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RELIABLE ROBUST PATH PLANNING
R. PEPY, M. KIEFFER, AND E. WALTER

L2S - CNRS - SUPELEC - Univ Paris-Sud
Rue Joliot-Curie, 91192 Gif-sur-Yvette, France

This paper is devoted to path planning when the safety of yetem considered has to be guaranteed in the presence
of bounded uncertainty affecting its model. A new path p&reddresses this problem by combining Rapidly-exploring
Random Trees (RRT) and a set representation of uncertaigsstan idealized algorithm is presented first, before a
description of one of its possible implementations, whemact sets are wrapped into boxes. The resulting pathgiann
is then used for nonholonomic path planning in robotics.

Keywords: Dynamical systems, Interval analysis, Path planning, Robontrol.

1. Introduction Trees (RRT) (Lavalle, 1998; LaValle and Kuffner, 2001b;
) ) ) ) LaValle and Kuffner, 2001a) represent the state-of-art in
Consider a system described by a continuous-time stateyangom search. They allow an efficient exploration of
space model. Designing some control input to drive {he configuration space but, to the best of our knowl-
this system from a possibly uncertain initial state to a edge, do not provide any robustness to model uncertainty.

desired final state is a well-known robu.st control prop— When taken into account, configuration uncertainty is
lem (Ackerman, Barlett, Kaesbauer, Sienel and Stein- g ally described probabilisticallg.g, by a multivari-

hauser, 1993; Francis and Khargonekar, 1995). This prob-4te Gaussian probability density function (Lambert and

lem is made more complicated when constraints on theGruyer 2003; Pepy and Lambert, 2006: Gonzalez and
control input and on the evolution of the state have also to gant, ’2005)" The main drawback of patr; planners based
be satisfied. To solve it, a model of the system is usually 5 this description is that the reliability of the path ob-

assumed to be available, where noise variables account fof5inaq may be guaranteed at best up to a given confidence
the fact that this model is only an approximation of reality. |o\el.

The control input has then to be chosen in such a way that
the system reaches the desired final state, despite uncer- g facilitate path planning in the presence of uncer-
tainty on the initial state and the presence of ndisgthe  tajnty, information allowing the vehicle to localize itgel
control input has to beobustto any type of uncertainty. is sometimes assumed to be available. In (Lazanas and
This paper focuses on applications in robotics, where Latombe, 1995; Gonzalez and Stentz, 2004; Gonzalez and
the robust control problem becomes a reliable path- Stentz, 2007; Bouilly, Simeon and Alami, 1995; Fraichard
planning problem (Latombe, 1991). Consider, for exam- and Mermond, 1998), for example, relocalization zones,
ple, a vehicle moving in a two-dimensionnal structured in which the configurations become perfectly or at least
environment. This vehicle should be driven from an ini- much more accurately known are considered. This tech-
tial state orconfiguration(position and orientation of the  nique is rather efficient, but requires the preparation of
vehicle with respect to a frame attached to the environ- these relocalization zones. In (Lambert and Gruyer, 2003;
ment) to a final desired configuration, despite the presencePepy and Lambert, 2006), a complex model of exterocep-
of uncertainty related to the model of the vehicle, to im- tive sensors (sonars) and an extended Kalman filter are
perfect embedded sensors, to approximately charted obused. To provide distance measurements during path plan-
staclesgtc The control input and the corresponding paths ning, sonars are simulated assuming that the vehicle is lo-
(succession of states) achieving this goal without colfisi  cated at the mean of the multivariate Gaussian function
are said to be safe oeliable. that characterizes the location uncertainty. The resyltin
Path planners involving Rapidly-exploring Random simulated measurements are then used to reduce uncer-
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tainty. If this technique facilitates the obtention of atpat s € Siyt and the noise functiom € W,,,). A planned path

it of course does not allow any statement about the relia- is reliable when a given functiom € L{ﬁt can beproved

bility of this path. robustly to drive the system from any< Siy: to a final
This paper presents a first conceptual reliable robuststate inSqoqr.

path planner, assuming that all uncertain quantities are As will be seen below, there may be several formula-

boundedwith known bounds At each time instant, un-  tions of this robust path planning problem.

certain configurations are represented by possibly non-

connected sets. The proposed path planner takes advary 1. proplem 1: Path planning. A first formulation of

tage of the ability of RRTs to explore the whole configura- ihe robust path planning problem amounts to determining
tion space efficiently. Starting from some uncertain ihitia \ynether

configuration (represented by a set), the planner aims at
driving the vehicle to a final configuratiaet (it will not JK > 0and3u € u[ﬁ]f such that
be possible to drive it accurately to a point final configura- N
tion). Provided that the assumptions on the error bounds Vs € Sin andvw € W), s (KAt) € Sgoarand
are not violated, if a robust path is found using this new V¢ € [0, KAt], s (1) € Sree, )
path planner, its reliability will bguaranteed , .

This paper is organized as follows. In Sectldn 2, Wheres (1) is the solution of{M). ,
the two types of robust path planning problems to be In (2), the samesequence of inputs has to drive the
addressed are presented. The principle of path plannerSYStem robustly from its imprecisely known initial state
based on RRTs is described in Sec{ion 3. Sedfon 4 pro-to_a final state belonging t§y0a. When the _mmgl uncer-
vides a conceptual extension of these planners to sets, anffiNty on the state, or the state perturbation is too large,
Box-RRT, one of its implementable counterparts where 7 WN€nSiee Nas a complex structure and the distance be-
these sets are represented by boxes (or interval vectors)WeeNSinit andSgoal is t00 long, it may become quite dif-
Section[b applies Box-RRT to path planning for non- ficult to find such a sequence _of inputs. It may then be
holonomic vehicles. Examples of path planning tasks for convenient to relax Problem 1 into Problem 2, presented

a vehicle are given in Sectiéh 6, before drawing some con- N the next section.
clusions.

2.2. Problem 2: Reachability analysis. Even if a so-
2. Reliable robust path planning Iut|o_n to_(IZ) exists, actual control inputs are usually not
_ _ S _ applied in open loop. Instead, an observer is used to es-
Consider a system, the evolution of which is described by timate the state evolution using measurements provided

the continuous-time state equation by sensors, se&.g, (Luenberger, 1966). With this im-
ds (t proved knowledge, it may be very useful to update path
Sdi ) = f(s(t),u(t),w(t)), (1) planning from time to time. In such a context, determin-

ing whether there exists a unique sequence of inputs that
wheres (t) € S C R” is the state of the system, is drives the system t8y0a Whatever the initial state iSinit
some bounded input function with values|ir] andw is is too stringent. It suffices to know whether for any initial
some random bounded state perturbation function remain-States € Sint, there exists a sequence of inputs that drives
ing in [w]. Itis assumed that belongs tal{//, the set  the system from t0 Soa. This is typically areachability

of piecewise-constant bounded functions over intervals of problem: one has to determine whetfigsa is reachable

the form [kAt, (k + 1) At[, with At > 0 andk € N, from any state irbin and for anyw € Wy,

and thatw belongs tolV,,), the set of functions bounded Formally, one has to determine whether
in [w]. Forallt € [kAT, (k+1)AT[, u € Upy, and N
w e W[w]’ g (S, t) _ ,f (S,’LL (t) LW (t)) is assumed- Vs € Sinit, dK >0 and3u € Z/{[u] such that
Lipschitz oversS. Vw € Wiy, s (K At) € Sgoarand
The state-spac® is partitionned intcSsee, to which Vvt € [0, KAY, s (t) € Stree, A3)

the state of the system is allowed to belong, 8ad = S\
Stree, to Which it is not.Sqps results of constraints imposed  wheres (t) is again the solution ofl) .
on the systeng.g, by its environment.

At time ¢t = 0, s(0) is assumed to belong to some
known setS (0) = Sinit C Skree- The system has to be
driven to a given set of goal stat8goal C Stee. The aim As for several non-reliable path planning algorithms, the
of robust path planning is then to design an input func- RRT algorithm will be the corner-stone of the proposed
tionu € u[ﬁf such that the system reactga, without reliable and robust path planner. The structure and proper-
enteringSeps at any time instant, whatever the initial state ties of the RRT algorithm are thus now briefly recalled. In

3. Rapidly-exploring Random Trees (RRT)
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Algorithm 1 RRT(sinit € Stree, SgoaI C Shees At € RT,
K e N)
: GLinit(sinit)
1=0
repeat
Srand < random_vectofee)
Snew < RRT_extend(, srang At)
until i++> K or (spew Znull and spew € Sgoal)
return G

Noahrwde

Algorithm 2 RRT_extend(, srang At)
1: Spear < Nearest_neighbaf| srand)
: u « select_input{and Sneay
: Snew < New_state{neqs u, At)
. if collision_free_pathdpeassnewstt,At) then
G.add_nodefen)
G.add_edgefeas Snews )
return spew
:end if
: return null

© O N O U WN

the remainder of this section, it is assumed that the initial
states (0) = sinit is perfectly known, and that no pertur-
bation affects the state equatid) .

3.1. Description. The RRT algorithm (Kuffner and
LaValle, 2000; LaValle and Kuffner, 2001b) is an incre-
mental method aimed at quickly exploring a given config-
uration space from a given starting configuration. Its is de-
scribed in Algorithnf L. First, the tre@ is initialised with
a single node corresponding ¢égi;. Then, a stat@ang €
Stee IS chosen at random. Theear est _nei ghbor
function searches in the tre&e for the nodespear that is
the closest tGang according to some metri¢. A control
inputu € [u] is then chosen (for instance at random). In-
tegrating[(1) over a time intervalt with initial condition
snear @nd constant control input results in a new state
snew- If it can beprovedthat all state values along the
trajectory betweeRnear and spew lie i Sgee, then the tra-
jectory betweennearandsnew is reliable andsney is added
to G and connected t6hear Otherwise spew is Not added
to G. A new random state is chosen to start the next itera-
tion of the algorithm. A path is found whefiew = sgoal,
or (more realistically) wheBnew € Sgoal.

Figure[d illustrates the growth of the tréewith the
number of iterations of the RRT algorithm whén =

0,100, 5 = u, withs € S ¢ R%, u € [0,1]* and
At =100 ms.
3.2. Improvements. Much attention has been dedi-

cated to improving RRT. In (LaValle and Kuffner, 2001b),
the generation o4nq is modified by biasing the tree to-

Algorithm 3 Set'RRTsinit c Sfree, Sgoal C Sfree, At €
R+, K € N)
G.init(Xipit)
i+ 0
repeat
Srand < random_segfree)
Shew < Set-RRT_extend{, Srang, At)
until i++> K or (Spew #null and Spew C Sgoal)
return G

NoasrwDNRE

Algorithm 4 Set-RRT_extendg, Srang, At)
1: Spear < nearest_neighba®, Syang)

: u « select_inputfrang Snear

. Shew < predictionSneas u, At)

- if collision_free_pattfneasSnew,At) then
G.add_guaranteed_no@géw)
G.add_guaranteed_ed§g{as Snew 1)
return Spew

end if

: return null

ward sqoa, Which increases the planning speed for some
specificSgee. INstead of choosingrang in the wholeSyee,
another option is to choose it with a probability> 0 in

a given subse$rang Of See. WheNnSiang = {sgoal}, ONE
obtains the RRTzo0albiasalgorithm and whefSnqis the
circle centered 0Bgoa With @ radiusmingc d(s, sgoal),
one gets the RRGoalZoomalgorithm.

4. Set-RRT and Box-RRT

In order to cope with an uncertain initial configuration and
bounded state pertubations, the classical RRT path planner
has to be adapted to deal with sets. The first part of this
section is devoted to the presentation of a new concep-
tual algorithm, before presenting one of its implementable
counterparts.

4.1. Set-RRT. Set-RRT aims at generating a gra@gh
consisting of nodes associated wibtsin state space.
The structure of Set-RRT is very close to that of the clas-
sical RRT algorithm, where nodes were associated with
vectors. The main changes concern the metric required
to evaluate distances between sets, the prediction func-
tion, which has to determine the evolution of uncertain
states according t(f}), and the collision test to determine
whether all possible trajectories between two consecutive
sets are reliable. The principle of Set-RRT is given in Al-
gorithm[3.

At step 4,SrangiS Most often chosen as a point vector,
but making it a set allows replacementSpf,q by Sgoal for
the implementation of set variants Gbalbiasand Goal-
Zoom Set-RRT stops when either the number of nodes
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(a) 100 nodes (b) 600 nodes (c) 6000 nodes

Fig. 1. Growth of the tree built by the RRT algorithm

generated reaches its limi, or when the goal area is deemed robustly reliable even if it actually is, see Figlire 2
reachedi.e.,, the tree includes a node associated with a setOn the contrary, in situations such as that of Figure 3, the

Sk such thaS;, C Sgoar. set of paths betwe€dRea] and[snen| can be easily proved
to be robustly reliable.

4.2. Box-RRT. Dealing with general sets &" is very set of trajectories

difficult, even for the simplest uncertain state equations. Sobs

Wrappers (Jaulin, Kieffer, Didrit and Walter, 2001) guar-
anteed to contain the sefs have to be used to get an
implementable counterpart to Set-RRT. Candidate wrap-
pers are for example ellipsoids (Schweppe, 1973), zono- [Snew]
topes (Alamo, Bravo, Camacho and de Sevilla, 2003), in-
terval vectors (Moore, 1979) or union of interval vectors
(Kieffer, Jaulin and Walter, 2002; Kieffer, Jaulin, Braems [snea
and Walter, 2001). In what follows, interval vectors, or
boxes are used to represent uncertain states. These are
quite simple sets, which may provide a very coarse de- Fi9- 2. The setof trajectories betwefgRea] and[sneu], wrapped
scription of complex-shaped sets. Using more accurate in [31], is reliable, but this cannot be proved, siriée]
wrappers may increase the number of problems to which has a non-empty intersection wiys
solutions may be found.

In what follows, a specialization of Algorithra] 3 Sobs set of trajectories
to boxes is called Box-RRT. In Box-RRT, the Haus-
dorff distance (Berger, 1987) between boxes may be
used by thenear est _nei ghbor function. The box
[snew) = [sk+1] containing all possible state values at
time (k + 1) At considering that the state is iBneaf [Snew]
at time kAt and that the inputy, € [u] is constant
over [kAt, (k + 1) At] must be computed while taking
into account the bounded state perturbation. This may [Sneal
be performed by a sqir edi cti on function involv-
ing guaranteed numerical integration, as proposeg,
in (Jaulin, 2002; Kieffer and Walter, 2003; Raissi, Ram- Fig. 3. The setof trajectories betwefea] and[snew], wrapped
dani and Candau, 2004; Kieffer and Walter, 2006). Fi- in [51], is proved to be reliable, sindg:] has an empty
nally, the set collision test that guarantees the religbili intersection WithSovs

of every path betweefsnea] and [snew] implemented in Fi h " ths ol df
col l'i sion_free_pat hrequires to wrap all possible lgureq 4(@) anfi 4(p) shows two paths planned for a

[81]

. . o ) system described by the two-dimensionnal uncertain state
state trajectories betweéshea] and|[spew/. This is again equation
performed using guaranteed numerical integration. Note . 1
that wrapping may be so coarse that a path may not be S=T ot (4)



Reliable Robust Path Planning

wheres € R?, w € [-0.02,0.02], sint € [90,90.1]2,
Sgoal = [10,20]%, u € [0,1]*> and At = 100 ms. Fig-
ure[4(b) illustrates the performance of tBealbiasvari-
ant of the Box-RRT algorithm witlp = 0.1.

These two first examples show the ability of Box-
RRT to find a reliable path in a simple environment, ac-
counting for uncertainty in the model of the system. Nev-

ertheless, uncertainty is growing along the path, since no +.

measurement is used to reduce it. The next section is de

voted to a solution of Problem 2 described in Sediibn 2.
4.3. Reach-RRT: Box-RRT and reachability analy-
sis. In Box-RRT a unique series of constant control in-

puts over time intervals of widti\¢ is used to compute
[Snew] from [snead Satisfying[1). They are the same for all
$ € [sneaj, Which is natural for path planning, since the
succession of values taken by the control input is impor-
tant to actually drive the system frofnic] to [sgoal -

If Box-RRT does not manage to find a unique input
functionu € L{[ﬁf to solve Problem 1, one may first try to
split [sinit] into subboxes and to apply Box-RRT on each
of them. A solution to Problem 2 is then obtained, as the
control input sequence is usually no longer the same for
all s € [sinit]. The main difficulty with this technique is
that the number of boxes in whidkinii] has to be split so
that Box-RRT provides a solution for each of them may be
difficult to determinea priori. Moreover, instead of get-

Gamcs

Algorithm 6 Reach-RRT_extend, [srand, At, J)
1: [Sneal < nearest_neighba® [srand)
2: u « select_inputGrand, [Sneal)

[snew] < prediction(snead, u, At)

if collision_free_pathéneal,[snew],u,At) then
[Snew] < box_reductionnead, [Snew), J)
G.add_guaranteed_nodiegy])
G.add_guaranteed_ed@@tad, [Snew), )
return  [snew

end if

return

3:
4:
5:
6:

-8
9:
10:

Algorithm 7 box_reductionfneal, [snew|, /)

1 [Storeturn] — [Snew]

2: — Cut([SneaJ 5 J) {S =
{[Sneaﬂla [Sneal]ga s [SneaﬂJ}}

3: repeat

4: [Sred] — reduce[storeturn])

5. forall [snea.]j € Sdo

6: isReduced— find_input(snead ;, [sred)

7 if (isReduced == FAILURE)hen

8: return [Storeturrﬂ

9: end if

10: end for

11: [Storetum] — [Sred]

12: until TRUE

ting a single tree, one obtains as many trees as subboxes

in [Sinit]-

the set of states consistent wihea], the chosen con-

We propose instead to generate a single tree, lead{ro! inputu, and the noisev € W,). The aim is to

ing to a set of trajectories without branching leading from
[sinit] O [sqoal. Between two consecutive boxgs,| and
[sk+1] of this set of trajectories, the control input may be
adapted to each € [sj] to ensure that the system actually
reachegs;41]. This allows the size Ofsnen] to be re-
duced at each iteration with a simple modification of Box-
RRT, entitled BoxReduction, executed just after Step 4 of
the ext end function of the Box-RRT algorithm. Algo-
rithm[H describes the proposed Reach-RRT algorithm.

Algorlthm 5 Reach'RRﬂ(Smn] g Sfree, [Sg0a|] g Sfree,
AteRT, K €N, J€N)

1: G.init([smit])
1+ 0
repeat

[Srand < random_box§tree)

[snew] — Reach-RRT_extend{, [srand, At, J)
until i++> K or ([snew] # 0 and [snew] € [Sgoal)
return G

NoaRr N

In theext end function of Algorithni4, assume that
[sneaj COrresponds to timé&At. After Step4 of this
function, one get$snew] at (k + 1) At corresponding to

find some[spen] C [Snew] With minimum width, such that
Vs € [Sneal, Jug € [u] satisfying

Vw € Wiw), s ((k + 1) At) € [spe,] and

Vt € [kAL, (k+ 1) At], s (t) € Stree (5)

This problem may be quite difficult to solve. The follow-
ing sub-optimal algorithm aims only at finding a bi@}|
that is smaller tharsney] and satisfied5). It is inspired
from (Jaulin and Walter, 1996).

First, a box [sred C [snew] IS chosen such
that mid{[seq}] =mMid{[snew]} and rad[sred}
(1 — ) -rad{[snew] } With £ € ]0, 1], see Figur€l5. In this
figure, ¢ ([s], ux, kAt) represents a box containing the
set of all solutions of(l]) evaluated at timeék + 1) At,
obtained for an initial state € [s] at kAt, with a con-
stant control inputy;,. Then[spea] is splitinto.J subboxes
[snea,]j, j=1...J. For each[snea.]j, one tries to find

a constant input/ € [u] that robustly drives all states
from [snea,]j to [sred (See Figuréls). For that purpose,
one starts fromu]. If mid {[u]} robustly drives|sneal
t0 [sred, u/ =mid{[u]}. Else,[u] is bisected and the mid-

points of the two resulting boxes are tested again. The bi-
section procedure is repeated until a control input is found

or until the resulting subboxes are too small to be further
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(a) Path planned using the Box-RRT algorithm

(b) Path planned using tl@oalbiasvariant of Box-RRT

Fig. 4. Paths planned using the Box-RRT algorithm

Algorithm 8 find_input(N: [s], [sred], [u], €)

1A — [u

2: while A # () do

3 [c] < Pop@)

& [snew] < & ([s), mid([c]), k - At)

5: if [Snew] C [Sreducer}
collision_free_pathfneal, [Snew/, Mid([c]),At)
then

6: return SUCCES

7. else

8: if w([c],)< e then

9: return FAILURE

10: else

11: {[ciett] , [crignt] } < bissection[c])

12: A+ = [C|eft]

13: A+ = [Cright]

14: end if

15:  endif

16: end while

bisected. Algorithrfilld summarizes these operations. It has®

to be called for each subbc@%eaﬂj of [sneal-

When control inputs satisfyin@g) have been found

for each(sneal j» One may try to reducpyed further.

5. Application in robotic

¢([5neaﬂp Ula kAt)

[Sneay| [Snead Qm BE |:|

¢([3nea|]3’ USa kAt)

Fig. 5. [snea] IS split into subboxes and for each sub-
box [sneal;, an input w’ is computed such that

¢([5neadj7 uj7 kAt) c [5 red]

environment, where obstacles are described by polygons.
One of the difficulties of path planning in this context is
the characterization &ee, which may be quite complex.

In (Jaulin, 2001)S#ee is characterized first or constructed
iteratively. Here Sqee is not explicitely determined: only
the constraints of the environment are used to determine
whether a set of paths is reliable. Apart from the model
of the vehicle considered here, this section provides a de-
cription of a collision test to determine whether a set of
paths between two consecutive sets of states is reliable.

5.1. Model of the vehicle. Various kinematic or dy-
namic models of vehicles (Pepy, Lambert and Mounier,
2006) could be used to test the Set-RRT path planner.
Here, a model based on the classisahple carmodel

The proposed Box-RRT algorithm is now applied to path (LaValle, 2006) evolving in D environment is consid-

planning for nonholonomic vehicles in a structurgld

ered, see FigurE] 6. This model incorporates nonholo-
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Fig. 6. Thesimple carmodel

nomic constraints and is given by

= v(l 4 w,) cosl
y=uv(l+w,)sind ,
6 = 20dwe) fan (5(1 4 ws))

(6)

where the state vecter= (z,y, §)" specifies the position
(z,y) and orientatior® of a frame) attached to the ve-
hicle with respect to a world frame’ attached to the en-
vironment. The control input vector is = (v,§)T, with
v the longitudinal speed ande [—dax, dmax]| the steer-
ing angle. Herey is assumed to belong to a sétwith
finite cardinality. L is the distance between the front and
rear wheels. The noise componeats € [—uverr, ver] and
ws € [—dem der] account for the slipping of the vehicle
and for the steering unprecision.

On the figures to follow, walls and obstacles to be
avoided are represented by polygons.

5.2. Collision test. If [sini] and[sgoal are respectively

the set of initial and final states, one has to show, before Lohner, 1987) has been used to obtaiq

&

Algorithm 9 collision_free_patHéneal, [Snewl, u, At, En-
vironment)
[51] = [Sneal] u [Snew]
: while [spead + [0, At]f(]
[51) — [8a] + ¢ [-1,1]

end while
if CollisionFreeConfiguratiofi{;], v, At, Environ-
ment)then

return true;
else

return false
end if

=

¢ [51] do

51],11,)
X3

aprwn

© N

i1 =1...ny. A polytope containing these, boxes is eas-
ily obtained by the Graham scan method (Graham, 1972)
with time complexity Gn logn).

Since this convex hull is an outer approximation of
the union of all the possible locations of parts of the ve-
hicle that are associated with a given configuration box,
one may now test whether the vehicle is safely located. A
collision may occur only if there exists a segment of the
polygon that intersects a segment of the environment or
when a segment of the environment is entirely included in
the polygon.

5.2.2. Collision-free path. The previous test is useful

to determine whetheginii] and[sgoal are reliable. Now,

one has to extend it to determine whether a collision may

occur when the vehicle moves fro#hea] t0 [snew]. This

is the aim of thecol | i si on_free_pat h function.
Guaranteed numerical integration (Moore, 1966;

w from [speaf-

starting the path planner, that both sets of states belong 1015 enclose the set of trajectories betwéea,] and[sneal,

Stree. In What follows, the collision tests for a box in the

it suffices to finds] satisfying

configuration space and for a set of paths between config-

uration boxes is described. These tests form the core of the

col l'i sion_free_path() function of Algorithm3.

5.2.1. Collision-free configuration. The projection of
the shape of the vehicle onto the, y)-plane inV is
wrapped in a convex polytop@. Each vertexv;, i =
1...ny of C is identified by its coordinatege), yY) in
V', the projection onto théx, y)-plane ofV. Assume
that the state of the vehicle is= (x,y, H)T in W. The
boxes([z}V], [y}V]) containing the set of coordinates of
then, vertices of the polytope i/, the projection onto

the (z,y)-plane ofW, are then
[xw]> ([:c]) (cos[@] —sin[@]) (IV>
( = + (. v (@
(d) = (1) = (ol i) )+ @
To determine the set containing all possildlein W,
one may build the convex envelope ofz!V], [)V]),

[Snea] + [0, At]f([31],u) C [51]. (8)
Then, the following holds true (Moore, 1966)
Vs € [so] Vt € [kAL, (k+ 1) At], s(t) € [51]. (9)

The box[s] is evaluated in the first step of guaranteed
numerical integrators (Picard-Lindelof iteration to peov
the existence and uniqueness of solutions to ODES). It is
thus obtained as a byproduct of these integrators. Once
[51] is computed, it has to be tested for reliability with
the same algorithm as f@sinit] and[sgea]. The collision
test used with the Box-RRT algorithm is summed up in
Algorithm[3.

When it is proved that no collision occurs between
any two consecutive nodes of the tree, by induction one
proves that the path betweésii:] and[sgoal (if it exists
in the tree) is robustly reliable.
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6. Results 6.3. Application of Reach-RRT. The same simulated

_ ) ) ) ) conditions are considered as in Figire B(b) of Se¢fioh 6.2.
This sectlo_n prowde_s some res_ults obtained with the Box- Results illustrated on FigurEs 9(a) 4nd 9(b) show that
RRT algorithm considering th&imple carmodel of Sec-  {he yse of differentiated inputs allows the boxes to be re-
tion(5.1. In all examplesiz = 100 ms. Only projections  qyced and guaranteed reachability to be proven.
of boxe_g onto thé€z, y)-plane are represented to increase In this example, adapting the input allows the size of
readability. the box|[snen] at each iteration to be reduced by% in
average. This rate is obtained at the price of splitting each
[snea] in at least64 subboxes, which increases signifi-

6.1.  Successes.First, results obtained at low speed cantly the computationnal load. Thus, the reduction step

(I%vlver thaﬂl m.s*lci are plresented; sl(ijpping E then negli- may be used with a period larger than.
gible (ver = 0), and itis also assumed thigk = 0. In Figure 9(@), box reduction is performed every sec-

Figure[7(a) represents the solution of a simple path- g, The path planner find a path by generating about
planning problem using the Box-RRT algorithm. The 10 000 nodes. Similarly, a path is found for the problem

width of each component din] is 20 cm for thex and illustrated in Figurd 9(B) with box reduction performed
y components and.1 rad foré. The boX[sqeal, With size every two seconds on each path.

10 mx 10 mx 27 rad, has to be reached. The distance be- As mentionned earlier, with Reach-RRT, one proves
tween the projections onto the, y)-plane of mid[sint]}  hat for each initial state, there exists a control inpugabl

and mid [sgoal } is around100 m. About 30 000 nodes 4 grive the system robustly to the goal area. It is then
are built by Box-RRT to reacfsgoal. In Figurg7(B) about ot trying to divide the global path planning task into
190 000 nodes are required to reach a smaller goal, withgeyeral local (short-term) planning tasks along the path
Size5 M5 mx2r. obtained by Reach-RRT. This allows information pro-

Other types of models could readily be used. For vided by sensors to be taken into account, facilitating the
example, Figuré 7(t) shows a path planned for a modeliask of Box-RRT.

only able to turn on the right. Dynamic vehicle models
(Pepyet al.,, 2006) or kinematic chains (Yakey, LaValle
and Kavraki, 2001) could also be considered.

~ Harder problems may be solved, such as path plan-This paper has presented algorithms based on Rapidly-
ning in an environment with more obstacles, as in exploring Random Trees able to perform path planning

7. Conclusions and perspectives

Figure[7(d). In this example, the size ¢fgoa] is tasks for models of systems including uncertainties. Un-
15mx15mx 2w rad. Again, a guaranteed path between certain quantities are assumed to belong to sets. A first
the beginning and the end of the labyrinth is found. conceptual Set-RRT path planner dealing with general sets

has been presented, followed by an implementable Box-

RRT dealing with boxes. The Box-RRT has also been
6.2. Challenges. In the previous section, between Fig- adapted to perform reachability analysis.
ures[7(d) andl 7(b), the size piyoa] has been reduced, Some algorithms presented in this paper are rather
which made the problem harder to solve. If the size of preliminary’ but show the potentia| of the approach' For
[sgoal is reduced further, a path may no longer be found example, the choice of the control input in Box-RRT or
(see Figurg 8(R)) even if it may still exist. Since only pre- Reach-RRT is not optimised yet. Better local (short-term)
diction is used, and considering the form of the dynami- reachability analysis techniques could be used, seg,

cal equation describing the motion of simple car, the size (Collins and Goldsztejn, 2008; Ramdani, Meslem and
of the box describing the uncertain state always grows up candau, 2008).

along the path. Thus, as soon as the sizs|adt the end In the present version of Set-RRT and Reach-RRT,
of a path becomes bigger than that|efoal, there is no g s assumed to be constant with time. One could easily
chance to reacfsgoal from this box. adapt the proposed algorithmsSgee varying with time,

The same problem appears when the skidding errorto describe moving obstacles, to take into account the lim-
is too large. This problem is illustrated in Figire 8(b), ited energy available to the systeetc.
where the size ofsinit] is 10 cmx10 cmx[1, 1.05] rad,
the size of[sgoal is 10 mMx10 mx 27 rad, ver = 1072
andder = 1073, Uncertainty then becomes exceedingly
large and the vehicle no longer passes through the corri-Ackerman, J., Barlett, A., Kaesbauer, D., Sienel, W. aninSte
dor. Thus, this problem cannot be solved using the present  hauser, R. (1993)Robust Control Systems with Uncertain
version of Box-RRT presented in Sectfonl4.2, unless some  Physical ParameteysSpringer-Verlag.
exteroceptive measurements are used at some points alonglamo, T., Bravo, J., Camacho, E. and de Sevilla, U. (2003).
the path to reduce uncertainty. Guaranteed state estimation by zonotogesc 42nd Con-
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