 0

λ→ ∞, µ(λ) ≃ − c21
2c2

λ2 (23)

so that, after inserting into (9) and taking the asymptotics, one arrives at

lim
L→∞

ψQ(s)

L
=

2c21
c2
s2 +

c31
3π

|s|3 + o(s3) (24)

The singularity ats = 0 reflects the existence of a dynamic transition in terms of thetotal particle current, but of higher order.
The same transition existed for systems with periodic boundary conditions (see (62) of [28]) and was noted earlier by Lebowitz
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and Spohn (in (A.12) of [15]). The effects of this transitioncan be seen on the correlation functions [35] which become
long-ranged. Note also that in this scaling limit (24) does not depend on the reservoir densities anymore, because the op-
timal profile able to carry such large currents settles to density 1

2 , but in vanishingly small region around the system’s boundaries.

For systems withc2 > 0, that is systems with attractive interactions, such as the KMP model (for whichσ(ρ) = 4ρ2), no
phase transition can be observed, but the trivial one occurring at infinite densities (akin to a Bose condensation). There exists a
set of numerical simulations by Hurtado and Garrido [40] forthe KMP model which actually confirm that no phase transitionis
observed. This negative result is in contrast with –but doesnot contradict– that of Bertiniet al. [9, 28] in which it was shown
that a phase transition exists, for periodic boundary conditions, whenσ′′ > 0.

IV. OUTLOOK

We have shown that in a family of diffusive systems driven outof equilibrium by a chemical potential gradient, the total
particle current exhibits universal fluctuations. These belong to the Edwards-Wilkinson universality class and they are of the
same form as that previously found in closed equilibrium systems. Our results apply to diffusive systems characterizedby a
constantD and a quadraticσ. We have used a mapping of the system’s fluctuations to those of an equivalent open system in
equilibrium. We have hints that this mapping can be extendedbeyond quadratic fluctuations: for the SSEP, we can actually
prove that a similar mapping applies to the full process [42]. Our main concern lies in that our results are indeed limitedto the
caseD constant andσ quadratic. It would be of great interest to find out whether similar universal properties hold for generic
D andσ. Perhaps is this a fortuitous coincidence, but Tailleuret al. [36, 37] ran into similar restrictions when mapping the
density profile large deviations in boundary-driven diffusive systems onto their equilibrium counterparts. We see here subjects
for future research.

AcknowledgmentWe thank Bernard Derrida and Thierry Bodineau for countlessdiscussions and critical comments. VL was
supported in part by the Swiss NSF under MaNEP and Division II. AI gratefully acknowledges the hospitality and support of
Laboratoire Matière et Systèmes Complexes-UniversitéParis Diderot while this work was done.

Appendix A

In this appendix we prove (9,10). We assume that

D(ρ) = 1 ; σ(ρ) = c2ρ
2 + c1ρ (25)

with c1 > 0 and the boundary conditionsρ(0) = ρ0, ρ(1) = ρ1. In order to find the explicit expression ofµ(λ) we start from
the implicit equation found in [24] specialized toD = 1, namely

µ(λ) = −K
[
∫ ρ1

ρ0

dρ
1√

1 + 2Kσ

]2

(26)

with K determined by

λ =

∫ ρ1

ρ0

dρ
1

σ

[

1√
1 + 2Kσ

− 1

]

(27)

We know that the optimal profile verifies

∂xρ = q
√

1 + 2Kσ (28)

the solution of which takes the form

ρ(x) = −c1
c2

+ f sinh
[

2(θ0 + (θ1 − θ0)x)
]

(29)

providedf , θ0 andθ1 verify

(θ1 − θ0)
2 =

1

2
c2Kq

2 (30)

f2 =
2c2 − c21K

4c22K
(31)
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and the boundary conditionsρ(0) = ρ0, ρ(1) = ρ1. One performs the change of variable

dx =
1

q

dρ√
1 + 2Kσ

(32)

in (26) and (27). This yields

µ(λ) = − 2

c2
(θ1 − θ0)

2 (33)

λ = +
2

c1
ln
c1ρ0 cosh 2θ1 −

√

c21 + 4c22f
2 ρ0 sinh 2θ1

c1ρ1 cosh 2θ0 −
√

c21 + 4c22f
2 ρ1 sinh 2θ0

(34)

where we have used (31) to eliminateK in favor off , together with the boundary conditions

ρ0 = − c1
2c2

+ f sinh 2θ0 , ρ1 = − c1
2c2

+ f sinh 2θ1 (35)

We are left with eliminatingf , θ0 andθ1 from (33-35). Isolating firstf2 from (34) one obtains

f2 =
c21
4c22

z2ρ2
0 − 2zρ0ρ1 cosh 2(θ1 − θ0) + ρ2

1
(

z ρ0 sinh 2θ1 − ρ1 sinh 2θ0
)2 (36)

where we have setz = e−c1λ/2. Groupingf2 with the square at the denominator in (36), one eliminatesf using the boundary
conditions (35). This enables us to isolatecosh 2(θ1 − θ0) in (36) and one getssinh2(θ1 − θ0) = ω with

ω =
c2
c21

(

1 − z−1
)(

c1(ρ1 − zρ0) − c2(z − 1)ρ0ρ1

)

(37)

and finally

µ(λ) =

{

− 2
c2

(

argsinh
√
ω
)2

for ω > 0

+ 2
c2

(

arcsin
√
−ω

)2
for ω < 0

(38)

In the limit c1 → 0 which is relevant for KMP,ω becomes

ω =
1

4
c2λ

(

2(ρ0 − ρ1) − c2λρ0ρ1

)

(39)

Appendix B

A. Simple Symmetric Exclusion Process

We consider a SSEP on a one-dimensional lattice withL sites, in which particles are injected to the leftmost sitej = 1 (resp.
rightmost sitej = L) with rateα (resp.δ), and removed with rateγ (resp.β). The master operator governing the evolution of a
microscopic configuration of occupation numbers{nj}j=1,...,L can be written in the form

W(s) =
∑

1≤k≤L−1

(

esσ+
k σ

−
k+1 + e−sσ−

k σ
+
k+1 − n̂k(1 − n̂k+1) − n̂k+1(1 − n̂k)

)

+ α(e−sσ+
1 − (1 − n̂1)) + γ

(

esσ−
1 − n̂1

)

+ δ(e−sσ+
L − (1 − n̂L)) + β

(

esσ−
L − n̂L

)

(40)

In (40) we are using a spin basis: the eigenvalue of the Pauli matrixσz
j is 1 if sitej is occupied, and−1 if it is empty (̂nj =

1+σz
j

2
has the eigenvaluenj = 0 or 1). We now remark that

es
P

L
j=1

jn̂j W(λ)e−s
P

L
j=1

jn̂j = WL(s(L+ 1)) (41)

whereWL is the operator counting the total current across siteL only, the expression of which reads

WL(s′) =
∑

1≤k≤L−1

(

σ+
k σ

−
k+1 + σ−

k σ
+
k+1 − n̂k(1 − n̂k+1) − n̂k+1(1 − n̂k)

)

+ α(σ+
1 − (1 − n̂1)) + γ

(

σ−
1 − n̂1

)

+ δ(es′

σ+
L − (1 − n̂L)) + β

(

e−s′

σ−
L − n̂L

)

(42)
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with s′ being conjugate to the time-integrated current through site i = L. Owing to (41), The largest eigenvalue ofWL(s(L+1))
isψ(s), that is the largest eigenvalue of (40). We use, for each lattice site, a Holstein-Primakoff like representation [37]

σ+ = 1 − F + F+ − 2FF+ + F 2F+, σ− = F − F 2F+ (43)

which also leads tôn = F + FF+ − F 2F+. The bulk contribution to the evolution operator (42) now reads

WL,bulk(λ) = −
∑

j

(

(Fj+1 − Fj)(F
+
j+1 − F+

j ) + (Fj+1 − Fj)
2F+

j F
+
j+1

)

(44)

We represent eWL(s′)t by means of a path-integral [37, 41] involving coherent states related to the operatorsF andF+, which
we shall denote byφ(τ) andφ̄(τ). This leads to an action

SL,bulk[φ̄, φ] =

∫ t

0

dt





L
∑

j=1

φ̄j∂tφj +

L−1
∑

j=1

[

(φj+1 − φj)(φ̄j+1 − φ̄j) + (φj+1 − φj)
2φ̄j φ̄j+1

]



 (45)

while the boundary terms are given by

SL,boundary[φ̄, φ] = −
∫ t

0

dt
[

αφ̄1 − (α + γ)φ̄1φ1

]

+ es′

∫ t

0

dt
[(

(e−s′

β + δ)φL − δ
) (

−e−s′

+ ((e−s′ − 1)φL + 1)φ̄L + 1
)]

(46)

Since we are interested in the large-time behavior, we shallproceed with a saddle point approximation at fixedt but as
L → ∞, keeping the system sizeL fixed (this is possible due to our saddle-point equations being stationary). We use the
notation∇jφ = φj+1 − φj . The saddle point equation obtained by differentingSL with respect tōφj reads

(∇j φ̄+ 2∇jφφ̄j φ̄j+1) − (∇j−1φ̄+ 2∇j−1φφ̄j−1φ̄j) = 0 (47)

and thus there existsK1 such that

∇jφ =
−∇jφ̄+ 2K1

2φ̄j
(48)

Writing the variational equation with respect toφj and using (48), we obtain

φ̄j+1 + φ̄j−1

φ̄j+1φ̄2
j φ̄j−1

(4K2
1 − φ̄2

j + φ̄j+1φ̄j−1) = 0 (49)

which we multiply by

φ̄j+1 − φ̄j−1

φ̄j+1 + φ̄j−1
φ̄j (50)

so that
[

4K2
1 − (∇j φ̄)2

φ̄j+1φ̄j

]

−
[

4K2
1 − (∇j−1φ̄)2

φ̄j φ̄j−1

]

= 0 (51)

which leads to the existence of another constantK2 such that

(∇j φ̄j)
2 = 4K2

1 +K2φ̄j φ̄j+1 (52)

We thus obtain that when evaluated at the saddle,S[φ̄, φ] = −tL−1
2 K2. Besides, it is possible to solve the bulk saddle point

equations (48) and (52):

2 ≤ j ≤ L− 1, φ̄j = −A sinh[(j − 1)B + C], φj = E +
1

2A
tanh

(j − 1)B + C

2
(53)
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whereA, B andC are related toK1 andK2 by K1 = −A
2 sinhB, K2 = 4 sinh2 B

2 . At this stage we write the saddle point
equations corresponding to the fields located at the boundariesj = 1 andj = L. At j = 1 this leads to

0 = φ̄2 − φ̄1 + 2(φ2 − φ1)φ̄2φ̄1 − αφ̄1 − γφ̄1 (54)

and

0 = φ2 − φ1 − (φ2 − φ1)
2φ̄2 + α(1 − φ1) − γφ1 (55)

This immediately sets the constantE appearing in (53) toE = α
α+γ = ρ0, and further imposes thata = 1

α+γ = sinh C
sinh B . Due

to the latter relation betweenB andC, only two unknownsA andB remain to be determined. This is done by writing the two
saddle point equations atj = L and by substituting the solution (53). The additional constraints onA andB (orC) are

A2 =
(z − 1)[z(ρ1 − 1) − ρ1]

A[(z − 1)ρ0 + 1][zρ0(ρ1 − 1) − ρ0ρ1 + ρ1]
, z = e−s′

(56)

and

sinh[(L− 1)B + C + ε] +
b

a
sinhC = 0 (57)

wheresinh2 ε
2 = ω, ρ1 = δ

β+δ is also the density at siteL and where the variableω is exactly that defined in (11) withs′ instead
of λ. Finally, we eliminateC to obtainB as the solution to

sinh2 [(L − 1)B + ε] =
(

a2 + b2 + 2ab cosh [(L − 1)B + ε]
)

sinh2B (58)

Equation (58) can be solved in powers of1/L: to leading order,B andC areO(1/L), while ε is O(1), and thus one has
B = 1

Lε = 2
L arcsinh

√
ω. To the next order one has

ψL(s′) =
1

2a
(−1 +

√

1 + a2 sinh2B) +
1

2b
(−1 +

√

1 + b2 sinh2B)

+ (L − 1) sinh2 B

2

≃µ(s′)

L
− a+ b− 1

L2
µ(s′) + O(L−3)

(59)

This proves the result announced in (19).

B. Kipnis-Marchioro-Presutti model

For the KMP process, one writes a Langevin equation forεi = 1
2x

2
i based on (20). Using the Itô discretization scheme, this

leads to

dεi

dt
= ji − ji+1 (60)

where the local energy current isji+1 = εi − εi+1 + 2
√
εiεi+1ηi,i+1 (1 ≤ i ≤ L − 2), andj1 = γ1T1 − 2γ1ε1 + 2

√
γ1T1ξ1,

jL+1 = −γLTL + 2γLεL + 2
√
γLTLξL. Using the Janssen-De Dominicis formalism, one is again ledto

〈e−sQ〉 =

∫

Dε̄jDεje−S[ε̄j ,εj ] (61)

where the action has the expression

S =

∫

dt
L

∑

j=1

ε̄j∂tεj +

∫

dt
L−1
∑

j=1

[

(ε̄j+1 − ε̄j − s)(εj+1 − εj) − 2εjεj+1(ε̄j+1 − ε̄j − s)2
]

+ 2γ1

∫

dt [−T1(ε̄1 − s)((ε̄1 − s)ε1 + 1/2) + (ε̄1 − s)ε1]

+ 2γL

∫

dt [−TL(ε̄L + s)((ε̄L + s)εL + 1/2) + (ε̄L + s)εL]

(62)
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With the changēε′j = ε̄j − sj, and dropping the primes, the action becomes

S =

∫

dt
L

∑

j=1

ε̄j∂tεj +

∫

dt
L−1
∑

j=1

[

(ε̄j+1 − ε̄j)(εj+1 − εj) − 2εjεj+1(ε̄j+1 − ε̄j)
2
]

+ 2γ1

∫

dt [−T1ε̄1(ε̄1ε1 + 1/2) + ε̄1ε1]

+ 2γL

∫

dt [−TL(ε̄L + s(L+ 1))((ε̄L + s(L+ 1))εL + 1/2) + (ε̄L + s(L+ 1))εL]

(63)

which shows that the〈e−sQ〉 = 〈e−s(L+1)QL〉, whereQL is the time-integrated current flowing between siteL and the right
thermal bath. We shall denote bys′ = (L + 1)s. An additional change of fields, which leaves the bulk part invariant (see [37]),
allows to further simplify the boundary terms: we setε′ = 2ε

1+2ε̄ε andε̄′ = 1
2 ε̄(1 + 2ε̄ε), and we obtain (dropping the primes)

S =

∫

dt
L

∑

j=1

ε̄j∂tεj +

∫

dt
L−1
∑

j=1

[

(ε̄j+1 − ε̄j)(εj+1 − εj) − 2εjεj+1(ε̄j+1 − ε̄j)
2
]

+ 2γ1

∫

dt [−T1ε1 + ε̄1ε1]

− γL

∫

dt [(s′ + 2εL(1 + s′ε̄L))(TL + ε̄L(s′TL − 1))]

(64)

We differentiateS given in (64) with respect tōεj :

[

∇jε− 4∇j ε̄ εjεj+1

]

−
[

∇j−1ε− 4∇j−1ε̄ εj−1εj

]

= 0 (65)

where we used the notation∇jX = Xj+1 −Xj. One thus has a constantK1 such that

∇j ε̄ =
K1 + ∇jε

4εjεj+1
(66)

Differentiating now (64) with respect toεj one has

∇j ε̄−∇j−1ε̄+ 2(∇j ε̄)
2εj+1 + 2(∇j−1ε̄)

2εj−1 = 0 (67)

and substituting (66) to get an equation on theεj ’s only, one obtains

εj+1 + εj−1

εj+1ε2jεj−1

(

K2
1 − ε2j + εj+1εj−1

)

= 0 (68)

The trick is to multiply (68) by

εj+1 − εj−1

εj+1 + εj−1
εj (69)

which leads to

[

K2
1 −

(

∇jε
)2

εj+1εj

]

−
[

K2
1 −

(

∇j−1ε
)2

εjεj−1

]

= 0 (70)

and thus there exists a constantK2 such that

(

∇jε
)2

= K2
1 + 4K2εjεj+1 (71)

We substitute (66) into the bulk part of the action (64), and we arrive at

− 1

t
Sbulk =

∑

1≤j≤L−1

K2
1 −

(

∇jε
)2

8εj+1εj
= −L− 1

2
K2 (72)
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We differentiate the action with respect to the fields at the boundaries̄ε1 , ε1:

−(ε2 − ε1) + 4(ε̄2 − ε̄1)ε1ε2 + 2γ1ε1 = 0 (73)

−(ε̄2 − ε̄1) − 2(ε̄2 − ε̄1)
2ε2 + 2γ1(ε̄1 − T1) = 0 (74)

Differentiating with respect tōεL andεL one gets

(εL − εL−1) − 4(ε̄L − ε̄L−1)εLεL−1 + γL

[

2εL + (1 − 4TLεL + 4εLε̄L)λ− TL(1 + 4εLε̄L)s′2
]

= 0 (75)

(ε̄L − ε̄L−1) − 2(ε̄L − ε̄L−1)
2εL−1 − 2γL(1 + s′ε̄L)(TL + ε̄L(λTL − 1)) = 0 (76)

We now proceed with solving the microscopic equations (66) and (71). We search for a solution in the form

εj = A sinh
[

2
(

(j − 1)B + C
)]

, ε̄j = E +
1

4A
tanh

[

(j − 1)B + C
]

(77)

whereA, B, C andE are four constants to be determined by the four saddle point equations at the boundaries. We first note
that, quite remarkably, (77) is an exact solution of the microscopic bulk saddle point equations (66) and (71), on condition that

K1 = −A sinh(2B) ; K2 = sinh2B (78)

One checks that the saddle equations at site1 are solved by

E = T1 ;
1

2

sinh 2B

sinh 2C
= γ1 (79)

EliminatingγL between the saddle equations at siteL yields

A2 =
s′ (TLs

′ − 1)

16(T1s′ + 1)(TL + T1(TLs′ − 1))
(80)

Substituting this result into (75), one gets

sinh
[

2
(

(L− 1)B + C + ε
)

]

+
γ1

γL
sinh 2C = 0 (81)

whereε is such that

sinh2 ε = ω (82)

andω is given by

ω = λ
(

T1 − TL − λT1TL

)

(83)

in accordance with (12). One can now eliminateC using (79) and this gives an equation involvingB only

sinh2
[

2(L− 1)B + 2ε
]

=
γ−2
1 + γ−2

L + 2(γ1γL)−1 cosh
[

2(L− 1)B + 2ε
]

4
sinh2 2B (84)

The large deviation function is given by the value ofWQL
at saddle. Combining the bulk contribution (72) together with the

boundary terms read from (64), one obtains

ψQL
(λ) =

1

2
γ1 − 1

2

√

γ2
1 + sinh2 2B +

1

2
γL − 1

2

√

γ2
L + sinh2 2B

− L− 1

2
sinh2B (85)

whereB is solution of (84).
Though the expressions are cumbersome, one can still solve the equation (84) perturbatively in powers ofL, by writingB in

the formB = B0/L+B1/L
2+ . . .. To lowest order,B is of order1/L andε of order1: in (84), the right-hand term is negligible

and one obtainsB0 = −ε = − arcsinh
√
ω, which yields the macroscopic fluctuation theory resultµ(λ) = − 1

2 (arcsinh
√
ω)2

found previously in (9,12), as expected. To the next order, one gets

ψQL
(λ) =

1

L
µ(λ) +

1

L2

[(

1 − 1

2γ1
− 1

2γL

)

µ(λ)

]

+ O(L−3) (86)
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which matches the announced result (22).
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