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RELIABLE ROBUST PATH PLANNING

R. PEPY, M. K IEFFER, AND E. WALTER

L2S - CNRS - SUPELEC - Univ Paris-Sud
Rue Joliot-Curie, 91192 Gif-sur-Yvette, France

This paper is devoted to path planning when the safety of the system considered has to be guaranteed in the presence
of bounded uncertainty affecting its model. A new path planner addresses this problem by combining Rapidly-exploring
Random Trees (RRT) and a set representation of uncertain states. An idealized algorithm is presented first, before a
description of one of its possible implementations, where compact sets are wrapped into boxes. The resulting path planner
is then used for nonholonomic path planning in robotics.
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1. Introduction

Consider a system described by a continuous-time state-
space model. Designing some control input to drive
this system from a possibly uncertain initial state to a
desired final state is a well-known robust control prob-
lem (Ackerman, Barlett, Kaesbauer, Sienel and Stein-
hauser, 1993; Francis and Khargonekar, 1995). This prob-
lem is made more complicated when constraints on the
control input and on the evolution of the state have also to
be satisfied. To solve it, a model of the system is usually
assumed to be available, where noise variables account for
the fact that this model is only an approximation of reality.
The control input has then to be chosen in such a way that
the system reaches the desired final state, despite uncer-
tainty on the initial state and the presence of noise,i.e., the
control input has to berobustto any type of uncertainty.

This paper focuses on applications in robotics, where
the robust control problem becomes a reliable path-
planning problem (Latombe, 1991). Consider, for exam-
ple, a vehicle moving in a two-dimensionnal structured
environment. This vehicle should be driven from an ini-
tial state orconfiguration(position and orientation of the
vehicle with respect to a frame attached to the environ-
ment) to a final desired configuration, despite the presence
of uncertainty related to the model of the vehicle, to im-
perfect embedded sensors, to approximately charted ob-
stacles,etc. The control input and the corresponding paths
(succession of states) achieving this goal without collision
are said to be safe orreliable.

Path planners involving Rapidly-exploring Random

Trees (RRT) (LaValle, 1998; LaValle and Kuffner, 2001b;
LaValle and Kuffner, 2001a) represent the state-of-art in
random search. They allow an efficient exploration of
the configuration space but, to the best of our knowl-
edge, do not provide any robustness to model uncertainty.
When taken into account, configuration uncertainty is
usually described probabilistically,e.g., by a multivari-
ate Gaussian probability density function (Lambert and
Gruyer, 2003; Pepy and Lambert, 2006; Gonzalez and
Stentz, 2005). The main drawback of path planners based
on this description is that the reliability of the path ob-
tained may be guaranteed at best up to a given confidence
level.

To facilitate path planning in the presence of uncer-
tainty, information allowing the vehicle to localize itself
is sometimes assumed to be available. In (Lazanas and
Latombe, 1995; Gonzalez and Stentz, 2004; Gonzalez and
Stentz, 2007; Bouilly, Simeon and Alami, 1995; Fraichard
and Mermond, 1998), for example, relocalization zones,
in which the configurations become perfectly or at least
much more accurately known are considered. This tech-
nique is rather efficient, but requires the preparation of
these relocalization zones. In (Lambert and Gruyer, 2003;
Pepy and Lambert, 2006), a complex model of exterocep-
tive sensors (sonars) and an extended Kalman filter are
used. To provide distance measurements during path plan-
ning, sonars are simulated assuming that the vehicle is lo-
cated at the mean of the multivariate Gaussian function
that characterizes the location uncertainty. The resulting
simulated measurements are then used to reduce uncer-
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tainty. If this technique facilitates the obtention of a path,
it of course does not allow any statement about the relia-
bility of this path.

This paper presents a first conceptual reliable robust
path planner, assuming that all uncertain quantities are
boundedwith known bounds. At each time instant, un-
certain configurations are represented by possibly non-
connected sets. The proposed path planner takes advan-
tage of the ability of RRTs to explore the whole configura-
tion space efficiently. Starting from some uncertain initial
configuration (represented by a set), the planner aims at
driving the vehicle to a final configurationset(it will not
be possible to drive it accurately to a point final configura-
tion). Provided that the assumptions on the error bounds
are not violated, if a robust path is found using this new
path planner, its reliability will beguaranteed.

This paper is organized as follows. In Section 2,
the two types of robust path planning problems to be
addressed are presented. The principle of path planners
based on RRTs is described in Section 3. Section 4 pro-
vides a conceptual extension of these planners to sets, and
Box-RRT, one of its implementable counterparts where
these sets are represented by boxes (or interval vectors).
Section 5 applies Box-RRT to path planning for non-
holonomic vehicles. Examples of path planning tasks for
a vehicle are given in Section 6, before drawing some con-
clusions.

2. Reliable robust path planning

Consider a system, the evolution of which is described by
the continuous-time state equation

ds (t)

dt
= f(s (t) , u (t) , w (t)), (1)

wheres (t) ∈ S ⊂ Rn is the state of the system,u is
some bounded input function with values in[u] andw is
some random bounded state perturbation function remain-
ing in [w]. It is assumed thatu belongs toU∆t

[u] , the set
of piecewise-constant bounded functions over intervals of
the form [k∆t, (k + 1)∆t[, with ∆t > 0 and k ∈ N,

and thatw belongs toW[w], the set of functions bounded
in [w]. For all t ∈ [k∆T, (k + 1)∆T [, u ∈ U∆t

[u] , and
w ∈ W[w], g (s, t) = f (s, u (t) , w (t)) is assumedℓ-
Lipschitz overS.

The state-spaceS is partitionned intoSfree, to which
the state of the system is allowed to belong, andSobs = S\
Sfree, to which it is not.Sobs results of constraints imposed
on the system,e.g., by its environment.

At time t = 0, s (0) is assumed to belong to some
known setS (0) = Sinit ⊂ Sfree. The system has to be
driven to a given set of goal statesSgoal ⊂ Sfree. The aim
of robust path planning is then to design an input func-
tion u ∈ U∆t

[u] such that the system reachesSgoal, without
enteringSobs at any time instant, whatever the initial state

s ∈ Sinit and the noise functionw ∈ W[w]. A planned path
is reliable when a given functionu ∈ U∆t

[u] can beproved
robustly to drive the system from anys ∈ Sinit to a final
state inSgoal.

As will be seen below, there may be several formula-
tions of this robust path planning problem.

2.1. Problem 1: Path planning. A first formulation of
the robust path planning problem amounts to determining
whether

∃K > 0 and∃u ∈ U∆t
[u] such that

∀s ∈ Sinit and∀w ∈ W[w], s (K∆t) ∈ Sgoal and

∀t ∈ [0, K∆t] , s (t) ∈ Sfree, (2)

wheres (t) is the solution of(1).
In (2), thesamesequence of inputs has to drive the

system robustly from its imprecisely known initial state
to a final state belonging toSgoal. When the initial uncer-
tainty on the state, or the state perturbation is too large,
or whenSfree has a complex structure and the distance be-
tweenSinit andSgoal is too long, it may become quite dif-
ficult to find such a sequence of inputs. It may then be
convenient to relax Problem 1 into Problem 2, presented
in the next section.

2.2. Problem 2: Reachability analysis. Even if a so-
lution to (2) exists, actual control inputs are usually not
applied in open loop. Instead, an observer is used to es-
timate the state evolution using measurements provided
by sensors, see,e.g., (Luenberger, 1966). With this im-
proved knowledge, it may be very useful to update path
planning from time to time. In such a context, determin-
ing whether there exists a unique sequence of inputs that
drives the system toSgoal whatever the initial state inSinit

is too stringent. It suffices to know whether for any initial
states ∈ Sinit , there exists a sequence of inputs that drives
the system froms to Sgoal. This is typically areachability
problem: one has to determine whetherSgoal is reachable
from any state inSinit and for anyw ∈ W[w].

Formally, one has to determine whether

∀s ∈ Sinit , ∃K > 0 and∃u ∈ U∆t
[u] such that

∀w ∈ W[w], s (K∆t) ∈ Sgoal and

∀t ∈ [0, K∆t] , s (t) ∈ Sfree, (3)

wheres (t) is again the solution of(1) .

3. Rapidly-exploring Random Trees (RRT)

As for several non-reliable path planning algorithms, the
RRT algorithm will be the corner-stone of the proposed
reliable and robust path planner. The structure and proper-
ties of the RRT algorithm are thus now briefly recalled. In
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Algorithm 1 RRT(sinit ∈ Sfree, Sgoal ⊂ Sfree, ∆t ∈ R+,
K ∈ N)

1: G.init(sinit)
2: i = 0
3: repeat
4: srand← random_vector(Sfree)
5: snew← RRT_extend(G, srand, ∆t)
6: until i++> K or (snew 6=null and snew∈ Sgoal)
7: return G

Algorithm 2 RRT_extend(G, srand, ∆t)
1: snear← nearest_neighbor(G, srand)
2: u← select_input(srand, snear)
3: snew← new_state(snear, u, ∆t)
4: if collision_free_path(snear,snew,u,∆t) then
5: G.add_node(snew)
6: G.add_edge(snear, snew, u)
7: return snew

8: end if
9: return null

the remainder of this section, it is assumed that the initial
states (0) = sinit is perfectly known, and that no pertur-
bation affects the state equation(1) .

3.1. Description. The RRT algorithm (Kuffner and
LaValle, 2000; LaValle and Kuffner, 2001b) is an incre-
mental method aimed at quickly exploring a given config-
uration space from a given starting configuration. Its is de-
scribed in Algorithm 1. First, the treeG is initialised with
a single node corresponding tosinit . Then, a statesrand ∈
Sfree is chosen at random. Thenearest_neighbor
function searches in the treeG for the nodesnear that is
the closest tosrand according to some metricd. A control
inputu ∈ [u] is then chosen (for instance at random). In-
tegrating (1) over a time interval∆t with initial condition
snear and constant control inputu results in a new state
snew. If it can beproved that all state values along the
trajectory betweensnear andsnew lie in Sfree, then the tra-
jectory betweensnearandsnew is reliableandsnew is added
to G and connected tosnear. Otherwise,snew is not added
to G. A new random state is chosen to start the next itera-
tion of the algorithm. A path is found whensnew = sgoal,
or (more realistically) whensnew ∈ Sgoal.

Figure 1 illustrates the growth of the treeG with the
number of iterations of the RRT algorithm whenS =
[0, 100]2, ṡ = u, with s ∈ S ⊂ R2, u ∈ [0, 1]2 and
∆t = 100 ms.

3.2. Improvements. Much attention has been dedi-
cated to improving RRT. In (LaValle and Kuffner, 2001b),
the generation ofsrand is modified by biasing the tree to-

Algorithm 3 Set-RRT(Sinit ⊆ Sfree, Sgoal ⊆ Sfree, ∆t ∈
R+, K ∈ N)

1: G.init(Xinit)
2: i← 0
3: repeat
4: Srand← random_set(Sfree)
5: Snew← Set-RRT_extend(G, Srand, ∆t)
6: until i++> K or (Snew 6=null and Snew⊂ Sgoal)
7: return G

Algorithm 4 Set-RRT_extend(G, Srand, ∆t)
1: Snear← nearest_neighbor(G, Srand)
2: u← select_input(Srand, Snear)
3: Snew← prediction(Snear, u, ∆t)
4: if collision_free_path(Snear,Snew,u,∆t) then
5: G.add_guaranteed_node(Snew)
6: G.add_guaranteed_edge(Snear, Snew, u)
7: return Snew

8: end if
9: return null

ward sgoal, which increases the planning speed for some
specificSfree. Instead of choosingsrand in the wholeSfree,
another option is to choose it with a probabilityp > 0 in
a given subsetSrand of Sfree. WhenSrand = {sgoal}, one
obtains the RRT-Goalbiasalgorithm and whenSrand is the
circle centered onsgoal with a radiusmins∈G d(s, sgoal),
one gets the RRT-GoalZoomalgorithm.

4. Set-RRT and Box-RRT

In order to cope with an uncertain initial configuration and
bounded state pertubations, the classical RRT path planner
has to be adapted to deal with sets. The first part of this
section is devoted to the presentation of a new concep-
tual algorithm, before presenting one of its implementable
counterparts.

4.1. Set-RRT. Set-RRT aims at generating a graphG

consisting of nodes associated withsets in state space.
The structure of Set-RRT is very close to that of the clas-
sical RRT algorithm, where nodes were associated with
vectors. The main changes concern the metric required
to evaluate distances between sets, the prediction func-
tion, which has to determine the evolution of uncertain
states according to(1), and the collision test to determine
whether all possible trajectories between two consecutive
sets are reliable. The principle of Set-RRT is given in Al-
gorithm 3.

At step 4,Srand is most often chosen as a point vector,
but making it a set allows replacement ofSrand by Sgoal for
the implementation of set variants ofGoalbiasandGoal-
Zoom. Set-RRT stops when either the number of nodes



4 R. Pepy, M. Kieffer, and E. Walter

(a) 100 nodes (b) 600 nodes (c) 6000 nodes

Fig. 1. Growth of the tree built by the RRT algorithm

generated reaches its limitK, or when the goal area is
reached,i.e., the tree includes a node associated with a set
Sk such thatSk ⊂ Sgoal.

4.2. Box-RRT. Dealing with general sets ofRn is very
difficult, even for the simplest uncertain state equations.
Wrappers (Jaulin, Kieffer, Didrit and Walter, 2001) guar-
anteed to contain the setsSk have to be used to get an
implementable counterpart to Set-RRT. Candidate wrap-
pers are for example ellipsoids (Schweppe, 1973), zono-
topes (Alamo, Bravo, Camacho and de Sevilla, 2003), in-
terval vectors (Moore, 1979) or union of interval vectors
(Kieffer, Jaulin and Walter, 2002; Kieffer, Jaulin, Braems
and Walter, 2001). In what follows, interval vectors, or
boxes, are used to represent uncertain states. These are
quite simple sets, which may provide a very coarse de-
scription of complex-shaped sets. Using more accurate
wrappers may increase the number of problems to which
solutions may be found.

In what follows, a specialization of Algorithm 3
to boxes is called Box-RRT. In Box-RRT, the Haus-
dorff distance (Berger, 1987) between boxes may be
used by thenearest_neighbor function. The box
[snew] = [sk+1] containing all possible state values at
time (k + 1)∆t considering that the state is in[snear]
at time k∆t and that the inputuk ∈ [u] is constant
over [k∆t, (k + 1)∆t] must be computed while taking
into account the bounded state perturbation. This may
be performed by a setprediction function involv-
ing guaranteed numerical integration, as proposed,e.g.,
in (Jaulin, 2002; Kieffer and Walter, 2003; Raissi, Ram-
dani and Candau, 2004; Kieffer and Walter, 2006). Fi-
nally, the set collision test that guarantees the reliability
of every path between[snear] and [snew] implemented in
collision_free_path requires to wrap all possible
state trajectories between[snear] and[snew]. This is again
performed using guaranteed numerical integration. Note
that wrapping may be so coarse that a path may not be

deemed robustly reliable even if it actually is, see Figure 2.
On the contrary, in situations such as that of Figure 3, the
set of paths between[snear] and[snew] can be easily proved
to be robustly reliable.

[snear]

[snew]

set of trajectories
Sobs

[s̃1]

Fig. 2. The set of trajectories between[snear] and[snew], wrapped
in [s̃1], is reliable, but this cannot be proved, since[s̃1]
has a non-empty intersection withSobs.

[snear]

[snew]

set of trajectoriesSobs

[s̃1]

Fig. 3. The set of trajectories between[snear] and[snew], wrapped
in [s̃1], is proved to be reliable, since[s̃1] has an empty
intersection withSobs.

Figures 4(a) and 4(b) shows two paths planned for a
system described by the two-dimensionnal uncertain state
equation

ṡ =
1

1− w
u (4)
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wheres ∈ R2, w ∈ [−0.02, 0.02], sinit ∈ [90, 90.1]2,
sgoal = [10, 20]2, u ∈ [0, 1]2 and∆t = 100 ms. Fig-
ure 4(b) illustrates the performance of theGoalbiasvari-
ant of the Box-RRT algorithm withp = 0.1.

These two first examples show the ability of Box-
RRT to find a reliable path in a simple environment, ac-
counting for uncertainty in the model of the system. Nev-
ertheless, uncertainty is growing along the path, since no
measurement is used to reduce it. The next section is de-
voted to a solution of Problem 2 described in Section 2.

4.3. Reach-RRT: Box-RRT and reachability analy-
sis. In Box-RRT a unique series of constant control in-
puts over time intervals of width∆t is used to compute
[snew] from [snear] satisfying (1). They are the same for all
s ∈ [snear], which is natural for path planning, since the
succession of values taken by the control input is impor-
tant to actually drive the system from[sinit ] to [sgoal].

If Box-RRT does not manage to find a unique input
functionu ∈ U∆t

[u] to solve Problem 1, one may first try to
split [sinit ] into subboxes and to apply Box-RRT on each
of them. A solution to Problem 2 is then obtained, as the
control input sequence is usually no longer the same for
all s ∈ [sinit ]. The main difficulty with this technique is
that the number of boxes in which[sinit ] has to be split so
that Box-RRT provides a solution for each of them may be
difficult to determinea priori. Moreover, instead of get-
ting a single tree, one obtains as many trees as subboxes
in [sinit ].

We propose instead to generate a single tree, lead-
ing to a set of trajectories without branching leading from
[sinit ] to [sgoal]. Between two consecutive boxes[sk] and
[sk+1] of this set of trajectories, the control input may be
adapted to eachs ∈ [sk] to ensure that the system actually
reaches[sk+1]. This allows the size of[snew] to be re-
duced at each iteration with a simple modification of Box-
RRT, entitled BoxReduction, executed just after Step 4 of
theextend function of the Box-RRT algorithm. Algo-
rithm 5 describes the proposed Reach-RRT algorithm.

Algorithm 5 Reach-RRT([sinit ] ⊆ Sfree, [sgoal] ⊆ Sfree,
∆t ∈ R+, K ∈ N, J ∈ N)

1: G.init([sinit ])
2: i← 0
3: repeat
4: [srand]← random_box(Sfree)
5: [snew]← Reach-RRT_extend(G, [srand], ∆t, J)
6: until i++> K or ([snew] 6= ∅ and [snew] ∈ [sgoal])
7: return G

In theextend function of Algorithm 4, assume that
[snear] corresponds to timek∆t. After Step 4 of this
function, one gets[snew] at (k + 1)∆t corresponding to

Algorithm 6 Reach-RRT_extend(G, [srand], ∆t, J)

1: [snear]← nearest_neighbor(G, [srand])
2: u← select_input([srand], [snear])
3: [snew]← prediction([snear], u, ∆t)
4: if collision_free_path([snear],[snew],u,∆t) then
5: [snew]← box_reduction([snear], [snew], J)
6: G.add_guaranteed_node([snew])
7: G.add_guaranteed_edge([snear], [snew], u)
8: return [snew]
9: end if

10: return ∅

Algorithm 7 box_reduction([snear], [snew], J)

1: [storeturn]← [snew]
2: S ← cut([snear] , J) {S =
{[snear]1, [snear]2, . . . , [snear]J}}

3: repeat
4: [sred]← reduce([storeturn])
5: for all [snear]j ∈ S do
6: isReduced← find_input([snear]j , [sred])
7: if (isReduced == FAILURE)then
8: return [storeturn]
9: end if

10: end for
11: [storeturn]← [sred]
12: until TRUE

the set of states consistent with[snear], the chosen con-
trol input u, and the noisew ∈ W[w]. The aim is to
find some[s′new] ⊂ [snew] with minimum width, such that
∀s ∈ [snear], ∃uk ∈ [u] satisfying

∀w ∈ W[w], s ((k + 1)∆t) ∈ [s′new] and

∀t ∈ [k∆t, (k + 1)∆t] , s (t) ∈ Sfree. (5)

This problem may be quite difficult to solve. The follow-
ing sub-optimal algorithm aims only at finding a box[sred]
that is smaller than[snew] and satisfies(5). It is inspired
from (Jaulin and Walter, 1996).

First, a box [sred] ⊂ [snew] is chosen such
that mid{[sred]} =mid{[snew]} and rad{[sred]} =
(1− ε) ·rad{[snew]} with ε ∈ ]0, 1[, see Figure 5. In this
figure, φ ([s] , uk, k∆t) represents a box containing the
set of all solutions of(1) evaluated at time(k + 1)∆t,
obtained for an initial states ∈ [s] at k∆t, with a con-
stant control inputuk. Then[snear] is split intoJ subboxes
[snear]j , j = 1 . . . J . For each[snear]j , one tries to find
a constant inputuj ∈ [u] that robustly drives all states
from [snear]j to [sred] (see Figure 5). For that purpose,
one starts from[u]. If mid {[u]} robustly drives[snear]j
to [sred], uj =mid{[u]}. Else,[u] is bisected and the mid-
points of the two resulting boxes are tested again. The bi-
section procedure is repeated until a control input is found
or until the resulting subboxes are too small to be further
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[sinit ]

[sgoal]

(a) Path planned using the Box-RRT algorithm

[sinit ]

[sgoal]

(b) Path planned using theGoalbiasvariant of Box-RRT

Fig. 4. Paths planned using the Box-RRT algorithm

Algorithm 8 find_input(IN : [s], [sred], [u], ε)

1: A← [u]
2: while A 6= ∅ do
3: [c]← Pop(A)
4: [snew]← φ ([s], mid([c]), k ·∆t)
5: if [snew] ⊆ [sreduced] and

collision_free_path([snear], [snew], mid([c]),∆t)
then

6: return SUCCES
7: else
8: if w([c]k)< ε then
9: return FAILURE

10: else
11: {[cleft] , [cright]} ← bissection([c])
12: A+ = [cleft]
13: A+ = [cright]
14: end if
15: end if
16: end while

bisected. Algorithm 8 summarizes these operations. It has
to be called for each subbox[snear]j of [snear].

When control inputs satisfying(5) have been found
for each[snear]j , one may try to reduce[sred] further.

5. Application in robotic

The proposed Box-RRT algorithm is now applied to path
planning for nonholonomic vehicles in a structured2D

[snear]1 [snear]2

[snear]3 [snear]4

φ([snear]1, u
1, k∆t)

φ([snear]2, u
2, k∆t)

φ([snear]3, u
3, k∆t)

φ([snear]4, u
4, k∆t)

[snew]

[sred]

Fig. 5. [snear] is split into subboxes and for each sub-
box [snear]j , an input uj is computed such that

φ([snear]j , u
j , k∆t) ⊆ [s red]

environment, where obstacles are described by polygons.
One of the difficulties of path planning in this context is
the characterization ofSfree, which may be quite complex.
In (Jaulin, 2001),Sfree is characterized first or constructed
iteratively. Here,Sfree is not explicitely determined: only
the constraints of the environment are used to determine
whether a set of paths is reliable. Apart from the model
of the vehicle considered here, this section provides a de-
scription of a collision test to determine whether a set of
paths between two consecutive sets of states is reliable.

5.1. Model of the vehicle. Various kinematic or dy-
namic models of vehicles (Pepy, Lambert and Mounier,
2006) could be used to test the Set-RRT path planner.
Here, a model based on the classicalsimple carmodel
(LaValle, 2006) evolving in a2D environment is consid-
ered, see Figure 6. This model incorporates nonholo-
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x

y

L

θ

δ

r

(x, y)

v

Fig. 6. Thesimple carmodel

nomic constraints and is given by











ẋ = v(1 + wv) cos θ

ẏ = v(1 + wv) sin θ

θ̇ = v(1+wv)
L

tan (δ(1 + wδ))

, (6)

where the state vectors = (x, y, θ)T specifies the position
(x, y) and orientationθ of a frameV attached to the ve-
hicle with respect to a world frameW attached to the en-
vironment. The control input vector isu = (v, δ)T, with
v the longitudinal speed andδ ∈ [−δmax, δmax] the steer-
ing angle. Here,u is assumed to belong to a setU with
finite cardinality.L is the distance between the front and
rear wheels. The noise componentswv ∈ [−verr, verr] and
wδ ∈ [−δerr, δerr] account for the slipping of the vehicle
and for the steering unprecision.

On the figures to follow, walls and obstacles to be
avoided are represented by polygons.

5.2. Collision test. If [sinit ] and[sgoal] are respectively
the set of initial and final states, one has to show, before
starting the path planner, that both sets of states belong to
Sfree. In what follows, the collision tests for a box in the
configuration space and for a set of paths between config-
uration boxes is described. These tests form the core of the
collision_free_path() function of Algorithm 3.

5.2.1. Collision-free configuration. The projection of
the shape of the vehicle onto the(x, y)-plane inV is
wrapped in a convex polytopeC. Each vertexvi, i =
1 . . . nv of C is identified by its coordinates(xV

i , yV
i ) in

V ′, the projection onto the(x, y)-plane ofV . Assume
that the state of the vehicle iss = (x, y, θ)

T in W . The
boxes

([

xW
i

]

,
[

yW
i

])

containing the set of coordinates of
thenv vertices of the polytope inW ′, the projection onto
the(x, y)-plane ofW , are then

(

[xW
i ]

[yW
i ]

)

=

(

[x]
[y]

)

+

(

cos[θ] − sin[θ]
sin[θ] cos[θ]

) (

xV
i

yV
i

)

. (7)

To determine the set containing all possibleC in W ,
one may build the convex envelope of

([

xW
i

]

,
[

yW
i

])

,

Algorithm 9 collision_free_path([snear], [snew], u, ∆t, En-
vironment)

1: [s̃1] = [snear] ⊔ [snew]
2: while [snear] + [0, ∆t]f([s̃1], u) 6⊂ [s̃1] do
3: [s̃1]← [s̃1] + ǫ [−1, 1]×3

4: end while
5: if CollisionFreeConfiguration([s̃1], u, ∆t, Environ-

ment)then
6: return true;
7: else
8: return false
9: end if

i = 1 . . . nv. A polytope containing thesenv boxes is eas-
ily obtained by the Graham scan method (Graham, 1972)
with time complexity O(n log n).

Since this convex hull is an outer approximation of
the union of all the possible locations of parts of the ve-
hicle that are associated with a given configuration box,
one may now test whether the vehicle is safely located. A
collision may occur only if there exists a segment of the
polygon that intersects a segment of the environment or
when a segment of the environment is entirely included in
the polygon.

5.2.2. Collision-free path. The previous test is useful
to determine whether[sinit ] and[sgoal] are reliable. Now,
one has to extend it to determine whether a collision may
occur when the vehicle moves from[snear] to [snew]. This
is the aim of thecollision_free_path function.

Guaranteed numerical integration (Moore, 1966;
Lohner, 1987) has been used to obtain[snew] from [snear].
To enclose the set of trajectories between[snew] and[snear],
it suffices to find[s̃1] satisfying

[snear] + [0, ∆t]f([s̃1], u) ⊂ [s̃1]. (8)

Then, the following holds true (Moore, 1966)

∀s ∈ [s0] ∀t ∈ [k∆t, (k + 1)∆t], s(t) ∈ [s̃1]. (9)

The box[s̃1] is evaluated in the first step of guaranteed
numerical integrators (Picard-Lindelöf iteration to prove
the existence and uniqueness of solutions to ODEs). It is
thus obtained as a byproduct of these integrators. Once
[s̃1] is computed, it has to be tested for reliability with
the same algorithm as for[sinit ] and[sgoal]. The collision
test used with the Box-RRT algorithm is summed up in
Algorithm 9.

When it is proved that no collision occurs between
any two consecutive nodes of the tree, by induction one
proves that the path between[sinit ] and[sgoal] (if it exists
in the tree) is robustly reliable.
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6. Results

This section provides some results obtained with the Box-
RRT algorithm considering thesimple carmodel of Sec-
tion 5.1. In all examples,∆t = 100 ms. Only projections
of boxes onto the(x, y)-plane are represented to increase
readability.

6.1. Successes.First, results obtained at low speed
(lower than1 m·s−1) are presented; slipping is then negli-
gible (verr = 0), and it is also assumed thatδerr = 0.

Figure 7(a) represents the solution of a simple path-
planning problem using the Box-RRT algorithm. The
width of each component of[sinit ] is 20 cm for thex and
y components and0.1 rad forθ. The box[sgoal], with size
10 m×10 m×2π rad, has to be reached. The distance be-
tween the projections onto the(x, y)-plane of mid{[sinit ]}
and mid{[sgoal]} is around100 m. About 30 000 nodes
are built by Box-RRT to reach[sgoal]. In Figure 7(b) about
100 000 nodes are required to reach a smaller goal, with
size5 m×5 m×2π.

Other types of models could readily be used. For
example, Figure 7(c) shows a path planned for a model
only able to turn on the right. Dynamic vehicle models
(Pepyet al., 2006) or kinematic chains (Yakey, LaValle
and Kavraki, 2001) could also be considered.

Harder problems may be solved, such as path plan-
ning in an environment with more obstacles, as in
Figure 7(d). In this example, the size of[sgoal] is
15m×15m×2π rad. Again, a guaranteed path between
the beginning and the end of the labyrinth is found.

6.2. Challenges. In the previous section, between Fig-
ures 7(a) and 7(b), the size of[sgoal] has been reduced,
which made the problem harder to solve. If the size of
[sgoal] is reduced further, a path may no longer be found
(see Figure 8(a)) even if it may still exist. Since only pre-
diction is used, and considering the form of the dynami-
cal equation describing the motion of simple car, the size
of the box describing the uncertain state always grows up
along the path. Thus, as soon as the size of[s] at the end
of a path becomes bigger than that of[sgoal], there is no
chance to reach[sgoal] from this box.

The same problem appears when the skidding error
is too large. This problem is illustrated in Figure 8(b),
where the size of[sinit ] is 10 cm×10 cm×[1, 1.05] rad,
the size of[sgoal] is 10 m×10 m×2π rad, verr = 10−2

andδerr = 10−3. Uncertainty then becomes exceedingly
large and the vehicle no longer passes through the corri-
dor. Thus, this problem cannot be solved using the present
version of Box-RRT presented in Section 4.2, unless some
exteroceptive measurements are used at some points along
the path to reduce uncertainty.

6.3. Application of Reach-RRT. The same simulated
conditions are considered as in Figure 8(b) of Section 6.2.

Results illustrated on Figures 9(a) and 9(b) show that
the use of differentiated inputs allows the boxes to be re-
duced and guaranteed reachability to be proven.

In this example, adapting the input allows the size of
the box[snew] at each iteration to be reduced by17% in
average. This rate is obtained at the price of splitting each
[snear] in at least64 subboxes, which increases signifi-
cantly the computationnal load. Thus, the reduction step
may be used with a period larger than∆t.

In Figure 9(a), box reduction is performed every sec-
ond. The path planner find a path by generating about
10 000 nodes. Similarly, a path is found for the problem
illustrated in Figure 9(b) with box reduction performed
every two seconds on each path.

As mentionned earlier, with Reach-RRT, one proves
that for each initial state, there exists a control input able
to drive the system robustly to the goal area. It is then
worth trying to divide the global path planning task into
several local (short-term) planning tasks along the path
obtained by Reach-RRT. This allows information pro-
vided by sensors to be taken into account, facilitating the
task of Box-RRT.

7. Conclusions and perspectives

This paper has presented algorithms based on Rapidly-
exploring Random Trees able to perform path planning
tasks for models of systems including uncertainties. Un-
certain quantities are assumed to belong to sets. A first
conceptual Set-RRT path planner dealing with general sets
has been presented, followed by an implementable Box-
RRT dealing with boxes. The Box-RRT has also been
adapted to perform reachability analysis.

Some algorithms presented in this paper are rather
preliminary, but show the potential of the approach. For
example, the choice of the control input in Box-RRT or
Reach-RRT is not optimised yet. Better local (short-term)
reachability analysis techniques could be used, see,e.g.,
(Collins and Goldsztejn, 2008; Ramdani, Meslem and
Candau, 2008).

In the present version of Set-RRT and Reach-RRT,
Sfree is assumed to be constant with time. One could easily
adapt the proposed algorithms toSfree varying with time,
to describe moving obstacles, to take into account the lim-
ited energy available to the system,etc.
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