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Elliptic Integrable Systems: a Comprehensive Geometric
Interpretation

Idrisse Khemar

Abstract.

In this paper, we study all the elliptic integrable systems, in the sense of C.L. Terng [@] That is to
say the family of all the m-th elliptic integrable systems associated to a k’-symmetric space N = G/Gp.
Here m € N and k' € N* are integers. For example, it is known that the first elliptic integrable system
associated to a symmetric space (resp. to a Lie group) is the equation for harmonic maps into this
symmetric space (resp. this Lie group). Indeed it is well known that this harmonic maps equation can
be written as a zero curvature equation: dou—i—%[ou Aax] =0, Ve C* whereay = )\_la/1+ao+)\a/1/ is
a 1-form on a Riemann surface L taking values in the Lie algebra g. This 1-form «) is obtained as follows.
Let f: L = N = G/Go be a map from the Riemann surface L into the symmetric space G/Go. Then let
F: L — Gbealift of f, and consider & = F~1.dF its Maurer-Cartan form. Then decompose o« according
to the symmetric decomposition g = go®g1 of g: o = ag+oaq. Finally, we define ay := A~ 'a) +ao+ Ao,
VA € C*. Then the zero curvature equation for this «,, for all A € C*, is equivalent to the harmonic
maps equation for f: L — N = G/Go, and is by definition the first elliptic integrable system associated
to the symmetric space G/Go. Thus the methods of integrable system theory apply to give generalised
Weierstrass representations, algebro-geometric solutions, spectral deformations and so on. In particular,
we can apply the DPW method @] to obtain a generalised Weierstrass representation. More precisely,
we have a Maurer-Cartan equation in some loop Lie algebra Ag, = {£: S* — g|¢(=\) = 7(£()\))}, then
we can integrate it in the corresponding loop group and finally apply some factorizations theorems in loop
groups to obtain a generalised Weierstrass representation: this is the DPW method. Moreover, these
methods of integrable system theory hold for all the systems written in the forms of a zero curvature
equation for some ayx = A" &—m + -+ Go + - - + A&, Namely, these method apply to construct
the solutions of all the m-th elliptic integrable systems. So it is natural to ask what is the geometric
interpretation of these systems. Do they correspond to some generalisations of harmonic maps? This
is the problem that we solve in this paper: to describe the geometry behind this family of integrable
systems whose we know how to construct (at least locally) all the solutions. The introduction below
gives an overview of all the main results, as well as some related subjects and works, and some additional
motivations.
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Introduction

In this paper, we give a geometric interpretation of all the m-th elliptic integrable systems asso-
ciated to a k'-symmetric space N = G/Gy (in the sense of C.L. Terng [id)).

Let g be a real Lie algebra and 7: g — g be an automorphism of finite order k¥’. This auto-
morphism admits an eigenspace decomposition g€ = Djez,, g;C, where g;C is the eigenspace of 7
with respect to the eigenvalue wi/. We denote by wy a k’-th primitive root of unity. Moreover
the automorphism 7 defines a k’-symmetric space N = G/Gy. Furthermore let L be a Riemann
surface.

The m-th elliptic integrable system associated to (g,7) can be written as a zero curvature equa-
tion 1

doy + 5[0@ ANay] =0, VAeCr

where ay = Y7 (A uy + Ny = Y7L Mé; is a 1-form on the Riemann surface L taking
values in the Lie algebra g. The ”coeflicient” u; is a (1,0)-type 1-form on L with values in the
eigenspace g ;e

Moreover, we call the integer m the order of the system. Let us make precise that the order m
has nothing to do with the order of any PDE, but this is only the maximal power on A in the
(finite) Fourier decomposition of ay w.r.t. A.

First, we remark that any solution of the system of order m is a solution of the system of order
m', if m < m’ (and the automorphism 7 is fixed). In other words, the system of order m is a
reduction of the system of order m/, if m < m/.

Moreover, it turns out that we have to introduce the integer mys defined by

K1 kif & = 2k
mk/[ + ]{ ! if K > 1, and m; = 0.

2 E+1ifk =2k+1

Then the general problem splits into three cases : the primitive case (m < my), the determined
case (my < m < k' — 1) and the underdetermined case (m > k’).

0.1 The primitive systems

The primitive systems have an interpretation in terms of F-holomorphic maps, with respect to
a f-struture F on the target space N = G/Gy (i.e. an endomorphism F satisfying F> + F = 0).
More precisely:

o In the even case (k' = 2k), we have a fibration 7: G/Gy — G/H over a k-symmetric space
M = G/H (defined by the square 72 of the automorphism 7 of order &’ defining N = G/Gy). We



also have a G-invariant splitting TN = H &V corresponding to this ﬁbrationﬂ, where V = ker dr.
Moreover N is naturally endowed with a f-structure F' which defines a complex structure on the
horizontal subbundle H and vanishes on the vertical subbundle V. Furthermore, the eigenspace
decomposition of the order ¥’ automorphism 7 gives us some G-invariant decomposition H =
69;?;11 [m;], where m; C g is defined by m}c- = g(gj @ g?, and [m;] C T'N is the corresponding
G-invariant subbundle. This allows to define, by multiplying F' on the left by the projections
on the subbundles H™ = @7, [m;], a family of f-structures Fl™ 1 < m < k —1. Then the
primitive system of order m (m < my = k) associated to G/Gy is exactly the equation for
Fl™l_holomorphic maps. Therefore the solutions of the primitive systems are exactly the F-
holomorphic maps.

o In the odd case (k' = 2k+1), N = G/G) is naturally endowed with an almost complex structure
J. Then the solutions of the primitive systems are exactly the J-holomorphic curves. Moreover,
in the same way as for the even case, the eigenspace decomposition of 7 provides a G-invariant
decomposition TN = @;?:1 [m;], which allows to define a family of f-structures F (ml 1 <m <k,
with F[¥l = J. Then the primitive system of order m (m < my, = k + 1) associated to G /Gy is
exactly the equation for F[™-holomorphic maps. In other words, the solutions of the primitive
system of order m are exactly the integral holomorphic curves of the complex Pfaffian system
@©YL,[m;] C TN in the almost complex manifold (NN, J).

0.2 The determined case

We call ”the minimal determined system” the determined system of minimal order mygs, and ”the
maximal determined system” the determined system of maximal order k' — 1.

Any solution of a determined system is solution of the corresponding maximal determined system.
More precisely, a map f: L — G/Gy is solution of a determined system (associated to G/G) if
and only if it is solution of the maximal determined system (associated to G/Gy) and satisfies
an additional holomorphicity condition. When this holomorphicity condition is maximal, then
we obtain the minimal determined system.

0.2.1 The minimal determined system

The minimal determined system has an interpretation in terms of horizontally holomorphic and
vertically harmonic maps f: L — N = G/Gq. It also has an equivalent interpretation in terms
of vertically harmonic twistor lifts in some twistor space. Let us make precise this point.

In the even case. As we have seen in the subsection @ below, the homogeneous space
N = G/Gy admits a G-invariant splitting TN = H®V corresponding to the fibration 7: N — M
and N is naturally endowed with a f-structure F' which defines a complex structure on the
horizontal subbundle H and vanishes on the vertical subbundle V. Then we say that a map
f: L — N is horizontally holomorphic if

(df 0 ju)* = F o df.

Then we prove that the even minimal determined system (Syst(k, 7)) means that the geometric
map [ is horizontally holomorphic and vertically harmonic, i.e.

T(f) == Try(V'd f) =0

li.e. H is a connection on this fibration.



(for any hermitian metric g on the Riemann surface L). Here V¥ is the vertical component of
the Levi-Civita connection V (of some G-invariant metric on N). Moreover, vertically harmonic
maps are exactly the critical points (w.r.t. vertical variations) of the vertical energy functional:

1
E¥(u) = §/L|d”u|2dvolg.

We prove also that this system also has an equivalent interpretation in terms of vertically har-
monic twistor lifts in the twistor space Za ;(M, J2) which is a subbundle of Zy, (M), where

Z (M) = {J € SO(TM)|J¥ =1d,J? #1d if p < k', ker(J £ 1d) = {0}}

is the bundle of isometric endomorphisms of TM with finite order k£’ and with no eigenvalues
= +1. More precisely denoting by Jo the section of SO(TM), of the order k, defined by 72,
then we define Zoy j(M, Jo) = {J € Zox(M)|J?> = Jo}. Then we prove that N = G/Gy
can be embedded into the twistor space Za,; (M, J3) via a natural morphism of bundle over
M = G/H. We prove that f: L — N is solution of the system if and only if the corresponding
map J7: L — 2o, j(M, Js) is a vertically harmonic twistor lift.

In the odd case. We obtain an analogous interpretation as in the even case. An interpre-
tation in terms of horizontally holomorphic and vertically harmonic maps f: L — N = G/Gj.
Let us precise that in the odd case, the action functional in the variational interpretation has a
Wess-Zumino term in addition to the vertical energy (See below in this introduction).
Moreover by embedding G/Gyq into the twistor space Zax4+1(N) of order 2k + 1 isometric endo-
morphisms in T'N, we obtain an interpretation in terms of vertically harmonic twistor lift.

0.2.2 The general structure of the maximal determined case.

First, the maximal determined system has 3 model cases. This means that there are 3 maximal
determined systems, namely the three maximal determined systems with lowest order of sym-
metry (2,3,4), of which the corresponding geometric equations (when put all together) contain
already all the structure terms - in a simple form- that will appear in the further maximal deter-
mined systems in a more complex and general form due to the more complex geometric structure
in the further maximal determined systems. That is in this sense that we can say that all the
further determined systems associated to target spaces IV with higher order of symmetry will be
modeled on these model systems.

0.2.3 The model system in the even case

In the even case, this model is the first elliptic integrable system associated to a symmetric space
(m = 1,k’ = 2) which is - as it is well known - exactly the equation of harmonic maps from
the Riemann surface L into the symmetric space under consideration. This is the ”smallest”
determined system, i.e. with lowest order of symmetry in the target space N = G/Gy. In this
case -N is symmetric- the determined case is reduced to one system, the one of order 1.

0.2.4 The model system in the odd case

In the odd case, this model is the second elliptic integrable system associated to a 3-symmetric
space. This is the ”smallest” determined system in the odd case, i.e. with lowest odd order of
symmetry in the target space N = G/Gy. We prove that this system is exactly the equation
for holomorphically harmonic maps into the almost complex manifold (N,J) with respect to



the anticanonical connection V! = V° + [ | Jim), Where VY is the canonical connection. Or
equivalently this is the equation for holomorphically harmonic maps into the almost complex
manifold (NN, —J) with respect to the canonical connection V°.

Holomorphically harmonic maps. Given a general almost complex manifold (N,.J) with
a connection V, we define holomorphically harmonic maps f: L — N as the solutions of the
equation

[0vaf]"* =0 (1)

where [ ]1'0 denotes the (1,0)-component according to the splitting TN® = T1ON @ TOIN
defined by J. This equation is equivalent to

avdf + Jd¥ «df =0
or, equivalently, using any Hermitian metric g on L

Ty(f) + J1g(f) =0

where T,(f) = *f*T = f*T(e1,ea), with (e1,es) an orthonormal basis of T'L, and 7,(f) =
xdY * df = Tr,(Vdf) is the tension field of f. Of course Tr, denotes the trace with respect to
g, and the expression Vdf denotes the covariant derivative of df with respect to the connection
induced in T*L ® f*T'N by V and the Levi-Civita connection in L.

In particular, we see that if V is torsion free or more generally if f is torsion free, i.e. f*T" =0,
then holomorphic harmonicity is equivalent to (affine) harmonicity. Therefore, this new notion
is interesting only in the case of a non torsion free connection V.

The vanishing of some 00-derivative. Now, let us suppose that the connection V on N
is almost complez, i.e. VJ = 0. Then, according to equation @), we see that any holomorphic
curve f: (L,j5) — (N, J) is anti-holomorphically harmonic, i.e. holomorphically harmonic with
respect to —J. In particular, this allows to recover that a 1l-primitive solution (i.e. of order
m = 1) of the elliptic system associated to a 3-symmetric space is also solution of the second
elliptic system associated to this space.

Moreover, the holomorphically harmonic maps admit a formulation very analogous to that of
harmonic maps in term of the vanishing of some 09-derivative, which implies a well kown char-
acterisation in term of holomorphic 1-forms. Indeed we prove that f: (L,j.) — (N,J,V) is
holomorphically harmonic if and only if

=V .
d df =0, (2)

i.e. df is a holomorphic section of 17 oL ®c f*I'N. Here the hat ” "7 means that we extend a
1-form on T'L, like d or V, by C-linearity as a linear map from T'LC into the complex bundle
(T'N,J). In other words instead of extending these 1-forms as C-linear maps from T'L® into
TNC as it is usual, we use the already existing structure of complex vector bundle in (T'N, .J)
and extend these very naturally as C-linear map from TL® into the complex bundle (T'N,.J).
Therefore we can conclude that holomorphically harmonic maps have the same formulation as
harmonic maps with the difference that instead of working in the complex vector bundle TNC,
we stay in T'N which is already a complex vector bundle in which we work.



The sigma model with a Wess-Zumino term. Finally, let us suppose that N is endowed
with a V-parallel Hermitian metric h. Therefore (N, J, h) is an almost Hermitian manifold with
a Hermitian connection V. Suppose also that J anticommutes with the torsion T" of V i.e.

T(X,JY)=—JT(X,Y)

which is equivalent to

1
T=-N
4 J

where N; denotes the torsion of J i.e its Nijenhuis tensor.
Suppose also that the torsion of V is totally skew-symmetric i.e. the trilinear map

T™(X,)Y,2)=(T(X,Y), Z)

is a 3-form. Lastly, we suppose that the torsion is V-parallel, i.e. VI™* = 0 which is equivalent
to VI' = 0. Then we prove that this implies that the 3-form

H(X,Y,Z)=-T*(X,Y,JZ) = (JT(X,Y), Z)

is closed dH = O.H

Then the equation for holomorphically harmonic maps f: L — N is the equation of motion (i.e.
Euler-Lagrange equation) for the sigma model in N with the Wess-Zumino term defined by the
closed 3-form H. The action functional is given by

S(5) = B + 5V () = 5 [ 1afPavol, + [ 1.

where B is 3-submanifold (or indeed a 3-chain) in N whose boundary is f(L).
Then since dH = 0, the variation of the Wess-Zumino term is a boundary term

5SWZ:/ L(;fH:/ disp H = 15 H,
B B (L)

whence its contribution to the Euler-Lagrange equation involves only the original map f: L — N.
In particular, applying this result to the case we are interseted in, i.e. N is 3-symmetric, we
obtain:

The second elliptic system associated to a 3-symmetric space N = G/Gy is the equation of
motion for the sigma model in N with the Wess-Zumino term defined by the closed 3-form
H(X,Y,Z):=T*(X,Y,JZ), where T is the torsion of the canonical connection V° and J is the
canonical almost complex structure.

2Let us point out that in general T* is not closed even if it is V-parallel. For example, in a Riemannian
naturally reductive homogeneous space G/H, endowed with its canonical connection V°, we have V9T = 0 but
dT*(X,Y,Z,V) = —2(Jacn(X,Y, Z), V) where Jacy is the m-component of the Jacobi identity (i.e. the sum of
the circular permutations of [X,[Y, Z]m]m). Of course m denotes the AdH-invariant summand in the reductive
decomposition g = h G m.

3In fact, we need a naturally reductive metric on N to ensure that T* is a 3-form. But if we allow Pseudo-
Riemannian metrics and if g is semisimple then the metric defined by the Killing form is naturally reductive.
In fact, the elliptic integrable system is a priori written in an affine context, i.e. its natural - in the sense of
initial- geometric interpretation takes place in the context of affine geometry in terms of the linear connections
vVt =VO+e, ][m]. If we want that this interpretation takes place in the context of Riemannian geometry we need,
of course, to add some hypothesis of compactness, like the compactness of AdwGp and the natural reductivity.
But we do not need these hypothesis if we work in the Pseudo-Riemannian context.



The good geometric context/setting In the previous variational interpretation, we need
to make 3 hypothesis on the torsion of the Hermitian connection: 7" anticommutes with J, is
totally skew-symmetric and V-parallel. It is natural to ask ourself what do these hypothesis
mean geometrically and what is the good geometric context in which these take place. It turns
out that the good geometric context is the one of Nearly Kdhler manifold.

An almost Hermitian manifold (N, J, h) is Nearly Kihler if and only if (V% J)X = 0, for all
X € TN, where V" is the Levi-Civita connection. Then we prove that the almost Hermitian
manifolds for which there exists an Hermitian connection satisfiying the three hypothesis above
are exactly Nearly Kéhler manifolds, and that this Hermitian connection is then unique and
coincides with the canonical Hermitian connection. Then the variational interpretation can be
rewritten as follows:

Theorem 0.1 Let (N, h,J) be a nearly Kihler manifold then the equation of holomorphic har-
monicity, w.r.t. the canonical Hermitian connection, for maps f: L — N is exactly the Euler-
Lagrange equation for the sigma model in N with a Wess-Zumino term defined by the 3-form:

o= taq,
3

where Qy = (J-,-) is the Kdhler form.

Therefore: the second elliptic system associated to 3-symmetric space N = G/Gq, endowed with
its canonical almost complex structure J, is the equation of motion for the sigma model in N

1
with the Wess-Zumino term defined by the closed 3-form H = —ngi.

J-twisted harmonic maps. We prove that we can also interpret the holomorphic harmonicity
in terms of J-twisted harmonic maps (w.r.t. the Levi-Civita connection). Let us define this
notion. Let (F,J) be a complex vector bundle over an almost complex manifold (M, jar). Then
let V be a connection on E. Then we can decompose it in an unique way as the sum of a
J-commuting and a J-anticommuting part, i.e. in the form

V=vV'+A4

1 —
where VOJ = 0 and A € C(T*M ® End(E)), AJ = —JA. More precisely, we have A = §JVJ.
Then we set

_ S B
V“':VO—(Aojw[)J:V—§JVJ—§VJojM.

Now let f: (L,jr) = (N,J) be a map from a Riemann surface into the almost complex manifold
(N, J) endowed with a connection V. Then let us take in what precede (M, ja) = (L, jr) and
(E, V)= (f*TN, f*V). Then we say that the map f: (L, j;) — (N, J, V) is J-twisted harmonic
if and only if
=J
Tr, (V/df) = 0

(for any hermitian metric g on the Riemann surface L).

0.2.5 The coupled model system

This is the third elliptic integrable system associated to a 4-symmetric space. The corresponding
geometric equation in the 4-symmetric space G/Gy can be viewed as a coupling between the
equation of harmonic maps into the symmetric fibre H/Gy and the equation for harmonic maps
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into the symmetric space G/H. In other words, it can be viewed as a coupling between the even
model system associated to the symmetric space G/H and the even model system associated to
the symmetric space H/Gy. In particular, when harmonicity is replaced by holomorphicity ”in
the basis G/H”, then we recover the horizontally holomorphic and vertically harmonic maps into
G /Gy, that is to say the solutions of the second elliptic integrable system associated to G/G.
We will come back to this in the end of section in this introduction.

0.2.6 The General maximal determined odd system. (k' =2k + 1, m = 2k)

The maximal determined odd system has a geometric interpretation in terms of stringy harmonic
maps f: L — (G/Go,J), with respect to the canonical connection and the canonical almost
complex structure.

Stringy harmonic maps. Let (N, J) be an almost complex manifold with V an linear connec-
tion then we will say that a map f: L — N from a Riemann surface into N is stringy harmonic
if it is solution of the harmonic map equation with a JT -term:

—79(f) + (J - T)g(f) = 0.

We have used the notation J - B = —JB(J-,-), VB € C(A>T*N ® TN). This action of J on
B € C(A’T*N ® TN) can be written more naturally if (N,.J) is endowed with a Hermitian
metric h. Indeed, in this case, we have an identification, C(A2T*N®@TN) = C(A*°T*N®T*N) C
C(®3T*N), between T'N-valued 2-forms on N and trilinear forms on N skew-symmetric w.r.t.
the 2 first variables: B(X,Y, Z) := (B(X,Y),Z). Then J - B is written:

J-B=B(J,J,J)= —B".

We remark that if 7" anticommutes with J then stringy harmoniciy coincides with holomorphic
harmonicity (since in this case J - T = JT'). More particulary, if T = 0, then the stringy har-
monicity coincide with the harmonicity.

Furthermore, we look for a general geometric setting in which the stringy harmonicity has an
interesting interpretation. First of all, let us remark that in the context of homogeneous reduc-
tive space, in which our system takes places, we have a canonical connection, with respect to
which the stringy harmonicity can be written ”canonically”. But in general we do not have a
”special” connection with respect to which one can consider the stringy harmonicity. Therefore,
if one wants to place stringy harmonicity in a more meaningfull, interesting and fruitful context
(than the general context of almost complex manifolds endowed with some linear connection)
and, in so doing, obtain a better understanding of our elliptic integrable system by writting its
geometric interpretation in the best geometric context, a first problem - that we solved - is to
find a general class of (almost complex) manifold in which there exists some unique ”canonical”
connection, with respect to which we then could consider the stringy harmonicity. This provides
us, firstly, some special connection (in the same sense that the Levi-Civita connection is special
in Riemannian geometry), which solves the problem of the choice of the connection, but secondly
it turns out that it provides also a variationnal interpretation of the stringy harmonicity.

Best geometric setting It turns out that the more rich geometric context in which stringy
harmonicity admits interesting properties is the one of G;-manifolds, more precisely G;-manifolds
whose the characteristic connection has a parallel torsion. Making systematic use of the covariant
derivative of the K&ahler form, A. Gray and L. M. Hervella, in the late seventies, classified almost
Hermitian structures into sixteen classes. Denote by W the space of all trilinear forms (on
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some Hermitian vector spaces, say Ty, N for some reference point yo € N) having the same
algebraic properties as V. Then they proved that we have a U(n)-irreducible decomposition
W = W1 eWadW3EW,. The sixteen classes are then respectively the classes of almost Hermitian
manifolds for which V"*Q ‘lies in’ the U(n)-invariant subspaces Wi = @;e/W;, I C {1,...,4},
respectively. In particular, if we take as invariant subspace {0}, we obtain the Kéhler manifolds,
if we take W, we obtain the class of nearly Kéhler manifolds. Moreover the class of G;-manifolds
is the one defined by G = Wy & W5 @ W,. Tt is characterised by : (IV, J, h) is of type G; if and
only if the Nijenhuis tensor N is totally skew-symmetric (i.e. a 3-form).

In this paper, we prove the following theoremﬁ:

Theorem 0.2 An almost Hermitian manifold (N, J,h) admits a Hermitian connection with
totally skew-symmetric torsion if and only if the Nijenhuis tensor Ny is itself totally skew-
symmetric. In this case, the connection is unique and determined by its torsion which is given
by

T=—-dQ;+ Nj.

The characteristic connection is then given by V = V" — %T.

Then we prove:

Proposition 0.1 Let us suppose that the almost Hermitian manifold (N, J, h) is a Gi-manifold.
Let us suppose that its characteristic connection V has a parallel torsion VI = 0. Then the
3-form

HX,)Y,Z)=T(JX,JY,JZ)=(J -T)(X,Y),Z)

is closed dH = 0.

Which then gives us the following variational interpretation

Theorem 0.3 Let us suppose that the almost Hermitian manifold (N, J,h) is a Gi-manifold.
Let us suppose that its characteristic connection V has a parallel torsion VI = 0.
Then the equation for stringy harmonic maps f: L — N is exactly the Fuler-Lagrange equation
for the sigma model in N with a Wess-Zumino term defined by the closed 3-form

H=—-dQ;+ JNj.

Moreover any (2k+1)-symmetric space (G/Gy, J, h) endowed with its canonical complex structure
and a naturally reductive G-invariant metric h (for which J is orthogonal) is a G;-manifold and
moreover its characteristic connection coincides with its canonical connection V°. Finally, the
torsion of the canonical connection is obviously parallel. Therefore we obtain an interpretation
of the maximal determined system associated to a (2k + 1)-symmetric space in terms of a sigma
models with a Wess-Zumino term.

Remark 0.1 Let us add about stringy harmonicity that we prove also, in this paper, that the
stringy harmonicity w.r.t. an almost complex connection V is equivalent to the holomorphic
harmonicity w.r.t. a new almost complex connection V*.

4 After the fact, we realized that it has already been proved by Friedrich—lvanov[ﬁ}. However we give a different
and completely written proof. See remark [5.14
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0.2.7 General maximal determined even system. (k' = 2k,m =2k — 1)

In the even case, the geometric structure of the target space G/Gy is more complex (and more
rich): as we have already seen, there is a fibration 7: N = G/Gy — M = G/H, a splitting
TN = H®V with V = kerm, and a f-structure F' such that ker F = V and ImF = H (in
particular J := F is a complex structure on ). Moreover the geometric PDE obtained from
our elliptic integrable system calls for this geometric structure. In particular, this geometric
PDE splits into its horizontal and vertical parts and can be viewed as a coupling between the
equation of J-stringy harmonicity and the equation of vertical harmonicity, the coupling terms
calling out the curvature of H.

The maximal determined even system has a geometric interpretation in terms of stringy harmonic
maps f: L — (G/Go, F), F being the canonical f-structure on G/Gp.

Stringy harmonic maps w.r.t. a f-structure. Let (N, F) be a f-manifold with V a linear
connection. Then we will say that a map f: L — N from a Riemann surface into N is stringy
harmonic if it is solution of the stringy harmonic maps equation:

—14(f)+ (FeT)y(f)=0.

where F'e B, for B € C(A?T*N @ T'N), denotes some natural (linear) action of F' on C(A?T*N ®
T'N). For more simplicity, let us write it in the case (V, F) is endowed with a compatible metric
h (i.e. V L H and J is orthogonal with respect to hjzx):

FeB = B(F~,F~,F~)+%F®(BfBH3)
FOA = A(F-- )+ A( F )+ A(, - F)

for all B,A € C(A>*T*N ® TN).

Now, we want to proceed as in the case of stringy harmonicity with respect to a complex structure.
That is to say find a class of f-manifolds for which there exists some unique characteristic
connection which preserves the structure and then look for a variational interpretation of the
stringy harmonicity with respect to this connection.

Best Geometric context. We looks for metric f-manifolds (N, F, h) for which there exists
metric f-connection V (i.e. VF = 0 and Vh = 0) with skew-symmetric torsion 7. In a first
step, we consider metric connections which preserve the splitting TN = V @& H (i.e. Vg =0,
where ¢ is the projection on V) and characterize the manifolds (N, h,q) for which there exists
such a connection with skew-symmetric torsion, and call these reductive metric f-manifolds.
Then saying about a metric f-manifolds (N, F,h) that it is of global type G; if its extended
Nijenhuis tensor Ng is skew-symmetric, we prove the following theorem:

Theorem 0.4 A metric f-manifold (N, F, h) admits a metric f-connection V with skew-symmetric
torsion if and only if it is reductive and of global type Gi. Moreover, in this case, for any
a € C(A3V*), there exists a unique metric connection V with skew-symmetric torsion such that
Tiasy = a. This unique connection is given by

T = (—d°QF + Npjys) + Skew(®) + Skew(Ry) + a.

where Qp = (F-,-), ® and Ry are resp. the curvature of H and V resp., and Skew is the sum of
all the circular permutations on the three variables.
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On a metric f-manifold (N, F, h), a metric f-connection V with skew-symmetric torsion will be
called a characteristic connection.

Moreover, we prove that for any reductive metric f-manifold of global type Gi, the closure of
1

H = F o T is equivalent to the closure of the 3-form F'- Np — §FO (Skew (®) + Skew(Ry)), so

that:

Theorem 0.5 Let (N, F,h) be a reductive metric f-manifold of global type G1. Let us suppose
1
that the 3-form F- Np — §FO (Skew (®) + Skew(Ry)) is closed, where ® and Ry are respectively

the curvatures of the horizontal and vertical subbundles. Let V be one characteristic connection.
Then the equation for stringy harmonic maps (w.r.t. V) f: L — N is exactly the Fuler-Lagrange
equation for the sigma model in N with a Wess-Zumino term defined by the closed 3-form

1
H=—-dQr+F-Np— §F®(Skew(<1>) + Skew(Ry)) .

Contrary to the case of stringy harmonic maps into an almost Hermitian G;-manifolds, in the
present case, the hypothesis that the torsion of one characteristic connection is parallel VT =0
does not imply the closure of the 3-form H = F e T. However, we characterize this closure
under the hypothesis VI' = 0 and Ry = 0, by some 2 conditions that we will not explain in this
introduction (see section ): the horizontal complex structure .J is a cyclic permutation of
the horizontal curvature, and the 2-forms N7 and ® have orthogonal supports.

Moreover any 2k-symmetric space (G/Go, F,h) endowed with its canonical f-structure and a
naturally reductive G-invariant metric h (compatible with F') is reductive and of global type
G1, and moreover its canonical connection V° is a characteristic connection. Furthermore, the
torsion of the canonical connection is obviously parallel. Finally, we prove that any 2k-symmetric
space (G/Gy, F, h) satisfies the two hypothesis above. Therefore we obtain an interpretation of
the maximal determined even system associated to a 2k-symmetric space in terms of a sigma
models with a Wess-Zumino term.

A particular case: Horizontally Kihler f-manifolds. Let (N, F,h) be a metric f-manifold.
We will say that (NN, F, h) is horizontally Kahler if DFjys = 0.

Then, we prove that in this case, the two hypothesis above (which characterise the closure of
the 3-form H) are satisfied. Moreover, any characteristic connection V satisfies Tys = 0, which
leads to special properties.

A example of this situation is given by any 4-symmetric space, endowed with its canonical f-
structure and a naturally reductive G-invariant metric (compatible with F').

0.2.8 The intermediate determined systems

For the intermediate determined systems (my < m < k' — 1), these are obtained from the
maximal determined case by adding holomorphicity in the subbundle H™ = @jm: 1[m;] € H,
where m = k' — 1 —m. It means that the m-th determined system has a geometric interpretation
in terms of stringy harmonic maps which are H™-holomorphic:

(df o jp)*" = Flml o df.

We have seen that the maximal determined system has an interpretation in terms of a sigma
models with a Wess-Zumino term defined by a 3-form H. In fact, more generally, let my < m <
k' — 1, and let us consider the splitting TN = H™ @ V™ defined above. Then one can prove
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that any m-th determined system is the Euler-Lagrange equation w.r.t. vertical variations (i.e.
in V™) of the following functional

. 1 _ _
EY(f) = §/L|d”f|2dvolg+/BH”

where d°f = [df]V", H® = H — H = H|s(ym ym), H = H|(3m)s, and B is a 3-submanifold of N
with boundary 0B = f(L).

0.3 The underdetermined case

We prove that the m-th underdetermined system (m > k' — 1) is in fact equivalent to some m-th
determined or primitive system associated to some new automorphism 7 defined in a product
g971, of the initial Lie algebra g. More precisely, we write

m=qk'+r, 0<r<k' -1
the Euclidean division of m by k’. Then we consider the automorphism in g¢+! defined by
7: (ag,an,...,aq) € g7 — (a1, ..., aq4,7(ap)) € g7

Then 7 is of order (¢+1)k’. We prove that the initial m-th (underdetermined) system associated
to (g, 7) is in fact equivalent to the m-th (determined) system associated to (g?+!, 7).

0.4 In the twistor space.

For each previous geometric interpretation in the target space N = G/Gj, there is a correspond-
ing geometric interpretation in the twistor space.
e These previous geometric interpretations take place in some manifolds endowed with some par-
ticular structures (which could simply be, for example, a structure of almost complex manifold
for the interpretation of the stringy harmonicity in terms of the vanishing of some 09-derivative
but it could be also the more strong structure of G;-manifolds whose characteristic connection
has a parallel torsion). Moreover, our k’-symmetric spaces are very particular examples of this
kind of manifolds. Therefore it is natural to try to make these interpretations more universal by
writting it in a more general setting. More precisely we want to find some universal prototype of
these ”special” manifolds, which can be endowed canonically with the needed geometric structure
and such that any of our special manifolds can be embedded in this prototype.
Indeed, as concerns k’-symmetric spaces, we know that they can be embedded canonically in
some twistor bundles. In the even case we have a morphim of bundle over M = G/H defined by
the embedding

G/GO — ng(G/H),

whereas in the odd case we have a section defined by the embedding
G/Go — ZQkJrl (G/Go)

e In the even case, the fibration 7: G/Go — G/H imposes to view canonically any 2k-symmetric
space as a subbundle of Z5,(G/H) so that the twistorial interpretation is in some sense dictated
by the structure of the 2k-symmetric space. The geometric interpretations in the twistor spaces
are universal since these twistor spaces are defined for any Riemannian manifold and are endowed
canonically with the different geometric structures that we need to suppose the target space NV
to be endowed with, in our previous geometric interpretations.
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More generally, suppose that we want to study stringy harmonicity in metric f-manifolds (N, F, k).
It is then natural to consider the particular case where the vertical subbundle V is the tangent
space of a Riemannian submersion 7: (N, h) — (M, g). For example, we have seen that amongs
the list of sufficient conditions in our variationnal interpretation of stringy harmonicity we have
the condition Ry, = 0. In this particular case, the f-structure F defines a complex structure .J on
7*T M = H which itself gives rise to a morphism of submersion Z: N — X(M), y — (7(y), J(v))-
This shows that the twistor bundle ¥ (M) appears naturally in the general context - even though
the morphism 7 is not injective in general.

Furthermore, an interesting class of Riemannian submersion 7: (N, h) — (M, g) is the one of ho-
mogeneous fibre bundles, of which the twistor bundles Z,(M) are particular examples (p € N*).
For example, vertically harmonic section of homogeneous fibre bundles has been investigated by

C.M. Wood [F9, 3.

0.5 Related subjects and works, and motivations
0.5.1 Relations with surface theory.

The theory of harmonic maps of surfaces has been greatly enriched by ideas and methods from
integrable systems [E, E, , @, E, @, @, @] In particular, these ideas have revolutionised
the theory of harmonic maps from a surface into a symmetric space and so, via an appropriate
Gauss map, the theory of constant mean curvature surfaces and Willmore surfaces among others.
For example, Pinkall and Sterling [@] were able to give an algebro-geometric construction of all
constant mean curvature tori while Dorfmeister-Pedit-Wu [@] gave a Weierstrass formula for
all constant mean curvature immersions of any (simply connected) surface in terms of holomor-
phic data. These advances were taken up by Hélein and Romon [@, E, @] who showed that
similar ideas could be applied to the study of Hamiltonian stationary Lagrangian surfaces in a
4-dimensional Hermitian symmetric space. It was the first example of second elliptic integrable
system associated to a 4-symmetric space. In [@], we presented a new class of isotropic surfaces
in the Euclidean space of dimension 8 by identifying R® with the set of octonions O, and we
proved that these surfaces are solutions of a second elliptic integrable system associated to a 4-
symmetric space. By restriction to R* = H, we obtained the Hamiltonian stationary Lagrangian
surfaces and by restriction to R? = ImH, we obtained the CMC surfaces. Furthermore, in ,
we presented a geometric interpretation of all the second elliptic integrable systems associated
to a 4-symmetric space in terms of vertically harmonic twistor lifts of conformal immersions into
the Riemannian symmetric space (associated to our 4-symmetric space) (see also [E]) When
the previous Riemannian symmetric space is 4-dimensional, then any conformal immersion ad-
mits an unique twistor lift and the vertical harmonicity of this twistor lift is equivalent to the
holomorphicity of the mean curvature vector of the conformal immersion (see ]) In particular,
when the Riemannian symmetric space is Hermitian, one obtains a conceptual explanation of
the result of Hélein-Romon.

0.5.2 Relations with mathematical physics.

Metric connections with totally skew-symmetric torsion. We refer the reader to [E,
] about connections with skew-symmetric torsions and their relations to physics and more
particulary string theory. Linear metric connections with totally skew-symmetric torsion recently
became a subject of interest in theoretical and mathematical physics. Let us give here some
examples (taken from [L7).

e The target space of supersymmetric sigma models with Wess-Zumino term carries a geometry
of a metric connection with skew-symmetric torsion.

16



e In supergravity theories, the geometry of the moduli space of a class of black holes is carried
out by a metric connection with skew-symmetric torsion.

e The geometry of NS-5 brane solutions of type II supergravity theories is generated by a metric
connection with skew-symmetric torsion.

e The existence of parallel spinors with respect to a metric connection with skew-symmetric
torsion on a Riemannian spin manifold is of importance in string theory, since they are associated
with some string solitons (BPS solitons).

The sigma-models Nonlinear sigma-models provide a much-studied class of field theories of
both phenomenological and theoretical interest. The chiral model for example summarizes many
low energy QCD interactions while 2-dimensional sigma-models may possess nontrivial classical
field configurations and have analogies with 4-dimensional Yang-Mills equations but are simpler
to handle. It was in the study of the chiral model that Wess and Zumino introduced their parity
violating term satisfying anomalous Ward-identities. This term now has a far broader interpre-
tation in terms of anomalies. Sigma-models also have connections with string theories.

Two dimensional sigma-models have already proven a fertile arena for the interplay of topology,
geometry, and physics. The (supersymmetric) sigma-models have been generalized by introduc-
ing a Wess-Zumino term into the Lagrangian. This term may be interpreted as adding torsion
to the canonical Levi-Civita connection of the earlier models. The addition of such torsion can
have a marked effect and imposes constraints on the possible geometries of the target.

0.5.3 Relations of F-stringy harmonicity and supersymmetry

The P.D.E of F-stringy harmonicity splits following the splitting TN = H & V defined by the
f-structure F'.

More precisely, this equation is a coupling between the equation of J-stringy harmonicity and
the equation of vertical harmonicity, the coupling terms calling out the curvatures of H and V,
and the component Npyyy of the Nijenhuis tensor.

Moreover, let us suppose that we have we have a fibration 7: N — M. Then we have a su-
persymmetric interpretation of the F-stringy harmonicity: F-stringy harmonicity can be viewed
as a supersymmetric extention of the J-stringy harmonicity. In the splitting TN = H & V), the
horizontal subbundle played the role of the odd part and the vertical subbundle plays the role
of the even part. In other words, the bosonic equation is a harmonic map equation (the vertical
harmonicity) and the fermionic equation is the J-stringy harmonic map equation.

Let us also mention that, in [@, we obtained a supersymmetric interpretation of all the second
elliptic integrable systems associated to a 4-symmetric space in terms of superharmonic maps.

Aknowledgements The author wishes to thank Josef Dorfmeister for his useful comments on
the first parts of this paper. He is also grateful to him for his interest in the present work, his
encouragements as well as his support during the preparation of this paper.

Notations, Conventions and general definitions.

0.6 Generalities

e Let £ € N*. Then we will often confuse - when it is convenient to do it- an element in Zj; with
one of its representants. For example, let (a;);ez, be a family of elements in some vector space
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E, and 0 < m < k/2 an integer. Then we will write
a;,=a_; 1<i1<m

to say that this equality holds for all ¢ € {1+ kZ,...,m + kZ} C Zj.

e Let us suppose that a vector space F admits some decomposition E = @®;c;F;. Then, for any
vector v € E we denote by [v]g, its component in E;.

e We denote E® := E ® C the complexification of a real vector space.

e Furthermore let A € End(F) be an endomorphism of a finite dimensional real vector space
that we suppose to be diagonalisable. Then if its complex spectrum is {\;,7 € I}, we will write
its eigenspace decomposition in the form E® = @;c;ES, where E€ = ker(A — \;Id). Moreover, if
\; € R for some i € I, then we set E; :== E- N E so that EX = (E;)C, for these particular i € I.
e We denote by w, a p-th primitive root of unity, which will be often chosen equal to e2im/p,

e We denote by C°°(M, N) the set of smooth maps from a manifold M into a manifold N. Now,
let 7: N — M be a surjection, then we denote by C(w) the set of sections of 7, i.e. the maps
s such that m o s = Idys. If there is no risk of confusion we will also use the notation C(N).
Furthermore, let p: E — M be a vector bundle. Then we will denote by the same letter p its
tensorial extensions: p: End(E) — M and so on.

e Let (M, g) be a Riemannian manifold. Then we denote by * its Hodge operator (and =, if the
metric need to be precised). Let (E,h) — M be a Riemannian vector bundle over a manifold
M, we denote by X(F) the bundle of orthogonal almost complex structures in E. In particular if
E = TM then we set (M) := X(T'M). More generally, let Z(R™) C End(R") (resp. SO(n)) be
some submanifold defined for any n € N*. This allows us to define Z(E) for any (Riemannian)
vector bundle F and we set in particular Z(M) = Z(T M) for any (Riemannian) manifold.

e Let (A, +, x) be an associative K-algebra over the field K. Then for any a € A, we set
Com(a) = {b € Alab=ba} and Ant(a) = {b € Alab = —ba}.

e w.r.t. : with respect to.

0.7 Almost complex geometry

Let E be a real vector space endowed with a complex structure: J € End(E), J?> = —Id. Then
we denote by EM0 and E%! respectively the eigenspaces of J associated to the eigenvalues +i
respectively. Then we have the following eigenspace decomposition

E(C _ EI,O ® EO,I (3)
and the following equalities

E10 =ker(J —ild) = (J +ild)E® ()
E% = ker(J +ild) = (J — ild)E®

so that remarking that (J +4Id)iE = Id Fi¢J)E = (Id F4J)JE = (J £ iId)E, we can also write

EY = (J +4d)E = (Id — iJ)E = {X —iJX,X € E} (5)
E%' = (J —ild)E = (1d +iJ)E = {X +iJX, X € E}

In the same way we denote by
(E*)® = Elo® Ej,

the decomposition induced on the dual E* by the complex structure J*: n € E* — nJ € E*.
Besides, given a vector Z € EC, we denote by

Z =121+ (2
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its decomposition according to (f). Let us remark that
[Z]"° =(1d —iJ)Z and [Z]*!' = (Id+iJ)Z.

Moreover, given 7 a n-form on E, we denote by 19 its component in A»9E* according to the
decomposition

A"TE* = @ppqg=nAPIE",
where AP9E* = (APE; ) A (A7Eg; ;). However for 1-forms, we will often prefer the notation
n=mn+1n", where  and 1 denote respectively n(9 and 71,
More generally, all what precedes holds naturally when FE is a real vector bundle over a manifold
M, endowed with a complex structure J.

We will write -
d=0+9

the decomposition of the exterior derivative of differential forms on an almost complex manifold
(M, J), according to the decomposition TMC = T*OM & T%1 M.

We will denote by Hol((M, JM), (N, JN)) := {f € C®°(M,N)|df o J™ = JN o df} the set of
holomorphic maps between two almost complex manifolds (M, JM) and (N, JV).

In this paper, we will use the following definitions.

Definition 0.1 Let E be a real vector bundle. A f-structure in E is an endomorphism F €
C(EndE) such that F® + F = 0. An f-structure on a manifold M is a f-structure in TM .

An f-structure F' in a vector bundle F is determined by its eigenspaces decomposition that we
will denote by

E°=E*oE oE°
where E* = ker(F F ild) and E° = ker F. In particular if E = TM, then we will set T°M =
(TM)?, Vi € {0,+1}.

Definition 0.2 Let (M, FM) and (N, FN) be f-manifolds. Then a map f: (M, FM) — (N, FN)
is said to be f-holomorphic if it satisfies

df o FM = FN o df

Definition 0.3 Let (M, J™) be an almost complex manifold and N a manifold with a splliting
TN =H®V. Let us suppose that the subbundle H is naturally endowed with a complex structure
JM. Then we will say that a map f: (M, J™) — N is H-holomorphic if it satisfies the equation

[df]" o JM = J* o [df)T,

where [df] is the projection of df on H along V. Moreover, if for some reason, H inherits the
name of horizontal subbundle, then we will say that f is horizontally holomorphic.

Remark 0.2 Let us remark that a f-structure in a manifold N is equivalent to a splitting
TN =V @ H together with a complex structure J* on H.

Definition 0.4 An affine manifold (N, V) is a manifold endowed with a linear connection.

An almost complex affine manifold (N, J, V) is an almost complex manifold endowed with an
almost complex connection: VJ = 0.
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1 Invariant connections on reductive homogeneous spaces

The references for this section where we recall some results that we will need in this paper, are

[@], [@], [E]7 and to a lesser extent [@] and ]

1.1 Linear isotropy representation

Let M = G/H be a homogeneous space with G a real Lie group and H a closed subgroup
of G. G acts transitively on M in a natural manner which defines a natural representation:
¢:9€ G (¢pg: v € M — g.x) € Diff (M). Then ker¢ is the maximal normal subgroup of G
contained in H. Further, let us consider the linear isotropy representation:

p: h € H — dép(w0) € GL(Ty, M)

where x¢g = 1.H is the reference point in M. Then we have ker p D ker ¢. Moreover the linear
isotropy representation is faithful (i.e. p is injective) if and only if G acts freely on the bundle of
linear frames L(M).

We can always suppose without loss of generality that the action of G on M is effective (i.e.
ker ¢ = {1}) but it does not imply in general that the linear isotropy representation is faithful.
However if there exists on M a G-invariant linear connection, then the linear isotropy represen-
tation is faithful provided that G acts effectively on M. (Indeed, given a manifold M with a
linear connection, and x € M, an affine transformation f of M is determined by (f(x),df (x)),
i.e. f is the identity if and only if it leaves one linear frame fixed).

1.2 Reductive homogeneous space

Let us suppose now that G/H is reductive, i.e. there exists a decomposition g = h @ m such that
m is AdH-invariant: Vh € H, Adh(m) = m. Then the surjective map £ € g — .29 € T, M has h
as kernel and so its restriction to m is an isomorphism m = 7, M. This provides an isomorphism
of the associated bundle G x gy m with T'M by:

[9,€] = g.(§.0) = Adg(€).x (6)

where z = 7(g) = g.xo.
Moreover, we have a natural inclusion G x g m — G Xy g and the associated bundle G X g g is
canonically identified with the trivial bundle M x g via

[9,€] = (m(g), Adg(¢)). (7)

Thus we have an identification of TM with a subbundle [m] of M x g, which we may view as a
g-valued 1-form 8 on M given by:

Bu(€.x) = Adg[Adg™" ()]m,

where 7(g) = x,€ € g and [ | is the projection on m along h. Equivalently, for all X € T, M,
B(X) is the unique element & € [m], (= Adg(m), with 7(g) = ) such that X = £.z, in other
words (X)) is caracterized by

B(X)eml,Ccg and X =p3(X).z.

In fact, B is nothing but the projection on M of the H-equivariant 1-form, 6, on G, i.e. O
is the H-equivariant lift of 5. Here, 6, is defined as the m-component of the left invariant
Maurer-Cartan form 6 of G. This can be written as follows

(m*B)g = Adg(0m) Vg € G (8)
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with 0,(¢,) = g~1.&, for all g € G, &, € T,G.

Notation For any AdH-invariant subspace [ C m, we will denote by [I] the subundle of [m] C
M x g defined by [l]4.2, = Adg(l).

1.3 The (canonical) invariant connection

On a reductive homogeneous space M = G/H, the Ad(H)-invariant summand m provides by
left translation in G, a G-invariant distribution #(m), given by H(m), = g.m which is horizontal
for m: G — M and right H-invariant and thus defines a G-invariant connection in the principal
bundle 7: G — M. In fact this procedure defines a bijective correspondance between reductive
summands m and G-invariant connections in 7: G — M (see [}, chap. 2, Th 11.1). Then
the corresponding h-valued connection 1-form w on G (of this G-invariant connection) is the
h-component of the left invariant Maurer-Cartan form of G:

wz@h.

1.4 Associated covariant derivative

The connection 1-form w induces a covariant derivative in the associated bundle G x g m = T M
and thus a G-invariant covariant derivative VO in the tangent bundle 7M. In particular, we can
conclude according to section that if G/H is reductive then the linear isotropy representation
is faithful (provided that G acts effectively) or equivalently that ker Ady, = kerp = ker ¢. We
will suppose in the following that, without explicit reference to the contrary, the action of G is
effective and (thus) the linear isotropy representation is faithful.

One can compute explicitly V°.

Lemma 1.1 [
BVXY) = X.B(Y) - [B(X),B(Y)], XY €T(TM).

Let us write (locally) S(X) = AdU(Xw), B(Y) = AdU(Yy) where U is a (local) section of 7 and
X, Y € C°(M,m) then we have (using the previous lemma)
BVRY) = AdU (d¥n(X) + [(X), Y] = [Xm, Yan])
AdU (dYm (X) + [ap(X), Y] + [0 (X) — X, Yim])

where o = U~1.dU. Besides since U is a section of 7 (7 o U = Id), then pulling back (§) by U,
we obtain = AdU (o) and then am(X) = X, so that

BVXY) = AdU (Y (X) + [0 (X), Yau]) (9)

Remark 1.1 We could also say that X, Ym are respectively the pullback by U of the H-
equivariant lifts X, Y of X, Y (given by 3(Xr(4)) = Adg(X(g))).
Then V&Y lifts as the m-valued H-equivariant map on G:

—_~—

VY = dY (X) + [05(X),Y]
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and then taking the U-pullback we obtain the previous result (without using lemma [L.1)).
Moreover, we can express VU in terms of the flat differentiation in the trivial bundle M x g (D [m]).
Let us differentiate the equation Y = AdU(Yy,) (we use the identification TM = [m] C M x g)

dY = AdU (dYy + [, Yi]) = AdU (dY + [, Yan]) + AdU ((Jom, Ya])) = VY + [8, Y],

Finally, we obtain
dYy = VY +[3,Y] (10)

and we recover lemma [L.1].

1.5 G-invariant linear connections in terms of equivariant bilinear maps

Now let us recall the following results about invariant connections on reductive homogeneous
spaces.

Theorem 1.1 @] Let mp: P — M be a K-principal bundle over the reductive homogeneous
space M = G/H and suppose that G acts on P as a group of automorphisms and let ug € P be
a fized point in the fibre of xg € M (mp(ug) = xo). There is a bijective correspondance between
the set of G-invariant connections w in P and the set of linear maps Ay : m — € such that

An(RXh™Y) = AR AR(X)NR)™Y for X cm and h € H (11)

where \: H — K is the morphism defined by hug = uoA(h) (H stabilizes the fibre Py, = ug.K ).
The correspondance is given by

AX) =wy(X), VXeg (12)

where X is the vector field on P induced by X (i.e. Yu € P, X(u) = %|t:0 exp(tX).u) and
A: g — € is defined by Ay = Am and Ay = X (hence completely determined by Ay, ).

Corollary 1.1 In the previous theorem, let us suppose that P is a K -structure on M = G/H, i.e.
P is a subbundle of the bundle L(M) of linear frames on M with structure group K C GL(n,R) =
GL(m) (we identify as usual m with Tpy M by £ — £.x9, and Ty M to R™ via the linear frame
ug € P C L(M)). Then in terms of the G-invariant covariant derivative V corresponding to w,
the G-invariant linear connection in P, the previous bijective correspondance may be given by

AX)(Y)=VzY

where X,Y are any (local) left G-invariant vector fields extending X,Y i.e. there exists a local
section, g: U C M — G, of m: G — M, such that X, = Adg(,)(X).p, for all x € M.

Remark 1.2 In theorem B, the G-invariant connection in P defined by A, = 0 is called
the canonical connection (with respect to the decomposition g = b + m). If we set P(M,K) =
G(G/H, H) with group of automorphisms G, the G-invariant connection defined by the horizontal
distribution #(m) is the canonical connection.

Now, let P be a G-invariant K-structure on M = G/H as in corollary m Let P’ be a G-
invariant subbundle of P with structure group K’ C K, then the canonical connection in P’
defined by Ay, = 0 is (the restriction of ) the canonical connection in P which is itself the
restriction to P of the canonical connection in L(M). In particular, if we set P’ = G.uyp, this
is a subbundle of P with group H, which is isomorphic to the bundle G(G/H, H). Then the
canonical linear connection in P’ corresponds to the invariant connection in G(G/H, H) defined
by the distribution H(m).
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Theorem 1.2 Let P C L(M) be a K-structure on M = G/H. Then the canonical linear
connection (Aw = 0) in P defines the covariant derivative V° in TM (obtained from H(m) in
the associated bundle G x g m = T'M ). Moreover there is a bijective correpondence between the
set of of G-invariant linear connections V, on M, determined by a connection in P, and the set
of linear maps Am: m — € C gl(m) such that

Am(RXh™Y) = Adn(h)Am (X)Adw(h)™' VX € m,Vh € H, (13)
given by -
V=V+An

i.e. VxY = V&Y + An(X)Y for any vector fields X,Y on M, where with the help of (@) we
extended the Ad(H )-equivariant map Ayw: m X m — m to the bundle G x gy m =TM to obtain a
map A: TM x TM — TM.

Example 1.1 Let us suppose that M is Riemannian (i.e. AdwH is compact and m is endowed
with an AdH invariant inner product which defines a G-invariant metric on M) and let us take
P = O(M) the bundle of orthonormal frames on M, the previous correspondance is between
the set of G-invariant metric linear connections and the set of Ad(H)-equivariant linear maps
Ap:m — so(m).

In particular the canonical connection V° is metric (for any G-invariant metric on M ).

Theorem 1.3 e G-invariant tensors on the reductive homogeneous space M = G/H (or more
generally G-invariant sections of associated bundles) are parallel with respect to the canon-
ical connection.

e The canonical connection is complete (the geodesics are exactly the curves xy = exp(tX).xo,
for X em).

o Let P be a G-invariant K-structure on M = G/H, then the G-invariant connection defined
by A: m — ¥ has the same geodesics as the canonical connection if and only if

Am(X)X = 0, VX em

Theorem 1.4 The torsion tensor T and the curvature tensor R of the G-invariant connection
corresponding to Ay is given at the origin point xg as follows:

1 T(X,Y) = An(X)Y — Ap(Y)X — [X, Y],
2. R(X,Y) = [An(X), An(Y)] = An([X, Y]m) — adwm ([X, Y]p),

for XY € m.
In particular, for the canonical connection we have T(X,Y) = —[X,Y]w and R(X,Y) = —adn ([X, Y]s),
for X, Y € m; moreover we have VI =0, VR = 0.

1.6 A Family of connections on the reductive space M

We take in what precede (i.e. in section [LJ) P = L(M). Then let us consider the one parameter
family of connections V¢, 0 < ¢t < 1 defined by

AL(X)Y =t[X,Y]m, 0<t<1.
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For t = 0, we obtain the canonical connnection V. Since for any ¢ € [0,1], AL (X)X = 0,
VX € m, V! has the same geodesics as V? and in particular is complete. The torsion tensor is
given (at xg) by

THX,Y) = (2t — 1)[X,Y]n. (14)

In particular Vz is the unique torsion free G-invariant linear connection having the same
geodesics as the canonical connection (according to theorems and )

Assume now that M is Riemannian, and let us take P = O(M). Then V' is metric if and
only if Al takes values in € = so(m) which is equivalent (for ¢ # 0) to say that M is naturally

reductive (which means by definition that VX € m, [X, ]y is skew symmetric). Now (still in
met
the Riemannian case) let us construct a family of linear connections, V¢, 0 < t < 1, which are

always metric:
met

vt :v0+t([’ ][m] +U]\/I)

where UM : TM @ TM — TM is the "natural reductivity term” which is the symmetric bilinear
map defined byﬂ
(UM(X,Y), Z) = {[Z, X]jm), V) + (X, [Z,V ]m) (15)

met
for all X,Y,Z € [m]. Since UM is symmetric, the torsion of V? is once again given by

THX,Y) = (2t = 1)[X, Y]{m)

met met

1. . . 1. . . . .
and thus V2 is torsion free and metric and we recover that V2 is the Levi-Civita connection

met
Vi = VO
met
Obviously if M is naturally reductive then V¢ = V! Vt € [0,1]. Moreover if M is (locally)

symmetric, i.e. [m,m] C b, then all these connections coincide and are equal to the Levi-Civita
met

connection: V¢ =Vt = V0 = yL-C.,

Remark 1.3 V! is interesting since it is nothing but the flat differentiation in the trivial bundle
M x g followed by the projection onto [m] (along [p]) (see remark [L.1)). So this connection is very
natural and following [[], we will call it the anticanonical connection.

1.7 Differentiation in End(7(G/H))

According to section E, we have
End(T(G/H)) = G xg End(m) C (G/H) x End(g),

the previous inclusion being given by [g, A] — (7(g), Adgo Ao Adg~—!) and we embedd End(m) in
g by extending any endomorphism of m to the corresponding endomorphism of g which vanishes
on h. In other words End(T(G/H)) can be identified to the subbundle [End(m)] of the trivial
bundle (G/H) x End(g), with fibers [End(m)], ., = End(Adg(m)) = Adg(End(m))Adg~' =
Adg(End(m) & {0})Adg".

Now, let us compute in terms of the Lie algebra setting, the derivative of the inclusion map

5UM is the G-invariant extension of U™: m @ m — m, its restriction to m @ m.

24



J3: End(T(G/H)) - M x End(g) or more concretely the flat derivative in M x End(g) of any
section of End(7T'(G/H)). To do that, we compute the derivative of

J: (9, An) € G x End(m) — (g.20, Adg 0 Ay, 0 Adg™') € M x End(g).

We obtain ~
dI(g, Am) = (Adg(@m) .7(g9), Adg (dAw + [adf, Ay]) Adgil) .

Next, let us decompose the endomorphisms in g into blocs according to the vector space decom-

position g =h & m:
End(h)  End(m,b)
End(g) = <End(h,m) End?:n) ) ' (16)

By regrouping terms, we obtain the following splitting
End(g) = End(m) @ (End(m, h) ®© End(h, m) ® End(h)),
which applied to dJ(g, Aw), gives us the decomposition
d3(g,Aw) = (0, Adg (dAm + [admb, An] + [[admOum]m, Am]) Adg™") (17)
+ (Adg(m) - 7(g), Adg ([admbm]p © Am — Am 0 adyfm) Adg™") .

The first term is in the vertical space Vs, 4y = Adg(End(m))Adg~" = End(Ty5M) and the
previous decomposition ([L7) provides us with a splitting TEnd(M) = V&H = x5, (End(M))&H,
i.e. a connection on End(M). Let us determine this connection: we see that the projection on the
vertical space (along the horizontal space) corresponds to the projection on [End(m)] following

(E) so that according to remark E, we can conclude that the horizontal distribution #H defines
the connection V! on End(TM) =TM* @ TM.

Remark 1.4 a) We can recover this previous fact directly from the first term of ([[7) and the
definition of V!. Indeed, first recall that given two linear connections V, V’ on M, we can write
V' =V + F, where F is a section of TM* ® End(T' M), and then for any section A in End(TM),

V'A=VA+IF Al

Besides, V! = V0 + [, Jim], and moreover, if we write (locally) A = (7(U), AdU o Ay o AdU—Y)
where U is a local section of 7 and Ay € C*(M, End(m)), then according to (f),

VYA = AdU (dAw + [admay, An)), (18)
so that we conclude that
VA = AdU (dAm + [admay, Am] + [[admm]|m, Am]) AdU!

which is the (pullback of) the first term of (7).

b) Furthermore, if G/H is (locally) symmetric (i.e. [m,m] C b), then V¢ = V% = V! and in
particular
VEC A = AdU (dAw + [admay, An)) - (19)
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2 m-th elliptic integrable system associated to a k’-symmetric
space

2.0.1 Definition of G™ (even when 7 does not integrate in G)

Here, we will extend the notion of subgroup fixed by an automorphism of Lie group to the
situation where only a Lie algebra automorphism is provided. Indeed, let 7: G — G be a Lie
group automorphism, then usually one can define GT = {g € G| 7(g) = g} the subgroup fixed
by 7. Now, we want to extend this definition to the situation where we only have a Lie algebra
automorphism, and so that the two definitions coincide when the Lie algebra automorphism
integrates in G.

Let g be a real Lie algebra and 7: g — g be an automorphism. Then let us denote by

go=g¢ :={{cgl7(§) =& (20)

the subalgebra of g fixed by 7. Let us assume that 7 defines in g a 7-invariant reductive decom-
position
g=go®n, [go,n]Cmn, 7(n)=n.

Moreover we suppose that we have n = Im (Id — 7), i.e. that the decomposition g = go & n
coincides with the Fitting decomposition of Id — 7 (remark that this decomposition is then
automatically reductive since ad€ o (Id — 7) = (Id — 7) o ad§, V€ € go).

Without loss of generality, we assume that the center of g is trivial. Moreover, we assume also,
without loss of generality, that go does not contain non-trivial ideal of g, i.e. that ad,: go — gl(n)
is injective (the kernel is a 7-invariant ideal of g that we factor out). We then have

80 = {€ € gl Toadg 0 77! = adg} (21)
Let G be a connected Lie group with Lie algebra g. Then let us consider the subgroup
Go={g€G|ToAdgor ! = Adg}.

Then Gy is a closed subgroup of G and Lie Gy = gp.

Moreover, without loss of generality, we will suppose that Gy does not contain non-trivial normal
subgroup of G (by factoring out, if needed, by some discrete subgroup of G), i.e. that Ad,: Go —
GL(n) is injective (see section [[). Now, we want to prove that if 7 integrates in G, then we
have Gy = G7, where G7 is the subgroup fixed by 7: G — G. First, we have Vg € G7,
70oAdgo7! = Adr(g9) = Adg, thus GT C Gy. Conversely, we have Vg € Go, Adg(n) = n and
Adg = 7oAdgor ! = Ad7(g) so that Ad,g = Ad,7(g) and thus g = 7(g) since Ad,: Gop — GL(n)
is injective. We have proved G7 = Gy. This allows us to make the following:

Definition 2.1 Let g be a real Lie algebra and 7: g — g be an automorphism, and G a con-
nected Lie group with Lie algebra g. Let us assume that T defines in g a T-invariant reductive
decomposition: g = go ®n with n = Im (Id — 7). Then we will set

G™:={g€G|toAdgor ! = Adg}.

Let us conclude this subsection by some notations:

Notations and conventions In all the paper, when a real Lie algebra g and an automorphism
7 will be given, then we will suppose without loss of generality that the center of g is trivial,
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go will denote the Lie subalgebra defined by ), G will denote a connected Lie group with Lie
algebra g and Gy C G a closed subgroup such that (G7)Y C Gy C G (which implies that its Lie
algebra is go).

Moreover, without loss of generality, we will always suppose that go does not contain non-trivial
ideal of g - we will then say that (g, go) is effective - and also suppose that G™ does not contain
non-trivial normal subgroup of G (by factoring out, if needed, by some discrete subgroup of G).
Consequently, when 7 can be integrated in G, then G™ will coincide with the subgroup of G fixed
by 7: G = G.

Remark 2.1 e Let g be a Lie algebra and 7: g — g be an automorphism. Let us consider
G’ = AdG =: Int(g) the adjoint group of g (which does not depend on the choice of the connected
group (3), and let C' = ker Ad be the center of G. Then we can identify the morphism Ad with
the covering 7: G — G/C and G’ to G/C. Besides T always integrates in G’ into 7/ defined by
7 =Intr: Adg € &' = 70Adgor ! and we have 7/ o = wo 7 (See [2g, p. 127]). Then, we see
that Go = Ad~1(G'™ ) = n=1(G'™).

e Now, let us come back to the hypothesis of trivialness of the center of g. Let g be a real Lie
algebra with center ¢ and 7: g — g an automorphism. Then we have 7(c) = ¢. Therefore, if 7 is
of order k’, for any m € N*, the m-th elliptic integrable system associated to 7 splits into two
independent systems: a general one on g’ = g/c¢ and a trivial one on ¢ = R" : day =0, YA € C*.
Then the solutions of this trivial system are the maps fy: L — ¢, f) = Z}":_m )\jfj, VA e C,
such that f_; = f_j, j >0, and f_; is an holomorphic map into the eigenspace ¢© N g(gj. (Of
course ay = dfy.) Therefore, the hypothesis of trivialness of the center can be done without loss
of generality.

2.1 Finite order Lie algebra automorphisms

Let g be a real Lie algebra and 7: g — g be an automorphism of order &’. Let wy be a k'-th
primitive root of unity. Then we have the following eigenspace decomposition:

“= P of5  65.elcaiy
JELIK'T

where gf is the wj,-eigenspace of 7.

We then have to distinguish two cases.

2.1.1 The even case: k' =2k

Then we have g§ = (go)©. Moreover let us remark that
o5 =0, VjezZ/NZ. (22)
Therefore g = g%, = g% so that we can set g% = (gi)¢ with

g = {{€g|7(§) = ¢}
Moreover, owing to (@), we can define m; as the unique real subspace in g such that its com-

plexified is given by
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and n as the unique real subspace such that

= P

JEL\{0}

that is n = (@f;llmj) @ gr. In particular 7 defines a 7-invariant reductive decomposition g =
go ©n.
Hence the eigenspace decomposition is written:

g© = (gﬁi(,H) @...@991) Dgo @ (o7 @ ... Dgi_,) Doy
so that by grouping
o = g e e @]

= fomC

where h = go @ g, and m = EB?;llmj. Considering the automorphism ¢ = 72, we have h = g7
and g = h @ m is the reductive decomposition defined by the order k& automorphism . Without
loss of generality, and according to our convention applied to g and o, we will suppose in the
following that (g, ) is effective i.e. b does not contain non trivial ideal of g. This implies in

particular that (g, go) is also effective.

2

Now let us integrate our setting: let G be a Lie group with Lie algebra g and we choose Gg
such that (GT)? € Gp € G™. Then G/Gy is a (locally) 2k-symmetric space (it is globally 2k-
symmetric if 7 integrates in G) and is in particular a reductive homogeneous space (reductive
decomposition g = go @ n).

Moreover since o = 72 is an order k automorphism, then for any subgroup H, such that (G°)° C
H C G°,G/H is a (locally) k-symmetric space. In all the following we will always do this choice
for H and suppose that H D Gy (it is already true up to covering since h D go) so that N = G/Gyp
has a structure of associated bundle over M = G/H with fibre H/Gy: G/Go = G x g H/G.
We can add that on b, 7 is an involution: (7'“,)2 = Idy, whose symmetric decomposition is
h = go @ gk, and gives rise to the (locally) symmetric space H/Gy. The fibre H/Gy is thus
(locally) symmetric (and globally symmetric if the inner automorphism Int7|,, stabilizes Ady H).
Owing to the effectivity of (g,h), we have the following characterization:

9o {€ € blladm&, 7] = 0} (23)
o = {€€ h|{adm§a7\m} =0} (24)

{} being the anticommutator.

Two different types of 2k-symmetric spaces. Since (T‘m)k is an involution, there exist two
invariant subspaces m’ and m”, of m, each sum of certain m;’s, such that

(T|m)k = —Idm/ (&) Idm//.

k—2 k—1
!/ 1 3 . A ] " __ ]
These subspaces m” and m” can be computed easily : m’ = @, ‘mg;j1 and m” = @, 7 ‘my;.

In other words, their complexifications are given by

m'© = @ ker(7 — z1d), m"© = @ ker(t — 21d).
=1 Zh=1

At this stage, there are two possibilities:
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e if m"” =0 then (7)) = —Idy and 7),, admits eigenvalues only in the set {z* = —1,2 # —1}.

e if m” % 0 then (7)y)" # —Idw and 7, admits eigenvalues in each the sets {z* =1,z # +1}
and {zF = 1,2 # —1}.

These two cases give rise to two different types of 2k-symmetric spaces (see section @)

G-invariant metrics. Now, let us suppose that M = G/H is Riemannian (i.e. AdnH is
compact) then we can choose an Ad H-invariant inner product on m for which 7, is an isometryﬁ.
In the next of the paper, we will always choose this kind of inner product on m. Therefore, 7,
is an order 2k isometry. We will study this kind of endomorphism in section E

Moreover, let us remark that if G/H is Riemannian then so is G/Gy. Further, since the elliptic
system we will study in this paper is given in the Lie algebra setting it is useful to know how
the fact that G/H is Riemannian can be read in the Lie algebra setting. In fact, under our
hypothesis of effectivity, G/H is Riemannian if and only if b is compactly embeddedﬂ in g and
AdH/AdH® is finite. Moreover, according to proposition B.3 in the Appendix, AdH/AdH" is
always finite so that G/H is Riemannian if and only if § is compactly embedded in g.

2.1.2 The odd case: k' =2k +1

As in the even case we have g5 = (go)* and E = g(gj, Vj € Z/k'Z. Then we obtain the following
eigenspace decomposition:

“ =5 o... o) oo (To...ag), (25)
which provides in particular the following reductive decomposition:
g=godm

with m = EB?:ﬂ“j and m; is the real subspace whose the complexification is mg-: =g¢ ;® g;c-.
According to our convention, we suppose that (g, go) is effective.

Then, as in the even case, integrating our setting and choosing Gy such that (G7)° C Go C
G7, we consider N = G/Gy which is a locally (2k + 1)-symmetric space and in particular
a reductive homogeneous space. Moreover, the decomposition @) gives rises to a splitting
TNC =T"N @ T%'N defined by

TN® = (@le[g(gj]) ® (@ﬁzl[gg]) 96
TI,ON D TO,IN ( )

This splitting defines a canonical almost complex structure on G/G, that we will denote by J

Let us suppose that N = G/Gy is Riemannian then the subgroup generated by AdnGo and
Tjm is compact (because AdynGo is compact and 7 Admg Tl;l = Adng, Vg € Gg, and 7, is of
finite order). Therefore there exists an AdGy-invariant inner product on m for which 7, is an
isometry. In the next of the paper, we will always choose this kind of inner product on m (when
N is Riemannian).

6See Appendice, theorem @, for the proof of the existence of such a inner product
"See , p. 130] for a definition.
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2.2 Definitions and general properties of the m-th elliptic system.
2.2.1 Definitions
Let 7: g — g be an order k' automorphism with &' € N* (if £’ = 1 then 7 = Id). We use the

notations of @ Let us begin by defining some useful notations.
Notation and convention Given I C N, we denote by H]—GI gg;, the product Hje[ g;cmod - In

the case jer g?mod w is a direct sum in g%, we will identify it with the previous product via
the canonical isomorphism

(aj)jer — Y _aj, (27)

Jjel
and we will denote these two subspaces by the same notation @ ;¢ Ig;c.
Now, let us define the m-th elliptic integrable system associated to a k’-symmetric space, in the

sense of Terng [[19].

Definition 2.2 Let L be a Riemann surface. The m-th (g, T)-system (with the (—)-convention)
on L is the equation for (uo,...,um), (1,0)-type 1-form on L with values in H;‘H:O g(Ej :

m—j
Ouj+ > (i Auigg] =0 (Sj), f1<j<m,

=0, (Syst)
5U0+8’EL0+Z[UJ' /\ﬂj] =0 (SO)

J=0

It is equivalent to say that the 1-form

ax=> Auj+Nu;= Y Na; (28)
j=0 j=—m

satisfies the zero curvature equation:
1 *
da>\+§[a>\AaA]:0, VA e C*. (29)

Definition 2.3 Let L be a Riemann surface. The m-th (g, 7)-system (with the (+)-convention)
on L is the equation (Syst) as in definition but for (ug,...,um), (1,0)-type 1-form on L with
values in [[5_, 051

It is equivalent to say that the 1-form

m m
o :Z)\juj +)\_j’ﬁj = Z )\jdj (30)
j=0 j=—m

satisfies the zero curvature equation @)
Remark 2.2 The difference between the two conventions is that in the first one oy = 377" A

involves negative powers of A whereas in the second one /) involves positive powers of A (in other
words d’ij = 0, for 7 > 1 in the first one whereas d}’ = 0, for j > 1 in the second one). In fact

8 C
instead of []7" g% ;.
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the second system is the first system associated to 77! and vice versa.

The first convention is the traditional one: it was used for harmonic maps into symmetric space
(see [[L6]) and by Hélein-Romon [R5, g, B7] for Hamiltonian stationary Lagrangian surfaces in
Hermitian symmetric space — first example of second elliptic integrable system associated to a
4-symmetric space. Then this convention was used in [@, @, @] Terng [@], herself, in her
definition of the elliptic integrable system uses also this convention. However in [@], it is the
second convention which is used.

The (+)-convention is in fact the most natural, as we will see, since in the (—)-convention, there
is a minus sign which appears when we pass from the Lie algebra setting to the geometric setting.
This is what happens for example when we will associate to the automorphism 7, a almost com-
plex complex structure in the target space (see also [@], remark 13). Namely, we will consider
that the eigenspace spaces g—; will define the (1, 0)-part and the subspaces g; the (0, 1)-part of
the tangent space of the target. But the (4+)-convention leads to several changes in the traditional
conventions, like for example in the DPW method [E], we must use the Iwasawa decomposition
AGE = AG,. A5 GE instead of AGE = AG,.AfGE and in particular the holomorphic potential
involves positive power of )\ instead of negative one as it is the case traditionally. We decided
here to continue to perpetuate the tradition as in [@] and to use the first convention. So in
the following when we will speak about the m-th elliptic integrable system, it will be
according to the definition .

Notation Sometimes, to avoid confusion we will denote (Syst) either by (Syst(m, g, 7)), (Syst(m, 7))
or simply by (Syst(m)) depending on the context and the needs.

For shortness we will also often say the (m, g, 7)-system instead of the m-th (g, 7)-system. We
will also say the m-th elliptic (integrable) system associated to (the k’-symmetric space) G/Gy.
We will say that a family of 1-forms (ax)xec+ (denoted by abuse of notation, simply by «) is
solution of the (m, g, 7)-system (or of (Syst)) if it corresponds to some solution u of this system,
according to %) Therefore ) is solution of the (m, g, 7)-system if and only if it can be written
in the form (R§), for some (1,0)-type 1-form u on L with values in H;ﬁ:o g(Ej, and satisfies the
zero curvature equation @)

It will turn out that the (m, g, 7)-system has distinctively different behaviour if k" is even and if
k' is odd. Moreover, for every k' there are three different types of behaviour, according to the
size of m relatively to k'

! o !/

Definition 2.4 Ifk' =1, setmy = 0. Ifk’ > 1, we set my = [k i 1} = {k ik N 2k

2 k+14ifk =2k+1
We will say that the m-th (g7)-system is:
— in the primitive case (or that the system is primitive) if 0 < m < my,
—in the determined case (or that the system is determined) if mp <m <k’ —1,
- and in the underdetermined case (or that the system is underdetermined) if m > k' — 1.
Moreover, the determined system of minimal order my will be called “the minimal determined

system”, and the one of mazximal order k' — 1 will be called "the mazimal determined system”.

Let us consider the g-valued 1-form o := a)—;. Then we have a = Z;nzo u; + 4, according to
() which is equivalent to o/ = > io U, since a is g-valued.

e In the primitive and determined cases (m < k' —1), 37" g(gj is a direct sum so that u =

(ug, - ..,um) can be identified with ZTZO uj = o via (P7) and according to our convention. We
will then write simply u = ’. In particular we have

Uj:aLj Vji,0<j<m
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with a; := [alg; Vj € Z/k'Z. Hence in the primitive and determined cases the m-th (g, 7)-system
can be considered as a system on «. Moreover, we can recover o) from a and we will speak
about the "extended Maurer Cartan form” «) which is then associated to a by

m m
ay = E )\7]0/7]- + ag + g )\]a;f
i=1 i=1

according to (9).

e In the underdetermined case, ZTZO g¢ ; 1s not a direct sum so that to a given « (coming from
some solution « of the m-th (g, 7)-system, according to o = ax—1) there are a priori many
(other) corresponding solutions u = (ug, . . ., Uy, since

Vi€ Z/KL, o ;= Y u.
i=j[k']

In fact, we will prove that there are effectively an infinity of other solutions «) satisfying the
condition ax—1 = « (see theorem EI; see also section E for a conceptual explanation).

2.2.2 The geometric solution

Convention. Our study, in the present paper, is local therefore we will suppose (when it is
necessary to do so) either that L is simply connected or that all lifts (of maps defined on L)
and integrations (of 1-forms on L) are made locally. We consider that these considerations are
implicit and will not precise these most of the time.

The equations (B9) and (R§) are invariant by gauge transformations by the group C*°(L, Go):
Uo - ax = AdUp(ay) — dUy.Uy .

where Uy € C*°(L,Gp). This means that if «y satisfies @) then so is Uy - ay and if «) can
be written in the form (Rg) then so is Up - ax. Therefore if ay is a solution of (Syst) then so is
Up - ax. This allows us to define a geometric solution of (Syst) as follows:

Definition 2.5 A map f: L — G/Gy is a geometric solution of (Syst) if for any (local) lift
U of f, into G, there exists a (local) solution ay of (Syst) such that U~1.dU = ax—;.

In other words, we obtain the set of geometric solutions as follows: for each solution a of (Syst),
consider the g-valued 1-form « := a—1, then integrate it by U: L — G, U~'.dU = a, and finally
project U on G/Gy to obtain the map f: L — G/Gj.

Now, to simplify the exposition, let us suppose that L is simply connected (until the end of )
Then (ax)recr — @ = ax=1 is a surjective map from the set of solutions of (Syst) to the set of
Maurer-Cartan forms of lifts of geometric solutions. According to the discussion at the end of
subsection , this map is bijective in the primitive and determined case (m < k' —1) and not
injective in the underdetermined case (m > k' — 1). By quotienting by C*°(L, Gy), we obtain a
surjective map 7, with the same properties, taking values in the set of geometric solutions.

Let us make more precise all that. We suppose, until the end of this subsection , that the
automorphism 7: g — g is fixed (so that the only data which varies in the (m, g, 7)-system is the
order m). First, let us give an explicit expression of the space S(m) of solutions a of the system
(Syst(m)), i.e. the solutions of the zero curvature equation (R9), which satisfies the equality (g)
for some (1,0)-type 1-form u on L with values in HT:O g‘Ej. To do that, we want to express the
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condition to be written in the form (Bg) as a condition on the loop ae: A € S' + e\ € C(T*L®g).
The ” o ” means of course functions on the parameterﬂ X € St. More precisely, we will consider
e as a 1-form on L with values in the loop Lie algebra C'(S',g). Then the condition to be
written in the form (@) means:

RY) < (e € Appgr and al. c A_gg) (31)
where
Agr = {ne: 8" = glmur =7(m), VA € S}
Amg‘r = {770 S Ag‘r| = Z /\j’f]j}
[j]|<m
ATgT = {ne€Agflm =) Niy)
j<0

and w is a k’-th primitive root of unity. We refer the reader to @] for more details about loop
groups ad their Lie algebras (in particular about the possible choices of topology which makes
Ag- be a Banach Lie algebra). Therefore the space of solutions of (Syst(m)) is given by

1
S(m) = {ae € C(T*L @ Apng,)| ), € A*gg and doe + 5[04. A ae] = 0}. (32)

Let us remark that the condition o, € A~g¢ can be interpretated as a condition of C-linearity.
Indeed, the Banach vector space Ag,/go is naturally endowed with the complex structure defined
by the following decomposition

(AQT/QO)C = Agg/gg =A g, D Ajg'ra (33)

where Afg, = {ne € AgS|ny = ijo M1;}. Then the condition o € A~gt means that

[af]: TL— (Agr/g0)C is C-linear, where [ ], denotes the component in A.g, = {ne € Ag|n\ =
2 iz N1} = Agr/go-
Now let us integrate our setting. Firstly, let us define the twisted loop group ([fid])

AG, = {U,: S' = G|Uyn =7 (UN)}.

Then, let us set

E™ = {Us: L = AG,|UA(0) = 1,VA € S';ay := Uy ".dU, is a solution of (Syst(m))}
g = [U:L—GFU. €™ U =0}

G" = {f:L— G/Gy geometric solution of (Syst(m)), f(0) = 1.Go}

Gg" = {fe=7g/c,0Us, Us €E™}

Remark that because of the gauge invariance: £(m).JC C £(m) where K = C°(L,Gy) = {U €
C>(L,Go)|U(0) = 1}, any lift[] U, : L — AG, of an element f, € G™ belongs to £™.

Definition 2.6 An element fo € G™ will be called an extended geometric solution of (Syst(m)).

9Remark that e determines (ay)acc+, when this latter satisfies (E)
10With initial condition U(0) = 1.
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The space of geometric solutions is obviously obtained from the space of extended geometric
solutions G™ by the evaluation at A = 1. Moreover S(m) ~ £™ is determined by GJ* because of
the gauge invariance: £(m).K C £(m), so that we can write G™ = £(m)/K. Consequently, we
have also Gi" = £7"/K.

Finally, we obtain the following diagram

S(m) int (S‘m TIC Sm/’C g:n

R R S

e, gm gm/K gm

1R

=+

]
2

o

Therefore, the surjective map m,, is bijective for m < k’ — 1 and not injective for m > k' — 1
(because so is evy). We will need the following definition:

Definition 2.7 Given a g-valued Maurer-Cartan 1-form o« on L, we define the geometric map
corresponding to o, as f = g g, o U, where U integrates ou: U=tdU =, U(0) = 1.

We have seen that in the primitive and determined cases, we can consider (Syst(m)) as a system
on the g-valued 1-form « := a)—;. Since the Maurer-Cartan equation for « is always contained
in (Syst(m)) according to (B9, this systems on « is itself equivalent to a system on the geometric
map f corresponding to «. This system on f is then a G-invariant elliptic PDE on f of order
<2.

Let us summarize:

Proposition 2.1 The natural surjective map mp,: G™ — G* from the set of extended geometric
solutions of the (m, g, T)-system into the set of geometric solutions is bijective in the primitive
and determined cases (m < k' — 1) and not injective in the underdetermined case (m > k' —1).
Moreover, in the primitive and determined cases, the (m, g, T)-system - which is initially a system
on the Apgr-valued 1-form «y - is in fact a system on the 1-form o := ax=1, itself equivalent
to an elliptic PDE of order < 2 on the corresponding geometric map f: L — G/Gy.

Furthermore, let us interpret the C-linearity of [a/],: TL — (Ag,/go) in terms of the corre-
sponding extended geometric solution fo: L — AG,/Go, defined by fo = 7g/q, © Us where U,
integrates . Firstly, the complex structure defined in Ag,/go by (@) is AdGp-invariant so that
it defines a AG -invariant complex structure on the homogeneous space AG,/Gy. Therefore the
C-linearity of [o,]. means exactly that fo: L — AG./Gq is holomorphic. Now, let us interpret
the condition o € A,,g- in terms of the map f,. Let us consider the following AdGp-invariant
decomposition

Ag‘r/gO = Am*g'r 2 A>mg7'

where Am.gr = Amgr N Augr and Aspgr = {ne € Agr|nmn = 22150 N1}, which gives rise
respectively to some AG, -invariant splitting

T(AG,/Go) = HE @ V2.

Then H2, and V2 inherit respectively the qualificatifs horizontal and vertical subbundle respec-
tively. Therefore, in the same spirit as [@] (remark 2.5 and proposition 2.6), the equation (@)
gives us the following familiar twistorial characterization

Proposition 2.2 A map fo: L — AG, /Gy is an extended geometric solution of the (m,g,7)-
system if and only if it is holomorphic and horizontal.
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2.2.3 The increasing sequence of spaces of solutions: (S(m))men

Again, we suppose in all that the automorphism 7 is fixed and that L is simply connected.
Then according to the realisation of (Syst(m)) in the forms (B9) and (Rg), we see that any solution
of (Syst(m)) is solution of (Syst(m')) for m < m/' (take u; = 0 for m < j < m'). More precisely,
(Syst(m)) is a reduction of (Syst(m')): (Syst(m)) is obtained from (Syst(m’)) by putting u; = 0,
m < j < m/,in (Syst(m’)). In particular, S(m) C S(m’) for m < m’; so that any solution in
the primitive case (m < my/) is solution of any determined system (mj < m <k’ —1), and any
solution of a determined system is solution of any underdetermined system (m > k' —1).

{Primitive case} C {determined case} C {underdetermined case}.

Remark 2.3 We have 7,/ gm = mpn if m < m/. In particular, 7,/ (G™) = Gi". We can
set §(00) = UmenS(m), €% = UpenE™ and G = Up,enG™. Then we have G = £%°/K.
Moreover we can define the surjective map 7o : G — G7° such that 7 jgm = mm, Vm € N.
Then 7 |gm is a bijection onto Gi"* for each m < kK —1.

We can call §(c0) the (g, 7)-system, and then we can speak about its subsystem of order m,
namely S(m). In particular, we have the following characterization:

1
S(00) = {ae € C(T"L ® A()87)| g € A"gr and da, + 5[04. A ae] = 0}

where A(oo)gf = UmENAmgT-

Important Remark It could happens that the eigenspaces g; vanishes for the first values of
j, i.e. j close to 0. For example it is a priori possible that go = 0 (which implies that our
k’-symmetric space is a group). Then for the values of m > k' close to k’, the underdeter-
mined systems Syst(m) coincide trivially with the determined system Syst(k’ — 1), because then
uj € g—; = {0}, for k¥’ < j < m. This is why, when we say "underdetermined”, we mean in
fact ”underdetermined but not determined” to exclude the (potential) formal underdetermined
systems which are in fact trivially determined because of the (potential) vanishing of the first
eigenspaces. Remark that this eventuality to happen need that all the eigenspaces from 0 to a
small value, vanish (they can not all vanish otherwise g = 0), and in particular, this implies that
go = 0 (the automorphism 7 has no fixed point).

The primitive and determined cases (m < k'—1) Now, let us apply the previous discussion
(about the increasing sequence (S(m))men) to the study of the determined case. Let us recall
that in this case, we can consider that the system (Syst(m)) deals only with g-valued 1-forms «.
Let us also keep in mind that, in this case, we have o/ = u € EB}”:Og(Ej (see the discussion in the

end of R-2.1], after definition P.4). Then we obtain immediately:

Proposition 2.3 The solutions of a determined system (Syst(m)), mp < m < kK — 1, are
exactly the solutions of the maximal determined system, i.e. (Syst(k’ — 1)), which satisfy the
holomorphicity conditions:

o/ij:(), 1<j<Kk—-1-m.

Moreover, the solutions of a primitive system (Syst(m)), 1 < m < my — 1, are the solutions of
the minimal determined system, i.e. (Syst(my)), which satisfy

(i) if k' = 2k is even, the horizontality conditions:

Ak = Qg (k1) =+ - Qi (my1) =0
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(i) if k' =2k + 1 is odd,

e the holomorphicity condition : o, =0 ifm=k,
e the horizontality conditions : aty = a4(xr—1) = ... @x(ms1) =0 fm<k—1.

The non injectivity of m,, in the underdetermined case Now, let us turn ourself to the
underdetermined case. We want to study the surjective map mp,: G™ — GJ*, in this case.

Theorem 2.1 The surjective map mp,: G™ — G, from the set of extended geometric solutions
into the set of geometric solutions, is a principal bundle with as structure group some group of
holomorphic curves into AG./Go. In the determined and primitive cases, this group is trivial
whereas in the underdetermined case it is of infinite dimension.

Therefore, in the underdetermined case, the surjective map mp,: G™ — GT* is not injective and
its fibers are of an infinite dimension (even up to conformal transformations of L). A fortiori,
50 is for the map evy: ae € S(M) = 1= ay=1 € S(M)1.

Proof. The natural map AG, — G, g — ¢(1) is a morphism of group and therefore a principal
fibre bundle, with as structure group the kernel

H = {g € AG,lg(1) = 1c}.

Then it induces the fibration 7: AG,/Gy — G/Gy which is also a H-principal bundle (remark
that Go N H = {1}), H acting by the left on AG,/G.

Let Hol™(L,AG,/Gg) be the set of holomorphic integrale curves fo of the holomorphic AG.-
invariant distribution #2,, such that f,(0) = 1.Go, where o is a reference point in L. According
to proposition P.3, we have G™ = AG,.Hol™ (L, AG,/Gy). Therefore, denoting (G*), = {g €
G g(o) = 1.Go}, we want to prove that the following map

Tt fo € Hol™ (L, AG,/Go) - f1 € (GT) (34)

is a principal fibre bundle. To fix ideas, let us first consider the fibre defined by the constant
map 1.Gy. This is nothing but the holomorphic integral curves of the holomorphic AG-invariant
distribution (Hﬁl)* defined by the complex subspace {n € Ap.g-|m = (Jn)1 = 0}, such that
fe(0) = 1.Gy. Of course J is the complex structure on AG,/Gy. Furthermore, remark that
(’H,’}L)* vanishes in the determined case and is non trivial in the undetermined case.

More generally, let us compute the fibre of any f, € Hol™ (L, AG,/Gy). Firstly, we remark that H
is immersed into AG, /Gy via the projection 7g,: AG, — AG,/Gy. The image of H in AG, /Gy
is {h € AG;/Gp|h(1) = 1.Gp}. Remark also that each element of this image has one and only
one lift in H C AG,. Now, let f, f' € Hol™(L,AG,/Gg) be in the same fibre of m,,. Therefore,
there exists h: L — H such that f = h.f. Moreover it is not difficult to see that h: L — AG, /Gy
is holomorphic. Then we have df’ = dh.f + h.df but df’ and h.df take values in H2 so that dh.f
takes values in H2, also. Therefore dh takes values in H2, i.e. h is a holomorphic integral curve
of H2, which takes values in H and satisfies h(0) = 1.Gy. This is in fact equivalent to say that
h is a holomorphic integral curve of (#%,), such that h(o) = 1.Go (then h € H automatically).
Conversely, any holomorphic integral curve of (Hﬁl)* such that h(o) = 1.Gq satisfies that d(h.f)
takes values in H2 | and thus f’ := h.f is in Hol™ (L, AG,/Gy) and in the same fibre as f.

We have proved that the fibres of 7, are all isomorphic to the set of holomorphic integral curves
h of (H2,), such that h(0) = 1.Go.

Moreover, proceeding as above we prove that the previous space Hol}' (L, AG./Gg) of holomor-
phic maps is a subgroup of C*°(L,H) (take for f an element of this space, i.e. in the fibre of
the constant map 1.Gg, and then applying what precedes proves that this space is stable by
multiplication of two elements). This completes the proof. (I

o
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2.2.4 The decreasing sequence (Syst(m, 7)),/

We will call m-th g-system, the m-th (g,Id)-system (i.e. u = (ug,...,ur) takes values in
(g€)™*1, in definition R.9).

Any solution of the m-th (g, 7)-system is solution of the m-th g-system.More precisely, the m-th
(g, 7)-system is the restriction to @;-”Zoggj (1) of the m-th g-system.

More generally, for any p € N* such that p divides &, the m-th (g, 7)-system is the m-th (g, 77)-
system restricted to EB}":Og_j(T), or equivalently - in terms of oy € AgS, - restricted to AgC.

2.3 The minimal determined case

We study here the elliptic system (Syst(m)) in the minimal determined case and by the way its
subcase the primitive case. Let us recall again that in this case, we can consider that the system
(Syst(m)) deals only with Maurer-cartan forms « and consequently also with geometric maps f.
Then we have to translate the equations on « into geometric conditions on f. This is what we
will begin to do now.

The minimal determined case splits into two cases.

2.3.1 The even minimal determined case: k' =2k and m =k

Let us recall the following decomposition

g = (g(E(kfl) D... 699(51) ogia (S e... 00, @0l
It is useful for the following to keep in mind that k¥ = —k mod 2k.

Proposition 2.4 The system (Syst(k, 7)) can be written
o/ijzlo,lgjgk—l (Hj)
do + 5[04 ANa]l=0 (MC) . (35)
o, +ag Aa ] =0 (Sk)

More precisely the equations (S;), 0 < j < k — 1, of (Syst(k, 7)) are respectively the projec-
tion on g(Ej, 0<j<k-—1, of (MC) (owing to the holomorphicity conditions (H;) given by
proposition

Proof. The equation (S;), for 1 < j <k — 1, is written in terms of

k—j
da’ ; + Z[a’i' Aol ] =0,
i=0
according to definition @ Since we have a’ij =0, 1 <j<k-—1, according to proposition @,

this equation is equivalent to
k—j

doz,j + Z[Oéz AN 047];1'] =0 (36)
1=0
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which is nothing but the projection of (MC) on g& ;- Indeed, we have

Slanale =2 [ S el nall+ X leinall] = X o Aall= Y lafaal,

i+l=—j i+l=—j i+l=—j i=—k+1

where we have used, in the last line, the holomorphicity conditions: of = 0if —k+1 <i < -1
anda’_j_izoifk—jgigk.

Now, since « is real (i.e. is g-valued), this equation () is also equivalent to its complex conjugate
i.e. the projection of (MC) on g;C. Moreover, the equation (Sp) is written in terms of «:

day + Doy Z =0

and moreover, using the holomorphicity conditions, we have

k—1

1 1
= o Aay)+ 5lami Aar] = 5l Aalg,
=0

1
R

which proves that (Sp) is equivalent to the projection of (MC) on gg. Finally, the equation (Sg)
is written in terms of a as in (BY). This completes the proof. O

Moreover, always owing to the holomorphicity conditions, the projection of (MC) on g gives us
day, + [ag Aag] =0

which is the real part of (S;). Hence the only new information (in addition to (MC) and (H))
given by the minimal determined elliptic integrable system in the even case is the imaginary part
of (Sk):

d(*ak) + [Oéo A (*Ozk)] =0 (Ek>
which is as we will see the vertical part of a harmonic map equation. Hence (Syst(k, 7)) is
equivalent to

o =0, 1<j<k-1 (H))

d(xag) + [ag A (xag)] =0 (Ex)

da+%pAay:o (MC)

e Now, let us contemplate the equation (S). In terms of the geometric map f: L — G/Go,
corresponding to «, this equation means

AV grf =0

where (VY)Y is the vertical part of the canonmical connection V° on the homogeneous space
N = G/Gy. The vertical and horizontal spaces are defined by V = [gx] and H = [m] since we
can do the splitting: T(G/Go) = [m] @ [gx]. Moreover, as we will see in section [, since the
fibration 7: G/Gy — G/H has a symmetric fibre, the vertical component V¥ of the Levi-Civita
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connection V on the Riemannian homogeneous space G /Gy, coincides in the vertical subbundle
V with the vertical component of the canonical connection (V°)?. Therefore (Sk) means

V' oUf =o0.
Hence the equation (Ey) is equivalent to (see section [f)
dV' (+d" f) = 0 <= 7°(f) 1= Trg(V'd" f) = 0

(for any hermitian metric g on the Riemann surface L). We will say that f is vertically harmonic.

The primitive case The m-primitive case is obtained by putting ar = aLx_1) = ... AL(my1) =
0 in the minimal determined case (BJ). In particular a; = 0 and (Sy) is trivial so that the only
conditions on the geometric map f: L — G /Gy (whose existence is guaranted by (MC)) are the
equations (H;): o, =a} =0,1<j <m, and o = ax_1) = ... ax(m41) = 0, according to

—J
proposition .

Proposition 2.5 Let7: g — g be an order 2k automorphism, and m < k a positive integer then
the m-th elliptic integrable system (Syst(m,T)) means that the geometric map f: L — G/Gq
satisfies

of € @;’n:l[g(gj] C T(G/Go)".

Proof. Let f be the geometric map corresponding to the Maurer-Cartan form «, that we
integrate by U: L — G, then we have f = AdU(«,) and « is solution of (Syst(m,7)) if and
only if

ay=a  +...+ad, el gc, = 0f € &7 [g",].

This completes the proof. ([

Remark 2.4 In particular, in the primitive case f is horizontal (o = 0). Therefore (Sy) is
trivial and (owing to the holomorphicity conditions (H;),1 < j < k — 1) the free curvature
equation (R) is equivalent to (MC) in the primitive case.

Definition 2.8 Let m < k be a positive integer. We will call m-primitive map (into the locally
(2k)-symmetric space G/Gy) a geometric solution of the system (Syst(m,)).

Geometric interpretation of the equations (H;). For m < k, let FI™ be the f-structure
on N = G/Gy defined by the following (eigenspace) decomposition:

TN® = (@;'n:l[g(gj]) ® (@\j\>m[9§]) ® (@;'n:l[gg;]) (37)
= TtN @ T°N @ T-N

We will set F = FIF=1 and we will call F the canonical f-structure on N. Then according to
proposition @ we have

Theorem 2.2 A map f: L — G/Gy is m-primitive if and only if it is FU™_holomorphic.

Remark 2.5 The equations (H;): o”; =0, 1 < j < m, on a Maurer-Cartan 1-form o means
that the corresponding geometric map f: L — G/Gy satisfies pr,, o (df o i) = FI™ o df where
Jjr is the complex structure in L, and pr,,: TN — @}, [m;] is the projection on ®}*, [m;] along

(@?;;H[mj]) @ [gr]. This means that the projection pr,, odf: TL — &2 ,[m;] is a morphism
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of complex vector bundle. Let us denote C37 (L, G/Go) = {f € C*(L,G/Go)|df € &7, [m;]}.
Then we have the following equivalences between the Maurer-Cartan 1-form « and its geometric
map:

(Hj): o;=0,1<j<m <= pr,o(dfojr)=Fmodf
Then additionning these two equivalences, we recover the equivalence: "« solves (Syst(m,7))”
= 7 f is Fl™-holomorphic”. Moreover, the equations o/Lj =0,1<j<k-—1, mean that f is
horizontally holomorphic.

Proposition 2.6 Let « be a g-valued 1-form on L and f its geometric map. The following
statements are equivalent:

(i) o, =0,1<j<k—1

(ii) f is horizontally holomorphic: (df o jp)* = FIF=1odf, H = [m] being the horizontal space
and F[k_l]m defining a complex structure on H.

So that we can conclude:

Theorem 2.3 The even minimal determined system (Syst(k,T)) means that the geometric map
f is horizontally holomorphic and vertically harmonic.

Remark 2.6 We can express what precedes in terms of the projection map 7g/g,: @ — f
defined as follows. Let MC be the set of g-valued integrable 1-form on L and for m < k, MC™
the subset of interable 1-form taking values in go & (®}L;m;), then 7g/q,: MC — C*(L,G/Go)
is defined by:

TG/Go

Tajay: @ € MC —2 U € C=(L,G) f=ma/a,0U € C=(L,G/Go)-

The preceding results can be summarized as follows: for any m < k
Ta/Go(MC™) = O3 (L, G/Go)  and 76, (S(m)) = Hol(L, j), (G/Go, FI™)),

the set of Fl™-holomorphic maps; and the equations (Hj), 1 <j<m,in MC are transformed
by TG /q, into the equation pr,, o (df o jr) = Fl™ o df in C®(L,G/Gy).

2.3.2 The minimal determined odd case

The order of the automorphism 7 is odd: k' = 2k + 1, and m = k + 1. Let us recall the following
decomposition

“=05 ..o ege(@e...a0).

Proposition 2.7 The equations (S;), 0 < j < k—1, of (Syst(k+1,7)) are respectively the pro-
jection on g(Ej, 0 < j < k-1, of the Maurer-Cartan equation (MC) (owing to the holomorphicity
conditions given by proposition @) Hence the elliptic system (Syst(k + 1,7)) can be written:

o =0,1<j<k—-1 (Hj)
day, + [ag Nag] =0 (Sk41)
oo’ . ii— [ag Ao ]+ [af ANaf] =0  (Sk) (39)
da+§[a/\a]:0 (MC)
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Proof. Proceed as for proposition @ (I

Then we see that - in the presence of (H) - the projection on g&, of (MC):
do_j + [ao Na_g] + a1 Aag] =0 (40)

is nothing but (Sk) + (Sk+1).

Now we have to distinguish two cases.

e The strictly minimal determined caseEl Let us suppose that k > 2, then we have

(Sk) V (Sk+1) = (Sk) + (Sk41) == [0(AdU(ay,))] 0

(mi] —

where U integrates a. For the last equivalence, just do the computation:

AdU " [9(AdU (o, )] = da,

[my] my, [O‘” A O‘:‘nk]mk

= Oap, +[ag Ao, ]+ [af Aal]+[a” ) Aoy
(Sk) + (Sk+1)

since o ; = 0. Hence we obtain that

a’.=0,1<j<k-1 (Hy)

—J

(Syst) <= day, +1[0<6/ ANag] =0 (Sk+1) =
da+§[a/\a]:0 (MC)
o ;=0,1<j<k-1 (H;) oe_’ij:O,léjSkfl (H;)
da’_y, f— [ag Aoyl + o Aa] =0 (Sk) — [a(AdlU(o‘:nk))] g =0 (Smy)
da+§[a/\a]:0 (MC) donrE[oz/\oe]:O (MC)

In terms of the geometric map f: L — G/Go, we have according to remark [[.3 (see also section )
the following geometric interpretation:

(Sm,) = 0V 9vf =0,

where the splitting TN = H @V is defined by H = [m’], V = [m;] and m’ = @?;fmj. Moreover
since 2 Re(Sm, ) is

do,, + [0 A iy, ] + [@my A Qg Jm, =0
which is nothing but [MCly, (in the presence of (H)), the projection of (MC) on my, then the
only new information (in addition to (MC) and (H)) given by the determined elliptic integrable

system in the odd case is the imaginary part of (Sp, ) which means that f is vertically harmonic
(with respect to V1):

2Tm(Sm, ) : d * am, + [0 A *¥Qm, ] + [my A % m,, = 0 <= 77(f) := Tr((V!)?d" f) = 0.

' That is to say the minimal, but non maximal, determined cases.
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e The model case. Let us suppose that k£ = 1. Let us remark that, in this situation, the
determined case reduces to the (model) system (Syst(2, 7)) which is then simultaneously minimal
and maximal. Furthermore, coming back to (Bd), we have

10
[m]

(S1) <= [B(AU ()]0 =0

where U integrates o and [ ](1?) denotes the (1,0)-component with respect to the canonical
almost complex structure J in IV, defined let us recall it, by the decomposition (@), i.e. in our
case TN® = [g%,] @ [g§]. Indeed we have

AU [9(AdU (ary,))] m] = ool + [a" A aly|m
= oy, + [ag Aag] + ol A diy]m
= 0aly+[ag Aaly]+[af Aa]
+ 0ai + [ag Aaj] + [aZy Aal ]
the up term being the (1,0)-component and the down one, the (0, 1)-component. Then recalling
that (S1) + (S2) is the projection on g€, of (MC), we obtain that

. (S2) (51) [0(AdU ()] oy =0 (55™)
(Syt)@{ (MC) ‘i*{ MC) < da+%[a/\a]:0 e,

and the only new information (in addition to (MC)) given by the determined elliptic integrable
system in this case is (Sl(nl’o)).
In terms of the geometric map, f: L — G/Go, we have according to remark the following

geometric interpretation:

(51) = (S5 = [07'af] " =0,

we will say that f is holomorphically harmonic w.r.t. V! and J (see section E, definition @, for
a precise definition).
In the same way, we also have the following (equivalent) geometric interpretation

(Ss) = [5V°af}0’1 —0,

we will say that f is holomorphically harmonicEl w.r.t. VO and —J.

Moreover, let us write the equations of the system as a real equation and then write the corre-
sponding geometric equation (which will then take place in TN and not in TN®). We have that
the real equation (S;) + (S2) is the projection on g&; of (MC). Now, let us write the equation

= G-

7

1
d*a_1+ [ag Axa_q] + 2_2.[041 Nag] = 0> J

then taking the sum with its complex conjugate, we obtain

(E_1)+(E-y) = d * am + [ A *am] + %([al ANag]l — a1 Aa_q]) = 0)

1
= d * aum + [ A xauy] — §io[am A am] = 0) )

12See also section ﬂ, theorem E
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since 3 ([a1 A ] — (o1 A 1)) = $[Jp0m A o) = —

the geometric maps f: L — N, the last equation mean

%lo [tm A aum]. Then written in terms of
S

0(f) +IT°(f) =0,

where 7°(f) = Tr,(V°df) is the tension field of f w.r.t. V° (and g is some Hermitian metric
on L), and TO(f) = +(f*T°), T° being the torsion of V°. As we will see in section f.1.9, this
equation is in fact a general characterization for holomorphically harmonic maps.

The primitive case. The m-primitive case is obtained by putting, in the minimal determined
case (@), a,=0,ff m=k,and a; =0, m+1 < |j| <k, if m <k —1. As in the even case we
obtain:

Proposition 2.8 Let 7: g — g be an order 2k + 1 automorphism, and m < k a positive integer
then the m-elliptic integrable system (Syst(m, 7)) means that the geometric map f: L — G/Gq
satisfies:

of € @;’n:l[g(gj] C T(G/Go)".

complex structure on N = G/Gy (see (R§)) and set FI™ :=pr, oJ = Jopr,, for m < k, where
pr,,: TN — &7 [m;] is the projection on @}, [m;] along @?2m+1[mj] (remark that pr;, = Id).

Geometric interpretation of the equations (H;). Recall that J denotes the canonical

Then FI™l is a f-structure on N (remark that F* = J is a complex structure). Then we have:

Theorem 2.4 A map f: L — G/Gy is m-primitive if and only if it is FU™_holomorphic. In
particular, f is k-primitive if and only if it is holomorphic (with respect to the canonical almost
complez structure on G/Gy), and thus any m-primitive map s in particular a holomorphic curve
in G/Go. More precisely, m-primitive maps are exactly the integral holomorphic curves of the
complex Pfaff system ®}L,[m;] CTN.

Remark 2.7 The equivalences () hold also in the odd case. However for m = k, the first
equivalence of (BY) is trivial: o € g <= f € C°°(L,G/Gy). There is no restriction (in the form
7« takes values in a subspace of g”) in the highest primitive case.

Proposition 2.9 Let « be a g-valued 1-form on L and f its geometric map. The following
statements are equivalent:

(1) O/_/j:();lg.jgkfl

(ii) f is horizontally holomorphic: (df o j;)" = FIF=1 o df, where H = [m'] is the horizontal
space, and F[k_”m =Jy defines a complex structure on H.

We can conclude:
Theorem 2.5 The odd minimal determined system (Syst(k + 1,7)) means that the geometric
map f is horizontally holomorphic and vertically harmonic w.r.t. V' if k > 2; and it means that

f is holomorphically harmonic w.r.t. V', or equivalently anti-holomorphically harmonic w.r.t.
VO ifk=1.
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2.4 The maximal determined case

Let us see how can be rewritten the elliptic system in this case in more geometric terms. Let us
recall that the determined system can be considered as a system on the 1-form a.

Theorem 2.6 Let 7: g — g be an automorphism of odd order k' = 2k + 1. Let us set Jo = T
and let J, be the corresponding complex structure on m i.e. the value of J at the reference
point yo = 1.Go € N (see equation (@)) Then the associated maximal determined system,
Syst(k’ — 1,7), is equivalent to

1
d* o + [040 A *am] + §[l0am A am]m + Z [ioami A Oémj]mj,i =0 (Em)
1<i<j<k

da—i—%[a/\a] —0 (MC)

Theorem 2.7 Let 7: g — g be an automorphism of even order k' = 2k. Let us set Jy = T
and let Jy be the corresponding complex structure on m i.e. the value of Fiy at the reference
point yo = 1.Go € N (see equation ) Then the associated maximal determined system,
Syst(k’ — 1,7), is equivalent to

1
d * o + [040 A\ *Oék] + §[l004m A Olm]gk. =0 (Ek)

1
d * g + [ A ka] + 5[10am A Qmlm + Z [Jo0m; A am;]m;_; +[on Adgam] =0 (En)
1<i<j<k

daJr%[a/\a] =0 (MC)

Proof of theorems @ and E This is a straightforward computation. Indeed, it suffices to
check that we have

(MO, = (55)
(OMO)), | = (8) +Bu ), 1<j<K -1
(@), , = BBy g

where (E) = (Ey,) in the odd case and (E) = (Ew) + (E%) in the even case. This completes the
proof. (I

Remark 2.8 We will see, in sections E and Erespectively7 that the equation (E) means that the
geometric map f is stringy harmonic.

Adding holomorphicity conditions; the intermediate determined systems.

According to proposition E, we know that the determined system (Syst(m)), my < m < k' —1,
is obtained by adding the holomorphicity conditions, a” ; = 0,1 < j < k' —1—m, to the maximal
determined system, whose equations are given respectively by theorems E and @ Therefore,
using the notations defined in the proof of theorems @ and E, we have the following.

Proposition 2.10 Let 7: g — g be an automorphism of order k'. Let m be an integer such that
mp < m <k —1, and let us set m = k' —1 — m. Then the determined system (Syst(m)) is
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equivalent to

m—j
da’_; + Z[O/i//\alfifj] =0 (5), m+1<j<m [(E)]pl
=0 — da+ —[ana] =0

(MC)

We have set w' = @ m; and p = @k, m;, where in the even case my := gi. Then [(E)],
denotes the projection of (E) on p according to the decomposition m = m' @ p in the odd case,
and n =m' @ p in the even case.

Proof. Consider (Syst(m)) as a subsystem of Syst(k’ — 1). Then we already have seen in the
proof of theorems P.q and P.7 that [(MC)lg, = (So), [MC)];_, = (5;) + (Sw—j), L <j <m

S;) — (Skr—;
and [(E)]; = = (J)—,(kj), 1 < j < m. Then it suffices to check that the holomorphicity
- i
conditions, i.e. &”; =0, 1 <j <m, imply that the equation (5;), for 1 < j < m, is nothing but
the projection on g_; of the Maurer-Cartan equation. This can be made by computation, with

the same method as in the proof of proposition @ This completes the proof. O

2.5 The underdetermined case

Now, we prove that any underdetermined system can be written as a determined system in a
new setting.

Theorem 2.8 Let us consider an underdetermined system (Syst(m,g,7)), m > k'. Let us write
m=qk' +r, 0<r<k —1

the Euclidean division of m by k’. Then let us consider the automorphism in g4t defined by

71 (ag,ai,...,ay) € g9 — (a1,...,aq,7(a0)) € gt
Then 7 is of order (q+ 1)k’. Moreover the m-th system associated to (g,7) is in fact equivalent
to the m-th system associated to (g971, 7). More precisely, denoting by & a (q+ 1)k’-th primitive
root of um’tﬁ, then the map

ay) — (Oz,\7 QONy e v vy Oza,q,\)

is a bijection from the set of solutions of the underdetermined (m, g, )-system into the set of
solutions of the determined (m,g?*!, 7)-system.

Proof. It suffices to check that ay satisfies the properties in equation (BJ) if and only if
@y = (ax, @@, - - -, @gay) do so (in the setting (g9, 7)), which is immediate. O

This theorem tells us that the study of the underdetermined case reduces to that of the deter-
mined case.

Moreover this theorem provides a new point of view about the projection map m,,. It tells us that
by putting together several exemplar of m,,, to obtain some p-uplet taking values in a p-power
of G, then we construct a diffecomorphism (remarking that if « is a solution then @y := ) is
also a solution, for any t € S1).

13Chosen such that @911 = w;
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2.6 Examples
2.6.1 The trivial case: the 0-th elliptic system associated to a Lie group.

We consider the determined system (Syst(m, 7)) with 7 = Id and (thus) &’ = 1 so that mj}, =
my = 0 =k’ — 1. Then the determined system (Syst(0,Id)) is nothing but the Maurer-Cartan
equation for g-valued 1-form « (i.e. in other words the ”equation” for the trivial geometric map

fiL—G/G={1}).

2.6.2 Even determined case

The first elliptic system associated to a symmetric space [IE] We consider the even
determined system (Syst(k, 7)), with £ =1 and 7 an involution. Then the horizontal subbundle
is trivial H = [m] = {0} and TN = [V] = [g1] so that the horizontal holomorphicity is trivial and
vertical harmonicity means harmonicity. Hence the first elliptic system associated to a symmetric
space, (Syst(1,7)), is the equation for harmonic maps f: L — G/Gj.

The second elliptic system associated to a 4-symmetric space ([@, E]) Here 7 is
an order four automorphism and (thus) & = 2. Then we consider the even determined system
(Syst(2,7)). A geometric interpretation in terms of vertically harmonic twistor lifts of this system
is given in [B4] (see also [L0]). Let us give some examples.

Surfaces with holomorphic mean curvature vector in 4-dimensional symmetric spaces ([[L0])).
o Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric spaces ([@, @, @])

Surfaces with holomorphic mean curvature vector in 4-dimensional spaces forms ([[[0]).

e surfaces with anti-holomorphic mean curvature vector in CP? ([[L0]).

e p-harmonic surfaces in O .

The second, third and fourth examples are particular cases of the first one (see [[L0]).

2.6.3 Primitive case

Let us give some examples where the automorphism 7 is of order ¥ > 3, and m = 1.
e Minimal surfaces in CP2. (m = 1,k' =3,N = SU(3)/S(U(1)%)). ([.[H)-
e Minimal Lagrangian surfaces in CP2. (m =1,k = 6, N = SU(3)/S(U(1)?)). ().

e Special Lagrangian surfaces in 4-dim Hermitian symmetric spaces. (m = 1,k' = 4). (@, @,

bd)

e Constant mean curvature (CMC) surfaces in H3: their Gauss maps are primitive maps into
the unit tangent bundle which is a 4-symmetric space. ([[[g))

e Affine Toda fields or Toda lattice. (m = 1,k > 3). ([f],[L1]).

e Non-superminimal (weakly) conformal harmonic maps into S™. (m = 1,k' = 2r + 2N =
Fr(s™)). (8).

(Weakly) conformal non-isotropic harmonic maps into CP™. (m = 1,k' = r+2,N =
Fr(cem)). (-

FT(S™) denotes some bundle of isotropic flags over S™ , and F"(CP"™) denotes some bundle of
flags over CP™ (see [H]).
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2.6.4 Underdetermined case

First elliptic integrable system associated to a Lie group (@, @]) We consider the
system (Syst(m, 7)) with m = 1 and 7 = Id. Therefore k' = 1 and m; = 0 < m, and thus this
is an underdetermined system. Then (Syst(1,1d)) is the equation for harmonic maps into
the Lie group G, f: L — G.

Second elliptic integrable system associated to the symmetric space Grz(R"™1).
Constrained Willmore surfaces in S™ corresponds to particular solutions of this system. (See

|
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3 Finite order isometries and Twistor spaces

The aim of this section is to realise any k’-symmetric space as the subbundle of some bundle of
endomorphisms. To make things more precise we need first to introduce some notations.

Let E be an Euclidean space and let us define (for p € N*)

U,(E) = {A € SO(E), AP =1d, A £1d if 1 < i < p}
U (E) = {A € Uy(E)|1 ¢ Spect(A)}, UM (E) = {A € Uy(E)| £ 1 ¢ Spect(A)}.

Then for k € N* we set
Zok(E) = Uz (E) and  Zopi1(E) = Uz (E) = Usp 1 (E).

Let us now explain the general spirit of this section. There are two main ideas which will allow
us to provide a twistor interpretation of our elliptic integrable systems. These are the two ideas
that we will follow in our exposition.

1st idea. A 2k-symmetric homogenous space has a very particular geometry. Then we want to
write it more universally by embedding it in a more universal object. To do that, we prove that
any 2k-symmetric space G/Gg can be embedded canonically in the twistor bundle Z55, (M) — M
of the associated k-symmetric M = G/H via a morphism of bundles over M (recall that G/Gy =
G xg (H/Go) — G/H is a bundle over G/H with a symmetric fibre H/Gg). Therefore to any
geometric map f: L — G /Gy corresponds a map in the twistor space J: L — Zo,(G/H).

2nd idea. Conversely, we write each connected component of Zoy(R?") as a 2k-symmetric
homogeneous space Z$ (R*") = SO(2n)/K, where K is some Lie subgroup of SO(2n). Indeed
for all J € Z9,(R?"), the inner automorphism IntJ is of finite order 2k and hence defines
a 2k-symmetric space which is nothing but the connected component of J in Zo(R?*"). In
particular the corresponding Lie algebra automorphism AdJ: so(2n) — so(2n) gives rise to
an eigenspace decomposition so(2n)¢ = @jez%sog;@n) analogous to the decomposition g& =
@jez%g}c-. Therefore, the geometric properties of a map f: L — G/Go can be translated in
terms of the corresponding twistor map J: L — Z5,(G/H).

We are then led to study the space of endormorphisms Za; (R?") which we do in the subsection @
The directing idea of this study is to generalize the space ¥ (R?") := Z;(R?") of (orthogonal)
almost complex structure. This is a homogeneous symmetric space of which the tangent space
at an element J is the subspace of s0(2n) which anticommutes with J. We will prove analogous
properties in Zo (R?7).

In a second time (section B.6), we will prove the embedding G/Go < Za1.(G/H).

Even if we will use the twistor space and the embedding describred above especially in the even
case, however we will sometimes need that in the odd case k' = 2k + 1. Moreover, it will also
happen in our study that we will need to consider the spaces (Z2x(M))’ = {J7, J € Z91. (M)}
which are in fact general twistor spaces U,(M). Therefore, we will also study these spaces.
Nevertheless, the even case, Zax (M), is the most rich and most complex. Indeed it satisfies all
the properties which hold in the general case U, (M) (in particular in the odd case Zax41(M)), so
that the study of Za(M) contains the one of U, (M). Moreover, the even case Zo, (M) contains
special properties and has additional behaviors that need to be studied separately. This is why
we will concentrate our study on this case, in a first time. Then in a second time we will precise
which properties hold in general and which ones are particular to the even case.
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3.1 Isometries of order 2k with no eigenvalues = +1

In this section @, we will study of 2o (F), where again F is an Euclidean space.
For each A € Z5;(E), we have the following eigenspace decomposition:

E° = ot~} (Bawh) @ Bawi)

with E4(\) = ker(A — AId) and wai, = ein/k
, , ) ‘ |
Let us set m§ = Ea(wj, )®Ea(wy;)) for j > 0. Then we have dimg m; = 5 (dimR Ea(wl,) + dimg EA(wQ_k])) _

dimg Ea(wl,) = 2dime Ea(w),). Hence dimgm; is even and hence we will suppose now that
E = R?" (in all the section @)

Example 3.1 We have Z2(F) = 0, and Z4(E) = X(F) the set of almost complex structures in
L.

Situation in the Euclidean plane Here E = R? and any element of A € Z5;(E) is written
in the form A = R(!F), with (I,2k) = 1, R(f) being the rotation of angle § € R/2rZ. In
other words, considered as a complex number, A is a primitive (2k)-th root of the unity. Hence
card(Z9(R?)) = ¢(2k), ¢ being the Euler phi-function.

3.1.1 The set of connected components in the general case

Theorem 3.1 my(Z2;(R*™)), the set of connected components of Za,(R?*™), is (in one to one
correspondance with):

k—1

_ 2k
X2k — (E,p)EZgXNk 1 ;pj:nand lem <{m,p]7£0}) =2k
Proof. Let A € Z;,(R*"), then A|mg = wékIdEA(w;'k) @w;ijdEA (w3 We choose an orientation

on each m; (such that the induced orientation on EB’fflmj is the one of R?"). Then there exist

oriented planes P} such that m; = @f;lP; (sum of non oriented spaces), where p; = din;mj , and

A\mj = @filRP]l (GJ)

where RP]; (0;) is the rotation on P} of angle §; = % Let €; be the sign of the orientationﬂ of

@filP; (sum of oriented spaces) w.r.t. the one of m;. Now let us consider the map
fr A€ Zop(R*™) = (I5Ze;, (pj)1<j<h-1) € X

Then it is a continuous[] surjection and S~ ({(e,p)}) is an SO(2n)-orbit of the SO(2n)-adjoint
action on Zoy(R?"). This completes the proof. O

Remark 3.1 Let P be an oriented plane and A = Rp(6)\{£Idp} arotation of this plane. Then
we can define ep(A) := signdetp(x, Az) which is well defined because independent of 2 € P.
We have set detp := det(c, e,), for any direct orthonormal basis (e1,e2) of P.

Mgee remark @
5By lower semicontinuity of the rank, and the fact that ZIIE*l pj is constant.
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Now, let E be an oriented Euclidean vector space of dimension 2n and let E = @?ZlPlO be a
decomposition of E as a sum of oriented planes (endowed with the orientation induced by E).
Let A € &/ Rpo(0)) € SO(E) \ {®i_;(+Idpo)}. We can define

2(A) = epp(Ajpy) X -+ X epg(Ajp) = signdet(ar, Aas, - 3, Aa,)

where B is any direct orthonormal basis of F, and z; € P?.
In the other hand let P, be the plane P endowed with the unique orientation such that 6; €]0, 7.
Then we have

e(A) = orientg (&, P),

the right hand side meaning the sign of the orientation of &7_; P, w.r.t. to the one of E.
Remark 3.2 Each connected component is a SO(2n)-orbit and thus is compact. Moreover each

connected component is an open and closed submanifold of Zo;,(R?") (which is itself a compact
submanifold in SO(2n)).

Definition 3.1 We will denote by 28 (R*™) (and sometimes only by Z$;) the connected com-
ponent f~({a}), for o = (e, p) € Xop. We define

ZH®R™) = {Aezy®M)AF=-1d}= || 25
{a|¥j,p2;=0}
ZH®R™) = {AezZu@®M)|Ab £ -1d}= || 25

{al3j,p2;#0}

Z8 (R?™) is the union of order k components in Z;,(R*"), and Z3, (R*") is the union of order
2k components in Z5;(R?") (see below for the meaning of this terms).

In the following we will denote by Z$, (R?"), for a € {0, *}, any of the two spaces ZJ, (R*") and
2k in Z3, (R?")
k  in Z9, (R?")
of AdJ, for J € Z2,(R*") (see below). Let us compute the tangent space of Zax(R?*"):
vJ e ZQk(RQn),

Z3,.(R*), and r the order of these two spaces i.e. 7 = . 7 is in fact the order

TrZo(R™) =S A€ Jso(2n)| > JPAJ =0 (41)
p+Hl=2k—1

and for J € Z9, (R?"), we have in addition

Ty 20 (R*") = Ty 29, (R*™) = ¢ A€ Jso(2n) | Y JPAJ =0 (42)
p+l=k—1

It could seem strange that the two expressions () and () are equal for J € 29, (R*"), but
as we will see below, it comes from the fact that the ”even” eigenspaces of Ad.J vanish, for
J € Z3 (R*), which leads to this last equality (which is in general an inclusion ”2”)

Example 3.2 If £ = 2, then Xo, = {£1} = Zy and Z4(R?*") = Z)(R?") = B(R*") = {J €

SOR?™)|J? = —1d} = ZF(R?™)[ X~ (R®") (resp. the positive and negative components of
L(R?")), whereas Z;(R*") = 0.
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3.1.2 Study of AdJ, for J € Z5, (R?")
Let J € Z§ (R?"). AdJ is then an order r automorphism of End(R?*") (since (AdJ)? = Id <
JP = £1d) thus we have the following eigenspaces decomposition:
End(R*")¢ = € ker(AdJ - w/Id)
JEL/TL

2im/r

with w,. = e . Let us set

AS(J) = ker(AdJ — wi1d).
Then Ao(J) = Com(J) := {A € End(R®")|[A4, J] = 0} and for j # 0 we have: VA € A,

Z JAJP = Z (wi)lAJpH _ [lzl(wi)l‘| J1— 0.

I+p=r—1 l+p=r—1 0
Hence
P Af)Cker| Y L(J)oR(UP)
JEZ/rZ\{0} l+p=r—1

where L, R denotes respectively the left and right multiplications. This inclusion is in fact an
equality. Indeed, let A € End(R?")C, then A = Z;;é Aj,with A; € A;C(J), thus Z;;é JLAJT—17 =
rAgJ "1 4+ 0= 1rApJ" ! which vanishes if and only if Ay = 0. This proves:

Proposition 3.1 The following equality holds
P A =ker | > L(J)oR(")
JEZ/rZ\{0} l+p=r—1

Now, let us restrict ourself to J.s0(2n), resp. to so(2n), (which does not change the order of
AdJ|J.50(2n)v resp. AdJ|50(2n)) and SetE

BE(J) = A5(J) N (Js0(2n))®, resp. s05(J) = AT (J) Nso(2n)C.

Then we have, according to ([H])-(E2),

Proposition 3.2 The tangent space of 23, (R27) at one element J is given by
Ty 25, (R*") = (&]1BE(J)) N End(R?"). (43)

The inner automorphism[[] 7' = IntJ|g0(2n) gives rise to the r-symmetric space SO(2n)/Ug(J),
where Up(J) = SO(2n)T = Com(J) N SO(2n), which is nothing but the connected component
Z& of J (which is also the orbit SO(2n) - J = Int(SO(2n))(J) ):

25, (R*™) = SO(2n) /Uo(J).

16B;C(J) is stable by AdJ and we have B;C(J) = J.SO;C(J) = SO;C(J).J. Besides we have more generally J..A;C.(J) =
AS (). = AS ().

17 The conjugaison by J is denoted by IntJ: GLy,(R) — G Ly (R) when the domain of definition is a Lie subgroup
and by AdJ: gl,,(R) — gl,,(R) when it is a Lie subalgebra.
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Consider now

U,_1(J) := Com(J7) N SO(2n) = SO(2n)™",

Then T is an order j automorphismﬂ on U;_1(J) and gives rises to the j-symmetric space
U,-1(J)/Up(J) which is in fact equal to

25, (R, 1) = {0 € Z5,(R*)|(J') = '}

Indeed let J' € Z5 (R*™), then there exists g € SO(2n) such that J' = gJg~!, then (J')I = J7 if
and only if gJ7g~" = J7 i.e. g € Uj_1(J), which proves that Zg; (R*", J7) = Int(U;_1(J))(J)
ie.

255, ;R J7) = Uj—1 () /Uo(J).

Let us recapitulate what precedes.

Proposition 3.3 Let J € Z9,(R*™). The connected component Z$ (R*™) of J is a SO(2n)-orbit
(via the adjoint action):

25, (R*") = SO(2n)/Ug(J).

Moreover, denoting by r the order of this component (i.e. the order of AdJ), then it is also a
r-symmetric space defined by the inner automorphism T = IntJ|so(2n)-

Furthermore, for any j € {1,...,7}, let us consider the subgroup U;_1(J) := {g € SO(2n),gJ7 g~ ' =
J7}. Then the submanifold of Z8 (R*™), defined by

25, (R, J9) = {J' € Z5,(R*)|(J') = J7)

is the Uj_1(J)-orbit of J. Moreover, the restriction of T to U;_1(J) is an order j automorphism
of which the associated j-symmetric space is

25, (R, J7) = Uj_1(J)/Uo(J).
We have then a increasing sequence (N;) indexed by j € {1,...,7}, of j-symmetric spaces, all
included in N, = Z§ (R*™).

Remark 3.3 Obviously, in this equation J can be replaced by any J' € Z5% (R?" ) J7).

Example 3.3 If k = 2, then we have Z,(R?", J?) = Z§,(R*", —Id) = Z§(R*") = Z*(R*") =
S0(2n)/U(n), and the other values of j are trivial Z§ ., (R?", J*!) = {J}.

Remark 3.4 Sometimes, we will need to precise clearly what is the eignevalues of the eigenspaces
AC(J) and s50%(J), then we will simply use the notation

AG(J) = ker(AdJ — wld)

and idem for 50&)(J) and Bg:w)(J).
Besides, sometimes for the homogeneity of the equations, we will extend the notations .A(Z-C(J ) for
real index and set for t € R

AS(J) = ker(AdJ — wiId).

18We confuse j € Z, and its representant in {1,...,7}.
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3.1.3 Study of AdJ’

Expression of the eigenspaces of AdJ’ in terms of those of AdJ. Let j € Z*. Then we
have i
7 J r—1 l .
AdJ = (Adj) = @lZO (wr) Id_Al,(]),

um

wi is of order p = Jie. itisin U, = {z € §'|zP = 1} = exp ((Z/pZ) . —> Then we have
p

_r
(r.7)
(r,j)—1 .
. IR
AdJ] = @ [@lpzo (wﬁ) IdA§p+l(J):|’
q=0
hence writing (that AdJ7 is of order p):
AdTT = &2y wh Td ae (),
we obtain
Lemma 3.1 We have the following relation between the eigenspaces of AdJ? and those of AdJ:
j r,7)—1
AP (1) = 2 A () (44)

J

(J, T)} mod p

where I = (§')71 in the ring Z/pZ, and j' = [ (7' is inversible in the ring Z/pZ,
since (j',p) = 1 by definition of (r,7)).

In particular, ‘
Com(J9)C = AF(J7) = @lP) = AC (). (45)

More particulary,

k—1 n : _
Com(JHE = {@q_OAS(J) = End(R?)C  ifr=Fk

BEZ5 AL, () if r = 2k
and
Ao(J) @ Ax(J)  ifr =2k B -
Com(J?) =4 Ao(J) & Ax(J) ifr=ke2Z = Al/) @A (1) ifris even

Ao(J) if r =k is odd

Decomposition of the tangent space 7,23 ; (R?",J7) in terms the eigenspaces B;C(J)
of AdJ. We can rewrite all what precedes in J.s0(2n) (resp. in s0(2n)) by replacing AS by BF
(resp. sof). In particular we have, according to (i5),

wj1(J) = Lie (Uj-1(J)) = s00(7) = (00" s05,()) Ns0(2n),

thisﬂ is the eigenspace decomposition of the order j automorphism obtained by restricting
T = AdJ to uj_1(J). Therefore we have

19We mean u;_1(J)¢ = @;2{))_150(519(‘])
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Proposition 3.4 The tangent space of Z3), ; (R J7) is given by
(r5)—1

1,25, ;R J) = | @ Bgp(J) | NEnd(R>"). (46)
q=1

Proof. Indeed, g € U;_1(J) — gJg~' € Zg‘k’j(RQ”,Jj) is a surjective submersion whose the
(surjective) derivative at g = 1,

(r4)—1 (r.g)—1
Acw (Do AT = 3 gl = 3 (l—w)Agd € Ty25 (R, J)
q=0 q=0
has (@él’jl)_qup(J )) N End(R?") as image, which proves the equality ([q). O

More simply by differentiating the definition equation of Z3 , (R?", J7) we obtain

TJZ%CJ-(RQ’@, J7) =< Ac Jso(2n) Z JPAT =0 (47)

pH=j—1
Now, let us apply (@) for j=2:

Br(J) ={A¢€ Jso(2n)|AJ + JA=0} ifriseven

T Za RQH,JQ —
J 2k,2( ) {0 if r is odd.

This can be recovered from (7)) by remarking that if r is odd then —1 is not a r-th root of unity
(and thus not an eigenvalue of Ad.J).

Remark 3.5 If (j,2k) = 1 (so that (j,7) = 1 also) then J7 € Zo,(R?") and TV is of order r and
we have, according to ([4])

AP () = Ap- (), Ve Z)r,

in others words AT (J) = A?_l(Jj), VI € Z/rZ. In particular
U;_1(J) = Ao(J7)) N SO(2n) = Ao(J) N SO(2n) = Uy(J).

Hence ‘
Z3 (R?", J7) = {J}.

More generally, we have, according to (@), since (jl,7) = (I,1),
Com((7))° = Com(J) = &2~ AG, () = Com(J')°

with p = , and thus

-
(&,7) ‘

Com((J/)!) = Com(J') VI € Z/rZ.
In particular, U;_q(J?) = U;_1(J) VI € Z/rZ and thus

) 171y "
25, (B2 (J)) = Z5(r?, g1
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where [5]5,] - a is the action of [j];;} on o € Xog, the action of I € (Z/rZ)* on Xay, being defined
by the bijective map

J € Zop(R™) i J' € (Z01(R2M))' = Z5p(R?")
which sends a connected component onto another one
(sz(R2 )) = Zék (R2 ).
In particular, for j = 1, we have
U (J Y =U1(J) VIeZ/rZ

and thus
Zg, (R, (J7Hh = 25,8 (R, J")

where —(e,p) = ((—1)"¢, p) in Xo. Hence ZQO‘M(RQ", (J~HlH = ngyl(RQ", JY) if and only if n is
even (i.e. J and J~! are in the same connected component).

3.2 Isometries of order 2k + 1 with no eigenvalue = 1

We can do exactly the same study for Za541(F) as we did for Zo (F), with however the following
simplification: all the connected components have the same order r = 2k + 1 and we do not have
to distinguish two types of orbits as previously. Let us review all the results obtained in to
see those which hold and for these latters, see if some modifications are necessary.

e The space Zop+1(R?" 1) is empty.
e Theorem holds:

k
. 2% + 1
7T0(ng+1(R2 )) = X2k+1 = (E,p) S ZQ X Nk jE:1pj =n and lem ({m,p] 7é 0}) =2k +1

i.e. more generally

myr—1
k/,/
70(Zr (R*™)) = Xp := < (g,p) € Zy x N™ 1 Jz:; p; =n and lem ({k’—/\j’pj =+ O}) =k
e Equation ({1)) holds in general for any order.
e Propositions and E hold also for any order &'.
e Propositions holds for Zo,41(R?") (replace everywhere 2k and r by 2k + 1).

More generally, let us consider the family of spaces Uy (R?"). Then we could write explicitely
mo(Usr ). Moreover equation (fI]) holds in general. Propositions .1 and .3 hold also in general.
Finally, Propositions @ holds also in general. Let us precise that then r is always the order of
AdJ, in the considered connected component.

3.3 The effect of the power maps on the finite order isometries

Let J € Uy (R?*™) then J7 € U,(R®*") with p = (k’f/j). Moreover it is easy to see (from the

diagonalisation) that the power map _
J = J?
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is surjective from Uy (R?") onto U,(R?™) (since z € Up (R?*®) s 27 € U,(R>") is surjective).
Besides, since each connected component in Uy (R*") (and in U, (R?")) is a SO(2n)-orbit, then
the power map .J — JJ sends one component in Uy (R?") onto another one in U,(R?*") so that
it induces a map:

o€ Wo(uk/(R2n)) —ja€E Wo(up(R2n))

such that ‘ ‘
UZ ) (R*™) = U)*(R*™), Vo € mo(Up (R*™)). (48)

Remark 3.6 In general we have (Zo5)7 (R*™) ¢ Z,(R?"). For example, for j = 2, we have

U (R*™) if k is even
Z(R?™)  if k is odd.

(Z2x(R*™))* = {
Besides, given J € Z5 (R*"), then Z5% (R?", J7) is the inverse image of J7 by the map
J' € Z5,(R*") v (J') € (25,(R*")) = U™ (R*").
Since (J')’ is constant in Zg; ;(R*", J7), we can denote it by J; and then
255, ;R J7) = 255 (R, J;).
|

Furthermore, we have also for any J € Ug (R**), Up(J7) = U;_1(J) so that, according to (i),
the component of J7 in U, (R?") satisfies

U™ (R2") = SO(2n) [Uo ) = SO(2n)/Uj1(J),

hence
U (R*™)) = SO(2n)/U,_1(J) (49)

which we can recover directly by taking the power j in the equality U2 (R?") = {gJg~t,g €
SO(2n)}.

Convention: for each a € mo(Zax(R?")), we will choose (and fix) a canonical representant in

Z& (R*). For example, let (eq,...,€2,) be the canonical basis in R?", and
€ + i€
er1 = D2l T A 2l+2, 0<Ii<n-1,
V2
ey = ey-1, 1 <1< n.
Then e = (e1, ..., e2,) is a hermitian basis in C?>" and we can take J§ such that

eild,, 0
Mat.(J§ Diag<< Pi ),1§j§n1>
( O) 0 e OJIdpj

where p = (p1, ..., pr—1) is determined by a = (e, p) € mo(Z2x(R?")) (see section B.1.1)), 6, = %,
and Mat.(-) means ”the matrice in the basis e of 7.
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3.4 The Twistor spaces of a Riemannian manifolds and its reductions

Let M be an oriented (even dimensional) Riemannian manifold and let us consider the bundle
of order 2k isometries Usi (M) as well as its subbundles U3, (M) and Z9,(R?"). Let us fix
a € (221, (R*™)) and consider the component Z$, (M). Then denoting by SO(M) the SO(2n)-
bundle of positively oriented orthonormal frames on M, we have

25, (M) = SO(M)/Uo(Jg)-

We want to ask the following question: does SO(M) admit a U;_(J§)-reduction for 1 < j <
7. We know (according to [[H]) that SO(M) admits a U;_;(J§)-reduction if and only if the
associated bundle SO(M)/U;_1(J§) (= SO(M) Xgso(2n) SO(2n)/U;_1(J5)) admits a global
section J;: M — SO(M)/U;_1(Jg).

Besides, according to () and () applied to Zg, (R*"), we have

SO(M)/U;1(J§) = (25, (R*™))? = Uy (M)

with p = Hence J; (when it exists) is a global section of (25 (M))7 and then the

2k
(2k,5)
U,;_1(J§)-reduction of SO(M) is given in terms of J; by:
@ (M) :={e=(e1,...,ea,) € SO(M)| Mat.(J;) = (J§)}.

j—1

Then we have
G 1 (M) /Uo(J§) = 235 (M, J;).

In particular, since (J§)" = £Id, we have U,_1 (J§) = SO(2n) and SO(M) has always an (unique
and trivial) SO(2n)-reduction for which J, = £Idrys and thus $4% (M) = U§(M) = SO(M)
and ZQO‘,W(M, Jp) = Z8.(M).

Example 3.4 If £ = 2, and thus r = 2, then Jy = —Id defines the trivial reduction. Moreover,
for j = 1, a global section J; (when it exists) defines on M an almost complex structure and

&1 (M) = Ug(M) is then the subbundle of hermitian frames on M (with respect to this almost
complex structure).

3.5 Return to an order 2k automorphism 7: g — g.

We give ourself the same ingredients as in section and we use the same notations. In
particular, we suppose that the subgroup H is chosen such that (G°)° C H C G°. In addition
to that we suppose G/H Riemannian.

3.5.1 Caser==%k

Suppose that we have T‘Ifn = —Id i.e. 7 € Z9,(m). Then ggj =0 for all 2j € Z/(2k)Z \ {0, k}.
Hence we have

o, 0r]={0}  ifp+1#0,k

Indeed, if p or [ is even then the corresponding eigenspace vanishes. If p and [ are odd then
[gg, a-] C ggﬂ and p +1 is even, thus ggﬂ = {0} except if p+1 =0 or k. Consequently, we have
[m,m] C b and thus G/H is a (locally) symmetric space. Let us distinguish the following two
cases.

20The canonical isomorphism which allows to write this equality will be explicetely given in section @
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k is odd. Then [gk,gg-:] C g%_j = {0} for all j odd # 0, k. Hence [gi, m] = {0} i.e. admgr =0
so that gr = 0 and thus this case is trivial because H = G up to covering and thus the fibre
H/G) is trivial (i.e. a discret set). Moreover we have [m,m] C h = go and G/H = G/Gq (up to
covering) is the (locally) symmetric space associated to the involution 7*.

k is even. Then the symmetric decomposition g = h @ m is the eigenspace decomposition of

7k and G/H is the (locally) symmetric space corresponding to this involution 7*.

In conclusion, if r = k, then G/H is the (locally) symmetric space corresponding to 7%.

Example 3.5 If 2k = 4, then we always have r = k = 2 (since Tﬁ“ = —Id) and G/H is the

symmetric space corresponding to o = 72.

3.5.2 Action of Adr,, on adgéc
We have 7 oadX o 77! = adr(X), VX € g. In particular, for all j € Z/(2k)Z we have
VX; € g?, roadX;or ! = wgkade.
Hence by taking the restriction to m and projecting on m:
Tim © [adm X]m © T‘;‘l = W), [adm X;]m (50)

SO thatﬁ
[admgS]m C A5 (Tjm) V) € Z/(2Kk)Z.
If » = k then [m, m] C b, hence [admg5]m = 0, for all j € Z/(2k)Z\ {0, k}.

Moreover, let us recall that we always have (r = 2k or k)

[admgolm = admgo C 500(7jm) = Com(7]) Nso(m)

_ = A t N — - f .
[adm0k]m admgr C {50( 1) (7m) nt(7)) Nso(m) = 50z (7,) if 7 is even

0 if r =k is odd (trivial case)

wheref] Ant(r,) = {A € End(m)|A7 + TmA = 0}, and we used the notation defined in
remark .4 for $0(_1)(Tjm)-

Remark 3.7 In general, we do not have [adp, gg;]m C 50? (T/m) and we also do not have [ady g?]m C
B; (T|m). However, if the metric is naturally reductive, then these inclusions hold.

We can easily generalize (@) as follows. We keep in mind the conventions and notations defined
in the subsection . We use also the notations of the begining of subsection @

Proposition 3.5 Let 7: g — g be an automorphism of Lie algebra of finite order k'. Let us
consider some decomposition k' = pq, with p,q € N*. Then let us consider the order p automor-
phism ¢ = 19, and set 6 = g%. We denote by g = 6 @ m the corresponding &-invariant reductive
decomposition of the Lie algebra g. Then we have

Tl © [ad,ﬁXj],ﬁ o 7'|;11 = wi/ [ad‘ﬁXj]nq, VXJ' S g?

Remark 3.8 In particular, we can apply the previous proposition in the case k¥’ = 2k + 1 and
q=1.

21See remark E
22 According to the notation defined in E
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3.6 The canonical section in (Z5(G/H))?, the canonical embedding,
and the Twistor lifts

3.6.1 The canonical embedding

Once more, we give ourself the same ingredients and notations as in section . We suppose
that (G°)° ¢ H C G? and that G/H is Riemannian. We denote by py := 1.H the reference
point in G/H. According to the definition of H, we have

Lemma 3.2 Let Jy be the element in 230 (Tp, M) corresponding E to Tjm under the identification
TpoM =m. Then we have Yg € H, gJ3g~' = J3. Hence there exists a unique section

Jo: G/H > (250)? = U (G/H)

defined by
90 € G/H = gJgg~" € (Z50)°.

Proceeding as in [@], Theorem 3, we obtain:

Theorem 3.2 Let 7: g — g be an order 2k automorphism and M = G/H a (locally) Rie-
mannian k-symmetric space corresponding to o = T2. Let us make G acting on Zap(M):
g-J =gJg~t. Let Jo € Z5P(Tp,M) be the finite order isometry corresponding to Tim under
the identification T, M = m. Then the orbit of Jy under the action of G is an immersed sub-
manifold in 232 (M). Denoting by Go the stabilizer of Jy, then Go = GTNH and thus N = G/Gq
s a locally 2k-symmetric bundle over M and the natural map:

Iii GGy — Z50,(G/H, )
9.Go — gJog™!

is an injective immersion and a morphism of bundle. Moreover, if the image of G in Is(M) (the
group of isometry of M) is closed, then Jj, is an embedding.

Remark 3.9 Remark that we could also have chosen Jy = T‘]m with (j,2k) = 1, since in this

case 77 is an order 2k-isomorphism. See [@], theorem 3 and remark 13.

Notation For a geometric map f: L — G/Gp, we will denote by J the corresponding map
Jj,0f: L — Za2(G/H, J2) under the previous inclusion G/Go — Zay 2(G/H, J2).

A remark about the canonical section In fact the lemma B.2 can be written more generally
as follows:

Lemma 3.3 Let N = G/Gq be a (locally) k'-symmetric space. We denote by g = go ® n the
reductive decomposition of the Lie algebra. Let yo = 1.Go € N and let Jy be the element in
Uy (Ty,N) corresponding to 7, undeﬂ the identification Ty, N = n. Then we have Vg € Gy,
gJog~! = Jo. Hence there exists a canonical section J1: G/Go L{;(TyON) defined by

9.y0 € G/Go > gJog™" € Uy (T, N).

230 denotes off course the connected component of Jg in Zok(Tpy M).

240r more generally corresponding to 7"1ﬂ with (7,&") = 1.
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3.6.2 The twistor lifts

Definition 3.2 An isometry A € SO(R?™) will be called an €' -structure if Spect(A) = {e'?, e},
An isometry A € SO(R?™) will be called a 2k-structure if A € Zap,(R?™).

Definition 3.3 Let (E,h) — M be a Riemannian vector bundle over a manifold M. Then for
each 2k-structure J € Zo,(E), we denote by J the complex structure in E defined by

ker(J —ild) = &%) ker(J — wy/1d)
ker(J +ild) = @1 ker(J - wl,Id)

Remark 3.10 Let us remark that if J € 3(E) is complex structure then J = —J. This sign is
needed because of our convention chosen in remark .9 See also [@], remark 13.

Remark 3.11 We see that definition B.3 defines a SO(2n)-invariant map
P: Z5,(R*) — X(R*")
which is nothing but the SO(2n)-invariant projection
50(2n)/Uo(J5') — SO(2n)/U(J5),

since Up(J§) C U(Jg). Indeed by definition J§ stabilizes the eigenspaces of J§ :

35 = (et 1) @ (@bo] - ildq)
Moreover, the restriction of P to Zoy, j(R?*", (J§)7) is the U;_1(J§)-invariant projection

Uj-1(J5)/Uo(J5) — U;-1(J5)/U(dp)-

Definition 3.4 Let (E,h) — M be a Riemannian vector bundle over a manifold M. Then for
each element J € Zop41(F), we denote by J € E(E) the complex structure in E defined by

ker(J —ild) = EB§:1 ker(J — wz_ijrlId)
ker(J +iId) = @5:1 ker(J — w%k+11d)

Remark 3.12 We see then that the canonical almost complex structure J defined in a (2k + 1)-
symmetric space N = G/G (see ( , is the almost complex structure associated to the element
Ji € Zoj41(N) defined by lemma B.3, according to definition B.4.

Definition 3.5 Let (L,i) be a complex manifold (of dimension d > 1), M an oriented Rie-

mannian manifold and w: L — M a immersion. Then an element J: L — u*(Z2,(M)) is an
admissible twistor lift of u if one of the following equivalent statements holds:

(i) [5u]mj(J)c € ker(J — wgkId) foralll1 <j<k—1, where mj(J) C u*TM is defined by
m;(J)€ = ker(J — wy/1d) @ ker(J — wj, 1d).

(ii) Let J be the complex structure on u*(TM) defined by the 2k-structure J € C(u*(Zar(M))),
then u is J-holomorphic: duoi=Jodu
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In particular, if (L,i) is a Riemann surface, then we can add that the existence of an admissible
tuistor lift J of u implies in particular that u is a conformal immersion.

Remark 3.13 Let E; be the orthogonal projection of the tangent subbundle u.(T'L) on the
subbundle m;(J). Then J is an admissible twistor lift means also : for all j € {1,...,k — 1},

J stabilizes E; and Jig, is a w%k—structure, i.e. a rotation of the plan FE;, and moreover this
rotation defined by J|g,; and the rotation defined by i have opposite sens of rotation.

Theorem 3.3 In the situation described in theorem , let a be a g-valued Maurer-Cartan 1-
form on a Riemann surface L and f: L — G/Gy its geometric map and J = Ty, o f. The the
following statements are equivalent:

(i) o’;=0,1<j<k—-1
(i) J: L — Z9,2(G/H, J2) is an admisible twistor lift.

Proof. This follows immediately from definition B.5-(i). O
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4 Vertically Harmonic maps and Harmonic sections of sub-

mersions
We will first recall some definitions and properties about vertical harmonicity and homogeneous
fibre bundles (sections and [.9). We refer to [F3, FJ| for proofs. Then in section [i.d we
will apply this to the study of the examples which interest us, examples that we will already
introduce and start to study in : homogeneous spaces and twistor spaces. Finally, we

will conclude with a geometric interpretation of the even minimal determined elliptic integrable
system in terms of vertically harmonic twistor lifts (section Q)

4.1 Definitions, general properties and examples
4.1.1 The vertical energy functional

Let (M, g), (N, h) be Riemannian manifolds and 7: N — M a surjective submersion. We can do
the splitting TN = V@H, where the vertical and horizontal subbundles are defined by V = ker dn
and H = (kerdn)* = V*.

For any map u: M — N, we denote by d’u = (du)” the vertical component of du. Following

1
[F3), this allows us to define the vertical energy density of u, e¥(u) = §|d”u|2, and the associated

vertical energy functional:
1
E’(u) = —/ |d"u|*dvol,.
2Jm
Let us define the vertical tension field of u: M — N by
7% (u) = Try(VVd )

where V¥ denotes the vertical component of the Levi-Civita connection (of N) in TN, and Tr,
the trace with respect to g. Then we have

Theorem 4.1 /@/ The map u: M — N is a critical point of EV with respect to vertical vari-
ations if and only if 7V (u) = 0. In particular, if u is a section, i.e. wowu = Idy, then it is a
critical point of EV with respect to variations through sections if and only if 7% (u) = 0.

Definition 4.1 A map u: M — N is vertically harmonic if 7%(u) = 0. If moreover u is a
section we will say that it is a harmonic section.

4.1.2 Examples

Example 4.1 Let 7: N — M be like above. Let (L, b) be a Riemannian manifold and f: L — N
a map. Then we can consider the projection u = wo f: L — M and the manifold

u*N:={(z,n) € Lx N,ne€n *({u(z)})}.

Then we have the submersion u*n: (z,n) € u*N — z € L. Furthermore, u*N can be endowed
canonically with a Riemannian metric: take the metric induced by the product metric

|(dz, dn)[* = |dz| + |dn|

inLxNDu*N.
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Definition 4.2 We will say that f: L — N 1is vertically harmonic if
Try(VUdU f) = 0.

When v = 7o f is an isometry and 7 a Riemannian submersion this is equivalent to say
that the corresponding section f: L — «*N is a harmonic section (see the Appendix,

theorem B.1]).

Example 4.2 The twistor bundle of almost complex structures %(F).

Let p: (E,V,{(--) — (M,g) be a Riemannian vector bundle of rank 2n (in particular (-,-)
is V-parallel). Then we consider the bundle of orhogonal almost complex structure: Ny =
S(E) = {(z,Jz), Jr € B(E;)}, where X(E,) = {J € so(E,)|J? = —Id}. We have a fibration
ms: Ny — M. The vertical space is given by: VJ € Ny,

Vyi=T;35(E;) = {A € so(E,)|AJ + JA = 0}

where z = m5(J).
The metric connection V gives us a splitting : TS(E) = V¥ @ H>. Indeed we have the following
splitting (coming from V)

Tso(E) =p*so(E)®H (51)

where p: s0(E) — M is the natural fibrationf]. Then for any (local) section J: U ¢ M — %(E),
we have
0=VJ?=(VJ)J +J(VJ)

so that V.J € V> and thus in the decomposition (f1)): [dJ)so(p) = VJ € V¥ and thus [dJ]y =
dJ — VJ € T Ny, which allows us to conclude that

TY(E) =V” ® Hs(p)-
Then we can endow Ny with the metric
h=n"g+(, )y= (52)
where ( , )y» is the fibre metric in V¥ induced by the metric in so(E):
(A, B) = Tr(A'.B). (53)

With this metric we have obviously H* = e

Furthermore, let us remark that 7%(F) is a subbundle of T'so(E)|s gy and that we have

Tso(E) sy = m550(E) @ Higpy = so_(m5E) @soy(r5E) © Hix(p) (54)
= T3X(E)@®so (reE) (55)
Withﬁ
so (s E)y = soy(E.,J):={A€so(E,)|[A,J] =0}
so_(15E); = s0_(Fy,J):={Acso(E,)|AJ+JA=0}=V7

25we denote by the same letter the fibration p: £ — M and all its ”tensorial extensions”: p: End(E) — M,

p: so(E) — M, etc..
26using the notations defined in section (i.e. the definition of 50§(J) for j € Z/27).
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for all J € ¥(F) (and where z = mx(J)). In other words, 75 E is canonically endowed with
a complex structure: Z; = J, VJ € Ny, and this complex structure defines the two spaces
504 (7L E) by

504 (5 FE) = soy (5, E,I).

Now given a section J € C(my), then we consider the vertical part of the rough Laplacian V*V.J,
1
in the decomposition (54): (V*VJ)V" = §J[J, V*V.J]. We will see in section that this is

in fact exactly the vertical tension field of J in Ny:
1 *
T(J) = §J[J,V VJ].
In particular, we recover the definition of vertical harmonicity used in [B4] and [[L(].

Example 4.3 The twistor bundle Z5;(F) of a Riemannian vector bundle.

Let p: (E,V,{-,-)) — (M, g) be a Riemannian vector bundle of rank 2n. Then we consider more
generally the bundle of order 2k isometries Ui (E) as well as its subbundles U3, (E) and Za;(E).
Let us fix @ € mo(Z2x(R?")) and consider the component Z$ (F) := Nz. We have a natural
fibration 7z : 23 (E) — M. The vertical space is given by

VJ e Nz, VZ=TZ(E,)= P Bj(E..J) | (End(E,) = Jso.(E., J)  (56)
j€/r7\{0}

according to section (more particulary equation () and where

50, (Ey, J) := @ 5o§(Ez,J) ﬂso(Ez).

Jez/rz\{0}

The metric connection V gives us a splitting: TZ$, (E) = V2 @&HZ. Indeed we have the following
splitting (coming from V)

TSO(E) = VS9E) ¢ (57)
where V5P = T,S0(E,) = Jso(E,) (since 0 = V(JLJ) = (V)T + JHVJ) = VJ €
T;SO(E,)). Then for all (local) section J: U C M — Nz, we have

0=VvJsk= > JgrvJ)S
p+Hl=2k—-1

so that according to ([t]), V.J € VZ and thus in the decomposition (57), we have [d.J]ysoz) € VZ
and hence [dJ]y = dJ — [dJ]ysom € TNz which leads to

TZ5(E) =VZ & Hzp (p). (58)

Then we can endow Nz with the metric defined as in (53) and where the fibre ( , ),z is induced
by the trace metric (5J), for which we have HZ = Vi
Furthermore let us remark that 725, (F) is a subbundle of TSO(E)| z (r) and that we have

TSO(E)|Z§2(E) = BO(”EE)@B*(WEE)@H\Z;C(E)
= Bo(rzE) & TZ5(E)
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whereEl
BO(W}E)J = Bo(Ez,J) and

B.(1%E); B.(Ey, J) = P BY(E.,J) | (End(E:) = V5

JEZ/TZ\{0}
for all J € Z$.(F). In other words, 7% E is canonically endowed with a 2k-structure: Z; = J,
VJ € Nz, and this 2k-structure defines the spaces B;C(W}E) = B;C(TF%E,I).
Now let us precise the relation between SO(F) and so(E) and in particular the relation T;SO(E, ) =
Jso(E,). For J € SO(E), let

Lj: A€ End(E;) — J.A € End(E;)

be the left multiplication by J in End(E,), with = p(J). Let us still denote by Z, the
tautological section of p*SO(FE) defined by Z; = J, VJ € SO(FE), and whose restriction to Nz is
our canonical 2k-structure Z on 75 E. Then let Lz: SO(E) — Aut(End(p*E)) be the section
of the bundle of linear automorphism of the vector bundle End(p*E) defined by

Lz: J € SO(E) — Ly € Aut(End(E,(j)))

or more concretely

Lz: (J,A) € End(p*FE) — (J,J.A) € End(p*E).

Then we have
VIOE) = L1(so(p*E)) and Bj(r3E) = Lz(so (r5E))

which we will denote more simply by

VIOE) = Tso(p*E) and Bf(niE) =ZL.s05(n5E).

Example 4.4 The Twistor subbundle Z3; ,(E).

Let us consider the previous example and let us suppose that there exists a (global) section J;

) . 2k
of (Zox(E))? = U),"(F) for some j € Z and p’ = -——. Let us consider the subbundle

(2k, 7)
N% = 25, (B, J;) = {J € Z5,(B)| ) = J;}
for which we have the natural fibration F% D25k (E,J;) — M. The vertical space is given by
VI e NL, VI =T,28 (B, J;) = (@gg?—lsgp(m, J)) NEnd(E,) = Jaoi_ (Ea, J)
according to ()Y, where
q=1

u;fl(EZa J) = (®<T7j)7150§q(Eza J))ﬂso(Em) = uj—l(Eza J)/UO(Ema J) = 500(Ema Jj)/EUQ(EZ, J)-

Furthermore, differentiating the definition equation of Zoy ;(E, J;): J? = J;, we obtain: for all
(local) section J of 7L,
V= Y JVIJI=VJ; (59)
l+q=j—1

275till with the notation defined in section

r
28and with the notations of section , in particular p =

(r,3)
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so that ‘
VJ eV = VJ; =0,

therefore in general, we have V.J ¢ V=7, We will simply set
. S o
HZI =VZITNTZS, (B, J;).
Then the splitting _ _
TZ5 (B, J;) = V&I & H>

do not correspond to the splitting (@) or equivalently to (@), in general. In other words, the
connection in mz defined by the horizontal distribution Hy, is not reducible to a connection

in F% (which could only be HZ): it happens if and only if H is tangent to N%. Besides we
have two different ways to decompose the orthogonal of V27 in TNz, using the decompositions

TNz = VZ O HZ or TNZU\% :TN%@TNéL:

. L]
TNz = VZJ_ ® VZ{L
= V2 aVE3iTnVieH,,
= V3 oH, eTNL
———
TN

In particular, we have for any (local) section J: U C M — N%

ps
[dT]yz = [V ]yzs = pryz,;(VJ)
where [ Jyz;: TNz — V27 and prgjj: Vz — VZJ are resp. the orthogonal projections.
Moreover, let us decompose TSO(E), 25, ,(B) into an orthogonal sum making appear the vertical

subbundle V2 of N%:

- ox

TSO(E) i = Bo(wl E,I)e B.(rL " E,T) & Hys
= Byl B, I)e V¥ @ Lso.(nl ET) @ My,
—_—

£ z,51 z
T.so.(nl " B,T7) v=imay

Now let us see how we can determine %Z+ from the section J;. First we remark that HZ/NVZ =
{0} (indeed ker drzNH= C kerdmz NTN% = VZ+ and of course VZINHZ7 = {0}). Therefore
HZ+J is a vector subbundle of (Vz’jl NVZ)@H which satisfies (Vz’jL NVZ)NHZJ ={0}. Thus
HZ+J is the graph of some linear map@l I:H—VZitn V2, E

d+D: W eH s WHD(W) e Ha (VEIT nVE)

has H#J as image.
Let us concentrate ourself on (59). V.J is in VZ so that we can write it V.J = 3.7_ JA; with
A; € 50%(E, J), according to (pf). Then we have Vi € {1,...,7 — 1},

S L (w})
q N7 — =1, - r JA.
Z JUTA)T =" P wlIA; ot JIA;
l+q=7—1 =0

29i.e. a morphism of vector bundle

30Tn the following reasoning, we will forget the index ”|N %” in H, ,; todo not weigh down the equations. The
z

|N
right notation will reapear in the final equation.
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so that

r—1 1 _ (wz )]
JUVI) I =TI T A
D
+q=7— 1227;14
where as usual p = 0 r.) is the order of w/. In particular, we remark that (with obvious
)
notation)F]
> LYo RNV Bu(E, ) — Bu(E, J;) (60)
l+q=j—1

is a surjective map with kernelEl
P BLE,J) | (End(E) = TV,
ieP'ZT\{O}
so that it induces an isomorphism from
Jso, (B, J;) = J*(VEit np2)

onto B.(E, J;). Let us denote by P7(.J) the surjective map (p() and by P7(J)~! the inverse map
of the isomorphism induced on J.s0,(E, J;). Then we have

PI(J) (V) =V,
so that [VJ]VZ'H”VZ = Pi(J)"Y(V.J;), but we have V.J = [dJ]Y", and therefore
[dJ]Y=7 v = pi(g)Th (v (61)

On the other hand, dnZ o dJ = Idzy; so that drZ o [dJ]" = Idgys, which with (61) allows to
conclude that ‘
P =PI o (V) o dr,

that is to say, for all W € Hini
L(W) =P (Jo)™" Vizzy.wJj

where W = (Jo, Wy,), Jo € NL, Wy, € H,.

4.1.3 VU-torsion, V-difference tensor, and curvature of a Pfaffian system

U-torsion, U-difference. Let us consider a vector bundle morphism

™™ —Y— (E,V)

l L

M —Y 5 N

Slremark that By (E, J;) = J3.50.(E, J7) = JI. ((©sez,\p.2,595 (E, J)) Nso(E, J))
320bviously, since J is a local section, everything is local here and E must be replaced by Ey := p~1(U), but
we do not want to weigh down the notations.
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V being a connections on the vector bundle E. Then the U-torsion of V is the ¢*E-valued
2-form on M,

TY(X,Y) =Vx(PY) - Vy(¥X) - U[X,Y] =dV¥(X,Y) VX,Y €C(TM).
Let us give now some examples.

Example 4.5 Let N be a manifold and suppose that we have a splitting TN = V @& H and sup-
pose also that the vertical bundle V is endowed with a covariant derivative V¢ and let ¢: TN — V
be the projection (morphism) on V along H, then we can speak about the ¢-torsion of V¢,

T¢ = dV°¢.

[

TN ———— (V, V%)

! !

NL; N

Example 4.6 Let s: M — (N, V) be a map from a manifold M into an affine manifold (N, V)
and suppose that we have a splitting TN =V & H, then let us consider the morphism of bundle

T™M ¥, (v, V)
where V"V is the vertical part
l l of the linear connectionV.

M —— N
Then the vertical s-torsion of N is T% := T = dV dVs.

Example 4.7 In particular let us take s = Idy (in the previous example) and thus ds = ¢ the
projection on V and then the ¢-torsion of V¥ (or Idy-torsion of N) is the wertical torsion in V:
T = dV' ¢.
Now for any map s: M — N we have

T° =s*T".

We will say that s is vertically torsion free if T° = 0.

Example 4.8 Let E — N be a vector bundle and let us suppose that we have a isomorphism of
bundle ¢: TN — E (over Idy). Let V be a connection in E. Then we have T% =) o T, where
T is the torsion of the linear connection 9y oV oy on N. B

Now, we define the v-difference and the y-equivalence.

Definition 4.3 Let E — N be a vector bundle and let us suppose that we have a morphism
of bundle v»: TN — E (over Idy). Given two connections V and V' in E | the ¢-difference
tensor SV for the pair (V,V') is defined by

SY(X,Y) = Vx(¥Y) = Vx(¥Y) = (V = V)x ().

Then SY is symmetric precisely when ¥ and V' have the same 1)-torsion. On the other hand,
if SY is skew-symmetric we will say (following @/} that V and V' are ¢ -equivalent: it means
that these have the same 1-geodesics, a ¥-geodesic of V being a path y(t) in N solution of the
equation

Vy'(t) (W/(t)) =0
(if ¥ is an isomorphism then 1)-geodesics of V are precisely the geodesics of ™1 oV o).
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Curvature of a Pfaffian system

Definition 4.4 Let P be a Pfaffian system on the manifold N. Then for any local sections of
P, X,Y: (N,a) = P, defined in the neighbourhood of a € N, the image ([X,Y].)y of [X,Y]s by
the canonical projection ToN — Vo = TN/ Py, depends only on the values X,,Y, at a € N, of
the vector fields X, Y. We define the curvature of P as the tensor R € A2P* @V,

Ra(Xaa Ya) = _([Xa Y]a)V-

Definition 4.5 Let N be a manifold endowed with a Pfaffian system V (Pvertical subbundle”)
and let us suppose that V admits a connection i.e. a complement H (”horizontal subbundle”):
TN =V @®H. ThenV is identified to TN/P so that the curvature of the connection H becomes
the tensor R € A’°H* ® V defined by

R(X,Y)=—-[X,Y]y VX, Y eC(H)
the subscripts ”V” designing the V-component along H.

Convention We will often extend R to the corresponding horizontal 2-form on NV, still denoted
by R: R € A°T*N ® V such that R(X,Y) =0if X or Y € V.

Proposition 4.1 Let N be a manifold and suppose that we have a splitting TN =V ® H and
suppose also that the vertical bundle V is endowed with a covariant derivative V¢, then we have

T|%-[><H = Ry,
Ry being the curvature of H.

Proof. For any Hy, Hy € H, we have T°(Hy, Hy) =V Hy—V g, HY —[Hy, Ha]" = —[Hy, Ha]" =
Ry (Hq, Hs). O

Proposition 4.2 Let 7: Q — Q/H = M be a H-principal bundle endowed with a connection
1-form w: TQ — h. Let H = kerw C T'Q be the corresponding horizontal subbundle. Let be
Q = dw + 3w Aw] the curvature 2-form. Then we have

Ru)(X,Y)=q¢.Q(X)Y) VgeQ,VX,Y e H,
Ry being the curvature of the connection H. In other words, we have
Ry =QF
where 27 = q.(y.

4.2 Harmonic sections of homogeneous fibre bundles

In this section, we study fibre bundles 7: N — M for which the fibre is a homogeneous space

H/K. To do that, we follow, in subsections and , the exposition of . Next, we
present a generalisation of the results (of [5J]) to non section maps in the end of . Finally

we study the homogeneous fibre bundle reductions in [£.2.3.
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4.2.1 Definitions and Geometric properties

Let mas: Q@ — M be a principal H-bundle, with H a Lie group. Let K be a Lie subgroup of H and
N = Q/K. Then the map my: @ — N is a principal K-bundle and we have 73, = m o7y where
m: N — M is a fibre bundle with fibre H/K, which is naturally isomorphic to the associated
bundle @ x g H/K. We assume the following hypothesis

(i) H/K is reductive: h = t®p, and AdK (p) C p, where h and ¢ are respectively the Lie algebras
of H and K.

(ii) M is endowed with a Riemannian metric g

(iii) H/K is Riemannian: there exists a H-invariant Riemannian metric on H/K (equivalently
an AdK-invariant (positive definite) inner product on p). Equivalently Ad, K is compact.

(iv) The principal H-bundle mp: Q@ — M is endowed with a connection. We denote by w the
corresponding h-valued connection form on Q.

Then the splitting TQ = Vo ® Ho defined by w (Vo = ker dmps, Ho = ker w) gives rise by dny, to
the following decomposition TN =V & H, where V = kerdn = dry (Vo) and H = dry(Ho). Let
po := Q Xx p — N be the vector bundle associated to mx: @ — N with fibre p. Let us denote
by [g,a] € pg the element defined by (¢,a) € @ x p. Then we have the following vector bundle
isomorphism
I: y — PQ
drn(g.a) +— [g.d]

d
where ¢ € @, a € p and as usual g.a = —
dt |t=0

following b = € @ p, then since H/K is reductive, w, is a K-equivariant (wp(X.h) = Adhw, (X))
and 7 -horizontal (wpw0 = 0) p-valued 1-form on @ and hence projects to a p-valued 1-form ¢
on N:

g.exp(ta) € T,Q. Decomposing w = wy + wy

¢(drn (X)) = [g, wp(X)].

Then we have
¢y =1 and ker¢="=H.

We can now construct a Riemannian metric A on N:

h=m"g+(¢,9) (62)

where (, ) is the fibre metric induced on pg by the inner product on p.

In the same way, let ® be the pg- valued 2-form on NN defined by the component €, of the
curvature form €2 of w. Since €, is mp-horizontal (Q(X,Y) =0if X € Vy or Y € V), then @ is
m-horizontal: ®(X,Y)=0,iff X e VorY € V.

Remark 4.1 In [@], po is called the canonical bundle, I the canonical isomorphism, ¢ the
homogeneous connection form, and ® the homogeneous curvature form.

Definition 4.6 We will call the following datas (Q, H, K,w) a homogeneous fibre bundle struc-

ture on m: N — M (or on N, when the fibration 7 is considered as implicitely given). Moreover
m: N — M will then be sayed to be a homogeneous fibre bundle.
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The 1-form we (which is a connection form in 7x because H/K is reductive) defines a connection
in wn called the canonical connection. This connection induces a covariant derivative V¢ in the
associated bundle pg, with respect to which the fibre metric is parallel. V¢ defines a exterior
derivative d° on the space of pg-valued differential forms on N. This allows us to define the
canonical torsion T¢ which is nothing but the ¢-torsion of V¢ (see section §.1.3)

T(A, B) = d°¢(A, B) = V4 (¢B) — V(¢A) — ¢[A, B], VA, B € C(TN) (63)

Let hg := Q xu h — M be the vector bundle associated to m); with fibre b, and in the same
way g := @ X € = N the bundle associated to 7 with fibre h. Then we have

7T*f)Q = EQ D po-

The Lie bracket of h induces a bracket on the fibres of g, and those of 7*h¢, which we continue
to denote by [, ], and we denote also its pg-component (when there is no risk of confusion)
by [, ]y (otherwise we denote it by [, ]p,). Taking the p-component of the structure equation

dw=Q — i[w A w] and then projecting on N, we obtain the homogeneous structure equation:

1
TC:@—§[¢/\¢]p (64)
and thus
T\va = —[I-, Iy, T|V><H =0

Toin = Pruxn:
In particular, T is horizontal if and only if H/K is a (locally) symmetric space, and in this case

T¢ =& (65)

Remark 4.2 According to (p4) and ((3), for all X,Y € H, (extended to vector fields in N
denoted by the same letters), we have

P(X,Y) =TX,Y) = —¢([X,Y])

so that
® = R?'[v

according to definition @ The homogeneous curvature form is nothing but the curvature of the
connection H. .

Now, let U be the pp-valued symmetric bilinear form defined on pg by:
<U(a7 b)a C> = <[C, a’]pa b> + <a7 [C, b]P> (66)
where (, ) is the fibre metric, and a, b, ¢ € pg. Let us set
B=U+[, |, (67)

which is a pg-valued bilinear form on pg, whose the symmetric and skew symmetric components
are respectively U and [, ]p. U vanishes if and only if H/K is naturally reductive and B if and
only if H/K is (locally) symmetric . Then denoting by V the Levi-Civita connection on N, we
have:
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Theorem 4.2 @/ Let us consider the difference tensor:
S(A,B) = ¢(VaB) — V§(¢B)
then we have
25 =¢"U—-T°=¢*B — .
Consequently, YV € C(V)
I(V4V) = V4(IV) + SB(6A, IV). (68)
In particular, if H/K is a (locally) symmetric space, we have

IVYV = V5 (IV).

Remark 4.3 If H/K is a symmetric space, under the canonical identification I: V = pg, we
have V¥ = V¢ on V. More generally the difference between V¥ and V¢ looks like to the difference
between the Levi-Civita and canonical connections of a reductive Riemannian homogeneous space

(see section [L.4).

Moreover, V? is ¢-equivalent to V¢ when H/K is naturally reductive, according to (@)

Let V¥ be the covariant derivative in the vector bundle h¢g (associated to mas), defined by
the connection form w. Let us decompose (the m-pullback of) V¢ following the decomposition
T hg = g ® pg, and the po-component gives us a connection V¥ in pg.

Theorem 4.3 [53] For all V € C(pg),
VPV =V¥V — [9,a]y
and
VYV = VPV — [6, V], = V¥V — [6, V].

Consequently, V¥ and V° are ¢-equivalent (since their ¢-difference is [¢,¢],). In particular
Ve =VPif H/K is a (locally) symmetric space.

Example 4.9 Let us consider the situation described by example and suppose that u: L —
M is an isometry. Then if 7: N — M is a homogeneous fibre bundle like above then this is also
the case for u*m: u*N — L.

Indeed let us set

WQ={(50) € Lx Q, g€ mt({u(=)1) } = | {2} x f(2).H
zeL

then u*mpr: (z,q) € u*Q — z € L is a principal H-bundle over L. Then we have u*N = v*Q/K,
and u*m: u*N — L is a fibre bundle with fibre H/K.
Finally we have to define a connection on u*mys: u*@Q — L. Let us extend the connection w, to
a connection on Idy x mpr: L x Q — L x M by & q)(dz + dg) = wy(dg) and then let us set

urw = ‘D\T(u*Q)-
In the same way, the homogeneous connection and curvature forms on ©*N are given respectively
by ~ 5

U*d) = (b\T(u*N) and u'®:= qD\T(u*N)éBT(u*N)'

The canonical torsion T¢ on u*N is also given by u*7T° := T‘CT(U*N)@T(U*N).

Definition 4.7 Let (L,b) be a Riemannian manifold. We will then say that f: L — N is
vertically geodesic if ¢(Vdf) = 0, horizontally geodesic if m.(Vdf) = 0, and superflat if its
vertical second fondamental form wvanishes 11V (f) := VVd" f = 0.
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4.2.2 Vertical harmonicity equation

We know that the structure group H of mp: @ — M is reducible to K (i.e. there exists an K-
bundle 7,: Q" — M) if and only if the associated bundle 7: N — M admits a (global) section
s: M — N (see [I]]) so that there is a one to one correspondance between the K-reductions of
7w and the space of sections C(r).

Let w' = wy pg,- Then w' is a connection in 7}, and w is reducible if and only if wirg = W’
(see [H])). The reducibility of w can be characterized as follows.

Proposition 4.3 The following statements are equivalent:

(i) s is horizontal;

(ii) s*¢ = 0;

(iii) s is an isometric immersion;
(iv) w s reducible

Now we have the following expression of the tension field for sections s: M — N.

Theorem 4.4 [54] For all s € C(),
1
1(7°(s)) = —d*(s7¢) + 5 Tr(s"¢"V)

where d* is the coderivative for s*pg-valued differential forms on M relative to the s-pullback of
any connection in pg which is ¢-equivalent to V. In particular, if H/K is naturally reductive
then s is an harmonic section if and only if s*¢ is coclosed.

Remark 4.4 If H/K is naturally reductive, to compute the vertical tension field 7%(s) =
Tr(V¥d"s), we can use instead of V¥ any connection in V = pgo which is ¢-equivalent to V°.

From the homogeneous structure equation (54), we obtain
* C( * 1 * *
S0 = d°(5°) + [s"0 A 5"y,

hence every horizontal section is flat (i.e. s*® = 0).Let us introduce the following 3-covariant
tensor (s*¢ ® s*®) on M:

(" @ s*PYX,Y,Z) = (s*p(X), s D(Y, Z)),
then we have

Theorem 4.5 [54] For all s € C(r) we have

(1) ¢(Vds) = Ve(s*¢) + %S*(ﬁ*B - %s*@.

In particular, if s is vertically geodesic then s is a harmonic section.

(i) 29(m.Vds(X,Y),Z) = (s*¢ @ s*P)(X,Y, Z) + (s*p @ s*D)(Y, X, 7).
Therefore s is horizontally geodesic if and only if (s*¢ @ s*®) is a 3-form on M. In
particular, if s is flat then s is horizontally geodesic.

Theorem 4.6 @/
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(i) The symmetric and skew symmetric components of II's := V¥ds are given by:
1
I(I1°s) = ¢ o Vds + 55*4).

(ii) The section s is superflat if and only if s is flat and totally geodesic. In particular, if s is
flat then s is totally geodesic if and only if s is super-flat.

(iii) Moreover 7V(s) is the vertical component of the tension field 7(s). So if s is an harmonic
map, then it is certainly a harmonic section.

Theorem 4.7 @/ An harmonic section s is a harmonic map if and only if (s*¢, s*®) = 0 where
(57¢,5"@)(X) = > (s"¢ @ s"®)(E;, E;, X)
for any orthonormal tangent frame (E;) of M.

In particular, if s is flat (s*® = 0) then s is a harmonic map if and only if s is a harmonic
section.

Remark 4.5 Let us consider the situation described by examples @ and @ Then if f*® =0,
f: L — N is vertically harmonic if and only if f: L — w*N is an harmonic section if and only if
f: L = w*N is an harmonic map. But it does not imply that f: L — N is harmonic! (See the
Appendix.) Indeed in the previous theorem it is essential that s be a section: 7o s =Id.

In fact the previous theorems can be easily generalized for non section map . The proofs in [E]

holds without any change for theorems [£4, [.3-(i), [£6- (i, iii), while for theorems [.5}(ii), [£.6-(ii),
@: follow the proof of [@], just replace the starting equation m o s =1Id by m o s = u. Then we
obtain

Theorem 4.8 For all s € C*°(M,N), we have
. k(% 1 * Ik
(1) 1(7°(s)) = —d"(s7¢) + 5 Te(s"¢" V)

1 1
(ii) #(Vds) = Ve(s*¢) + §s*¢*B — 55*(1).
In particular if s is vertically geodesic then s is a harmonic section.
1
(iii) I(IIVs) = ¢ o Vds + 55*(1).

The map s is superflat if and only if s is flat and vertically geodesic. Moreover TV (s) is
the vertical component of the tension field 7(s). So if s is an harmonic map, then it is
certainly vertically harmonic.

(iv) 29(mVds(X,Y),u.Z) = (s*pRs* D) (X, Y, Z)+(s*p@s*®)(Y, X, Z)+2¢g (Vdu(X,Y ), u.Z).

Let us suppose now that uw is an immersion, then this equation determines the horizontal
part of Vds. In particular, if s is flat then s is horizontally geodesic if and only if u is totally
geodesic; and s is totally geodesic if and only if s is superflat and u is totally geodesic.

(v) A vertically harmonic map s is a harmonic map if and only if
9(1(u),-) + (s7¢,s"®) = 0.

In particular if s is flat, then s is a harmonic map if and only if s is vertically harmonic
and u = wo s is harmonic.
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We could also deduce this generalisation from the previous theorems Q—@ themself. Indeed we
can apply these to the section § € C(u*N) corresponding to s and use theorems @ and @ in
the Appendix, but we must suppose in addition that « is an isometry.

Let us go further in the generalisation and consider maps f € C*°(L, N) with(L,b) a Rieman-
nian manifold (see examples [L.] and [LY). Then the proofs in [FJ] holds for theorems [.4,
BF-(i), [L6-(i,iii), whereas theorems [L.H-(ii), [L.6-(ii), [.] are no longer valid. Indeed the equa-
tion in theorem [L.§(iv) holds, but it gives us only [, Vdf],.T1, the component of [r.Vdf] in
the tangent bundle u,T'L. So if we want [m,.Vdf] (u.Tr)+ We must introduce the 3-linear form
(f*¢ @ P(fs,")) €eC(T*LRT*L @ f*H) defined by :

<f*¢ ® (I)(f*'a '))(aa b, Z) = <f*¢(a)’ <I>(f*a, Z))

Then we have

Theorem 4.9 For all f € C*°(L,N), we have

(i) g(ﬁ*Vdf(av b)a ﬁ*Z) = <f*¢ © (I)(f*a ')>(a’a bv Z) + g(Vdu(a, b)a ﬁ*Z>
In particular, if f is strongly flat i.e. (®(fi-,-) =0) then:
- [ is horizontaly geodesic if and only if u is totally geodesic.
- [ is totally geodesic if and only if f is superflat and w is totally geodesic.

(ii) A wvertically harmonic map f is a harmonic map if and only if
9(t(u), ") + (f*¢, (fer,")) =0

where (f*¢, ®(fu-, ))(X) =D, (f*d @ ®(fs-,-))(es, €5, X) for any tangent frame (e;) of L.
In particular if f is strongly flat (®(f«,-) =0) then f is a harmonic map if and only if f
1s vertically harmonic and w is harmonic.

Examples and illustrations of the theorems @ and @ will be given in section @

4.2.3 Reductions of homogeneous fibre bundles

We consider reductions (QV, HY, KV,w") of (Q,H, K,w). We distinguish two cases: first we
consider the particular case KV C K and then, in a second time, we explain what does change
in the general case KV C K. Finally, we precise which notion depends or does not depend on
the choice of the metric on the fibre.

When the subgroup K is the same. Let us suppose now that the structure group H
of mpr: @ — M is reducible to a (closed) subgroup HY D K. That is to say, there exists
a principal HV-subbundle 7},: Q¥ — M. Since HY/K is Riemannian, then it is reductive.
Moreover, remarking that dim(h¥ N p) = dim h” + dimp — dim(h) = dim h¥ — dim €, we deduce
that p¥ := hY N p satisfies h¥ = ¢ @ p¥ and Adk(pY) = pV¥, Vk € K. The restriction to p¥ of the
AdK-invariant inner product on p defines a H"-invariant metric on H"Y/K which is nothing but
the metric induced by the H-invariant metric on H/K, so that the inclusion HY/K — H/K is
an isometric embedding.

Let p’ = (p¥)* in p and let us suppose that p’ is AdH"-invariant, therefore h = hY @ p’ is a
reductive decomposition and H/H" is reductive.

Conversely if H/HY is reductive: h = ¥ @ p’ with p’ AdHV-invariant, then we can always
complete any AdK-inner product in p’ by an AdK-invariant inner product in p := p¥ & p’:

<a>P:<a>P"+<a>P/ (69)

(0]



for which p’ = (p¥)* in p. Of course p¥ denotes an AdK-invariant summand such that: h¥ = ¢pp¥
(HV/K is reductive) and ( , ),v is an AdK-invariant inner product.

e In the following we suppose that H/H" is reductive and that the inner product in p is chosen
as described above, i.e according to (p9). According to the previous discussion, this is equivalent
to suppose that the AdK-invariant inner product chosen in p is such that the subspace p’ = (p¥)+
is AdHV-invariant, where p¥ := h¥ N p.

Remark 4.6 Let us now consider the particular case where H/K is naturally reductive. Then
in this case, according to in the Appendix, any naturally reductive inner product on p can
be extended into an AdH-invariant PseudoRiemannian product B on . Then in this case, the
hypothesis above are automatically satisfied since then p’ := (h¥)*, the orthogonal of ¥ w.r.t.
B, is AdH"-invariant. In particular, this is the case if H is compact.

Now let us turn toward the connection 1-form w. Its restriction w¥ := wyv|pqv defines a
connection on 7}, : — M. We endow Q¥ with w" and (QV, HY, K,w") is then a homogeneous
fibre bundle as defined in the begining of @

Definition 4.8 We will then say that m: N¥ — M is a homogeneous fibre subbundle of m: N —
M.

Moreover w is reducible (to w") in QY if and only if one of the following equivalent statements

holds ([])
o Vg € QY, (Ho)q is tangent to QV.
o wirgv = w" (i.e. wypgv is hY-valued).

e The canonical cross section sV of the associated bundle EY := Q/HY = Q x g (H/H"), which
defines the HV-reduction @V is horizontal.

Definition 4.9 Denoting by iv: NV — N the natural inclusion, we will say that iy: NV —
N is a reduction of homogeneous fibre bundles if w is reducible in Q¥ (being implicit that the
homogeneous fibre structure are respectively (Q, H, K,w) and (Q¥,HV, K,w")).

The vertical bundle (in T'Q), Vo, splits as follows
Vo=V, ®Vy

where (V)q = ¢.b¥ = T4(q.HY) and (V) = ¢.p’, and quotienting by £, i.e. by applying dry we
obtain the following decomposition of V:
y=V oy

with V' = dry (V) and VY = don (VY).

Then the canonical isomorphism I: V — pg sends the previous decomposition onto the following
pQ =pg ®pg (ie. V', VY are sent resp. onto pg and p)).

Then the vertical space in TNV is V“}VV that we will also denote by V¥ when there is no possibilities
of confusion. The splitting of TNV defined by w" is then

TNV = VV @ H‘VNV

where HY = drn(Hy) and H = kerwyv. Let us remark that w is reducible if and only if one of
the following equivalent statements holds
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L H‘\/NV - H\N"v

e the inclusion i, : (NV,hY) — (N, h) is an isometry, where h" is the metric defined by w" and
(', )pv, according to (B2).

The canonical bundle on NV, pfhe = Q¥ X p¥ — NV is the restriction to NV of pj, = N, and
the canonical isomorphism IV: V“}VV — pv is the restriction to V|VNV of I:V = pg.

Since wy = wpv + wy, the homogeneous connection form on NV, ¢¥ (the pov-valued 1-form on
NV defined by wypv) is the restriction to NV of the py)-component of ¢:

9" = (iv)" [‘ls]pé = [(iv>*¢]p‘év7
where i,: NV — N is the natural inclusion. The homogeneous curvature form ®V (defined by

N

1
with QV = dw” + i[w" A wV]) is given by
Y = (iy)" [(I)]p‘é = [(iV)*@]pE)v'

Furthermore, pf), is Vparallel: the covariant derivative on pf. defined by wgjrqv is the re-
striction of V¢ to pg,v. In other words V¢ commutes with the projection on pg). The canonical
torsion on NV is given by

T = 46" = [(iv) Ty,

In particular, the results of what precedes is:

Proposition 4.4 Let us suppose that w is reducible in QQV. Then we have
(i) ¢" = (iv)" ¢,

(i) @ = (i),

(iii) TV = (iy)*Tc.

Now, let us remark that

Lemma 4.1 We have the following identity
BY = (iy)*B
Proof. Let apv,by,v € p¥ and ¢, € p. Then we have
[apv,bpv]p = [ap\I,bpv]pv
since hY = €@ p" is a Lie subalgebra of h = £ @& p. Moreover, we have also
(Ulapy,bpv),cp) = ([ep, apv]p, bpv) + (ep, apv]p, bypv)
= (lepv, apvlpv, bpv) + (lepv, apelpv, bpv) = (UV (apy, bpv), cpv)

since [p’, p¥] C p’ because the decomposition h = h¥ B p’ is AdH"-invariant. We have denoted by
U the map associated with the bundle 7: NV — M according to equation (@) This completes
the proof. 0

Therefore we deduce from what precedes and theorem @, the following.
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Proposition 4.5 Let us suppose that w is reducible in Q. Let (L,b) be a Riemannian manifold,
and f: L — NV be a map. Then we have

(1) () =7°(f),
(i) I (f) = 1°(f),

where TV (f) is the vertical tension field of f in NV and IIV(f) its vertical second fondamental
form in NV.

When the subgroup KV = KN HY C K. Now, let us suppose more generally, that the
structure group H of mpr: Q@ — M is reducible to a (closed) subgroup HY, i.e. there exists a
principal H"-subbundle 7},: QY — M. Then this gives rise to a fibration 7V: NV — M, with
homogeneous fibre HV /K", where NV = QV/K"Y and K¥ = KN H".

We can always suppose that the AdKV-invariant subspace p¥ := h¥ N p satisfies h¥ = € @ p".
Indeed, we have an embedding HY/KY — H/K so that T,(HY/K") C T,(H/K). As previously,
we endow p¥ with the inner product induced by restriction to p¥ of the AdK-invariant inner
product on p, i.e. HY/K" with the metric induced by the metric on H/K, so that the inclusion
HY/K — H/K is an isometric embedding. Moreover, we suppose that p’ = (p¥)* C p is AdH"-
invariant, so that in particular h = h¥ @p’ is a reductive decomposition and H/H" is reductive.

Then we can check easily that remark @, proposition Q, lemma @, proposition @ still hold.

About the different possible choice of metrics. Sometimes, it could happen that the
situation imposes a metric on HY/K" different from the one induced by the metric of H/K.
This leads us to see what is dependent or not of the choice of this metric.

Remark that in a homogeneous fibre bundle, ¢, ®, T and V¢ do not depend on the H-invariant
metric on the fibre H/K. Moreover, according to theorem B, when this previous metric is
naturally reductive, then the difference tensor is independent of the choice of this naturally
reductive metric. Therefore, proposition @ still hold when HV/KY and H/K are endowed
with any naturally reductive metrics, even if the former is not induced by the latter. These
considerations leads us to the following.

Definition 4.10 In the situation of definition [[-9, we will say that iy: (NV,hV) — (N,h) is
a metric reduction of homogeneous fibre bundle if is a reduction of homogeneous fibre bun-
dle and a isometry. The term metric will be implicitely assumed when we precise the metrics
“iy: (NY,hY) — (N, h) is a reduction of homogeneous fibre bundle”. Otherwise, when we only
say that "iy: NY — N is reduction of homogeneous fibre bundle” we will consider that (-,-)yv is
not induced a priori by (-, )y (i.e. h¥ is not a priori induced by h).

4.3 Examples of Homogeneous fibre bundles
In this section, we give examples and applications for the theory developped in the previous
sections whose we use here the same notations.

4.3.1 Homogeneous spaces fibration

Let us take Q = G a Lie group, and K C H C G subgroups of G, (H, K) satisfying the hypothesis
in the begining of section . Let us suppose that M = G/H is reductive and Riemannian:
that is to say if g = h ® m is the reductive decomposition, then Ad,H is compact and we
choose an AdH-invariant inner product ( , )y in m. For w, we take the canonical connection on
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7w G — G/H which is given, let us recall it, by w = 6y where 0 is the Maurer-Cartan form in
G (see section ) Then the corresponding decomposition T'Q = Vy @ Hy is given by

T,G=g9= gh@gm.
N
Vo Ho
Since n := p @ m is AdK- invariant, then g = ¢ @ n is a reductive decomposition and N = G/K

is reductive. Let us recall that we have the canonical identification G xx g = N X g given by
(@), which gives us an identification ng = G' x j¢ n 2 [n]. Then under this last identification and

under the one given by the Maurer-Cartan form of G/K, f: TN = [n] (see section [[.7)), the
splitting TN =V & H is
TN = [p] © [m],

the canonical isomorphism I: V — pg is then the identity, and ¢: TN — pg the projection on
[p] along [m]. The metric h on G/K is then defined by the AdK-invariant inner product:

<;>n:<;>p+<7>m' (70)

1 1
Furthermore, Q = dw + E[w Aw] = dby + 5[9;, A 0y] and thus

1
Qp =dby, + [0 N0, + 5[9,0 A Oplyp.

1
Since df + 5[9 A 6] =0, then (projecting on h) we have
1 1
ddy + 5[95 A 95] + 5[9‘“ /\Gm]b =0

thus )

0= —5[9‘“ AN Hm]h
so that )

2 = — 5w A By (71)
therefore .

@ =~y Auly (72)

where ¢: TN — H = [m] is the projection on H along V = [p].

The covariant derivative V¢, which lifts into d + 8¢ in G, is nothing but the canonical linear
connection V% in N = G/K restricted to [p] C TN (see section [L.4 and [L.5).

The canonical torsion 7°°, which lifts in G into

1 1
dby, + [0 N0y = —E[Gm A bmlp — 5[9,j A Oply (73)
is given by El
T = oAl g6 nd,
= [a]n+[¢/\1/’]p

331In particular, according to @), we recover, for this example, the Homogeneous structure equation (@)
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The associated bundle
be = G xp b= [0]" := {(g.x0, Adg(a)),g € G,a € h} C M x g
can be embedded into so(T'M) by[]
¢ = Adg(a) € Adg(h) = 0]}, — ad€|adg(m) = Adg o adma o Adg™" € so(Adg(m)).  (74)
In the same way, £ = G x i £ =2 [E]N embedds in so(N). Moreover let us remark that we have

ﬂ-*bG =G XK h = [b]N = {(gTLOaAdg(a))ag S Gaa/ S h}a
and that 7*hg embedds into so(m*TM).

Remark 4.7 The subalgebra h can be endowed with the AdH-invariant inner product induced
by the AdSO(m)-invariant inner product in so(m): (A, B) = Tr(A'B). Therefore, this inner
product induced an AdK-invariant inner product on p, which could be a possible choice for
(- )p in ({0

As concerns the covariant derivative V¥, defined in b¢, it lifts into d + 0y in G and under the

embedding ([74), it is nothing but the restriction to the subbundle so(T'M) of the endomorphism

connection on M (i.e. the tensor product connection in T*M ® T*M) defined by the canonical
M
linear connection in M, V°. Indeed under the embedding @), V¢ lifts to the derivative d+adw 8y

and equation ([L§) allows to conclude.
Therefore V? is given by its lift E

[(d+0g)p]p = d+ adpbe + [0p, - p]p (75)

that is to say V* is the [p]-component of the linear connection V! in G/K (see section [L.4)
restricted to [p] C T'N. (Indeed we have [0, -|p]p = [0p,-|plp + [0, -|plp, Dut [m,p] C [m, ] Cm
by reductivity.)

N
Let us see to which corresponds V¢ under the embedding ([4). The canonical connection V°
gives rise by restriction to a linear connection on the horizontal subbundle H = 7#*T'M. Then V¢
is nothing but the restriction to pg C so(7*T M) of the tensor product connection in End(7*T M)

N
defined by V°.

Moreover the Levi-Civita connection in N is given by (see section [L.§)

met
N 1

1
V:VE:VO+§BN

where BY = [, Iy + UN and UY is defined by equation (E) Then we have by taking the
projection on the vertical subbundle [p]:

1
§(VAV) = VA(6V) + 560 BY(4,V)
so that we can conclude according to theorem [£.9 that
poBYN =¢*B — &, (76)

which can also be verified directly using the expressions of BY, B and ®.

340r in other words [g,a] € hg = G x g b+ [g9,adma] € G x g s0(m) = s0(TM).
35 []p denotes as usual the p-component.
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If H/K is (locally) symmetric. In this case, we have T¢ = ® (see (f4), or () and ([1))).
Moreover, according to @), VP lifts to d + 0, so that we recover that VP = V¢ in this case.
Now, let us apply the equality V¥ = V¢ in V (theorem @)ﬁ

Let f: (L,b) = N be a map then we have

TU(f) = Try(VVd f) = #dV " * d°u = *AdF (d(*y) + [ae A (xp)]) . f
where F lifts f in G and a = F~'dF. Then f is vertically harmonic if and only if
d(*ap) + [ae A (xap)] =0
Moreover f is flat (f*® = 0) if and only if it is vertically torsion free (f*7¢ = 0) if and only if

[Qm A am]p =0« dap + [043 A QP] =0.

G/K is a (locally) 2k-symmetric space Let us suppose that there exists an order 2k
automorphism 7: g — g such that K = Gy with Gy such that (GT)° € Gy C G7, and
(G°)° ¢ H c G° with 0 = 72 (see section R.1). Then H/K is (locally) symmetric (see sec-
tion ) We have the following identities (with the notation of section @)

m=ajm; and €=go,p =gk

Then we have

1 1
Qp = 75[9m A em]p = D) _;k [oj A i),
§iCTa 0k}

so that in particular

Proposition 4.6 Let (L,7) be a Riemann surface. If f: (L,j) — N satisfies the equations
a”;=0,1<j<k—1then we have f*® = 0. In other words if f: (L,j) — N is horizontally
holomorphic then it is flat, that is to say f is vertically torsion free or equivalently

doy, + [og A ag] = 0. (77)

Theorem 4.10 In the even minimal determined elliptic integrable system (Syst(k, 7)), the last
equation (Sy) is equivalent to

(Re(Sg)) = dog + [ag ANag] =0 < [ is vertically torsion free i.e. f is flat,
(Im(Sk)) = d(xar)+[ao A (xag)] =0 <= [ is vertically harmonic.

In conclusion the even minimal determined elliptic system (Syst(k,T)) means that the geometric
map [ is horizontally holomorphic (which implies that f is flat) and vertically harmonic.

Remark 4.8 The vertical torsion free equation (ﬁ) is the projection on p of the Maurer-Cartan
equation provided that we assume the horizontal holomorphicity o ;=01<j<k-1In
the same way, the equations (S;), 0 < j < k — 1, of the elliptic system (Syst(k,7)), are the
projections on the different spaces g_;, of the Maurer-Cartan equation, provided that we assume
the horizontal holomorphicity.

36We can also use directely theorem @
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Use of the canonical 2k-structure J;,. Furthermore the morphism of bundle (over M)
Jpt N = Z50,(M, J2) C Z5¢0(M) defines a 2k-structure on 7*TM (still denoted by J,,),
which according to @) allows to precise the subbundles £; and pg (under the embedding
T™he — so(n*TM))

tc = {A € F*bguA,jJO] = 0} = 50(+1)(7T*TM, 3]0) N7 ha (78)
pe = {Aen*bg|AT,, +35,4} = 50(_1)(7T*TM, J5,) N7ha (79)

Remark 4.9 The embedding hg — so(TM) is the H-equivariant extention of the map a €
h — adwa € so(m) = so(Tp, M), and in the same way J, is the H-equivariant extention of
the map h.Go € H/Gy — hJoh™' € Z(T},, M, Jy), so that the equations (fg) are obtained by
H-equivariance from (23).

Let us now express the homogeneous fibre bundle tools ¢, ®, and V€ in terms of the embedding
Jj,- To do not weigh the notation we will forget the index Jy in J,, in the following theorem.

Theorem 4.11 If A,Be€ TN, F € C(pg) then

1 M
(i) ¢4 =—307'ViD

M M

M
(ii) ®(A, B) = =373, 7*RY" (A, B)] where RV’ is the curvature of V°.

N~

N 1 M
(iii) V4F =V F = 53—1[3, VY F].
Proof. Lifted in G (i) become
|
adm 0, = _5‘]0 (dJo + [admeb, Jo]),
keeping in mind that under the embedding 7*hg < so(7*T M), 6. corresponds to ady, 0. More-
over this equality holds since [adm8y, Jo] = —2Jpadmbk. This proves (i).

For the following, let us keep in mind that h¢ is embedded into so(7*TM).
Then lifted in G, (ii) becomes

1 __
—adpy ([9111; 91n]p> = 5!10 ! [J07 —adpy ([9111; 9111][’))]

which holds for the same reason as above.
Finally (iii) lifted in G becomes

1. . .
d+0o=—5J5" [Jo, dF + [aduty, F] |
- - N
which holds since the right hand side is equal to dF + [admOO,F } which lifts VYF, because

[adek, F } commutes with Jy. We have denoted by F:G— gr the lift of F'. This completes
the proof. 0
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Theorem 4.12 Let s € C(mw) and J = s*7;, € C(Z50,(M,J2)) be the corresponding 2k-
structure. Then

1 M M
(1) I(dvs) = —§J71VOJ. Thus s is horizontal if and only if J is V°-parallel.
M

(i) T (s)) = — 1771, (V)2

M
Thus s is superflat if and only if (V°)2J commutes with J.

1 M M
(iii) 1(r"(s)) = 77, (V)" VO],

M M
Thus s is a harmonic section if and only if (V°)*V°J commutes with J.

1 o0
(iv) '@ = I [LRY].
These properties hold also for maps f € C*°(L, N), (L, b) being a Riemannian manifold: (i),(ii),(iii)
1 M
without any change and (iv) becoming f*® = EJfl[J, u*RVO], with u =mo f.

Proof. (i) and (iv) follows from theorem (i) and (ii) respectively. The assertions (iii) is a
consequence of the assertion (ii). Finally (ii) follows from theorem [.12-(iii) and the fact that

M M
=— lJ‘l (v%) J‘l,VOJ]

commutes with J. This completes the proof. O

M M
AVAW VAl |

Now, we can conclude.

Corollary 4.1 Let (L,j) be a Riemann surface, f: L — N a map and J = f*T;, the corre-
sponding map into 250 5(M, Jz). Then f is a geometric solution of the even minimal determined
system (Syst(k, 7)) if and only if

(1) J is an admissible twistor lift (< fis horizontally holomorphic).

M M
(ii) J is vertically harmonid]: |(VO)*VOJ,J| =0 (& fis vertically harmonic).

M
Moreover the first condition implies that [u*RVU,J] = 0 i.e that J is a flat section in

M

(End(u*TM),u*V°) (& fis flat).

Furthermore f is a primitive geometric solution (i.e. there exists m < k such that f is m-
primitive, which is equivalent to say that f is k-primitive) if and only if

(1) J is an admissible twistor lift

M
(ii) J is parallel: V°J =0 (& fis horizontal).

37The yertjcal harmonicity is w.r.t. the splitting defined by example §.4. See section and (more precisely)
theorem , for the above characterisation of vertical harmonicity in Z50,(M, J2).
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4.3.2 The twistor bundle of almost complex structures 3 (FE)

We give ourself the same ingredients as in example @ Let us suppose that the vector bundle
E is oriented. Then the bundle of positive (resp. negative) orthogonal almost complex structure
on E (i.e. the component X¢(F) of ¥(E) with ¢ = 1), ny: X°(F) — M is a homogeneous
fibre bundle. Indeed, we take Q = SO(E) the SO(2n)-bundle of positively oriented orthonormal

frames of F, H = SO(2n) and K = U(n) (embedded in SO(2n) via A + iB (g _AB))- K
0 -Id

. . _ .
Id 0 ) The involution T' = IntJ§

in SO(2n) gives rise to the symmetric space H/K = %¢(R?"), and to the following symmetric
decomposition h = € @ p with

is the subgroup of SO(2n) which commutes with J§ = ¢

t = {Aecso(2n)|[4,J5] =0}
p = {Aeso(2n)|AJ5+ J;A=0}.

Concerning w, we take the so(2n)-valued connection 1-form on @ corresponding to the covariant
derivative V in E: if e = (eq,. .., e2,) is a (local) moving frame of E (i.e. a section of @) then

Vier,...,ean) = (€1,...,ea,)w(e;de).

Now, let us consider the isomorphism of bundle:
J:eU(n) € SO(E)/U(n) — J € 2°(E)| Mat, () = J.

The isomorphism J defines a bijection between the set of section of 7: N — M E and the set of
complex structure of F (sections of mx): s € C(N) = J = J os € C(XT(E)).

The existence of a (positive) complex structure J in E — i.e. a section of 7y;: X7 (E) — M- is
equivalent to the existence of an U(n)-reduction of the principal bundle SO(E) — M: J defines
a Hermitian structure on E and then the U(n)-subbundle of unitary frames for this Hermitian
structure, and vice versa.

The isomorphism of bundle over M, J: N — X+ (FE) defines tautologically a canonical complex
structure on 7*E — N (which we still denote by J)f] J: N — S*(7*E). Under this identi-
fication, let us precise the subbundles pg and £g. First, we have hgo = 50(E)ﬂ7 the bundle of
skew-symmetric endomorphism of F and thenﬂ

(tq)y = {F €s0(Ex)llF, T(y)] =0} =: 504 (Er(y), T (y)) =: s04.(7"E)y
(pQ)y - {F € SU(Eﬂ.(y)”Fj(y) + j(y)F = 0} = 50*(E7r(y)a~7(y)) = 50*(W*E)y-

Then the decomposition following 7*hg = g @ pg of any element F' € 1*hg = so(n*E) is given
by

1 1

where { , } is the anticommutator.

38In all the section E, as it was the case in all the section =Q/K.

39and which is in fact nothing but J*Z =7 o J, see example .

40See remark () (and more precisely equation @)) for the identification map.

4lSince 7* E is canonically endowed with the complex structure 7, we need not to precise this latter in the
notation so (7*E), whereas Eg, for z € M, could be endowed with any element J, € X1 (E;), this is why we
must precise it in the notation so+ (Ez, Jz).
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Remark 4.10 The canonical complex structure [J is a section of the associated bundle over N:
SHr*E) = 7(Q x g X°(R*")) = 7*Q xu X°(R?"), so that it can be lifted to a H-equivariant
map J: 7Q — %¢(R?") C b, which is given by

J: (e.K,eh™) e Qv hJEh™! € X5 (R?™).

Remark that the restriction of J to Q C 7*Q is the constant map J§ (the inclusion Q C 7°Q
is given by e = (e.U(n),e)), and that J: 7*Q — £°(R*") is the H-equivariant extension of the
K-equivariant constant map J§ on (). J can also be given in term of J by

T: (y;e) € m°Q — Mat (T (y)) € X°(R?™) C b.

Furthermore, we have a canonical identification N = Q x g H/K (via [e, h.K] — (e.h).K) and the
identification depending on J§: H/K = %¢(R?") (via h.K +— hJoh™!) so that N = Q x iy 3¢ (R?")
(via e.K + [e, Jo]). Then under this last identification, J is the restriction to N of the canonical
identification

o :=Qxmh — so(E)
’ [el,{a] —  A| Mat.(A) = a. (80)

Therefore
ho = T*soy(mnE) and pg =T so_(m5E),
with the notations of example @

Let us now express the homogeneous connection ¢, the curvature foms ® and the canonical
connection V¢ in terms of J (following [EJ)).

Theorem 4.13 [53] If A, B € TN, F € C(pg) then:

(i) 04 = LTVaT

(ii) ®(A,B) = %j[ﬂ*R(A, B),J], where R is the curvature operator of the V.
(iii) V4F = %j[VAF, J]

Theorem 4.14 / Let s € C(m) and J = s*J be the corresponding complex structure, and
V*V = —TrV?, the rough Laplacian of E. Then

1 1
(1) I(ds) = §J.VJ = Z[J’ VJ]|. Thus s is horizontal if and only if J is parallel.
1
(i) I(II¥(s)) = Z[J’ V2J]. Thus s is superflat if and only if V*J commutes with J.

1
(iii) I(rv(s)) = —Z[J, V*VJ]. Thus s is a harmonic section if and only if V*VJ commutes
with J.
1
(iv) s*® = §J[R’ J].
These properties hold also for maps f € C*(L, N), (L,b) being a Riemannian manifold: (i), (ii), (i)

without any change and (iv) becoming f*® = E[U*R, J], withu=mo f.
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From theorem f.13(i) (or theorem [14H(1)) it follows that dJ sends the decomposition TN =
V @ H onto the decomposition T%¢(E) = V> @ H> coming from V (see example [£.9) so that
we can consider 7y : X¢(F) — M as a homogeneous fibre bundle over M with structure group
H = 50(2n) and K = U(n). Besides, since the vertical and horizontal subbundles corresponds
via 7, then we can conclude according to (FJ) and (f3) that J is an isometry.

Moreover, we see that s is vertically harmonic in N if and only if the rough Laplacian V*VJ of
J in so(E) is vertical (i.e. in V¥, see example [1.2) so that we recover the definition of vertically
harmonic twistor lifts used in [@] and [E] More precisely, via the isometry J, the vertical
tension field of s — which is, let us recall it, defined using the Levi-Civita connection in NV
which corresponds via the isometry J to the Levi-Civita connection in X7 (F)- is exactly the
vertical part in 73s0(E) of the rough laplacian of J:

dJ(1°(8)) = Vv T = 2T 0 ¢(7"(s)) = %J[J,V*VJ]

according to theorem [.13 (i) and theorem [£.14-(iii). Concretely, to compute the vertical
tension field in X7 (E), instead of using the (abstract) Levi-Civita connection, it is enough to
take the vertical part of the rough Laplacian (which uses the concrete metric connection

V).

4.3.3 The twistor bundle Z5;(E) of a Riemannian vector bundle

We give ourself the same ingredients and notations as in example @ Let us suppose that the
vector bundle E is oriented. Then the bundle 7z : Z§, (F) — M is a homogeneous fibre bundle.
Indeed, we take @ = SO(E), H = SO(2n) and K = Uy(J§). Let us recall that the order r
automorphism 7' = IntJ§ in SO(2n) gives rise to the r-symmetric space H/K = Z§ (R?"), and
to the following reductive decompostion h = € @ p with

t=s00(J5) and p=so.(J3) = @ 50?([]0“) ﬂ50(2n).

J€Z/rz\{0}

Concerning w, we take the same as in the previous example. Now let us consider the isomorphism
of bundle: N

J:eUp(J§) € SO(E)/Ug(J§) — J € Z5,(E)| Mate(J) = J§'. (81)
The isomorphism J defines a bijection between the sections of m: N — M and the set of sections
of mz: ZE(E) > M, s € C(N) = J =T os € C(Z5.(E)).
The isomorphism of bundle over M, J: N — Z$,(FE) defines tautologically a canonical 2k-

structuref] on 7*E — N (still denoted by ), J: N — 25, (7*E). Under this consideration, we
therefore have h = s0(E) and for all y € N,

to = soo(m*E,J)

pg = so.(n"E,J)= @ 50§(w*E,j) ﬂso(w*E).

JEL/rZ\{0}

Since 7* E is canonically endowed with J, we will not precise it and use the notation 50?(77*E) =
505 (T E, J).

423nd which is in fact nothing but J*Z =7 o J, see example @
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Let us consider the surjective morphism of vector bundle

adJ: 7w*hg =s0(n*E) — B.(m*E)=J.s0.(7*E)=J.pg
(,A) +— adJ(A) =[] A =T (1 -wl)4;

where A; = [Alsc(g,) is the 50§(EI)—component of A € so(E;). The kernel of adJ is to =
J
s00(m*E) so that adJ induces an isomorphism from pg onto J.pg. We will set

(adJ) ™" = (adJ7.po) " D 07t
so that

(adJ) toadg = Pry,,. the projection on pg along tg, and (82)
adJ o (adg)™! = PI'y ., the projection on J.pg along J.tq. (83)

Let us remark that J.pg = J*VZ is the (pullback by J of the) vertical space of 7z (see
example @) More precisely the J-pullback of the decomposition VSO(E)‘NZ = Bo(rLE) @
B.(w% E) (see example [£.3) is the decomposition J.50(E) = J.tq & J.po.

Let us now express the homogeneous fibre bundle tools ¢, ® and V? in terms of 7.

Theorem 4.15 If A, B TN, F € C(pg) then

(i) VJ = —adJ o ¢ thus pA = —(adJ)"1VaT

(i) (4, B) = (ad7) [T, 7 R(A, B)

(iii) VOF = (adJ) [T, VaF]

Proof. We follow the proof given in [@] of theoreom .
(i) Let D be the exterior covariant derivative for gl(2n)-valued differential form on 7*Q. Let
A e TQ lifting A € TN, then

DJ(A) = dJ(A) + [w(A),T] = [wp(4), J5,
since J = J§. Projection on N yields
VaJ = —adJ o ¢(A).

(ii) First we have Q, = (adJ§)~! [J§, ], according to (BY). The right hand side is the restriction
to Q of the h-valued 2-form (ad7)~'[7,Q] on 7*Q, where Q is the pullback of Q. Since { is the
curvature of the pullback connection, on projection to N we obtain ® = (adJ) [T, 7*R] (by
definition of w, €2 is the lift in @ of the curvature operator R of V).

(iii) V¥ is the restriction of the tensor product connection in E* @ E = End(E) to hg = so(E),
and its pg-component follows from (BJ). This completes the proof. O

Given A, B 1-forms on N with values in some Lie algebra, we define

[A® B|(X,Y) = [A(X), B(Y)] + [A(Y), B(X)], VX,Y €TN

Theorem 4.16 Let s € C(w) and J = s*J be the corresponding 2k-structure. Then
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(i) I(d's) = —(adJ)~"'VJ. Thus s is horizontal if and only if J is parallel.
1
(if) 1(I1°(s)) = ~(adJ)"'V2J + (ad) [V © (ad )1V J].
1
Thus s is superflat if and only if V2J — §[VJ ® (adJ)~1VJ] commutes with J.

(iii) 1(7Y(s)) = +(adJ)"'V*VJ + (adJ) " Tr ([VJ, (adJ) "' V.J]).
Thus s is a harmonic section if and only if V*VJ + Tr ([VJ, (adJ) "'V J]) commutes with
J.
(iv) s*® = (adJ)"[J, R].
These properties hold also for maps f € C*(L, N), (L,b) being a Riemannian manifold: (i), (ii), (i)
without any change and (iv) becoming f*® = (adJ)~![J,u*R], with u = 7o f.

Proof. (i) Take the pullback by f of theorem [L13-(i).
(iv) Take the pullback by f of theorem [E15(ii).
(ii) According to theorems [£.q and [.3-(i), we have

I0Ts) = V(f9)+ 576"
= V(f*¢)+ % [ o, f*gb]p (since H/K is naturally reductive),
= V(f0)~ 5 [f°6.5°6],  (according to ()
Moreover,
VE([*0) = pry, (V(f79)) = pry, (V(=(ad])"'VJ))

= (adJ) ' oad(VJ) o (adJ) N (VJ) — (adJ) " (V?J)
= (adJ)"' ([VJ, (adJ) "'V J]) — (adJ) ™" (V2J)

where in the second line we have used the lemma [£.9 below.
Now, by an immediate computation using (@), we obtain that

[(adJ) ™'V J, (adJ)"'VJI] = [VJ A (adJ) 'V J]

PQ

This completes the proof of (ii).
Then (iii) follows immediately from (ii). This completes the proof. O

Lemma 4.2 Let E, F' be two vector bundles each one endowed with a connection that we denote
indisctinctely each by V. Let A € E* @ F be an linear morpism. Let us consider a spliting
E = Kp ® E where Kp = ker A. Then let us set B = (Ag)” " @ O, where Kp is some
complementary subbundle to F := A(E).
Then we have

prpoVBoprg=—BoVAoB

Proof. Differentiating the equations A o B = prp and prz o B = B, we obtain
VAoB+ AoVB = Vprp
VprgoB+prpoVB = VB
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so that multiplying the first equation B on the the left, and injecting it in the second equation,
we obtain

VB = VprgoB+BoVprg—BoVAoB
= prg,oVB+BoVprg—-BoVAoB

This completes the proof. (I

As in above, we conclude from theorem -(i) that dJ sends the decomposition T'N =
V @ H onto the decomposition TNz = V¥ & H? coming from V (see example [1.3) so that we
can consider 7z: 23 (E) — M as a homogeneous fibre bundle over M with structure groups
H = 50(2n) and K = Uy(J§). We will call this structure the homogeneous fibre bundle structure
defined in Nz by V (or by the Riemannian vector bundle (E,V)).

Besides, since the vertical and horizontal subbundles corresponds via 7, then we can conclude
according to (53) and (FJ) that J is an isometry.

Moreover, the vertical tension field of J in Nz = Z5}. is given by

dJ(1°(s)) = Vv J = —(adT) o ¢(7"(s))
= —(adJ) o (adJ) " (V*VJ + Tr ([VJ, (adJ) "'V .J]))

S {v*w + T ([, (adJ)*VJ])}
vZ

By taking k = 2 in the two preceding theorems, we recover of course the results of the previous

section: just remark that in this case, adJ = 0¢, @ 2L.7\va and that VJ anticommutes with J.

Remark 4.11 Let us consider the canonical identification

HQ: :QXHH i SO(E) (84)
[e,h] — A| Mat.(A) = h.

then 7 is the restriction to N 2 Q x g 25 (R?") (via e.K  [e, J3]) of (B4).

More generally, for j € Z, we can consider J; the restriction of (@) to Q/U;_1(J§) = Q Xs0(2n)

(Zae (B2 (via eU;-1 () > [e, (5 V)

Ty Uy (Jg) € SO(B)/U,_1(J§) v J € (Z5(E) | Mat(J) = (JgY.  (85)

Remark 4.12 The previous study could have been done (without any change) for any com-
ponent U (E). In particular, by replacing J§ by (J§)’ in what precedes, we get the isomor-
phism (B3
Ji: SO(E)/U;1(Jg) — (23, (E)) = UJ*(E),
2k . .
where p = m, and by applying theorem , we see that a cross section s;: M —
) J

SO(E)/Uj-1(Jg) is horizontal if and only if the corresponding section J; = Jjos;: M —
(25.(E))? is parallel: V.J; = 0.
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4.3.4 The Twistor subbundle Z3, .(E)

We continue here the study of example @, W%Z Z5% (E,J;) — M, and prove that it defines
a homogeneous bundle fibre bundle. Let us recall that we have a bijection between the set of
(global) sections J; in (24, (E))’ = U *(E) and the set of U;_; (J§)-reductions 77 : Q7 — M of
SO(E), which is given by

Q) = U (E) := {e € SO(E)| Mat.(J;) = (J§)}. (86)

Let us consider such a reduction @7 (defined by some .J;). Then 7/ : Q7 — M is a principal bundle
with structural group H? = U;_1(J§) and we take for the second structural group K = Uy (J§)
as in the previous example. Let us recall that the order j automorphism T = ImtJOC“HUF1 (Jg)

gives rise to the j-symmetric space H7/K = Zg, .(R*", (J§')’), and to the following reductive
decomposition h7 = £ @ p/ where

t = s00(J5) and
o= wU8) = (00 s0, (J5)) N se(R2") = w1 (J§) /o) = s0o((J§)) /500 (J5)
ETye ng,j(Ran (J5)),
the last identification is given by
Ac @) sl (J§) — A~ Jg = [A,J5) € B0 BS (J8)
(see section B.1.9). ‘
For the connection form on Q7 we take

J . )
w’ = wb”TQ].

We set as usual N7 = @’/K which is a Homogeneous fibre bundle over M. Moreover the
isomorphism of bundle (and isometry) J: N — 25, (E) satisfies

J(N7) = 255, (B, J;)
by definition of 7 and @7 (see (1)) and (Rf)), so that it induces an isomorphism of bundle from
N7 onto NZ%.
Let us denote by TN7 = VJ @®HI the splitting in terms of vertical and horizontal subbundles given
by w’. Then denoting by s; the cross section in the associated bundle Q/H? = SO(E)/U;_1(J§)

defining the H7-reduction @/ (i.e. J;os; = J;)[F, according to section [l.2.3, we have the following
equivalences

w is reducible in Q7 (to w?) s; is horizontal H) = Hns
Rk [1.13() t
VJ;=0 2@ HEZT =N

Example 4.10 Let M = G/H be the k-symmetric space correponding to some 2k-symmetric

M
space G /Gy (see section [2.1.1), and take (E,V) = (TM,V°), j =2 and J» given by lemma [3.4.
Then we have

M
V0 J, = 0.

43See remark and .
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M
Indeed VO Jy lifts in G into
(d+0y)J3 = dJo + [0y, 5] =0

(see lemma @) Therefore we can conclude that in this case w is reducible in Q* (to w?).
If w is not reducible in Q7 (to w’), then according to (53) and (fJ), N7 < N and N < Nz

are not isometries, and thus we can not say directly that J induces an isometry from N 7 onto
NZ, even if as we will see below it is effectively the case. As above, the result of (5J) and (£32),

and dJ (V) = V29 is that: J: NI — N% is an isometry if and only if d.7(H7) = HZ.
Now let us come back to the connection form w?: TQ7 — b7 C s0(2n). It defines a metric
covariant derivative VU in the associated vector bundle E. Then we have

vl =o.
Indeed J; lifts into the H-equivariant (constant) map J;: e € Q7 — (J§)7 € (25, (R*")) C
gls,, (R?") and VU1J; lifts into
DIJJ =dJ; +[w’, Jj] =0+0=0,
since by definition b7 = u;_1(J§) = s00((J§)?) commutes with (J§).

Remark 4.13 We can do the things more concretely by using a (local) moving frame e in Q7:
VUl is then caracterized by

V[j](el,...,egn) = (e1,...,e,).w (e;de) (87)

Then by definition of Q7 we have _
Jie =e.(J§)’ (88)

so that ‘ ‘ ‘ ‘
(VUL I)e + J;(VUle) = e.wd (J)

then using (Bg) and (1), we obtain
(VULT)e = ew? (J§) — Ji(ew?) = e.(w! (J&) — (J§) w?) =0
since w’ takes values in h; = soo((J)?).

In fact we can caracterize VU in the following more general way, which in particular generalizes
a well-known result of Rawnsley [@] about complex structures on vector bundles.

Theorem 4.17 Let E be a Riemannian vector bundle as above. Letp’ € N* and J € C(Uy (E)),
then AdJ defines an automorphism of the linear bundle End(E) (over Idys), i.e. a section of
End(End(E)). Then the metric covariant derivative V in E admits an unique decomposition in
the form: ﬁ
J rpr—1
V=Vt > A (89)

i=1

/
44As usual rp is the order of AdJ, i.e. ry = p' if p’ is odd, and if p’ is even then r = p’ if JT # —Id and
/ ’
Py = % if JT = —Id.
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J
where V° is a metric covariant derivative for which

J
VOI=0
and A; € C(T*M ® 505 (E, J)), i.e. JA;J™' =wiA; and A; € s0(E)C.
J
VO will be called the J-commuting component of V, A, = :i/fl A € C(T*M ®@s0,.(E,J)) the
50.(E, J)-component of V, and A; the sof(E, J)-component of V.

Proof. Unicity. Let us suppose that (E) exists then we have

Tp/—l
VJ =) (A J]
=1
so that
Tp/—l
> Ai=—(adJ) (V)
=1

(see section [1.3.9) which proves the unicity of (A;) 1<i<r,,—1 (these are determined by V and J,

J
more precisely these are the components of —(adJ)~}(VJ)). Now V? =V — Z:i’fl A; is also
unique.

Existence. Let V° be any metric covariant derivative commuting with J, that is to say V°
corresponds to a connection on the principal bundle of Hermitian frames on (E,(, ),J) (such a
connection always exists, see [i1]]). Then consider
A=V -V'eC(T*M @ s0(E))

and let A = 222/0_1 A; be the decomposition of A following so(E, J)¢ = @:i/o_lso(ic(E, J). Let
us set

J

V0=V + 4,

J

then VY is a J-commuting metric covariant derivative in £ and we have

’I‘p/—l

J
V=Vt > A
i=1
which proves the existence. O

Applying this theorem to J;, we obtain the following.

Corollary 4.2 VU is the Jj-commuting component of V.

Proof. The H-equivariant lift of V is the following derivative on Q:E

’r‘plfl
dtw=(d+w)+ > wi (90)
=1

45Remark that here r,, is the order of Ad(J§)?, so that 7, = p.

)~
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where w; = [w]5¢((se9), and in particular wo = w’. Then restricting (B0) to @7, and projecting
on M, we obtain the decomposition (§9) of V:

Tp/—l
v=vily >4

i=1

. Ji .
that is to say d + wo is the H7-equivariant lift of V°, which is thus equal to VU, and w; is the
Hi-equivariant lift of the sot (F, J;)-valued 1-form on M, A;. This completes the proof.

Remark 4.14 Moreover w is reducible in Q7 (V.J; = 0) if and only if VU = V.

Remark 4.15 Under the hypothesis of theorem we have

J
VF € C(Ao(E,J)), V°F =pry .o VF

where pr 4 (g sy End(E) — Ao(E, J) is the orthogonal projection (i.e. along A.(E,J)) so that
in particular
J
VE € C('GUO(Ea J))a VOF = Plsoy(E,J) © VF

where pry, (g, ) $0(E) — s0o(F, J) is the orthogonal projection. Indeed,

’r‘plfl

J
VF=VF+ Y [A,F]

i=1
J J J J J J J
and J commutes with V° and F so with VOF : (V'F).J = VY(F.J)-FV'J = V°(J.F) = JV°F.
Moreover [A;, F| € [Ai(J), Ao(J)] C A;(J), so that we can conclude. .

The canonical 2k-structure in 7*E, J : N — 7*E induces by restriction a 2k-structure in 79" E,
still denoted by J: N9 — 73" E.

Now, let us precise the subbundles péj and £p;. First, we have b’ s =ug(E, Jj)ﬁ and then
EQ;‘ = EQle :Eﬂo(ﬂj*E,j)
v = WL(B.) = (Sicpaoysof (B, T) ) (so(x! E).

The morphism of vector bundle adJ: so(7*E) — J.po induces a surjective morphism from
Wj*bz?j =u; (7" E,J) onto J g, with kernel g,

ad7: 7', =w (7B, J) — T (x"E,J) = Jpl,
(Taj)_l

(JA) — adJ(A)=[J A =J > (1-wP)Ay

where A1 = [A]soc(Ex)'

As above, now we express the homogeneous fibre bundle tools ¢?, ® and V* in terms of 7.

46 The restriction of the identification (@)7 hq = so(E) to hgj gives rises to an identification hgj = QI X b7 =
soo(E, J;).
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Theorem 4.18 If A, B€ TN/, F ¢ C(pjéj) then
(i) VU T = —adJ o ¢ thus ¢/ A = —(adg) VY 7

(ii) ®/(A4,B) = (adJ)™? [J,ﬂj*Rvm (A,B)} where RV is the curvature of V1!,

(iii) V% F = (adJ)"! {j,vg]F}

In the following theorem, we use the notation of . In particular, we denote by ” -V ” instead
of 7 ¥ ” the vertical component in V/ C TN7.

Theorem 4.19 Let s € C(n?) and J = s*J be the corresponding 2k-structure. Then
(1) I(dVs) = —(adJ)~'VULJ. Thus s is horizontal if and only if J is VUl-parallel.

. 1 . .
(ii) I(I1V(s)) = —(adJ)~1(VE2J + §(adJ)_1 (VU] ® (adJg)~1WULT].
. 1 . .
Thus s is superflat if and only if (VV1)2J — 3 [V[J]J ® (adJ)~ Wl J| commutes with J.

(iii) I(1¥(s)) = +(adJ) " VU VULT + (ad) 1T ([VILJ, (ad)~1 VL)),
Thus s is a harmonic section if and only if VU"'VUlJ + Tr ([VU] J, (adJ)~ 1wl JD com-

mutes with J.
(iv) s*®7 = (adJ)"! [J, RV“]]
These properties hold also for maps f € C*(L, N), (L,b) being a Riemannian manifold: (i), (ii), (i)
without any change and (iv) becoming f*® = (adJ)™* [J,U*Rvm] , withu=mo f.

Proof. Let us endow E with VU! and apply the theorems and §.16 (with the Riemannian
vector bundle (E, VU)), then by restriction to N7, we obtain theorems [£.1§ and [t.19. Indeed,
in this case w is reducible in @7 and then everything corresponds via the reduction N7 « N,
according to propositions @ and @ This completes the proof. (I

As above, from theorem [1.1§-(i), we conclude that dJ sends the decomposition TNY = VJ @
H’ onto the decomposition TN% = V7 @ HZJ (see example @) so that we can consider
7l : NL(E) — M as a homogeneous fibre bundle over M with structure groups H7 = U;_; (J§)
and K = Up(J§). We will call this structure the homogeneous fibre bundle structure defined by
(the Jj-commuting part of ) V.

Besides, since the vertical and horizontal subbundles corresponds via J, then we can conclude
according to (53) and (F2) that J: N7 — NZ is an isometry.

Moreover, the vertical tension field of J in N% = Z5. ,(E, J;) is given by

AT (¥ (s)) = — [Vm*vmj+ Ty ([vmj, (adj)flv[ju})}

VZ.i

Remark 4.16 According to [1.2.3, the canonical connection in péj — N7 is the restriction of

the canonical connection in pgo — N, to pgj.

Remark 4.17 If we endow E with VU and apply the theorems and (with the Rie-
mannian vector bundle (E, V1)), then by restriction to N7, we obtain theorems and .
In particular, superflatness and vertical harmonicity (for sections in N7) are the same in N7 and
N. This is what happens in particular in example @
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The particular case of Zj; , (E,J2) According to theorem @, we will be especially interested
by this subcase in our interpretation of the even elliptic integrable system. In this subcase
the fibre H?/K = 25, 2(R?", (J§)?) is symmetric so that we obtain simplifications (coming in
particular from the facts that V¢ = VP and that any section J € C(7%) anticommutes with

V[2LJ) in theorems and which then take the same forms as theorems and
about the twistor bundle X°(E), just by doing the change V <— V[ Therefore the case

Z5).2(E, J2) is very similar to that of ¥°(E).
Before writing the simplified theorems for j = 2, let us do some useful observations.

First, we haveEl

b2 = s00(n2 B, J) = {A e so(x?"E)|[A4,T] =0} = 50(+1)(7r2*E,j) (91)
pye = sor(r E,J)={A€so(r” E)|AJ +J.A=0}=s0_y)(x* E,J). (92)

Then ad7 induces a surjective morphism from 72" f)éz =u (72" E, J) onto j.pfy = B: (72" E, J)
with kernel £q2

adJ: w(r?'E,J)=s0 (72 E,J) @so_1)(r* E,J) — By E,J)=Js0_1 (" E,J)
(J,Ag + A1) — adJ(A) =[] A] = 2] A,

where we denote by Ap + A; the decomposition following 50(+1)(7T2*E,j) &) 50(,1)(W2*E,j)
instead of Ag + Az.

Theorem 4.20 If A,B € TN? F ¢ C(péz) then
1
(i) PPA = _§j—1v[2]j
1 * 2 2

(ii) ®*(A,B) = 5]’1 [j,wQ RY' ](A,B)} where RV is the curvature of V2.

ey e L (2]

(i) V4F = 57 [j,VA F} [
Theorem 4.21 Let s € C(n?) and J = s*J be the corresponding 2k-structure. Then

1

(i) I(d¥s) = —§J_1VE§]J. Thus s is horizontal if and only if J is VP -parallel.
A 1 (gl ? L1 (w22

(if) 1(IT(s)) = —(adJ) " (VE)* T = =5 [J (V1) J]

Thus s is superflat if and only if (V[Q])2 J commutes with J.

(iii) 1(7"(s)) = (adJ) VA VE ] = % [J*l,vm*v[?u]

Thus s is a harmonic section if and only if V'V commutes with J.

1 .
(iv) 5702 = 57! [J, RY! ]]

47with notation defined in remark @
48see remark M
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These properties hold also for maps f € C*(L, N), (L,b) being a Riemannian manifold: (i), (ii), (i)
1 2
without any change and (iv) becoming f*®? = §J_1 [J,u*RV[ ]} , withu=mo f.

Let us add that the vertical tension field in N% is given by

% 1 *
dj(TV(S)) _ [V[Q] V[Q]JL} = 7§J [Jfl,vp] ij} (93)

Z,2

4.4 Geometric interpretation of the even minimal determined system
4.4.1 The injective morphism of homogeneous fibre bundle J,,: G/Go — 237 ,(G/H, J2).

Here, we want to ask ourself if the inclusion 3, : G/Go — 257 ,(G/H, J») given by theorem B2
conserves the homogeneous fibre bundle structure, in particular: the vertical harmonicity is it
conserved. We use the notations of and (with E = TM, V a metric connection on
M and j = 2)@ First, we see that J, is obtained under quotient from the following injective
morphism of bundle (which is an embedding if G is closed in Is(M)):

Jeo: G = Q*=U(G/H,J>) C SO(M)
g — g-€

where eg € SO(Ty,, M) is such that Mat.,(Jo) = J5°, and Jy = T|. In other words G — M is
a reduction of U (G/H, J2) — M itself a reduction of SO(M) — M.

Further quotienting in (@) by Up(J§) the target space and then by Gy the domain, we obtain
(by definition of Go = G™ N H, see theorem @) the injective morphism of bundle

Je5: 9-Go — (g - e0)Uo(Jg') € Uy (M, J2) /Uo(J5) C SO(M)/Uo(Jg')

(94)

where g5 = egUp(J§) € N?, and finally composing with J (in the target space) we obtain the
map Jj,:
o J — «
9.Go — g (eoUo(J§)) == J = gJog™" € Z52,(M, Js).

Since Jj, (resp. Jz,) is an injective morphism of bundle (and an immersion) dJj, (resp. dJz,)
induces an injective morphism of bundle from the vertical subbundle V¢/%0 = [g,] into the
vertical subbundle V22 (resp. V2).
31, is the restriction to G/Gy of the inclusion map J: End(G/H) — M xEnd(g) (see [.7). Indeed,
we have the inclusion depending on Jo: ¢.Go € G/Go — [g,Jo] € G xg End(m) = End(G/H)
which under the inclusion J gives g.Go € G/Go — (g.z0, Adgo 70 Adg™") € M x End(g) which
is in nothing but J;, (as usual under the identification TM = [m]). Then under the inclusion
he C so(TM), we have hg C h?Qz = ug(TM, J3). Indeed, under the linear isotropy representation
of H in T,yM, we have H C Ug(Ty, M, JE) = Uy (Ty, M, Jo) so that b C ug(T},, M, J¢) and thus
he := G xg b Cug(TM,Jz). Moreover let us remark that 72 o Jg, = 7 so that m*hg C WQ*bQQQ
over Jg,: N — N? (i.e. the inclusion is a morphism of bundle over Jg, ).
Furthermore, since AdJy leaves invariant b C uy (T, M, Jp), the restriction to § of the symmetric
decomposition

w (T M, Jo) = 50(+1)(T10M, Jo) @50(_1)(TI0M, Jo)

gives rise to the decomposition h = goPgx according to (@), so that the symmetric decomposition
given by AdJ on 7T2*h2Q2 =y (72" TM, J), that is to say

w (TM, J) = so(1y(n* TM,J) ®so_1y(n* TM,J)

49That is to say the notations for Z5°,(G/H, J2) will have the subscript ”2” and these of G/Gg will not have
subscript according to . and
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gives rise in the AdJ-invariant subspace m*hg C WQ*bQQQ to the symmetric decomposition of
AdJj, (restricted to m*hg C so(m*TM))

mhe = tc ® pe
according to (@) In other words, the decomposition given by (@) injects into the decomposition
given by (PI]) via the inclusion 7*h¢ C ﬁz*héz.
Now let us interpret theorems and using the homogeneous fibre bundle structure in
M
Z50(M, Jo) defined by the Riemannian vector bundle (E, V) = (T'M, V°) (in the sense of [.3.4).
We continue to use the same conventions for the notations in N and N? (no subscript for N and

M M
subscript 2 for N% and N#+?). Recall that we have J;, = J 0Jz, = J% J and that (V) = v°.
Then according to theorems and , theorems and implies

Theorem 4.22 We have the following identities
(i) ¢ =73;,¢°
(i) ® =7z, o2

N
(iii) V¢ = VO[p] =I5 V2, where V*? is the canonical connection in pQQQ.

Theorem 4.23 Let s € C(r) and identify it (temporarily) with s*Jz, € C(n?). Then under the
inclusion Jz,: N — N2, we have:

(i) dvs =d"?s

(ii) Ivs =172

v,2

(iii) Vs =71"%s

(iv) s*® = 592
These properties holds also, without any change, for maps f € C*°(L,N), (L,b) being a Rieman-
nian manifold.

M
Let us remark that since the connection form w, on Q = SO(T'M) defined by V° is reducible
in Q?, then in the previous theorems all the ”quantities” in N? (right handside) can also be
computed in SO(TM)/Uy(J5°) = Z5°2(M), since ”everything is reducible” in this case (see

remark [£.17).

Now, let us compute the vertical tension field of J: L — N% for the homogenous fibre bundle

M
structure defined in N2 by V°: according to (P3) we have

M M

1
TV’Q(J)=—§J JH(VO)*VOT|. (95)

Then suppose that J takes values in J;,(G/Gy) i.e. J = f*7;, for some f € C>°(L, N), then
according to theorem (and J;, = J 0 Jg,) we have

435, (7" () = 4T (P2(F) = 72(7)

where f = J 1o Jie J=f*J.
The tension fields (and thus vertical harmonicity) correspond (up to multiplicative
constant) via the different inclusions and identifications, in particular viaJ,;,: N — NZ.
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The canonical embedding is a reduction of homogeneous fibre bundles. In fact, we

can recover theorems and as well as theorems , by a more conceptual way:

just remark that J;,: N — N% is a reduction of homogeneous fibre bundles.

Theorem 4.24 The injective morphism of bundle 3;,: G/Go — 2357 ,(G/H, J3) is a reduction
of homogeneous fibre bundles.

Proof. According to remark , the canonical connection in the H-principal bundle G(G/H, H)
corresponds (via the natural injection J., defined by equation (@)) to the canonical connection
in the G-invariant G-structure P’ = G.ey, itself the restriction to P’ of the canonical connection
in the G-invariant Uy (J§°)-structure Q* = Uy (G/H, J2), itself the the restriction to Q? of the
canonical connection in SO(M). This completes the proof. O

Now, applying propositions @ and @ we obtain:

Corollary 4.3 The theorems and as well as theorems , are corollaries of
theorems and .

Using the Levi-Civita connection. In fact in what precedes we can replace the canonical
M

connection in M, V%, by (the J commuting part of) the Levi-Civita connection in M.
Proposition 4.7 The canonical linear connection on M is the Ja-commuting component of the
M
Lewvi-Civita connection V on M :
M Jo M
V0=V =V

Proof. According to subsection [L.g, we have
M Mo
V=Vt m+UY).

Then it suffices to apply equation (@) in subsection . This completes the proof. O
Now, we can rewrite the previous results by replacing the canonical connection by (the J; com-

muting part of) the Levi-Civita connection.

Corollary 4.4 The homogeneous fibre bundle structures in N% defined by the canonical affine
M M
coonection V° and by (the Jo-commuting part of) the Levi-Civita connection ¥V, in M, are
M M
the same. Therefore theorems l.11, and corollary B still hold if we replace V° by V2.

Moreover theorems and [{.23 hold with the homogeneous fibre bundle structure defined in N?
M
by the (Ja-commuting part of) the Levi-Civita connection V.

Some additionnal identities Let us conclude this subsection by some additionnal equalities.

Proposition 4.8 The canonical linear connection on M is the Js-commuting component of the

met
M met [2]
VO = (vt) :

connections V¢ on M:
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Proof. Same proof as for proposition @ (I

Proposition 4.9 Let J, € C(U3,(N)) be the section defined by Jo = 7'|;1 with, let us recall it,
n=pedm=g;Pdm, then

(i) The Ji-commuting component of the (w-pullback of the) canonical linear connection in M,
N

M
m*VY, is VO the canonical linear connection in N. This latter is also the J1-commuting

component of the (m-pullback of the) Levi-Civita connection, and more generally of the
met,M
connections V' .

N N
(ii) The Ji-commuting component of the Levi-Civita connection in N, V, is V.

met,N N

(iii) More generally, the Jy-commuting component of V is V.

(iv) Let s € C(w) and J = s*7;, the corresponding 2k-structure on M, then s*go s the Ji-
commuting component of %, and also the Jy-commuting component of (the s-pulback of)
the Levi-Civita connection on M, S*Aé; and more generally of (the s-pulback of) the con-
nections m%t%N

Proof. The first point of (i) becomes obvious when it is written in terms of the lift of the
connections: the jo—commuting part of d + 6y = d + 0y + 0 is d + 0y (whereas 0 is its
anticommuting part). For the second point of (i), (ii), (iii), and (iv) use the same method as for
proposition @ (I

4.4.2 Conclusion

Nowﬂ we can conclude:

Theorem 4.25 Let (L, j) be a Riemann surface, f: L = N = G/Gy be a map and J = f*T,
the corresponding map into 35572(M, J2). Then f is a geometric solution of the even minimal
determined system (Syst(k, 7)) if and only if

(1) J is an admissible twistor lift (& f is horizontally holomorphic)

(ii) J is vertically harmonic in Z5; ,(M, J2) endowed with its homogeneous fibre bundle structure
defined by the Levi-Civita connection, V, in M :

[VPJ*V[QU, J| =o,

where V2 is the Jo-commuting component of V. (& f is vertically harmonic in G/Gy).

Moreover the first condition implies that J is flat in 25 ,(M, J2):

JHZ2 — {u*Rvm,J} —0,

50We still consider the same situation as in
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where ®2°2 is the homogeneous curvature form in Z5¢ 5(M, Ja), which means also that J is a flat

section in End(u*TM,u*V?). (& f is flat in the homogeneous fibre bundle N — M ).
Furthermore f is a primitive geometric solution (i.e. there exists m < k such that f is m-
primitive, which is equivalent to say that f is k-primitive) if and only if

(1) J is an admissible twistor lift
(ii) J is parallel: V2] =0 (& fis horizontal).

Besides in these characterizations, in the points (ii) the Levi-Civita connection can be replaced by

any G-invariant metric connection V' whose the Jo-commuting component V’[Q] leaves invariant
ha C so(TM). This is the case in particular for the connections

met M
V=Vt ([, Jm +UM), 0<t<1,

M
for which the Jo-commuting component is the canonical connection on M: V°.
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5 Generalized harmonic maps

5.1 Affine harmonic maps and holomorphically harmonic maps

A map u: M — N between two Riemannian manifolds (M,g) and (N, h) is harmonic if it
extremizes the energy functional

1
E(u) = 5/[) |du|*dvol,

for all compact subdomains D C M, where |du|*> = Tr,(u*h). The associated Euler-Lagrange
equation is 7(u) := Try(Vdu) = 0, where V is the connection on T*M ® u*T'N induced by the
Levi-Civita connections of M and N.

Now, we generalise this definition for maps from a Riemannian manifold into an affine manifold.
We present two different ways to do that. The first one is the natural one (see also [R9]) and
concerns general affine manifolds whereas the second one concerns maps from Riemann surfaces
into affine almost complex manifolds.

5.1.1 Affine harmonic maps: general properties

Definition 5.1 Let s: (M,g) — (N, V) be a smooth map from a Riemannian manifold (M, g)
into an affine manifold (N,V). We set

7(s) = Try(Vds) = —V*ds = xd" * ds
and we say that s is affine harmonic with respect to V or V-harmonic if 7(s) = 0.

Now, let us consider the case where (M, g) is a Riemannian surface i.e. a Riemann surface (L, j)
with a Hermitian metric g. Then the action of the Hodge operator * of L, is independent of
the metric g on 1-forms (xa = « o j), whereas in 2-forms (resp. 0-forms) it is multiplied by the
factor A (resp. A=2 > 0) when the metric is multiplied by the factor A € C*°(L,R% ). Hence the
tension field 7(f) = *d" (*df) is multiplied by A%, under this last transformation. In particular
the affine harmonicity for maps f: (L,j) — (N, V) does not depend on the hermitian metric L
but only on the conformal structure of (L, j). Thus we have:

Theorem 5.1 Let (L,j) be a Riemann surface and f: (L,j) — (N,V) a smooth map. Let
TLC =T'L®T"L be the decomposition of TL® into the (1,0) and (0,1)-parts, and d = 0 + 0
and VI (TN) = V' + V" the corresponding splittings. Then we have

20V0f = dVdf +idY x df,

moreover d¥df = f*T, where T is the torsion of V and d¥ = df = 7(f)vol, for any hermitian
metric g on L. Therefore the following statements are equivalent:

(i) V'af=0

(ii) oVof =0

(iii) V% (%) = 0, for any holomorphic local coordinate z = x + iy (i.e. (x,y) are conformal

coordinates for any hermitian metric in L).

(iv) f is V-harmonic with respect to any hermitian metric in L and torsion free: f*T =0 (i.e.

T(%, g—Z) =0 for any conformal coordinates (x,y)).
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We will say in this case that f is strongly V-harmonic.

Remark 5.1 We remark that the imaginary part (resp. the real part) of equation (ii) (resp.
equation (iii)) is the V-harmonic maps equation whereas its real part (resp. imaginary part) is
the torsion free equation f*7T = 0.

If T = 0 or more generally f*T" = 0, then f is strongly V-harmonic if and only if it is V-harmonic.

5.1.2 Holomorphically harmonic maps

In the case the target space N is endowed with an almost complex structure J then we have
another way to generalise the definition of harmonicity to maps from a Riemann surface into N.

Definition 5.2 Let (L, j) be a Riemann surface and (N, V) be an affine manifold endowed with
a complex structure J. Let us denote TN© = TYON @ TN the corresponding decomposition of
TNC. We will say that f: L — N is holomorphically harmonic if

Vo) = 0.

Proposition 5.1 Let (L, j) be a Riemann surface and (N, V) be an affine manifold endowed with
a complex structure J. Then f is holomorphically harmonic if and only if (for any hermitian
metric g in M)

To(f)+J1e(f) =0

where Ty(f) = *(f*T) = f*T(e1,e2), with (e1,e2) an orthonormal basis of TL, or equivalently
Tq(f)voly = J(f*T).

Therefore f is strongly harmonic if and only if it is torsion free and holomorphically harmonic.
In particular, if T = 0, or more generally f*I' = 0, then f is holomorphically harmonic if
and only if it is harmonic. Hence for torsion free connection V harmonicity and holomorphic
harmonicity are the same.

Proof. Let Z = X +iY € TNC with X,Y € TN, then since T"°N and T%'N are given
respectively by {V FiJV,V € TN}, we deduce that

[Z" =0 X+JY =0 and [Z]"' =0& X - JY =0.
Now, let us apply that to the TNC-valued 2-form 9V f, we obtain
[POVOf]'0 =0 <= dVdf + Jd¥ xdf =0

according to theorem @ This proves the first assertion. Then the assertion concerning strongly
harmonicity follows from theorem (iv). This completes the proof. O

Let us remark that
Proposition 5.2 In the same situation as in the previous proposition, let us suppose in addition

that VJ = 0. Then if a map f: L — N is holomorphic i.e. df o jr = Jdf, then [ is anti-
holomorphically harmonic (i.e. holomorphically harmonic with respect to —J ).
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Proof. f is holomorphic if and only if df (T1°L) C T*N i.e. [0f]°! = 0. Then we have
8701 = %[0 = 0

since V commutes with J. This completes the proof. (I

It can also be useful to observe the following.

Proposition 5.3 Let (N, J) be an almost complex manifold with an almost complex linear con-
nection that we will denote by VV. Then let us define a family of connection

Vi=vVv'—¢T° o0<t<1.

Then a map f: (L,jr) = (N,J) from a Riemann surface L into the almost complex manifold N
is holomorphically harmonic w.r.t. V! and J if and only if f is holomorphically harmonic w.r.t.
VO and —J. We will say more simply that f is V'-holomorphically harmonic if and only if it is
V0 -anti-holomorphicallly harmonic.

Holomorphic sections of complex vector bundles Now, we need to do some recalls about
complex vector bundles that we will apply in the next paragraph to obtain an interpretation of
the holomorphic harmonicity in terms of holomorphic 1-forms.

Let E — M be a real vector bundle (over a manifold M) endowed with a complex structure

J € End(E). Then any frame in the form (el,... e’ Jel, ... Je") at some point x € M can be
extended to a local frame (e!,...,e", Jel,..., Je") in the neighbourhood of x. Then there exists

an open covering (Uy)aer of M and local trivialisations ®4: (E|y,,J) — Us x (C7,ild) which
are C-linear isomorphisms (®,, o J = i®,,), or equivalently of which transition maps take values
in the endomorphisms of C™: ¢np = ®go ®;': U, NUs — GL(C"). Therefore E is a complex
vector bundle.

Remark 5.2 Let us set C = R[J], then C = R[J] is a vector bundle over M whose fibres are
fields isomorphic to C = R[i] and each fibre E; of F is a C,-vector space. Then EC is endowed
with two different structures of vector bundle: one over the field C (the tautological one defined
by the complexification of E) and another one ”over the distribution of field C” (i.e. the one
defined by J). In paticular, we have two different complex structures in EC.

Now, let us suppose that F is endowed with a complex connection V, i.e. a connection which
commutes with J: VJ = 0. Then for all X € TM, Vx: C(E) — C(E) is C-linear with respect
to the complex vector space structure defined on C(E) by the complex vector bundle structure
on E. Then we have two different ways to extend V to TMC,

1. The canonical one: for any section s € C(E®), we extend Vs by C-linearity to a linear
morphism from T M to EC,

Vixs =iVxs, VX €TM,s¢cC(E®)

after, of course, having extended V to a connection on E€ by setting Vis = iVs, Vs € C(E).
In conclusion, Vs € C(E®), Vs € C(T*M® @ E°).

2. By using the complex vector bundle structure of E defined by J: for any s € C(E), we
extend Vs by C-linearity to a linear morphism from TMC to E:

@ixs:Jﬁxs, VXETM,SEC(E).
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Let us remark that V depends on J, and since we use the complex vector space structure defined
by J, one needs that V and J commute. One the other side the simple canonical complex
extention defined in 1 (that we still denote by V) is independant of J and one needs not to do

any additionnal hypothesis. Remark that the extention 1 is nothing but the extention V defined
by the complex structure ildge on E (which commutes obviously with V).

Now let us suppose that M is an (almost) complex manifold with (almost) complex structure jpy.
Then we have the splitting TM® = T10M @ T%' M defined by jas which gives rise respectively
to the following decompositions of V and V:

vV = va0 v
V = V4V

Definition 5.3 V(O s called the Cauchy-Riemann operator defined by V and J.

More generally, let n € C(T*M ® E) be a 1-form on M with values in E. Then we can extend it
in two different ways by C-linearity in TMC by setting:

“(X +iY) = npX)+in®Y), VX, Y €eTM
AX +iY) = n(X)+JnY), VX,Y € TM.

Remark that ¢ € C(T*M® @ EC) whereas 1) € C(T*M® @ E). As above we can decompose 1°©
and 7 according to the decomposition TM® = T M @ TO1M:

n© = o+ (96)
po= b0 4O, (97)

Then we have the following relations

Lemma 5.1
[n/]LO _ 77(1,0) _ iJU(l’O) [n//]OJ _ n(l,o) + iJT](l’O)
[77/]0,1 — 77(0,1) + iJn(O’l) [n//]LO — 77(0,1) _ iJU(O’l)

Proof. Let Z =X —ijyX € TY'OM with X € TM. Then

(Z)"° = (X)) —in(Gu X)) = 0(X) —iJn(X) —i(m(iuX) —iJn(juX))
= n(X) = JIn(imX) —iJ (n(X) = In(ju X))
= t0(2Z)— g0 (2).

This gives us [n/ ]1’0. Then by apllying this to —J, we obtain [n’ ]0’1. Finally, the second column
of (@) is obtained by C-conjugaison from the first column. This completes the proof. O
We can apply what precedes to the flat differentiation d. Let (N,J) be an almost complex
manifold and s: M — N a map. Then we consider the complex vector bundle £ = s*T'N over
M. Then applying what precedes to the 1-form 1 = ds, we can consider the extensions ds and
(ds)®, which then allows us to define the following extension of d to TMC:

ds=ds and d®s=(ds)C,
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and by abuse of notationEl d® will be still denoted by d. Then we can write the following
decompositions

J:3+5 and d=0+0
according to the decomposition TMC = TOM @ TO1 M.
Definition 5.4 9 is called the Cauchy-Riemann derivative defined by J.

Now let us come back to the general situation of a complex vector bundle E over an almost
complex manifold (M, jur), endowed with a complex connection V. Let us set

H(M,E) ={neT*"M ® Enju = Jn}.

Then H(M, E) is a vector subbundle of the vector bundle T*M ® E and is naturally endowed
with the complex structure defined by

Im)=nju=Jn, YnelT"M®E, (99)
which makes H(M, E) being a complex vector bundle whose the set of sections is
Hom(TM, jur), (B, J)) = {n € C(T*M & Bl o jas = J o).
The sections of H(M, E) can also be caracterized by using the splittings (PGp7):

Lemma 5.2 We have the following equivalences for 1-forms n € C(T*M ® E):
noju=Jon < n eT"MeEY" — n®)=0.
Then we deduce in particular

Lemma 5.3 Let s € C(E), then we have the following equivalences:
Vsojy =JoVs e VOlg =0 [V =0 V/(s—iJs)=0.
We will say that s is a vertically holomorphic section.

In fact we can say more

Lemma 5.4 Let us constder the splitting TE = H &V giwven by V, where V = kerm = 7*E is
the vertical subbundle and H the horizontal one. Then let us define an almost complex structure
J on the manifold E by setting

J = ((dﬂ)*jM)m @ J.

Then a section s € C(E) is J-holomorphic if and only if it is vertically holomorphic.

Proof. It suffices to prove that any section s € C(FE) is horizontally holomorphic, i.e. satisfies
the horizontal part of the equation ds o jyy = J ods. We have dr o (ds o jy) = ju since s is a
section. In the other side we have dm o (J ods) = jy odmwods = jpr, by definition of J and using
the fact s is a section. In conclusion dr o (ds o jpr) = dm o (J o ds). This completes the proof.

In the f(}llowing, we will say that a section of a complex vector bundle (E,J,V) is holomorphic
if it is J-holomorphic.

51and to be coherent with the notation used until now, in the paper.

105



Now, let us apply the two previous lemmas to the vector bundle H(M, E). First, let us endow M
with an almost complex connection VM (it means V*.J = 0; such a connection always exists,

®
see [[tI]). Then T*M ® E is naturally endowed with the connection V defined by VM and V.

_ ® _
Further, we denote by V the restriction to H(M, E) of V. Then we remark that V commutes
with the complex structure I (defined by (pg)). Therefore, we can now apply the two previous
lemmas to the complex vector bundle (H(M, E) I, V):

Proposition 5.4 A section of H(M, E), n € Hom((T'M, jn), (E, J)), is holomorphic if and only
if it satisfies one of the following equivalent statements

() V=0
(i) V' =0

- 1,0
(i) [V'n] " =o0.

Moreover if M is a Riemann surfacﬂ, then it is also equivalent to

iv) 9 n=98 10 =0, or
(iv) 9 7 n ,
(v) 0V’ =0

Moreover, if M is a complex manifold (i.e. jas is integrable) then we choose for VM the unique
torsion free complex connection on M. Then we obtain the following result:

Proposition 5.5 Let | € TM be a complex line in the tangent bundle of the complex manifold
M. Then for any section n € Hom((T'M, jar), (E, J)) we have the following equality

_(011)
Vo i = dY mpsa.

Moreover if 1 is holomorphic then d¥n = 0. More particulary, if M is a Riemann surface then
we have the following equivalence

n is holomorphic <= d¥n = 0.

Remark 5.3 One could directly deduces the case of a Riemann surface by using proposition @
Indeed, the first way to do that is to write dVn = dVo + dVn”. Then remark that n’ and n”
takes values in E™° and E®! respectively, according to lemma @ Therefore since EMY and
E%! are V-parallel, we can say that dVn' and dVn” take values resp. in E™° and E%! resp., so
that dVn =0 dVy' =0 < dVy’ = 0. Then if M is a Riemann surface dVn’ = 9V7/, and we
conclude by using proposition @

The second way to do that is to use the @—linearity. Indeed, the extension to TMC by C—linearity

of dVn is d/v\n = dVh = dVn1 =0, since nOY =0 (see lemma f.3). Then if M is a Riemann

- =V
surface dVn0 =9 n19 and we conclude by using proposition @-(iv).

52and VM the unique torsion free complex connection in M, which coincides also with the Levi-Civita connection
of any Hermitian metric on M.
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Remark 5.4 Let us consider a 1-form 8 € C(T'*M ® E), then we can associate to it

n=8—JBoju=PFo(Id—ijn) =B o 1d—iju)

By definition n € C(H(M, E)), i.e. nojy = Jon. Moreover, still suppposing that M is complex
and that VM is the unique torsion free complex connection on M, we have

Vi = VAL o (Id — ijar) (100)

because (Id — ijps) is VM-parallel.

Let us remark that since jp; and the multiplication by ¢ coincide in 7™M, they define the same
complex structure, which we will suppose T1°M to be canonically endowed with. Then, since
B is by definition a complex linear morphism from TMC to E, (19 is also a complex linear
morphism from T1°M to E. Hence 319 is a section of the complex vector bundle T oM &c E.
Therefore, from equation (@), we deduce that n is a holomorphic section of H(M, E) if and
only if 419 is a holomorphic section of T} (M ®c¢ E. In particular if M is a Riemann surface, we
deduce from ([L00), that

o n=208 LYo dd—ijy).
Now, we come back to our complex vector bundle (E, J, V) and we recall a theorem ([ad)) which
caracterizes when J is integrable.

Theorem 5.2 Let (E,J,V) — (M,jm) be a complex vector over a complex manifold, with a
complex connection V. Then we will say that a holomorphic structure € is compatible with V (or
that V is adapted to &) if it is induced by the almost complex structure J (defined by lemma @
In other words, a section s € C(E) is holomorphic with respect to £ if and only if

VZ e TVOM, Vs =0.

An holomorphic structure & exists on E if and only if J is integrable, and in this case € is unique.
Moreover J is integrable if and only if the (0,2)-component of the curvature opemtoﬂ R of V
vanishes.

When M is of dimension 2, then the (0, 2)-component of the curvature operator always vanishes
so that E always admits a holomorphic structure compatible with V, that we will call, following
[E]7 the Koszul-Malgrange holomorphic structure induced by V. In the following, we suppose
that a complex vector bundle (FE,J,V) over a Riemann surface is always endowed with its
Koszul-Malgrange holomorphic structure.

Interpretation of the holomorphic harmonicity in terms of holomorphic 1-forms.
Now we come back to the situation in the begining of . More precisely, we consider (N, J)
an almost complex manifold, with V an almost complex connection, (L, j;,) a Riemann surface
and f: L — N a map. Then we apply what precedes to the complex vector bundle £ =
(f*TN, f*V, f*J) over L (i.e. L plays the role of M and f the one of s with respect to the
notation of the previous paragraphs). We obtain a first theorem:

Proposition 5.6 Let f: (L,j.) = (N,J,V) be a map from a Riemann surface into an almost
complex affine manifold. Let us set

n=df —Jdf ojun.

53j.e. the (0,2)-component of the extension R of R to A2T*MC by C-linearity.
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Then n is a section of H(L, f*TN), i.e. nojy = Jon. Moreover f is holomorphically harmonic
if and only if n is a holomorphic section of the complex vector bundle H(L, f*TN), i.e.

vy =0.
Proof. We write
d¥n=dY (df — Jdf ojar)) =dY (df + xJdf) = dV df + Jd" * df
so that we can conclude according to proposition E and proposition @ This completes the
proof. (I
Now, we can give a characterisation of holomorphic harmonicity which looks like very closely to

the one which holds for harmonic maps ([L3]):

Theorem 5.3 A map f: (L,j) — (N,J, V) from a Riemann surface into an almost complex
affine manifold, is holomorphically harmonic if and only if

=V 4
0 Jdf =0, (101)
i.e. 5f is a holomorphic section of T oL @c f*TN.

Proof. Apply remark @ to 8 = df and then use proposition p.d to prove that d f is a holomor-
phic section and proposition p.4(iv) to prove the equation ([L01]) O

Remark 5.5 Let us derive ([L01)) by a direct computation. Let be Z = X 45, X € T*°L, then
we have

(V2 0F(2) = (Vi) +IViix) (@F(X) = Jdf(jr X))

Vi) df (X) + Vi x)df (12 X) + T (Vi x)df (X) = Voo df (72.X))
= dVxdf(X,jrX) - JdVdf (X, jrX).

5.2 The sigma model with a Wess-Zumino term in Nearly Kahler man-
ifolds

Here we present an interpretation of the holomorphic harmonicity in terms of a sigma model
with a Wess-Zumino term.

5.2.1 Totally skew-symmetric torsion
First, let us recall some useful properties about connections ﬂ
Definition 5.5 Two linear connection V and V' in a manifold N are sayed to be geodesically

equivalent if they have the same geodesics. A connection V on a Riemannian manifold (N,h) is

sayed to be geodesic-preserving if it is geodesically equivalent to the Levi-Civita connection V" of
h.

54See also [E} for a nice presentation about metric connections and their torsion
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Proposition 5.7 Let V be a connection on a manifold N and A € C(T*N ® End(T'N)). Then
the connection

V=V+A

has the same geodesic as V if and only if A(-,-) is skew-symmetric (as a bilinear map). In this
case for any map f: (M,g) — N, from a Riemannian manifold in to N, we have 7,(f) = 7,(f),
where 7, (f) and T4(f) are the tension fields w.r.t. V and V' respectively. Moreover (still in this

case), 156 have

TV =TV +24A.
Now, let us suppose that V is metric w.r.t. some metric h in N. Then V' is metric if and only if A
takes values (as a 1-form) in the skew-symmetric endomorphisms of TN: A € C(T*N ®so(TN)).
Therefore V' is metric and geodesically equivalent to V if and only if A is totally skew-symmetric
which means that the associated 3-linear map defined by A*(X,Y,Z) = (A(X,Y), Z) is a 3-form
on N.

Now let us see how we can introduce the Levi-Civita connection starting from a given metric
connection.

Proposition 5.8 Let N be a manifold endowed with some connection that we denote by V° (for
some reason that will appear clearly below). Let us set

Vi=vVv' T o0<t<1,
where T° = TV" is the torsion of VY. Then we have
Tt =TV = —(2t — 1)T°.

In particular, V2 is torsion free. Moreover all the connections V!, 0 <t <1, are geodesically
equivalent.

Now, let h be a metric on N which is V°-parallel. Then V', t # 0, is metric if and only if T is
totally skew-symmetric that is to say the 3-linear map defined by

(T°)"(X,Y, 2) = (T°(X,Y), Z)
is a 3-form. In this case, V2 coincides with the Levi-Civita connection V" of h.

Remark 5.6 We see that for a map f: (M,g) — N, the strongly Vi-harmonicities are all
equivalent for t # %

Conversely,
Proposition 5.9 Let (N,h) be a Riemannian manifold, and let us denote by V" its Levi-Civita
connection. Then a metric connection V on N 1is entirely determined by its torsion T'. Moreover

a metric connection V on N is geodesic-preserving if and only if its torsion T is totally skew-
symmetric. Then in this case we have

V:Vh-i-%T.
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Proof. For any metric connection V = V" + A, we have

2A"(X,Y,Z) = T(X,)Y,2)+T*(Z,X,Y)+T*(Z,Y, X), (
which proves the first assertion. Concerning the second assertion, we see (according to ([[03{L03)))
that A is totally skew-symmetric if and only if T is so, i.e., according to proposition p.q, V is
geodesic preserving if and only if T is totally skew-symmetric. Then in this case T = 24 i.e.

1
V=Vt §T. This completes the proof. O

Remark 5.7 The second equation (@) can be derived directly from the first one (@) (com-
pute the right hand side of the second equation using the first equation which gives 24*(X,Y, Z)).
But there is another way (which will be useful in the following) to interpret this second equa-
tion. Indeed, first let us identify (via the metric h) in the following of this remark, each
T N-valued bilinear form B on N with the corresponding trilinear form B*. Then let us set
A= LNT+U)= WT(X,Y,2)+ T(Z,X,Y) +T(Z,Y, X)), where U(X, Y, Z) = (U(X,Y), Z) =
T(Z,X,Y)+T(Z,Y,X). We remark that U is symmetric w.r.t. to the variables X, Y, so that
the connection V. — A = V — 1(T + U) is torsion free. Moreover we see that A(X,Y,Z) =
LT(X,Y,Z)+T(Z,X,Y)+T(Z,Y,X)) is skew symmetric w.r.t. the two last variables Y, Z.
Therefore V — A is metric and thus this is the Levi-Civita connection V":

1
vh:V—i(T+U).

Moreover, T is totally skew-symmetric if and only if the "natural reductivity term” U = 0.
Furthermore, let us remark that the bijective correspondence between T' and A comes simply
from the isomorphism of vector bundle T € A>’T*N @ TN +—— T + U € T*N ® so(T'N).

5.2.2 The general case of an almost Hermitian manifold

Let (E, J) be a complex vector space and let us set
Bi(E)=E*®FE*®E and T(E)= (A*E*)® FE C Bil(E).
and for €, ¢’ € Zy we set
Bil** (B, J) = {A € Bil(E)|A(J-,-) = eJA, A(-,J-) =¢'JA}
so that we have the decomposition
Bil(E) = ®(c.cryez,x2, Bl (B, J). (104)
Let us remark that for any A € Bil(F), its component A5 e Bil® (E,J) is given by
A (X,)Y) = 7% (e’ A(JX,JY) 4+ eJA(JX,Y) + ' JA(X,JY) — A(X,Y)). (105)
Moreover we also have the decomposition
TE)=T"oT?aT",
where 720 = (A29FE*C) @c E = Bil™ (B, J) N T(E), T*° = (A>2E*%) @c E = Bil™(E,J) N

T(B) and T4 = (AMEC) @c E = (BilY™ + Bil™ 1) (B, J) N T(E).
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Of course, these notation can be extented to the case (F,J) is a complex vector bundle. In
particular, we will use these for the tangent bundle (T'N, J) of an almost complex manifold, and

will forget in this case the precision of the bundle in the notation and write for example simply
T and Bil

Given an almost complex manifold (N, J) with a connection V (that we do not suppose to be
almost complex) then its torsion T satisfies T € T andﬁ we can decompose it following ):
T =T +T-= +T-+ +TT=. Then since T is skew-symmetric, then so is T+, T~ and
T+~ +T-7F. In other words, we have 77+ = 720 T—= =792 and T*— 4+ T+ =T%. In
particular we have TT~(X,Y) = —T~*(Y, X). Now, let us see how this decomposition can have
a geometric meaning.

Lemma 5.5 Let (N,J,V) be an almost complex manifold with an almost complex connection
V. Then we have
Ny =4T""

where Ny denotes the torsion of J i.e its Nijenhuis tensor.

Proof. According to [@], Chap. IX, Prop. 3.6, the torsion N; of J can be expressed in terms
of the torsion T of the almost complex connection V:

-N;(X,)Y)=T(JX,JY)-JT(JX,Y)-JT(X,JY)-T(X,Y)
which gives us Ny = 4T~ ~. This completes the proof. (I

Proposition 5.10 Let (N, J,V) be an almost complex manifold with an almost complex connec-
tion V. Then the following statements are equivalent.

(i) J anticommutes with the torsion 7' of V : T'(X,JY) = —JT(X,Y).
(i) T=T""ie TeT?".

1
(iii) T = 7N,

Proof. (ii) < (iii) follows from the previous lemma. Now, we have obviously (ii) = (i). Con-
versely (i) implies that T = T~~ + T~ but since T is skew-symmetric this implies Tt~ = 0
and T'=T~~. This completes the proof. (I

From now until the end of this section , we consider (NN, J) an almost complex manifold
with an almost complex linear connection V and a V-parallel Hermitian metric h. Therefore
(N, J,h) is an almost Hermitian manifold with a Hermitian connection V.

Proposition 5.11 Let (N, J, h) be an almost Hermitian manifold with a Hermitian connection
V. Let us suppose that J anticommutes with the torsion T of V. Let us suppose also that the
torsion of V is totally skew-symmetric i.e.

T*(X,Y,Z) = (T(X,Y), Z)

is a 3-form. Lastly, we suppose that the torsion is V-parallel, i.e. VT* = 0 which is equivalent
to VT = 0. Then the trilinear map

is 8-form and is closed dH = 0.
5%ie. T € C(T)
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Proof. Firstly, according to proposition f.10, we have T*(JX,Y, Z) = T*(X, JY, Z) = T*(X,Y, J Z),
which prove that H is a 3-form.
Let us compute the exterior differential of H in terms of the connection (with torsion) V:

3
dH(Xo, X1, X2, X3) = > (-1)'VX H(Xo,...,X;,..., X3)
=0
- > (C)MH(T(X, X;), Xo, ., Xy, XG0, X))
0<i<j<3

8 H(T(Xo, X,), X;, Xe) + H(T(X, X;), Xo, Xy)
75

where the last sum is on all the circular permutations of 1,2,3. Moreover, we have

H(T(Xo,X:),X;, X)) = —H(Xp,X;,T(Xo,X;)
(T( Xk, X;), JT(Xo, X;

)
)

<T(X0,Xi), JT(Xj,Xk
= —H(Xo, X;, T(X;, Xy)

)
)
)
= —H(T(X;, Xy), X0, X;)

so that we can conclude that dH = 0. This completes the proof. (]

Theorem 5.4 Let (N, J h) be an almost Hermitian manifold with a Hermitian connection V.
Then, under the 3 hyphothesis of the previous proposition (T anticommutes with J, is totally
skew-symmetric and V-parallel), the equation for holomorphically harmonic maps f: L — N s
the equation of motion (i.e. the Euler-Lagrange equation) for the sigma model in N with the
Wess-Zumino term defined by the closed 3-form H. The action functional is given by

S(f) = B+ 5"7(1) = 5 [ 1apPasol, + [ 1.

where B is 3-submanifold (or indeed a 3-chain) in N whose boundary is f(L).
Proof. Since dH = 0 we have

5SWZ:/ L(;fH:/ disp H = 15 H,
B B (L)

therefore the Euler-Lagrange equation is

—14(f)+JT,(f) =0

which is the equation for holomorphically harmonic maps w.r.t. V, since V is geodesic preserving
(see propositions @ and @) (g being as always a Hermitian metric on L). This completes the
proof. O

5.2.3 The example of a 3-symmetric space

Let us suppose now that N = G/Gy is a (locally) 3-symmetric space. We use the notations
of subsection . In particular, N is endowed with its canonical almost complex structure J
defined by (Rd).
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Proposition 5.12 The canonical connection V° in N commutes with the canonical almost com-
plex structure J

Vo] =0.

Moreover, J anticommutes with the torsion TO of VV. Lastly, if N is Riemannian, then VV is

metric and (N, J, h) is almost Hermitian for any G-invariant metric h.EI
Furthermore, the torsion of V° is totally skew-symmetric if and only if h is naturally reductive.

Now, we can conclude

Theorem 5.5 Let N = G/Gq be a (locally) 3-symmetric space, that we suppose to be Rieman-
nian and naturally reductive, and endowed with its canonical almost complex structure J and its
canonical connection V°. Let h be a G-invariant naturally reductive metric on N. Then the
equation for holomorphically harmonic maps f: L — N is the Fuler-Lagrange equation for the
sigma model in N with the Wess-Zumino term defined by the closed 3-form H defined by

H(X,Y,Z) = (JT(X,Y),Z)
where T is the torsion of V°.

Remark 5.8 The hypothesis of natural reductivity is always satisfied if we allow us to use
pseudo-Riemannian metrics and if g is semi-simple: the metric defined by the Killing form is
then naturally reductive. Moreover, let us remark that w.r.t. Riemannian metrics the natural
reductivity is in fact an hypothesis of compactness: the Lie subgroup of GL(m) generated by
{[adm(X)]m, X € m} must be compact.

5.2.4 The good geometric context/setting

In the previous variational interpretation given by theorem @, we need to make 3 hypoth-
esis on the torsion of the almost Hermitian connection: 7T anticommutes with J, is totally
skew-symmetric and V-parallel. Here, we want to understand what do these hypothesis mean
geometrically and what is the good geometric context in which these take place. It will turn out
that the good geometric context is the one of Nearly Kdahler manifold.

Definition 5.6 An almost Hermitian manifold (N, h, J) is called nearly Kdhler if
(V&)X =0,
where V" is the Levi-Civita connection of h.

We can deduce immediately the following properties.

Proposition 5.13 Let (N, h,J) be an almost Hermitian manifold. Let us consider its canonical
Hermitian connection

1
V0=V - §JV"J,
the torsion of which is denoted by T°. Then the following statements are equivalent:

(i) T°C,J-) = —JT°(:,+) and T is totally skew-symmetric.

56chosen according to our convention explained in subsection : that is 7 leaves invariant the inner product
defining h.
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(ii) T0 = —JV"J.

(iii) %JV"J(-, -) is skew-symmetric.

(iv) (N, h,J) is nearly Kdhler.

(v) Vi =—JVxJ and T is totally skew-symmetric.

Proof. First, we see that the implications (ii) = (i) and (ii) = (iii) < (iv) are obvious. Then
by definition of V° we have

T(X,Y) = —

N | —

(J(VEDY — J(VEI)X) (106)

which gives us the implication (iii) = (ii). Furtermore, according to proposition @, if TO is
totally skew-symmetric then we have V" = V¥ — 170 which provides the implication (i) = (ii).
Finally the equivalence (i) < (v) follows directly from ([[0F). This completes the proof. O

In particular, a nearly Kahler manifold endowed with its canonical Hermitian connection satisfies
2 of our 3 hypothesis on the torsion (7T anticommutes with J and is totally skew-symmetric).
Conversely, we have

Theorem 5.6 Let (N,h,J,V°) be an almost Hermitian manifold with an almost Hermitian
connection V. If the torsion T® of VO anticommutes with J and is totally skew-symmetric then
(N, J,h) is nearly Kdihler. Moreover, in this case, V° is the canonical Hermitian connection.
Therefore the injective map

1
(h, J) — (h, J, V" — 5JvhJ)

is in fact a bijection from the set of nearly Kdahler structures on N into the set of almost Hermitian
structures, (h,J,V°), with an almost Hermitian connection whose the torsion is totally skew-
symmetric and anticommutes with J.

Remark 5.9 In other words, in an almost Hermitian manifold there exists at most only one
Hermitian connection with totally skew-symmetric and J-anticommuting torsion, and if this
connection exists then it coincides with the canonical Hermitian connection and the almost
Hermitian manifold is nearly Kéahler.

Moreover, the third hypothesis (the torsion is parallel) is implied by the first two.

Proposition 5.14 [Kirichenko], B, B If (N, h, J) is nearly Kihler then the canonical Hermitian
connection has a parallel torsion: V°T9 = 0.

Now, we can reformulate our theorem @ by using the right geometric context:

Theorem 5.7 Let (N, h,J) be a nearly Kdhler manifold then the equation of holomorphic har-
monicity for maps f: L — N is exactly the Euler-Lagrange equation for the sigma model in N
with a Wess-Zumino term defined by the 3-form:

1
H = -dQ
Tl
where Q= (J-,-) is the Kahler form.
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Proof of theorem @ If the torsion of VO is totally skew-symmetric then we have V" =
VO — %TO, so that if moreover T° anticommutes with .J then f%To is the J-anticommuting
partﬂ of V" i.e. —%TO = %JV"J and V9 is the canonical Hermitian connection. Therefore, we
can apply proposition which allows us to conclude. This completes the proof. (I

Proof of theorem 5.7 With the notation of proposition we have H(X,Y, Z) = (JT°(X,Y), Z) =
(V"I)(X,Y), Z) = V", (X,Y, Z) according to proposition .13, and since V" is a 3-form
((N, J, h) is nearly Kihler), we have d2; = 3V"Q;. This completes the proof. O

Remark 5.10 With this new setting, the closeness of H = %dQJ is obvious.

Return to the example of a 3-symmetric space According to proposition , a Rie-
mannian (locally) 3-symmetric space N = G/G is nearly Kéhler if and only if it is naturally
reductive. Then, we can reformulate the theorem @ as follows:

Theorem 5.8 Let N = G/Gy be a (locally) 3-symmetric space, that we suppose to be Rieman-
nian and naturally reductive, and endowed with its canonical almost complex structure J and its
canonical connection V°. Let h be a G-invariant naturally reductive metric on N. Then the
equation for holomorphically harmonic maps f: L — N is the Euler-Lagrange equation for the

1
sigma model in N with the Wess-Zumino term defined by the closed 3-form H = ngi.

5.2.5 J-twisted harmonic maps

Definition 5.7 Let f: (M,g) — N be a map from a Riemannian manifold (M, g) to a manifold
N. Let us suppose that the vector bundle f*T'N is naturally endowed with some connection V.
Then we will say that f is roughly harmonic w.r.t. ¥V (or V-roughly harmonic) if

Tr, (Vdf) = 0.

This definition is useful in the case there exists a natural mapping which associates to each map
f:(M,g) = N a connection in the vector bundle f*T'N. For example, we have the following.

Theorem 5.9 A map f: (L,j.) — (N,J,V) from a Riemann surface into an almost complex
manifold with a connection V is holomorphically harmonic if and only if it is roughly harmonic
w.r. 1.

_ 1
V= [V + 5 JT(df o jr,.).

Definition 5.8 Let (N, J) be an almost complex manifold with an arbitray connection V. Then
let us decompose it (in an unique way) as the sum of a J-commuting and respectively J-anticommuting
part: V.=V + A, where VOJ =0, and A € C(T*N @ End(TN)), AJ = —JA, i.e. A=1JVJ.

Then to any map f: L — N let us associate the connection

v:f*vO*JAOjL.

We will say that f: L — N is J-twisted harmonic w.r.t. V if f is roughly harmonic w.r.t. V.

Now, we can conlude by the following interpretation of holomorphic harmonicity.

Theorem 5.10 Let (N, J,h) be a Nearly Kahler manifold. Then a map f: L — N is holomor-
phically harmonic w.r.t. the canonical Hermitian connnection VO if and only if it is J-twisted
harmonic w.r.t. V".

57In the sense of theorem .
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5.3 The sigma model with a Wess-Zumino term in G;-manifolds
5.3.1 T N-valued 2-forms

Let (N, J,h) be an almost Hermitian manifold. In all the section @, each T'N-valued 2-form
on N, B € C(T), will be identified (via the metric h) with the corresponding trilinear form,
skew-symmetric w.r.t. to the 2 first arguments:

B(X,Y, Z) := (B(X,Y), Z).

In particular, the left multiplication by J on C(7) defined a multiplication on the set of corre-
sponding trilinear forms (JB)(X,Y,Z) = (JB(X,Y), Z). Moreover, under this identification,
the space Q3(N) := C(A3T*N) of 3-forms will be considered as a subspace of C(7). We denote
by Skew the following surjective linear map from C(7") onto Q3(N):

Skew(B)(X,Y,Z) = B(X,Y,Z)+ B(Y, Z,X) + B(Z,X,Y).

Let us remark that 1 Skew(B) is the skew-symmetric part of the trilinear form B and §Skew: C(T) —
Q3(N) is a projector (called the Bianci projector in [[L]). To any trilinear form a € C(®3T*N)
will be associated its J-twisted trilinear form

af = —a(J-, J, J).

In particular, if o = dB, with 8 € Q?(N) := C(A?T*N) then we set d°8 := a‘.
We will also use the following action of the complex structure J on C(T): for any B € C(T)

J-B:=—JB(J,J)=J(Bt" + B~") = J(B*~ + B~") (107)

i.e. in term of trilinear forms

J-B=B(J,J,J)=-B"
Let us remark that J - (J - B) = —B.

Furthermore, let (L, jz) be a Riemann surface and B € C(T), then for any map f: L —+ N and
any Hermitian metric g on (L, j1.), we set

By(f) ==f"B = B(f.TL). (108)
We will use a second natural action of J on C(T) defined by: for any B € C(T),
JEB = B(J-,,) + B(,J-,) + B(-,-,J")
and in terms of the components B’
JOB = JBT+ —3JB~ — J(BY~ + B~+).

Moreover, by the aid of the two previous natural action, we can define a third action that will
turn out to be the relevant one in the interpretation of the maximal odd determined system: for
any B € C(T),

JxB =3 (B J- J) 4 B( )+ B, T )+ B, 7)) = 3 (/- B+ ©B),

and in terms of the components Bee'

JxB=JBtt — JB~~ — J(Bt~ + B™1).
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Remark 5.11 Let us remark that all the three previous actions are independent of the metric h,
as we can see it from the expressions in terms of the components B | or more simply by writing

their definitions using T'N-valued 2-forms like in () J©oB=DB(J-, )+ B(-,J)—JB(-,-) and
1
JxB = fiJ(B(Jg J)+JB(J-,)+JIB(,J)+ B(-,")).

We remark that this last formula - up to the factor —%J and to the signs - makes J % B look like
to some kind of torsion tensor of J w.r.t. B (cf. the definition of Ny).
In particular, these three actions are defined in a general almost complex manifold (N, J).

Remark 5.12 The equations (L05) can be rewritten using the metric & as follows
/ 1
B** = ~1 (ee'B(J+, J+-) —eB(J, J) = B(-,J,J) — B(-,-,")). (109)
This leads us to define the following action
J&»B=B(J,J,)+B(J,,J)+B(-,J,J)=B—-4B"".
It is also important to remark that J-B—J ©B=4JB~~ and J-B—Jx B =2JB~ 7, so that

Proposition 5.15 Let T be the torsion of some Hermitian connection V on (N, J,h), then we
have

1
J-T'—J&T'=JNy and J'T*J*T:§JNJ.

5.3.2 Stringy Harmonic maps

We have seen two different ways to generalise the harmonicity to the case of affine target manifold.
The first one is very natural and consist simply to write the harmonic map equation Try(Vdf) =
0 for a linear connection V. The second one concerns holomorphicaly harmonic maps (from
a Riemann surface into an almost complex manifold) and was dicted to us by the geometric
equation of the second elliptic integrable system associated to a 3-symmetric space (section ,
paragraph: The model case). Furthermore, the preliminary study of the maximal determined
system done in section E, leads us to introduce the following generalisation of harmonic maps
(which will turn out to be a generalisation of holomorphically harmonic maps for particular
target spaces like nearly Kéhler manifolds).

Definition 5.9 Let (N,J) be an almost complex manifold with V a linear connection then we
will say that a map f: L — N from a Riemann surface into N is stringy harmonic f it is
solution of the harmonic map equation with a J7T-term:

—7(f) + (J - T)g(f) = 0.
where g is a Hermitian metric on L.

We remark that if 7" anticommutes with J then stringy harmoniciy coincides with holomorphic
harmonicity (since in this case J - T = JT'). However, even though stringy harmonicty seems to
be the more natural generalisation of (holomorphically) harmonic maps - in particular because
of the property J - (J - B) = — B which makes the first action look like very closely to the simple
multiplication by J, which is not the case for the two other actions- it will turn out that the
interpretation of the maximal odd determined system (see section @) will use the action J xT'
of J on T. This leads us to the following modified definition.
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Definition 5.10 Let (N, J) be an almost complex manifold with ¥V a linear connection then we
will say that a map f: L — N from a Riemann surface into N is *-stringy harmonic if it is
solution of the modified stringy harmonic maps equation:

—7o(f) + (JxT)g(f) = 0.

where g is a Hermitian metric on L.

We remark that if 7" anticommutes with J then *-stringy harmoniciy coincides with antiholo-
morphic harmonicity (since in this case J T = —JT).

Now, we will see that, under some hypothesis, the two previous definitions are in fact equivalent
in the sense that there exists a new almost complex structure J* such that JxT = J* - T.

Proposition 5.16 Let (N,J) be an almost complex manifold. Let us suppose that there exists
a J-invariant decomposition TN = Et & E~ and some B € C(T) such that we have

Va,o/ € Zy,  B**(E*,E*)C E*® and B ~(E*,E*)cC E-*, (110)
where B** := B*t 4+ Bt~ 4+ B~ = B — B~ . Let us define J* = Jjg+ ® —Jjg-, then we have
JxB=J"-B.

Proof. Applying equation ([[0F) to B**, we obtain

B (E*, B ) c B>, V(&) € Z3\ {(- )}
Moreover, we have
_ e
B = Z B\Eaan"
e,e’ €72 ,a,a’ €72
Besides, since Bi}ian, (J*,) = EaJBTI’;; el = ga(aa')J*Bfg(ian, ., it follows that Bi}ian,
is of type (eo,e’a) w.r.t. to J*, if (g,&") # {(—,—)}. And BI;EZMEC“ is of type (¢, ). Therefore

denoting by B¢’ the (e,¢’)-component of B w.r.t. J*, we have

_575/ _ EO/,E/Ot _—
B - Z B|Eaan’ +B\E5'><E5'
(a,)#—(e,e’)

Finally, using this last equation we check by computation that J*- B = J x B. This completes

the proof. ([

Therefore, this yields the following corollary.
Corollary 5.1 Let (N,J) be an almost complex manifold with ¥V a linear connection. Let us
suppose that there exists a J-invariant decomposition TN = ET @® E~ such that the torsion T of

V satisfies the conditions @) Let J* = Jip+ ® —J|g-. Then the x-stringy harmonicity with
respect to J is exactly the stringy harmonicity with respect to J*.

Remark 5.13 Let us remark that proposition is an algebraic identity, and holds in any
complex vector space, or more generally any complex vector bundle (E, J).
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5.3.3 Almost Hermitian G;-manifolds

In all this subsection, we consider (N, J,h) an almost Hermitian manifold with a Hermitian
connection V, whose the torsion is denoted by 7.

We prove easily the following.

Proposition 5.17 The components B of an element B € C(T), considered as trilinear forms,
satisfy the following properties:

BTt ¢ ¢ ((AQ’O ® A%1) @ (A% ®A1’0))
BT ¢ ¢ ((ALO ® A% @ A%1) @ (A% @ AL ®A1’0))
Bt ¢ ¢ ((Al,O ® A0 @ A%1) @ (A1 @ A0 ®A1’0))
B— ¢ C ((AQ’O ® AL0) @ (A% ®AO’1)) :

where AP9 = AP9T*N.

The results of this is:

Corollary 5.2 Let B € Q3(N) C C(T) be a 3-form on N, then B~ is also a 3-form and is of
type (3,0) + (0,3). Moreover BY* + BT~ 4+ B~ is a 3-form of type (2,1) + (1,2) and we have
the following relations:

B*N(X,Y,Z)=B" (Z,X,Y)
B Y(X,Y,Z)=B" (Y, Z,X)
in other words B** :== BT+ + Bt— 4+ B=t = Skew(BEEI); V(e &) € Zo \ {(—,—)}.
In particular, let us suppose that the torsion T of the Hermitian connection V is totally skew-

symmetric, then T~ is also a 3-form and is of type (3,0) + (0,3), and T** is a 3-form of type
(2,1) 4+ (1,2). More particulary, the Nijenhuis tensor Ny is totally skew-symmetric.

Corollary 5.3 Let us suppose that the torsion T of the Hermitian connection V is totally skew-

symmetric, then
dQ; =3JT " +J(Tt +T " -Tt") = —JoT

i.e.

dQ;=JN;—J-T.
Proof. Since T is skew-symmetric, we have V = V" + %T, so that VJ = 0 implies
1
VhQJ = _§(T(.’ J, ) + T(.’ . J))

and therefore applying the operator Skew to that and using the fact that T is skew-symmetric
we obtain

dQy; = —J .
Then the last assertion follows from proposition . This completes the proof. (I

Now, we can conclude that
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Theorem 5.11 An almost Hermitian manifold (N, J,h) admits a Hermitian connection with
totally skew-symmetric torsion if and only if the Nijenhuis tensor Ny is itself totally skew-
symmetric. In this case, the connection is unique and determined by its torsion which is given

by
T=—-dQ5+ Nj.

Proof. If such a Hermitian connection with skew-symmetric torsion exists, then according to
corollary , Ny is itself skew-symmetric and moreover, according to corollary E, we have
dQy=JNy;—J-T=J-(Nyj—T) therefore T = J - dQ2; + N;. This proves the unicity.
Conversely, let us suppose that N is skew-symmetric and let V be the metric connection defined
by the torsion T'= J - d2; + Ny, i.e. V = vh — %T. We have to check that VJ = 0. Let us
recall ([[tT], proposition 4.2) that we have

2AVEQNY, Z) = d2(X,Y, Z) — dQy (X, JY,JZ) + N;(Y, Z,JX). (111)
Applying Skew to that, we obtain
2d0;(X,Y,Z2) =3dQ;(X,Y, Z) —dQ;(X,JY,JZ) —dQ;(JX,Y,JZ) — dQ;(JX,JY, Z)
+N;(Y,Z,JX)+ N;(X,Y,JZ)+ N;(Z,X,JY)
therefore

—4(dQ)"*(X,Y,Z) = N;(Y,Z,JX)+N;(X,Y,JZ)+ N;(Z,X,JY) (112)
= 3N;(X,Y,JZ) (since Ny is skew-symmetric (and of type (0, 2)).

Now, we can compute
no 1
vVQ; = \Y% +§(J~dQJ+NJ) Q
1
= VhQJJrE(NJ(X,JY,Z)JrNJ(X,Y,JZ)—dQJ(JX,Y,JZ)—dQJ(JX,JY,Z))

1
= S(Q(X,Y,2) — dQ(X.,Y,1Z) — dQ(JX,Y, ] Z) — dQ(JX, TY. Z)
+N;(Y,Z,JX) + Ny(X,JY,Z) + N,;(X,Y,]Z))
1
= SBNJX.Y.JZ)+ Ny (Y. Z,JX) + Ny (X, JY, Z) + Ny(X,Y, ] Z)) = 0.

This completes the proof. (I

Remark 5.14 This theorem can also be deduced from a more general result of Gauduchon
[E, Proposition 2] (see also section below). Moreover, it has already been proved by
Friedrich-Ivanov ﬁ] (but without writting completely the proof). To our knowledge a completely
written proof has never been given in the literatureﬁ. In fact, Friedrich and Ivanov present a
unified approach to construct G-connections, for any G-structure on some manifold, with skew-
symmetric torsion. For example, they characterise the class of Ga-structures and the class
of contact metric structures for which such a connection exists, and prove the unicity of this
connection.

58See also [E} for the proof of the fact that the connection given in theorem satisfies VJ = 0.
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Definition 5.11 The unique Hermitian connection with skew-symmetric torsion is called the
characteristic connection. According to the Gray-Hervella classification @] of almost Hermitian
manifolds, (N, J,h) admits a skew-symmetric Nijenhuis tensor if and only if if is of class Wy @
Wa®Ws =: Gy (see [@]) These manifolds are called G1-manifolds and according to the previous
theorem they are exactly the almost Hermitian manifolds which admit a characteristic connection.

Proposition 5.18 Let us suppose that the almost Hermitian manifold (N, J, h) is a G1-manifold.
Let us suppose that its characteristic connection V has a parallel torsion VI' = 0. Then the 3-
form

HX,)Y,Z)=T(JX,JY,JZ)=(J -T)(X,Y),Z)
is closed dH = 0.

Proof. Since, according to corollary @, we have H = —dQ);+ JN;, we only have to prove that
the 3-form JN; = 4JT~~ is closed. Moreover, since J is V-parallel, so is the decomposition
Bil(E) = @ZZXzQBiIE’E, (E,J), so that if T' is V-parallel then so are its components 7°¢". Then
the V-parallel 3-forms, H, dQ2; and JT~~ satisfies the following formula for V-parallel 3-forms
o:

3
dOé(Xo,Xl,XQ,X3) = Z(—l)iVXiOé(Xo,...,Xi,...,Xg)
=0
- > )P UT(X, X5), Ko, Xy, X, X))

0<i<j<3
= .Gka(T(XOﬂXi)vXjﬂXk)+a(T(Xi7Xj)5X07Xk)
4,75

= .6 a(T(Xo, Xi), Xj, Xi) + 6 (T (X, Xi), Xo, Xi)
4,75 2,7,

(& ,a(T(V.2).X.Y) + o(T(X.Y),V.Z)

where we have set (X,Y,V, Z) = (X3, X3, X0, X1). Then applying this formula to df2 s, we obtain

0=—d(dQ;) = —d@BJT~ +J(T* +T~+ —T+))

> (BT =TT TV (X,Y), T (T + T+ TV (V, 2))
(X, Y)=(V,2)

X,Y,Z

IR

where (X,Y) & (V,Z) means that we sum on the set {(X,Y,V,2),(V,Z,X,Y)}. After a
straightforward computation, we find

0=—d(dy) = & Yoo {4 (X)), JTTH(V, Z)) (113)
TT(X,)=2(v,2)
+2(T~(X,Y), JT " (V, Z))

—2(TT(X,Y),JT"(V, 2)).}
Now, let us consider 4-linear forms on the variable (X,Y,V, Z) € TN* and the associated decom-
position @*T*NC = @.¢(7,)1 A" @ A®2 @ A® ® A®, where AT = A'OT*N and A~ = A®'T*N.
Then the term in the first line of ([13) is in (®*A*) ® (®*A~) whereas the terms in the sec-
ond and third lines are in (TTT7) ® (®™""T) ® (@TT™T) ® (®~17), where ®1:52:3:54 =
A%t @ A2 @ A3 ® A®4, Ve € (Zo)*. Hence the sums X,%,ZZWYP(V’Z) of these terms are re-

spectively in A% & A%? (first line) and in A3 & A3 (second and third lines). Therefore we
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obtain (in particular) that the first line vanishes

- ++ —
5, Y ATTT(XY),JTTHV, 2)) = 0.
(X, Y)=(V,2)

IR

Let us apply this to the computation of d(JN):

dUINy) = & Y AUTT(XY),T(V.2))
(X, Y)=2(V,2)

_ —— 1,1
= &, > AWTTXY),TH(V.Z).
(X, Y)=2(V,2)

We see that (JT-~(X,Y), Tt (V,Z)) is in (TTT7) @& (@ ~~T). But since JT~~ is a 3-form,
we have
<JT—_ (Xa Y)a T+_(Va Z)) = _<JT__(X3 T+_(Va Z))a Y>

and this second 4-linear form (in the variable (X,Y,V, Z)) is in (T~ T) @ (®~~*7), which
imposes that (JT~(X,Y), Tt~ (V,Z)) = 0, V(X,Y,V,Z) € TN* We can prove the same
result if we replace 7T~ by T~*. Therefore d(JN;) = 0. This completes the proof. O

Moreover, according to proposition , we deduce

Proposition 5.19 Let us suppose that the almost Hermitian manifold (N, J, h) is a G1-manifold.
Let us suppose that its characteristic connection V has a parallel torsion VI = 0. Then the 3-

form
H*(X,Y,Z)={(JxT)(X,Y), Z)

18 closed dH* = 0.

Now, we can conclude with the following variational interpretation of the stringy harmonicity.

Theorem 5.12 Let us suppose that the almost Hermitian manifold (N, J,h) is a G1-manifold.
Let us suppose that its characteristic connection V has a parallel torsion VT = 0.
e Then the equation for stringy harmonic maps f: L — N is exactly the Euler-Lagrange equation
for the sigma model in N with a Wess-Zumino term defined by the closed 3-form

H=—-dQ;+ JNj.

e Moreover the equation for x-stringy harmonic maps f: L — N 1is exactly the Euler-Lagrange
equation for the sigma model in N with a Wess-Zumino term defined by the closed 3-form

1
H* = —dQ; + 5 JN;.

Remark 5.15 We remark that the two previous sigma model differ by the Wess-Zumino term
1
defined by the 3-form §JNJ.
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5.3.4 Characterisation of Hermitian connections in terms of their torsion

In this subsection, we will give a result of Gauduchon [@] characterizing the Hermitian connec-
tions in terms of their torsion. We need to write it with our notations and inside our setting
and to write one proof in such a way that it will appear clearly that this result holds as well
for Riemannian f-structure (see section [f) so that we will not have to reprove it (at least not
entirely) in this more general context.

Theorem 5.13 Let (N, J, h) be a Hermitian manifold. Then a metric connection V is almost
complex if and only if the following statements hold

N;=4T% and Skew(T%° —T"1) = (d°Q;)**.

1
Proof. The metric connection V can be written in the form V = V" — (T + U), where

2
UX,)Y,Z2)=T(Z,X,Y)+T(Z,Y,X). Then VQ; = 0 if and only if
1
vh = —5[(T+U), I =~ (T+U)""J+(T+U)tJ) (114)

butEl
U (X,Y,Z2)=U(T"") and U (X,Y,2)=T 7(Z,X,Y)+ T (2,Y,X).
so that, according to ([LL11])
d)t- = (vt = -1t (X,JY,2)-T"H(2,X,JY)-T " (Z,JY,X)
= — (Skew(T)"™(X,JY,Z) — 2T 1(JY, Z, X))
= —J- (Skew(T)" (X,Y,Z) - 27" (Y, Z, X)) .

Therefore applying Skew,

J - (d)* = (J-dQ)*™ = Skew(T)** — 2Skew(TTH(Y, Z, X))
= Skew(T** —27T*T)
= Skew(—T*° 41"
Besides, taking the (¢, &’)-component of equation ([L14) for (¢,¢’) = (4++), (—+) instead of (+—)
would give the same result. Now, it remains to see what gives us the (—, —)-component of this
equation. Equations ([[11]) and then ([[19) yield
1
V)0 = 2(d2)°% + Ny (Y, Z,JX) = =5 (Ny(Y, Z,JX) + Ny(JX, Y, Z) + Ny(Z, JX,Y)) + Ny(Y, 2, JX)

- —% (N;(JX,Y,Z) + N;(Z,JX,Y) + N;(Z,Y, JX))
so that the (0, 2)-component of equation ([[14) is written
f% (NJ(X,JY,Z)+ Ny (Z,X,JY) + Ns(Z,]Y, X)) = (T~ (X, JY, Z)+T~—(2, X, JY)+T~~(Z,JY, X)).
Using the fact that the map B € T — B+ U(B) € T*N ® s0o(T'N) is bijective[J, we obtain
1

T~ =-Nj.
TR

This completes the proof. (Il

Swith U(B)(X,Y,Z) = B(Z,X,Y) + B(Z,Y,X), for any B € T.
60See remark p.17.
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5.3.5 The example of a naturally reductive homogeneous space

In this subsection we consider G/K a reductive homogneous space and we denote by g =t & m
a reductive decomposition of the Lie algebra g.

Theorem 5.14 Let N = G/K be a Riemannian naturally reductive homogeneous space. Then
the canonical connection is a metric connection with skew-symmetric torsion (w.r.t. any naturally
reductive G-invariant metric h). Let us suppose also that N = G/K is endowed with some G-
invariant complex structure J (i.e. m is endowed with some AdK -invariant complex structure
Jo). If moreover one can choose a naturally reductive G-invariant metric h for which J is
orthogonaEL then (N, h, J) is an almost Hermitian G1-manifold and its characteristic connection
coincides with the canonical connection. Therefore, in this case its characteristic connection V
has a parallel torston VT = 0.

Proof. The naturally reductivity means exactly that the torsion of the canonical connection is
skew-symmetric. Then according to theorem , we deduce that (N, h, J) is Gi-manifold. This
completes the proof. O

Remark 5.16 In particular, we see that the Nijenhuis tensor is skew-symmetric. We can re-
cover that by saying that since the G-invariant complex structure is parallel with respect to the
canonical connection, then N; = 47~~ and moreover since T is a 3-form so is its component
T

By definition of (x-)stringy harmonicity and the expression of the torsion of V° in terms of the
Lie bracket, we have the following.

Proposition 5.20 Let N = G/K be a Riemannian homogeneous manifold endowed with a G-
invariant complex structure J. Let f: L — N be a smooth map, F: L — G be a (local) lift of
f and o = F~1.dF the corresponding Maurer-Cartan form. Then in term of a, the equation of
stringy harmonicity (w.r.t. V°) is written

1
d * g + [ A x| — §J0 [Jootm A JoOum],, =0
whereas the equation of x-stringy harmonicity is written:
1 1
d * am + [ A o] + 3 [Joom A am],, + ZJO ([Joom A Joatm],, + [@m A am],,) =0
where Jy is the complex structure on m corresponding to J.

5.3.6 Geometric interpretation of the maximal determined odd case.

In this subsection, we suppose that N = G/K is a (locally) (2k+ 1)-symmetric space, and we use
the notations and the conventions of @ In particular, we have defined the subspace m; C m,
for 1 < j < k (see subsection P.1.9). We will set m_; = m;, mjjop41 = m;, and mg = {0}, so
that m; is now defined for all j € Z.

61which means that denoting by G(m), the compact subgroup in GL(m) generated by Am(m) :=
{ladm (X)]m, X € m} C gl(m), and by (G(m),Jo) the closed subgroup generated by G(m) and Jy, then
(G(m), Jo)/G(m) is compact.
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Proposition 5.21 Let us suppose that N = G/K is a (locally) (2k+1)-symmetric space endowed
with its canonical almost complex structure J and its canonical connection V°. Then the (¢,€’)-
component of the torsion T of V° are given by

5is
T (X)Y) = - Z (1_7J) ([X‘““ij]miﬂ+[ij’Ymi]“‘iH)
i+j<k
1<i<G<k
i Oii
I——XYy) = - Z (1_7]) ([meymj]miﬂ+[ij’ymi]mi+j)'
i+j>k+1
1<i<j<k
T+_(X,Y) = - Z [ijaymi]mjfi
1<i<j<k
T7+(X7Y) = - Z [Xmi7ij]mj—i'
1<i<j<k

where X, Y € C(TN) with lifts Xm,Ym € C°(G,m), and T (X,Y) € C°(G,m) denotes the lift
of T (X,Y) € C(TN). An other possibility is to consider that X,Y € TN are tangent vectors
at some point y € N and that we have chosen g € G such that g.Go = y and that we have set
X = Adg(Xnw), and Y = Adg(Ym). Then the above equation, when written in the form A = By,
means in fact that we have A = Adg(Bmn).

Proof. This follows from the fact that the lift in G of the torsion of V is given by T(Xm, Yin) =
—[Xum, Yi]m, from the fact that the commutation relations [g%, gg;] - g%j implies the following
relations [m;, m;] C m;4,; & m;_;, and finally from the definition of J. O

Theorem 5.15 Let us suppose that N = G/K is a (locally) (2k + 1)-symmetric space endowed
with its canonical almost complex structure J and its canonical connection V°. Then the asso-
ciated mazimal determined system, Syst(2k,T) is the equation of x-stringy harmonicity for the
geometric map f: L — N: (VO)df + (JxT°)(f) =0. ]

Moreover, if we consider now that N = G/K is endowed with the almost complex structure
Jr = @?Zl(fl)j Jim,)» then this system is the equation of stringy harmonicity for the geometric
map f: L — N: (VO)'df +(J*-T°)(f) = 0.

Now, Suppose also that N = G/K is naturally reductiveﬁ. Therefore, the previous system is
exactly the Euler-Lagrange equation for the sigma model in N with a Wess-Zumino term defined
by the closed 3-form

1
H* = —dQ; + 7Ny,

Moreover, if N = G/K is endowed with the almost complex structure J*, the previous system is
exactly the FEuler-Lagrange equation for the sigma model in N with a Wess-Zumino term defined
by the closed 3-form

H = —dQy+ + J*Ny-.

Proof. The first point follows from theorem .6, proposition [5.20, and proposition f.21] Then
the second point follows from corrolary @ and proposition p.21. Let us precise that we apply

62Where we have removed the index ”g¢” which precises that the previous terms are computed with respect to
some Hermitian metric g on L.

63 And we choose_a naturally reductive G-invariant metric h for which 7 and thus J are orthogonal. See the
Appendix, lemma for the existence of such an metric.
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corrolary p.1| with the J-invariant decomposition TN = E* & E~, defined by E+ = @kj:l [m,],

j even

and B~ = @13‘:1 [m;]. Then according to proposition , this decomposition satisfies the
j odd

hypothesis of corrolary p.lf. Finally the two last points (Wess-Zumino formulations) follow then

from theorem and p.14. This completes the proof. (]

5.4 Stringy harmonicity and Holomorphic harmonicity

In this section, we will compare these two notions and prove that in the case of an almost complex
affine manifold, these are equivalent. Indeed, the stringy harmonicity w.r.t. an almost complex
connection V is equivalent to the holomorphic harmonicity w.r.t. a new almost complex connec-
tion V*. In particular, according to subsection , stringy harmonicity has an interpretation
in terms of holomorphic 1-forms.

Proposition 5.22 Let (N, J, V) be an almost complex affine manifold and (L, j.) a Riemann
surface. Let us set

Ve = V- (T2’O + T0,2)
vV = v-120
Then

o f: L — N is stringy harmonic w.r.t. V if and only if f is anti-holomorphically harmonic w.r.t.

to V°.

o f is x-stringy harmonic w.r.t. V if and only if f is anti-holomorphically harmonic w.r.t. to

V.

Proof. Since 720 + T%2 ¢ T and T?° € T, then 7V° (f) = 7V (f) = 7V(f), according to
proposition @ Moreover, we have

TV* - T 2T2,0 —_ *TQ’O + TO,Q + Tl,l
TV — T _ 2(T2’0 + TO,Q) _ 7(T2’0 + TO’Q) 47t

so that .
JIY =—JxT and JTV =-J-T,

where, of course, T, TV" and TV are respectively the torsions of V, V* and V*. We conclude
by using proposition @ and definitions @ and . This completes the proof. (I

Now, since V*J = 0, and according to theorem E, we have

Corollary 5.4 Let f: (L,j.) — (N,J,V) be a map from a Riemann surface into an almost
complex affine manifold. Then f is x-stringy harmonic if and only if

V' of =0,

i.e. 5]‘ is an anti-holomorphic section of T7 o L&c f*T'N, endowed with the holomorphic structure
defined by V*.

Proof. This follows from proposition above, and the theorem E (I
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Remark 5.17 We can also check the previous corollary by direct computations as in remark @
Remark 5.18 Let us remark that, in general, the metricity of the connection is not preserved
when one passes from V to V* (resp. V*). Indeed, if V is metric then V* is metric if and only

if 720 is a 3-form if and only if T?° = T** = 0, and therefore T = T%2. Therefore, if VJ = 0,
then (N, J, h) is nearly kéhler.

Let us conclude this subsection by the following:

Proposition 5.23 Let f: (L,j.) = (N, J, V) be a map from a Riemann surface into an almost
complex manifold with a connection V. Then

o f is stringy harmonic if and only if it is roughly harmonic w.r.t.
— N 1 )
V=fV+ §(J~T)(df 0 jL,.)-

o And f is x-stringy harmonic if and only if it is roughly harmonic w.r.t.

V= v+ %(J*T)(df 0jr,.).
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6 Generalized Harmonic maps into f-manifolds.

6.1 f-structures: General definitions and properties.
6.1.1 f-structures, Nijenhuis tensor and natural action on the space of torsions 7.

Let us consider (N, F) a f-manifold, i.e. a manifold endowed with a f-stucture (see defini-
tion P.1)). Let us set H = Im F and V = ker F, then we have TN = H & V. If we put P = —F2,
then P is the projector on H along V. Moreover PF = FP = F and F?P = —P. In particular,
J = Fj3 is a complex structure in the vector bundle H.

Let us denote also by g := Id — P the projector on V along H. We denote by X = XV + X" or
sometimes simply by X = XV 4+ X" the decomposition of any element X € TN.

In all the section E, we will consider the bundles H* and V* as well as all their tensor products
respectively, as subbundles of T*N and ®*T*N, k € N*, respectively. For example, for any tri-
linear form B € C(®3T*N), we will consider By xyxw as an element of C(T*N?) by identifying
it to B(P-,q-, P-).

Moreover, we will often identify a k-linear map with its expression in terms of the vectors
(X1,...,Xy) € TN*. For example, given B € C(®@3T*N), we will write ” let 3 € H* x H* x V* be
defined by B = B(Z?, X", Y")” instead of ” let B € H* x H* x V* be defined by B(X",Y" Z?) =
B(Z°, X" YY", for all X,Y,Z € TN”.

Notations We extend the notations and definitions of section @ and the begining of subsec-
tion , concerning there the complex bundle (T'N, J) (defined by a complex manifold (N, .J))
to the complex bundle (H,.J), defined in the present section by the f-manifold (N, F). Then all
the algebraic results of section @ -like corollary @ - can be extended to the complex bundle

.0

Definition 6.1 The Nijenhuis tensor Np of F' is defined by
Nrp(X,Y)=[FX,FY]|-F[FX,Y]|- F[X,FY] - P[X,Y],

where X,Y € C(T'N).

Then we obtain immediately ([B]])

Proposition 6.1 We have the following identities.

Np(¢X,qY) = —P[gX,qY] = PNp(¢X,qY)
qNp(X,)Y) = q[F X, FY] = ¢Np(pX,pY)
Np(qX,PY) = —F[¢X,FY]- PlgX,PY]

so that
Npyxy =Ry and NY=-Ry(F,F),

where Ry and Ry are the curvature of V and H respectively (in the sense of definition @) In
particular, NY(V,V) = NY(H,V) = {0} i.e

NH,V)CH and NWV,V)CH.
Moreover Np|yyxy = N}'{|V><H satisfies the following property
Np(X©, JY") = —JNp(X",Y")

i.e. Np(X", )% anticommutes with J.

640r to the Hermitian bundle (H, J, hy#) if (N, F) is endowed with a (compatible) metric h; see defintion @
below for a precise definition of a compatible metric.
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Definition 6.2 Let (N, F) be a f-manifold. Then for any B € T, we set
/ 1
B (X,Y) = = (' B(FX,FY) + eFB(FX,Y) + & FB(X,FY) - B(X,Y)).
and B>® := Btt, BULl .= Bt~ 4+ Bt and B%2 .= B~—.

_ o= VA |
Then, setting B = Bf;‘tz, we have PB®¢ = B¢ or in other words B®¢ = B%¢ — Z(BV(F~, F)—

BY), where the components B¢ are computed with respect to the complex structure J on .

As for the case of an almost complex structure (section ), we can define natural actions of
F on elements B € T:

F-B := B(F-,FF):=-B°
FoB = B(F--)+ B(-,F-)—FB(,-)
FeB = F-B—i—%F@(B—B)
FxB = %(F-B+F®B).

It is then important to remark that F - B = J - B, so that

- 1 _
FeB = J-B+§F®(B—B)
- 1 _
FxB = J*B+§F®(B—B).
Moreover, it is also useful to remark that F @ B — F OB = 4J - B~~ — +F (B — B), and

FeB—FxB=2J-B .

6.1.2 Introducing a linear connection.

Now, we introduce a linear connection and want to compare the vertical component of the torsion
with the vertical torsion.

We obtain immediately the two followings properties.

Proposition 6.2 Let (N, F,V) be an affine manifold endowed with a parallel f-structure (VF =
0). Then the subbundles H =Im F and V = ker F' are V-parallel.

Proposition 6.3 Let (N,V) be an affine manifold. Let us suppose that we have a V-parallel
splitting TN = H @&V, where H,V inherit the names of horizontal and vertical subbundles
respectively. Then the vertical torsion coincides with the vertical component of the torsion:

TV — TV,

where we use notations of section for TV, and the notations defined above (in the begining

of) for TV.

In a more general context we can relate TV and T as follows.
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Proposition 6.4 Let (N,V) be an affine manifold. Let us suppose that we have some splitting
TN =V &H, where H,V inherit the names of horizontal and vertical subbundles respectively.
Then the vertical torsion and the vertical part of the torsion satisfy the following relations

Tyuy = T\]{;xv and T ny = T\]?}-L/\V + 0"
where oV is the restriction to H A Vof the V-valued 2-form VVq¢(X,Y) — V¥q(Y, X).

Definition 6.3 The term R = Tﬁ_mv will be called the reductivity term.

Proposition 6.5 Furthermore, in the situation off proposition , we have the following equal-
ity:
T =@ ORG TV(Q'v Q)v

where ® = Ry is the curvature of H.

Proof of proposition @ and @ This is a straightforward computation. ]

Let X", Y" € C(H). Then for any f € C*°(N), we have V%, (fY") = fV%, Y+ (X" f)(Y")" =
fvath so that vath defines a bilinear map from H x H into V. Let ¥ be its skew-symmetric
part: \I/(Hl, HQ) = VUHIHQ — V%ZHL Then we have TV(Hl, HQ) = VUHIHQ — V%ZHl - [Hl, HQ]U
i.e.

T =W+,

Therefore,
Proposition 6.6 The following relation holds
IV=(U+®)®(R-0")&T"(¢,q)

Therefore TY = TV if and only if ¥ = 0 and o¥ = 0, which happens in particular if H is
V-parallel.

6.2 The f-connections and their torsion.
6.2.1 Definition, notations and first properties.

Let us come back to the case of a f-manifold (N, F).

Definition 6.4 A linear connection V, on a f-manifold (N, F), which preserves the f-structure,
i.e VF =0, is called a f-connection.

Then we obtain easily:

Proposition 6.7 Let (N, F,V) be a f-manifold endowed with an affine f-connection. Then the
torsion T satisfies the following identity

T(FX,FY)— FT(FX,Y) - FT(X,FY) - PT(X,Y) = —Ng(X,Y)

Therefore, we deduce the following.
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Corollary 6.1 Setting Nj = lejlﬂx"rt’ the torsion T (of a f-connection V on a f-manifolds
(N, F)) satisfies the following identities:

Ny = 4T3
THIX" V") - JTH (X" YY) = —JNFHX" YY) =—([JX"Y")" - JX" v )
TH(XV, JY") — JTH(X, V") = —JNFHX",Y") =—([Xv,JY"* — JXv, Yy"H)
V(X" Y") = —NY(FX" FY") =o(X,Y)
TH(X", YY) = NEXY")=Ryp(X",Y")

where X, Y € C(TN). Consequently, the following component of the torsion T\‘?)-wa T|7\-}L><V7
0,2 =
(T\Zw{) and [Tﬁ)‘x%, J} are independent of V.

Introducing a metric After having introduced a metric h on N, we want to characterize
the metric connections V which preserves F. More precisely, we want to find a necessary and
sufficient condition on the torsion 7" for V metric to be a f-connection. In a first time, we will
begin by characterizing the metric connections which preserve the decomposition TN =H &V,
then in a second time we will introduce the additionnal condition that the induced connection
on H preserves the complex structure .J.

Let us define some notations. In the following, since a metric is given we use the convention
defined in section f.3.1}: each T'N-valued bilinear form on N, B € C(T*N @ T*N @ TN), will be
identified (via the metric h) with the corresponding trilinear form. Moreover, we denote by 4
the bilinear form associated (via the metric k) to an endomorphism A € C(End(T'N):

QA(X,Y) = (A(X),Y), VX,Y €TN.

Then, under our convention, for any endomorphism A € C(T'N), V" A is identified to V"Q4.
Moreover, we set

Sym(B)(X,Y) = B(X,Y)+ B(Y,X), VX,Y TN,

forall Be C(T*N @ T*N @ TN).
Furthermore, let Ej, Es, E3 be vector bundles over N, then we set also S(E; X Fy X E3) =

S E; ® E; ® Ej, where we do a direct sum on the circular permutation of 1,2,3.
07,
Finally, to avoid any risk of confusion of the index ”h” denoting the metric in the notation of the

Levi-Civita connection V", with the same index in the notation for the horizontal component
X" of a vector X € TN, we will denote in all this section ﬂ the Levi-Civita connection by D:

D :=V".

6.2.2 Characterisitation of metric connections preserving the splitting.

Theorem 6.1 Let (N,h) be a Riemannian manifold with an orthogonal decomposition TN =
H V. Then a metric connection V leaves invariant this decomposition (i.e. H and V are
V-parallel) if and only if its torsion T satisfies

Tipxrxy = P, Tiyxyxu = Ry
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and
Sy (Taoen) (XU Y20 = Symagn (D ppypgr) (V" 27, X7)
Symy ey (Tavv) (XM Y7, 27) = Symy o, (D)) (V27 X7)

In particular, the components Symy, 4 (TWX%H{) and Symy, .y (T\Hx\/xv) are independent of
V.

Proof. According to remark [p.7, we have D =V — A = V — (T +U). Therefore Vg = 0 if and
only if
Dq=—[A,q. (115)
But <[A7 q](Xa Y)a Z> = A(Xa va Z)iA(Xv Yv ZU) = A(th Yva Zh)+A(XU7 Yva Zh)iA(Xha th Z’U),
A(X?,Y" Zv), and according to the characterization of the Levi-Civita connection:

—2((Dxnq)Y", Z%) = 2DxnY", ZY) = —Z° (X" V") + (X", Y, Z°) + ((Z°, X", ") + (X", (27, Y")
= X" Y"MZ)+ (—Dye X" +[Z2°, X", Y™ + (=D Y +[2°, Y], XM
= —®(X"Y" ZY)— (DxnZ°,Y") — (Dyn 2V, X")
= —®(X" Y Z%) - DQ,(X",Z°,Y") - DQ,(Y", Z, X"
= —®(X" YY" ZY) — Symy, 0 (DQ (X", Y Z7).

In the last line we have used the fact that D, is symmetric w.r.t. the two last variables (since
q is a symmetric projector). Therefore the condition ([L15) restricted to H x H x V is written
(T4 U)juxwuxy = @+ SymeH(DquxHxv)’ that is to say by identifiying respectively the
symmetric and skew-symmetric part (w.r.t. the two first variables) of the two hand sides of this
equality respectively, we obtain

Tirsnxy =@ and  Symyp (Tivsuxu) (X0, Y Z") = Upixan (Y, 2", X7)
= Symyges (Dpaerer ) (V" 2% X0, (116)

Moreover, since DS, is symmetric w.r.t. the two last variables and A is skew-symmetric w.r.t.
these two last variables, we see that the restriction to H x H x V and to H x V x H of
the condition ([L1§) are in fact equivalent. Furthermore, we have ((Dx.q)Y", Z") = 0 and
([A, q](X?,Y"), Z") = 0. Therefore, the restriction to S(H x H x V) of the condition ([L15) is
equivalent to ([[16).

Proceeding in the same way as above, we obtain that the restriction to S(V x ¥V x H) of ) is
equivalent to

Tivsxvsxn =Ry and  Symy,y (Tiaxvxy) (X" Y'Y, ZY) = Symy, .y, (Dﬂquvw) (Y, zv, xh.

Finally, we have ((Dxnq)Y" Z") = 0 = ([4,q|(X",Y"),Z") and ((Dx.q)Y",Z") = 0
([4,q](X",Y"), Z"). This completes the proof.

ol

Skew-symmetric torsion. Now, let us see under which condition on the Riemannian mani-
fold, there exists a connection preserving the splitting and with skew-symmetric torsion. It will
turn out that the existence of a connection preserving the splitting and of which the horizon-
tal component of the torsion Tjys is skew-symmetric does not imposes any condition on the
Riemannian manifold (N, h), but the skew-symmetry of the other components Tjs( x#xy) and
Tis(vxvx#) imposes constraints on the Riemannian manifold.
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Corollary 6.2 Let (N,h) be a Riemannian manifold with an orthogonal decomposition TN =
HDV. Then, the following statements are equivalent

(i) There exists a metric connection V leaving invariant the decomposition TN = H @V, such
that the following component of the torsion Tisyx# xv) is skew-symmetric, i.e. T|sxmxv) =
Skew (®).

(ii) For any metric connection V leaving invariant the decomposition TN = H @V, the compo-
nent of the torsion T\sxuxv) 5 skew-symmetric.

(iii) DQ‘Z\HxHxv is skew-symmetric w.r.t. the two first variables, i.e. Dqy 4 € C((A*H®V),
or equivalently DQq(P-, P-,q-) = +®.

(iv) DQq 35y w3 08 skew-symmetric w.r.t. the first and third variables, i.e. DQ,(PX,qY,PZ) =
~10(Z,X,Y).

(v) Skew (DQQ\S(HxHxv)) =0.

We will then say that (N, q,h) is of type H>V.

Corollary 6.3 Let (N,h) be a Riemannian manifold with an orthogonal decomposition TN =
HE V. Then, the following statements are equivalent.

(i) There exists a metric connection V leaving invariant the decomposition TN = H @V, such
that the following component of the torsion Tisxyx ) is skew-symmetric, i.e. Tiswxyxn) =

SkeW(Rv)

(ii) For any metric connection V leaving invariant the decomposition TN = H @V, the compo-
nent of the torsion T\syxvx) 5 skew-symmetric.

(iii) DQQ\vaxH is skew-symmetric w.r.t. the two first variables, i.e. Dg)y . € C((A2V*)oH),
1

or equivalently D2y (q-,q-, P-) = —5Ry.
(iv) D)y g5y 18 skew-symmetric w.r.t. the first and third variables, i.e. DQy(¢X, PY,qZ) =
%RV(Za Xa Y) .

(v) Skew (DQQ‘S(VWX%)) —0.
We will then say that (N, q,h) is of type VZH.

Proof of corollary and @ We have seen in the proof of theorem @ that for any metric
connection V, we have Vﬂqms = 0 and VQqu = 0, so that we have Vg = 0 if and only if
Vi saxnxy) = 0 and Vg sy xp) = 0, which is equivalent respectively to the conditions on
Tisxmxv)y = 0 and Tiswxyxw) = 0 respectively, described by theorem @ In particular,
we see that there always exists metric connection V leaving invariant the decomposition of
TN, which provides us the implication (ii) = (i). Moreover, a necessary condition for (i) is
Symyy 4 (DQ‘HHXHXV) = 0, and respectively Sym,,, (DQq|V><V><'H) = 0. Conversely if this
condition is satisfied, then according to theorem .1, (ii) is also satisfied (since T € T, then the
skew-symmetry of Tjs(zx2xV) (resp. T\S(VxVxH)) is equivalent to Symy,, 4 (TWX%X%) =0,
resp. Symly .y (T\Hx\/xv) = 0). Therefore we have proved the sequence of implications (ii) =
(i) = (iii)) = (ii), i.e. (i), (ii) and (iii) are equivalent. Concerning the equivalent reformulation
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of (i) and (iii), the former follows from theorem f.]] and the latter from the fact that according
to the proof of theorem @, the skew-symmetric part (w.r.t. the two first variables X,Y) of
D353 xy (vesp. DQQ\VxVxH) is 3@ (resp. —3Ry). The equivalence between (iii) and (iv)
follows from the symmetry of D), w.r.t. the two last variables. Finally, using the computation

done in the proof of compute theorem EI, we can compute

1 1
Skew (DQ,”S(HX%XW) = 5 (Skew(®) + Skew(U(P-, P-,q))) = 5 (Skew(®) — Skew(U (P, P-,)))
= Skew(U(P-, P-,q"))
and idem for S(V x V x H). This completes the proof. O

Remark 6.1 According to the previous proof, we see that if (N, g, h) is of type H?V, then for
any extension T' € C(T) of the skew-symmetric trilinear form Skew(®) € C (S(H* x H* x V*)),
the corresponding metric connection V satisfies Vs xmxy) = 0. In the same way, if (N,q,h) is
of type V2H, then for any extension T' € C(T) of the skew-symmetric trilinear form Skew(Ry) €
C(S(V* x V* x H*)), the corresponding metric connection V satisfies Vq 5wy = 0.

Definition 6.5 We will say that the (orthogonal) decomposition on the Riemannian manifold
(N, h) is reductive (w.r.t. the metric h) or that (N, q,h) is reductive if (N,q,h) is of type
H2V and of type V?*H. This is equivalent to say that there exists a metric connection V leaving
imvariant the decomposition TN =H &V, and with skew-symmetric torsion.

Proposition 6.8 (N,q, h) is reductive if and only if the trilinear map

Skew (D ) & Skew (D

qHXHXV Q|vwa)

is skew-symmetric.

Proof. An element a € C(H* @ H* ® V*) satisfies Skew(a) € C(A?H*) A V*) if and only if
a(X" Yh ZY) is skew-symmetric w.r.t. (X", V7). O

Proposition 6.9 Let (N, q,h) be a reductive Riemannian manifold. Let us suppose that is given
some metric connection V¢ on V. Then there exists a metric connection V on N preserving the
decomposition TN =V & H, with skew-symmetric torsion, and which coincides with V¢ on V if
and only if

1
(DY — V(X" YY, 2°) = —QRV(Y”,Z”,Xh) and (D" —V)jys € C(A®V*).
Proof. Let us suppose that such a metric connection V exists. Then we have D = V —
1
3T and thus (D — V) € C(A®*V*) and (DY — VO)(X", YV, ZY) = —§T(Xh,Y”,Z”) =

1 1
f§T(Y”, Zv, X" = 75RV(Y”, ZV, X", since T is skew-symmetric and V leaves invariant the
decomposition of T'N.

Conversely, if V¢ satisfies the above conditions , then let 5 € C(A’H*) and o = (DY — V)5 €
C(A3V*). Let us consider the 3-form

T = 5 @ Skew(®) @ Skew(Ry) @ a,

as well the corresponding metric connection V = D + %T. Then, since (N, q,h) is reductive,
according to theorem m, V preserves the decomposition of T'N. Moreover, by definition of V,
we have (V — V) rnxyxy = 0. This completes the proof. O
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A useful additionnal property. Let us add the following characterization of the type V*H
in term of the vertical torsion of the Levi-Civita connection.

Proposition 6.10 Let (N, h) be a Riemannian manifold with an orthogonal decomposition TN =
H®YV. Let TV be the vertical torsion of the Levi-Civita connection. Then, (N, q,h) is of type
VIH if and only if

SymVxV(Tﬁ-[xva) =0.

Proof Let H € H, V1,Va € V. Then

TY(H,V1,Va) + T (H,V2,V1) = (DypVi—[H,V1]",Va) + (D Va — [H, Va]", V1)

(DaVi — [H, V1], Va) + (DVao — [H, V5], V1)

(Dv, H,Va) + (Dy, H, V1)

= Symy,(DP)(Vi, H,V2) = Symy,,,(DP)(V1, V2, H)
—Symy,,,(Dq)(Vi, Vo, H).

Then we completes the proof by applying corollary @ (]

6.2.3 Characterisation of metric f-connections. Existence of a characteristic con-
nection.

Now, let us come back to the case of a f-manifolds. Then the condition VF = 0 is equivalent ot
the fact that V leaves invariant the decomposition TN = H @ V and moreover V*J = 0, where
V* is the connection induced by V on H. In some sense, we have to add to the conditions of
theorem @ those of theorem as well as the condition Vif.J = 0.

Definition 6.6 We will say that a f-structure F' and a metric h on a manifold N are compatible
if H LV and if J is an orthogonal complex structure on H endowed with the metric induced
by h. This is equivalent to say that F is skew-symmetric w.r.t. the metric h: F € so(TN), or
equivalently that I = J ®1dy is orthogonal: I*h = h. We will then say that (N, F,h) is a metric
f-manifold.

Theorem 6.2 Let (N, F,h) be a metric f-manifold. Then a metric connection V preserves the
f-structure F if and only if all the following statements hold:

VQr s =0 — Nj=4(Tpp)"” and Skew ((T‘HS)Q’0 - (T‘HS)“) = (d°Qppps) ™
VQFIHXHXV =0 VQQ\S(HXHXV) =0

VQF|S(H><7—L><V) =0 «— VQF|’H><V><’H =0 < T(XU,FYh,Zh) +T(XU7Y}L7FZ}L) _
VQFyxuxn =0 N(Xv,Y" Fz")

VQF|S(V><V><H) =0 <= VQ 0

IS(VXVXH)

Proof. We first notice that VQg(X", Y" Z¥) = (Vxn F)Y" Z%) = (Vxn(FY"),Z°) =
—VQ (X" FY" Z%). Therefore VQrgxuxy = 0 VQq 5 = 0. In the same way,
VQrpuxyxn =0 & Vquxva = 0. Therefore, according to the proof of corollary @, we

have proved the equivalence between the two boxes.
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Now, let us compute

T(XU, FY" 2"+ T(X*,Y" FZ") = (Vxo(FY") = Vpyn XV — [ X", FY"], Z")
+(Vxo Y = Vyn XV = [XV, Y], FZ")
= VQr(X",Y" 2" - vQ, (FY", X", Z") - VvQ,(Y", X", FZ") + Np(X*,Y" FZ")

so that if Vg (5/x3,xy) = 0 then we obtain the equivalence (Vg yx3xy = 0) < (T(X?, FYh ZM)+
T(XV,Yh FZh) = N(XV,Y" FZ").

We have also to compute that VQp(X?,Y", Z") = (Vx.F)Y?, Z") = —(FVx.Y?, Z") =
Vq(X?, YV, FZ"), also that VQpr (X, Y" Z¥) = —Vq(X", FY" Z¥), and that VQp (X", Y?, ZV) =

0. Therefore, according to the proof of corollary @, we have proved the equivalence (VQr | syxvxn) =
0) & (VQq 50xvxr) = 0)-

Furthermore, we can prove (by a straightforward but a little bit long computation) the following
formula generalizing equation ([LL]):

2DQR(X,Y,Z) = dQp(X,Y, Z) — dQp(X,FY,FZ)+ N(Y, Z, FX)
+®(Y,FZ,X)+ ®(FY,Z,X) - ®(X,FY,Z) - ®(FZ,X,Y)
+ Symy, (VR |y sxv) + Symy (VR v xyxp).  (117)
We deduce from this, that
2DQp(X", Y, Z") = dQp(Xh, Y Zh) — dQp (X", FY", FZ") + N(Yh, Z" FXh).

Moreover, V33 = 0 if and only if

1
DQFU.[B = 7§(T + U)|7-L3-

Therefore, we can proceed as in the proof of theorem to prove the equivalence concerning
the restriction to H3. This completes the proof. O

Remark 6.2 A priori, we could think that we can deduce from this theorem that in a met-
ric f-manifold, it could not exist any metric f-connection. Indeed, we see that the condi-
tion T(XV, FY" ZM + T(X?,Y" FZ") = Np(XV,Y" FZ") is compatible with the condition
Vqus(HX%XW = 0 if and only if

(2,0)+(0,2) (

SymeH(NFl\/xHxH) =2 {SymeH(Dquxyxy } thzthv) (118)

according to theorem @ In other words, the existence of some metric connection V such that
VQrswxmuxn) = 0 is possible if and only if equation () holds. Nevertheless, the existence
of some metric connection V such that VF|ys = 0 and VF|s3xyxy) = 0 always holds without
condition. But in fact, equation () also always holds.

Lemma 6.1 In a metric f-manifold (N, F,h), the following identity holds

} (2,0)+(0,2)

SymeH(NF\VXHxH) =2 [SymeH(DQq‘HXHXv (Yh,Zh,X”).

Any metric f-manifold (N, F,h) admits a metric f-connection.
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Proof. This can be checked directly by computation (use the characterization of the Levi-Civita
connection, as in the proof of theorem @) (I

Remark 6.3 In a metric f-manifold, there are several constraints on the component T}y, /x 3 of
(2,0)4(0,2) 1,1
) and Symy, 4 ([T\VXHXH] )

are determined. The only degree of freedom is on Skewy % ([TWX%”{] 1’1) which can be chosen

the torsion of some metric f-connection V: the components (TWX%X%

freely. Therefore, this is also the only degree of freedom of T|s(y x % x#), according to theorem @

Remark 6.4 A compatible f-structure F' on a Riemannian manifold (N, k) defines a reduction of
the orthogonal frame bundle of TN (which is of course a O(n)-bundle) to some U(2p) x O(n—2p)-
bundle, where n = dim N and 2p is the rank of F. Therefore a metric f-connection is nothing
but a connection on this U(2p) x O(n — 2p)-bundle, which always exists. This provides a new

proof of lemma .

Remark 6.5 If (N, F, h) is of type H2V, then Nppyxaxn is skew-symmetric w.r.t. the two last
variables.

Skew-symmetric torsion. Further, we are interested by metric f-connections with skew-
symmetric torsion. As we have done above we have to study first the condition of skew-symmetry
on each component of the torsion and then to group all the obtained conditions to obtain a global
condition on the metric f-manifold for the existence of metric f-connection with skew-symmetric
torsion.

Definition 6.7 Let (N, F,h) be a metric f-manifold. We define the extended Nijenhuis ten-
sor Np as the TN -valued 2-form on N (whose corresponding trilinear map is) defined by

Np = Np+®+Ry(Z°, X, Y") + Ry(Y?, 2%, XM).
We remark that NF‘S(VXvXH) = Skew(Ry) is always skew-symmetric.

Proposition 6.11 Let (N, F,h) be a metric f-manifold. Then the following statements are
equivalent.

(i) There exists a metric f-connection V (satisfying then VF = 0) with a torsion T such that
T072|S(HXH><V) is skew-symmetric.

ii) There exists a metric connection V, satisfying VF | suxuxy) = 0, with a torsion T such
IS( )
that TO’Q‘S(HX;[X\;) is skew-symmetric.

(iii) Np(FYh ZM XV) + Np(Y", FZ" X?) = Np(XV, Y FZ").
(iv) The extented Nijenhuis tensor Ng satisfies: NF|S(HX7{X1;) is skew-symmetric.

Proof. Since the condition ”TO*Q‘S(HX%X\;) is skew-symmetric” concerns only the subspace
S(H x H x V), then (i) and (ii) are equivalent. Moreover, we have

NF|S(7—[><7—[><V) = Npjsuxuxv) — Ne(F-, F-, q)

(according to the definition of Np and proposition )7 and this equality gives easily the equiv-
alence between (iii) and (iv). Now, it remains to prove the equivalence between (i) and (iv).
Let us first recall that
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Let us suppose (i). Then we have according to proposition @, that T(F-, F-,q¢)+T(F-,q-, F-)+
T(¢,F-,F)—T(,-,P-)=—Np and thus

AT = Ny~ T(,,q) = N~ &~ Tos ~ Tiwnmoy
and hence _4T|?S,?H><H><V) = —NF‘S(HXwa, which implies (iv).

Conversely, let us suppose (iv). Then we have to construct a trilinear map Tjs(x#xV), on
S(H x H x V), such that

(Ch): 74T‘%’?nyxv) is a 3-form, and

(Cy): the following conditions of theorem [.1] hold

Tipoxusy = O, Symyp (Tjysuxn) = Symyyon (DQ‘I|V><H><H) Yh, z" zv).

Indeed, for any trilinear map Tisuxuxv) € C(T), let us set Tjyypxn = S + A, where S, A
are resp. symmetric and skew-symmetric w.r.t. the two last variables. Then we can prove easily
that a necessary condition on S, A so that T|s(zx2xV) satisfies the required conditions (C1)-(C2)
above, is

S = Symgyy (Dﬂquyxv) (", 2" X") (1192)
5(270)-‘,—(0,2) = 0 (119b)
ACOHO2) (xv yh zhy = EO+O (yh gh xv) (119c¢)

We then see that the two equations on S are compatible according to (iv) and lemma , and de-
fines then uniquely S. Moreover the equation on A implies T'(X?, FY" ZM+T (X", Y" FZ") =
N(XV,Y" FZ"), according to (iv) (written in the form of (iii)) and ([19H). Therefore, we see
that, according to theorem 5.9, the conditions (C;)-(Ca) on T\s(rxxv) implies that VF| sy xauxv) =
0, for any metric connection V whose the torsion T' € C(T) is an extension of Tjs(x2xV)-

Now, we can verify easily that any trilinear map Tisxnxv) € T defined by Tj3x3xy = ® and
Tivxwuxn = S+ A with A, S satisfying ([L19), satisfies the required conditions (C1)-(C2). We
have then proved (ii). This completes the proof. O

Proposition 6.12 Let (N, F,h) be a metric f-manifold. Then the following statements are
equivalent.

(1) There exists a metric f-connection V (satisfying then VF = 0) with a torsion T such that
Tis(xHxV) 18 skew-symmetric.

(ii) There exists a metric connection V, satisfying VF|sxxuxv)y = 0, with a torsion T such
that Tis(xmxv) 15 skew-symmetric.

(iii) (N, q,h) is of type H?V, and NF‘S(HX%XW s skew-symmetric.

Furthermore, under these statements, for any such connection satisfying (i) or (ii), then T|s(2x 2 xV)
is unique (i.e. uniquely determined by the metric f-manifold (N, F,h)) and equal to Skew(®).
Conversely, any extension T € C(T) of this unique skew-symmetric trilinear form Skew(®) de-
fines a metric connection V, satisfying VF|s@#xmxv) = 0.

Proof. (i) and (ii) are equivalent for the same reason as in the proof of the previous proposition.
Moreover, (i) and (iii) are equivalent according to theorem f.9 and corollary p.4 Moreover, by
skew-symmetry and theorem @, we have Tsxxv) = Skew(®). This completes the proof. [J

We are led to the following definition.

138



Definition 6.8 We will say that a metric f-manifold (N, F,h) is reductive if (N, q, h) is reduc-
tive, where q is defined by F'.

We will say that a metric f-manifold (N, F,h) is reductively of type Gy if NF‘S(HXva) 18
skew-symmetric.

Now, let us turn ourself on the horizontal component H? of T N3.

Definition 6.9 We will say that a metric f-manifold is horizontally of type G; or that it is of
horizontal type G if one the following equivalent statements holds.

(i) The horizontal Nijenhuis tensor Nj is skew-symmetric.

2

(ii) There exists a metric f-connection V, such that (Tjys)"? is skew-symmetric.

(iii) There exists a metric connection V, satisfying VF s = 0, such that (Tj3s)%? is skew-
symmetric.

Proposition 6.13 Let (N, F,h) be a metric f-manifold. Then the following statements are
equivalent.

(i) (N, F,h) is horizontally of type G .

(ii) There exists a metric f-connection V, such that Tiys is skew-symmetric.

iii) There exists a metric connection V, satisfying VF |43 = 0, such that Ty is skew-symmetric.
|1 %

In this case, for any such connection satisfying (i) or (ii), then Tiys is unique (i.e. uniquely
determined by the metric f-manifold (N, F,h)). Conversely any extension T € C(T) of this
unique skew-symmetric trilinear form Tiys defines a metric connection V, satisfying VIF|ys = 0.

Proof. (ii) and (iii) are equivalent for the same reason as above. Furthermore, according to
theorem 5.9, if VF|3s = 0 and T}y is skew-symmetric, then Ny = 4(Tjy2)%? is also skew-
symmetric (according to corollary applied to the Hermitian bundle (#, J, hy)) and moreover
—(T33)** = (d°Qpjps)**, which proves the unicity of Tjys.

Conversely, if (i) is satisfied, then let T € C(T) such that (Tjys)%? = Nz, (Tju2)*"* =
—(d°Qpjps)**, and the other components being arbitrary. Then Tjys is skew-symmetric, and
the corresponding metric connection V satisfies VQp 55 = 0, according to theorem @ This
completes the proof. (I

Now, let us regroup the previous results to conclude.

Definition 6.10 A metric f-manifold (N, F, h) with skew-symmetric extended Nijenhuis tensor
Np will be sayed of global type Gy or globally of type G.

Theorem 6.3 A metric f-manifold (N, F, h) admits a metric f-connection V with skew-symmetric
torsion if and only if it is reductive and of global type G1 . Moreover, in this case, for any
a € C(A3V*), there exists a unique metric connection NV with skew-symmetric torsion such that
Tipasy = a. This unique connection is given by

T = (—dCQF + NF\HL‘) + Skew(@) + SkeW(Rv) + Q.
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Proof. The first assertion follows from propositions , , theorem @, corollary @ and
remark @ Then in this case, Tjs is entirely determined, according to proposition . More-
over, by skew-symmetry and theorem @, we have Tisyxwxv) = Skew(®) and Tisvxyxn) =
Skew(Ry). Now, let us determine Tiys. Since, V.= D+ %T, the equation VF = 0 can be written

DQp + l(T(~, F.)+T(G,,F))=0

2
so that
dQp = —F T
and thus dQpys = —J Mgz = 47 - (Tggs)™~ — J - Tiys = J-Nj—J- Ti3s. This completes the
proof. (I

Remark 6.6 In the particular case where V is a line bundle, (N, F,h) is an almost contact
metric manifold. Then in this particular case, the theorem @ above allows us to recover the
result of [LY], theorem 8.2.

Definition 6.11 On a metric f-manifold (N, F,h), a metric f-connection V with skew-symmetric
torsion will be called characteristic connection.

Corollary 6.4 Let (N, F,h) be a reductive metric f-manifold of global type Gi. Let us suppose
that is given some metric connection V¢ on the vertical subbundle V. There exists a metric
f-connection V on N with skew symmetric torsion, which coincides with V¢ on V if and only if

1
(D¥ — V(XM YY, Z2°) = —QRV(Y”,Z”,Xh) and (D" —V)ys € C(A®V¥).

In this case this connection V is unique and will be called the characteristic connection extending
or defined by V°.

Remark 6.7 In other words, in a reductive metric f-manifold of global type Gj, the set of metric
connection V¢ on the vertical subbundle V which can be extended to a characteristic connection,
is the affine space

1
DY = SRy(Y", 27, XMy 4+ c(Aa3v).

Proof of corollary @ This follows immediately from the theorem @, the proposition @
and the theorem @ O

Proposition 6.14 Let (N, F,h) be a reductive metric f-manifold of global type G1. Let ¥V be
some characteristic connection on N. Then the we have

dQp = -F T = F-Np—F-T—F Tisaxmuxv) + Tiswxvxn))
1
= F-Np—Fel— §F NTisrxmxv) + Tiswxvxn))-

Proof. We have seen (in the proof of theorem [p.3) that dQp = —F T, and that (—F &) s =
F-Np—F-T, moreover we have (—F &T)ys = 0, by definition of the action ' 5. This completes
the proof. (I
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A useful expresssion of the Nijenhuis tensor in term of the Levi-Civita connection.
By a direct computation, we prove:

Proposition 6.15 Let N, F, h) be a metric Riemannian f-manifold. Then we have

Np(X,Y) +dPq¢(X,Y) = (DpxF)Y — (DpyF) X + (DxF) (FY) — (DyF) (FX).

6.2.4 Precharacteristic and paracharacteristic connections.

Sometimes the condition of global type G; could be too much strong and it could happen that one
needs the existence (and unicity up to the V3-component of the torsion) of some characteristic
connection by supposing weaker conditions on the metric f-manifold (N, F, h).

Definition 6.12 Let (N, F,h) be a metric f-manifold of horizontal type Gi. Then any metric
f-connection V with a skew-symmetric component T\ys of its torsion, will be called a horizontal-
characteristic connection.

Moreover, if we suppose that (N, F,h) is also of type V*H, then a metric f-connection V with
skew-symmetric components Tiys, Tisvxyxwn) and Tjys of its torsion, will be called a prechar-
acteristic connection.

Remark 6.8 Let us remark that in a metric f-manifold of horizontal type G;, horizontal-
charactersitic connections always exist, and the component T} of the torsion is unique. More-
over, if we suppose that (N, F, k) is also of type V?H, then precharacteristic connections always
exist and the components Tjxs and Tisyxvx#) are unique.

The following properties will hold for the horizontal curvature in all the examples of interest for
us.

Definition 6.13 Let (N, F) be a f-manifold. Let A€ CCH* @H*®@V), BeC(H*@V*QH),
and C € C(V* @ H* @ H). Then we will say respectively that A, B or C is pure if respectively

(1) A(JX,Y) = A(X,JY), VX,Y € H.
(i) B(JX,Y)=—JB(X,Y),VX € H,Y € V.
(iii) C(X,JY)=—JB(X,Y),YX €V,Y € H.

If (N, F) is endowed with a compatible metric h, then this means that A, B or C considered as
element of C(H* @ H* ®V), satisfies respectively AV =0, B =0, C11 = 0. Moreover, we will
say that A, B or C resp. (considered as trilinear forms) is skew-symmetric in H x H if resp. A
is skew-symmetric w.r.t. the 2 first variables, B w.r.t. the first and third variables, and C w.r.t.
the 2 last variables.

Let us remark that Ngjyys <y is pure by definition of N (see proposition @), and skew-
symmetric in H x H if (N, F, h) is of type H?V (see remark p.5).

Definition 6.14 e (N, F,h) will be called almost of type H?V if one of the following equivalent
statements holds

(1) Symyy .y (DquX%Xv) is pure.
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(i) Symyy, sy (Nepwsasn) = 2Symy, (DQWXHXV) (Y, 20, XV,
o If moreover (N, F,h) is of type V>H, then we will say that it is almost reductive.

Remark 6.9 We remark that if (N, F,h) is of type H?V then it is almost of type H?V, and
therefore if it is reductive then it is, in particular, almost reductive.

Theorem 6.4 A metric f-manifold (N, F,h) admits a precharacteristic connection V such that
the component Tjy x31x3 of its torsion is pure if and only if it is almost reductive and horizontally
of type G1. Moreover, in this case, for any o € C(A3V*), there exists a unique precharacteristic
connection V such that the component Ty x3x# of its torsion is pure, and such that Txsy = «.
This unique connection is given by

T=(—dOUp + NF\H3> + T‘S(Hxﬂxv) + Skew(Ry) + a.

1
where Tis(xuxv) = @ + §(NF(XU7thzh) — Np(Y?, X", Z1)).
Moreover if we impose also the component Ty xyxn to be skew-symmetric in H x H, then this
is possible if and only if (N, F,h) is reductive and of horizontal type Gy .

Proof. Concerning the components in H?, S(V x V x H) and V3, we can proceed as in the proof
of theorem @ Concerning the component in S(H x H x V), use the identity T'(X", FY" Z")+
T(X°, Y FzZh) = N(XV,Y" FZ") from theorem @ and the identity Tjyxpxy = ® from
theorem @ This completes the proof. (Il

Definition 6.15 On a metric f-manifold (N, F,h), a precharacteristic connection V such that
the component Ty x3 of the torsion is pure, will be called a paracharacteristic connection.

Proposition 6.16 Let (N, F,h) be a reductive metric f-manifold of global type G1. Then the
paracharacteristic connection (defined by some o € C(A3V*)) coincide with the characteristic
connection (defined by the same o € C(A®V*)) if and only if the horizontal curvature ® is pure.

Proof. According to theorems @ and @, we only have to prove that the components T)s# x# x V)
of the torsions of the two connections coincide if ® is pure. But, since ® is pure, the component
Tis(rxmxv) = Skew(®) of the characteristic connection is such that T}y 3;x is pure, and there-
fore by unicity of the paracharacteristic connection, the two connections coincide. Conversely, if
they coincide, then Skew(®)|y 3« is pure, i.e. ® is pure. This completes the proof. O

The Linear representations of the curvatures. Using the metric i, we have canonical
isomorphisms A?H* 22 so(H) and A%V* = 50(V). Let us denote by p € so(H)®V* and o € s0(V)®
H* respectively, the elements corresponding to ® and Ry respectively under these isomorphisms:

(p(V)H1, Hz) = (®(H1, H2), V), Hi,Hy e H,V €V, (120)

and
(c(H)V1, Vo) = Ry(V4, Vo), H), Vi,Vo eV, H € H. (121)

To do not weigh down the notation, we denote J = .J. Let us introduce the horizontal curvature
operator :

R(X,Y)Z = p(®(X,Y))Z.
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as well as its derivation term
AX,Y)=R(JX,Y)+ R(X,JY) - [J,R(X,Y)].

(which vanishes if and only if J is a derivation of R hence its name). We denote by ® = &) +&(-)
the splitting of ® according to the eigenspace decomposition of the endomorphism of A?°H* ® V
defined by B+ B(J-,J-), i.e.
q)(&)(j., J) = c®©)

In other words, ®(*) is the (1,1)-type part of ® whereas ®(~) is the part of ® of type (2,0) +
(0,2). Under the isomorphism A?H* = so(H), to this, corresponds the decomposition p =
pt + p~, where Jp*J ! = £p°, according to the splitting so(H) = s0, (H) ® so_(H) of so(H)
following its J-commuting and J-anticommuting parts. Then, this being done, we can define the
corresponding curvature operator and antiderivation terms:

R® = p*(@®®) and A®(X,Y)=ROJX,Y)+RE(X,JY)-[J,R®(X,Y)).
We remark that A*) =0 and A)(X,Y) = 2R)(X,JY) —2J o R~(X,Y).

Remark 6.10 e Let us remark that ® is pure if and only if p anticommute with J: p(V)J =
—Jp(V),VV € V.

e Furthermore, the condition that N FIS(HxHxV) 1S skew-symmetric can be expressed in terms
of the linear representations introduced above. Indeed, according to proposition —(iii), this
condition can be written: ®(Hy, JHo,V)+®(JHy, Hy,V) = Np(V, Hy, JHy), for all Hy, Hy € H
and V € V. This last equation is then equivalent to:

[p(V), 7] = 7jNF(V)7 vV e Va
where we have set (Np(V)Hy, Hs) := Np(V,Hy, H2). This means that p= (V) = 2Np(V),
VYV € V. We will see that this condition could happen to be very strong, for example in the

twistor bundles (see [6.4.7).

6.2.5 Reductions of f-manifolds

Definition 6.16 A g-manifold (N, q) is a manifold endowed with a linear projector ¢ € End(T'N),
i.e. with a splitting TN =V @ H. We will say that q is a q-structure. Moreover, we will say
that (N, q) is associated to the f-manifold (N, F) if q is associated to F: i.e —F? =1d — q, or
equivalently ker F =V and Im F' = H.

A metric ¢-manifold (N, q,h) is a g-manifold endowed with a metric h for which q is orthogonal,
or equivalently the splitting TN =V & H is orthogonal.

Definition 6.17 A map iy: (NY,q") — (N,q) from a g-manifold to another one is called a
g-tmmersion if it is an immersion which satisfies

(iv)*¢=¢". (122)

Then (NV,q") is g-immersed in (N,q). If iy is injective we will say that (NV,q") is a q-
submanifold of the g-manifold (N, q), and that iy is a g-imbedding. Moreover we will say that
iy (NY,¢¥) = (N, q) is a reduction of g-manifolds, or that (NV,q") is a reduction of (N,q), if
iy 18 a q-imbedding and the vector bundles HY and H have the same rank that is to say

Hine = H. (123)
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A map iy: (NY,q",hY) — (N,q,h) between two metric g-manifolds is called a q-isometry if
it is a g-immersion and an isometry. If iy is injective we will say that (NV,q") is a metric
g-submanifold of the metric g-manifold (N, q), and that iy is a isometric g-imbedding. If iy
is moreover a reduction of qg-manifolds, we will say that iy is a reduction of metric g-manifolds.
A map i,: (NV,F¥) — (N, F) from a f-manifold (N, FV) into another one (N, F) is called a
f-tmmersion if it is an immersion which satisfies

(iy)"F = F". (124)

When i, is also injective, we will say that (NV, FY) is a f-submanifold of (N, F) and that iy is a
f-imbedding. Moreover we will then say that i,: (NV, FV) — (N, F) is a reduction of f-manifolds
or that (NV, FV) is a reduction of (N, F) if the vector bundles HY =Im F¥ and H = Im F have
the same rank that is to say H|nv = H".

A map iy: (NY,F¥,hY) — (N, F,h) between two metric f-manifolds is called a f-isometry if
it is a f-immersion and an isometry. If iy is injective we will say that (NV,FY) is a metric
f-submanifold of the metric f-manifold (N, F), and that iy is a isometric f-imbedding. If iy
is moreover a reduction of f-manifolds, we will say that iy is a reduction of metric f-manifolds.

Remark 6.11 ([[2J) means that i, sends the splitting TNV = #¥ & V" into the splitting TN =
H & V. In other words, the former is the trace on TNV of the latter. It can be written also in
the following form (which suggests the definition of holomorphicity)

diy 0 q" = qodiy.

() implies (), so that a f-immersion is in particular a g-immersion. Moreover a reduction of
(metric) f-manifolds is a reduction of the corresponding (metric) g-manifolds. Remark also that
() means simply that i, is a f-holomorphic map from (NV, FV) to (N, F): diyo FY = F odi,.

Lemma 6.2 e Let iy: (NV,q¥) — (N, q) be a g-immersion. Then we have
(iv)"® =®" and (iv)*"Ry = Ryv
where ®V is of course the curvature of the horizontal subbundle H" .
o Letiy: (NY,FV) = (N, F) be a f-immersion. Then we have
(iv)*Np = Npv
Definition 6.18 Let iy: (NV,hY) — (N,h) be a isometry between two Riemannian manifolds.
Let V be a linear connection on N. The projection on NV of V is the connection V¥ on NV

defined by }
(VY,Z)=(VxY,Z) VX,Z TN, Y € C(TNY)

where Y € C(TN) is some extension of Y.

Let (E,h) — N be a Riemannian vector bundle endowed with a linear connection V. Let N¥ C N
be an immersed submanifold and E¥ — NV be a vector subbundle of E|nv. Then we define
analogously the projection of V on EY.

Lemma 6.3 If VV is the projection of V then their respective torsion 3-forms are related by

<TV"(., ')a > = (iv)*<Tv('a ')a >
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Lemma 6.4 e Letiy: (NV,hY,q¥) — (N, h,q) be a g-isometry.

(i) Then the Levi-Civita connection DV of (N,h") is the projection on NV of the Levi-Civita
connection of (N, h).

(ii) The following identity holds:

D¥Qqe = (iv)" (D)
o Letiy: (NV,hY,FV) — (N,h,F) be a f-isometry. Then (iy)*Qp = Qpv.

Theorem 6.5 Leti,: (NV,hY,F¥) — (N,h,F) be a f-isometry.

o Then if (N, F,h) is horizontally of type Gi, resp. of global type Gi1, resp. almost reductive,
resp. reductive, then so is (NY, FV hY).

e Moreover, if (N, F,h) is horizontally of type G1 and almost reductive, then the projection
on NV of its paracharacteristic connection (defined by some o € C(A3V*)) coincides with the
paracharacteristic connection of (NY,FY hY) (defined by (iy)*a € C(A3(VY)*)). In the same
way, if (N, F,h) is reductive and of global type G1, then the projection on NV of its character-
istic connection (defined by some o € C(A3V*)) coincides with the characteristic connection of

(NY,FY, hY) (defined by (iyv)*a).

Proof. The first assertion follows from lemmas .9 and [.4. The second assertion follows from
theorems @ and @, and lemmas and @ This completes the proof. (]

Definition 6.19 Let E — N be a vector bundle endowed with a linear connection V. Let
NY C N be an immersed submanifold and EV — N be a vector subbundle of E\nv. We will way
that V is reducible in EV if EV is V-parallel, that is to say parallel w.r.t. the induced connection
on E\yv. Then the induced connection on EV will be called the reduction of V in EY.

Remark 6.12 If E =TN and EY = TNV then we recover the usual definition of reducibility of
linear connection.

Lemma 6.5 Ifi,: L — N is an immersion and V"V the reduction of V then their torsion 2-forms
are related by
V' = (iy)*TY

Proposition 6.17 Let iy: (NV,hY, F¥) — (N, h, F) be a reduction of metric f-manifolds. Let
us suppose that the vertical component DV of the Levi-Civita connection of (N,h)is reducible
in V¥. Then the Levi-Civita connection of (N,h) is reducible in NV and its reduction is the
Levi-Civita connection DV of (N, hY).

Definition 6.20 Let (N, q,h) be a metric g-manifold. We define the affine space of compatible
vertical connection by

1
Con(V) = {D” - 5RV(Y”, A G +C(A3V*)} :
If (N,q,h) is associated to a metric f-manifold (N, F,h) which is horizontally of type G1 and
almost reductive (respectively reductive and of global type Gy ) then this set corresponds to the set

of metric connection V¢ on the vertical subbundle V which can be extended to a paracharacteristic
connection (respectively a characteristic connection), (see remark @)

Remark 6.13 If Ry = 0, then DV € Con(V).
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Definition 6.21 Leti,: (NY,hV,FV) — (N, h, F) be a reduction of metric f-manifolds. We will
say that iy: (NV,hY,F¥) — (N,h, F) is a complete reduction of metric f-manifold if there
exists V¢ € Con(V) which is reducible in V.

More generally, we define analogously a complete reduction of metric q-submersions.

Proposition 6.18 Let iy: (NY,q",hY) — (N,q,h) be a reduction of metric g-manifolds. If
Ve e Con(V) is reducible in VY, then its reduction is also in Con(VV).

Proof. According to lemmas .9 and .4 and definition f.20, the projection of Con(V) on V" is
Con(VY). This completes the proof. O

Proposition 6.19 Let (N, q,h) be a metric g-manifold, and f: L — N be a map from a Rie-
mann surface in N. Then Try,(V°d’ f) does not depend on the choice of V¢ € Con(V).

Proof. The difference between two elements of Con()) is in C(A3V*).

Proposition 6.20 Leti,: (NV,hV,FV) — (N, F,h) be a complete reduction of metric f-manifolds.
Let V¢ € Con(V) reducible in V¥, and V&V its reduction. Then if (N, F,h) is horizontally of
type G1 and almost reductive (respectively reductive and of global type Gy ), its paracharacteristic
connection (respectively its characteristic connection) extending V¢ is reducible to the parachar-
acteristic connection (respectively the characteristic connection) in (NV, hY, FV) extending V.

Proof. This follows from theorem @, equation (), and proposition . This completes the
proof. (Il

Therefore, according to proposition , we deduce that

Proposition 6.21 Leti,: (NV,hV,FV) — (N, h, F) be a complete reduction of metric f-manifolds.
Let us suppose that (N, F, h) is horizontally of type G1 and almost reductive. Let f: L — NV be
a map.

e The tension field of f w.r.t. to one paracharactersitic connection V of (N, h, F) coincides with
the tension field of f w.r.t. to any paracharactersitic connection of (NV,h¥, FV).

o In the same way, if (N, F, h) is reductive and of global type Gy, then the tension field of f w.r.t.
to one charactersitic connection ¥V of (N, h, F') coincides with the tension field of f w.r.t. to any
charactersitic connection of (N, hY, FV).

6.3 f-connections on fibre bundles

Here, we consider the case where the vertical subbundle is the tangent space of the fibres of a
fibration (or more generally a submersion) 7: N — M, i.e. V = kerdn. Let us first remark that
in this case Ry = 0, which leads to immediate simplifications in the preceding results (obtained

in section [5.2).

Convention In all the next of the paper, all the submersions 7: N — M are supposed to be
surjective (i.e. the open set m(N) coincides with M).

6.3.1 Riemannian submersion and metric f-manifolds of global type G;.

Proposition 6.22 Letw: (N,h) — (M, g) be a Riemannian submersion, over which we consider
the natural orthogonal decomposition: TN =V @ H, where V = kerdn and H = V*. Denote
by D and D9 respectively the Levi-Civita connections of (N,h) and (M, g), respectively. Let

D9 be the connection on H defined by the lift of D9: D% B = (dmjy) (D% m.(B)) € H for all
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A,BeC(TN).
Let us suppose that (N, q,h) is of type V*H. Then the horizontal component of the Levi-Civita
connection in N is related to D9 by the following formula:

(DAB, H) = (DB, H) + 1 (B(A, H, B") + ®(B, H, A"))
forall A,B € C(TN) and H € C(H).
Proof. Let us set
SM(A,B) = n.(DaB) — DY%(n.B), YA,B¢€C(TN).

Then it is easy to see that S™ is in fact a tensor, i.e. SM € C(T*N @ T*N @ 7*TM). Let
A,B € TN and H € H, and let us extend these to vector fields, denoted by the same notations,
such that the horizontal components of these extension are projectible: there exist vector fields
A, B, H on M such that

mA=Aon,m,B=Bomn,H=Hon.

Using the fact that hjy 3 = 7*g, the characterization of Levi-Civita yields:

2(SM(A,B),m.H) = 2h(DsB,H)—2g(D%B),H)or
= AWBY" H)+ B.h(A", H) — H.h(A, B) + h([A, B], H) + h([H, A], B) +
— (A.g(B,H) + B.g(A, H) — H.g(A, B) + g([A, B], H) + g([H, A], B) +

= —H-(qA,qB)+(q[H, A],qB) + (q[H, B, qA)

= —(D%(qA),q¢B) — (qA, Dy (¢B)) + (q[H, A], ¢B) + (q[H, B], ¢A)
= (TY(A,H),B") + (T"(B,H), A")

= =Symy, o (TYuypxy) (H, A, BY) + ®(A", H, B) + ®(B", H, A”)

where we have used in the last line T‘Hxﬂ = ® (see proposition @) We conclude by using

proposition . This completes the proof. ([
Remark 6.14 By a direct computation using the characterisation of Levi-Civita, we can prove
(Dxo Y™, ZM) = %@(Yh,Zh,X”) + %symﬂXH (VQqaxvsn) (2" X0 Y + (X2, Y™, Z")
Then according to the previous proposition, we obtain
(D% Y", 2") = %Symmy (Vuppxva) (27 X5, V") + (XY, 27)

Moreover, this equation still holds if we replace D9 by any metric connection VM on M, since

then (D9 — VM) is a horizontal trilinear form.

Proposition 6.23 Let w: (N,h) — (M, g) be a Riemannian submersion, with the same nota-
tions and definitions as in the previous proposition. Let us suppose that some metric connection
V¢ onV is given, and denote by T€ its vertical connection.

Then the vertical component of the Levi-Civita connection on N is given by

1
<DAva> = < quv, V> + 5 (B(Avavvv) - (I)(Ahthvv) - RZ(Ah,BU,V) - Rg(Bhv‘/vAv))

147



where

B(Vla%a‘/g) - _TC(Vla‘/Qa‘/?)) - UC(Vl;V2;V3) - _T(/(‘/la‘/Qa‘/?)) +TC(V13‘/3)‘/2) +TC(‘/2)‘/3)V1)
RS = SkeWVXV(T\CHXVXV) and RS = Symva(Tﬁvaxv)-

Proof. Let us set SY(A4, B) = q(DaB) — V(¢B) for all A, B € C(T'N), this defines a element
SY € C(T*N ®@T*N ® V. Then let A,B € TN and V € V, and let us extend these to vector
fields, denoted by the same notations, such that the horizontal components of these extension
are projectible: there exist vector fields A, B on M such that

T A= 1‘_107T,7T*B = BOﬂ',ﬂ'*V =0.
Then using the characterisation of the Levi-Civita connection, we have
2(SV(A,B),V) = 2(DaB,V)—2(V4B",V)
= A-(B",V)+B-(A", V) -V .(A”, BY)
<Ava [BU, V]U> + <BU’ [Va A]v> + <V’ [A’ B]v> - 2< EBU’ V>
V. g(mA,mB) — g(m. A, 7. [B, V]) + g(m. B, m [V, A])
= (V4B"+VGAY —2V4BY + [A, B, V) 4+ (B", V4V — V{ A" + [V, A]")
+<VCBV - V;BU - [Ba V]Uv Av>
= (T%B,A),V)+ (T°(A,V),B") +(T°(B,V), A").
Then we complete the proof by using proposition EI (I

Remark 6.15 The results of that is that
2(D = V)uxvxy = R§
2(D — V) vxuxy = RUB"V,AY)

so that (D — V)| swx) = 0 if and only if the reductivity term T|C\;x7-t vanishes, and in this case
the vertical component of the Levi-Civita connection D is given by

1
(DAB,V) = (V4B V) + 3 (B(A*,BY,V) — (A", B",V))

and we recover the corresponding relation in homogeneous fibre bundles of theorem [£.d, since
in a homogeneous fibre bundle we have Tﬁ)x% = 0. Moreover, from these considerations and
proposition , we deduce the following.

is inde-

Corollary 6.5 The symmetric component of the reductivity term, SymVxV(Tfova)’

pendent of V¢ and vanishes if and only if (N, q, h) is of type V*H. Moreover, the reductivity term
T3 vanishes if and only if (N,q,h) is of type V*H and (D — V) jyxyxy = 0. We will then
say that (N,q) is VCe-reductive. In particular, if we take V¢ = DV, the restriction to V of the
vertical component of Levi-Civita, then the DV-reductivity means that (N, q, h) is of type VZH.

Applying propositions , , we obtain:

Proposition 6.24 Let w: (N,h) — (M,g) be a Riemannian submersion. Let us suppose that
there exists some metric connection V¢ on V for which (N, q) is V¢-reductive. Then, w.r.t. the
decomposition TN = H®V, the Levi-Civita connection in N admits the following decomposition:

ou- (3 34000 )
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where, let us recall it, p is defined by () In particular, this decomposition holds for homoge-
neous fibre bundles.

Remark 6.16 We see that according to this decomposition of Levi-Civita, we have Dqy;ypxy =
1®, so that the V¢-reductivity implies that (NN, g, h) is of type H*V. In particular let us take
V¢ = D" restricted to V, then the DV-reductivity means that (N, q, k) is of type V?H, and thus
we see that the type V2H implies the type H?V.

Corollary 6.6 Let7: (N, h) — (M, g) be a Riemannian submersion, endowed with its canonical
orthogonal splitting TN =V @ H. Then if (N,q,h) is of type V>H then it is also of type H*V
and thus it is reductive. In particular, if V can be endowed with a metric connection V¢ with a
vanishing reductivity term TfVX%, then (N, q, h) is reductive. In particular, a homogeneous fibre
bundle is reductive.

Corollary 6.7 Letw: (N,h) — (M, g) be a Riemannian submersion, endowed with its canonical
orthogonal splitting TN =V @& H. Let us suppose that H is endowed with an orthogonal complex
structure, that is to say N is endowed with a metric f-structure compatibleEI with the previous
splitting.

Let us suppose that there exists some metric connection V¢ on'V for which (N, q) is V¢-reductive,
and that vag, is skew-symmetric. Then the following statements are equivalent

(1) There exists a characteristic connection on (N, F,h).
(ii) (I, F,h) is of global type Gi.
(iii) The canonical connection V¢ can be extended to a characteristic connection.

(iv) There exists a Hermitian connection V* on H such that V := V¢ @ V™ has a skew-
symmetric torsion.

In particular, these equivalences hold when w: (N,h) — (M,g) is a homogeneous fibre bundle
with a naturally reductive fibre H/ K.

Remark 6.17 In other words, if (N, g, h) is of type V?H, then the existence of a characteristic
connection is equivalent to the global type G;, and in this case, the set of metric connections V°
on the vertical subbundle V which can be extended to a characteristic connection, is the affine
space

DY + C(A*V*).

Proof of corollary @ Since, according to corollary @ , the VCreductivity implies the
reductivity, then (i) < (ii) according to theorem [.J. Moreover the equivalence (i) < (iii)
follows from corollary 5.4 and remark [.15. Finally, the equivalence (iii) < (iv) is obvious. This
completes the proof. (I

We can rewrite the proposition @ for paracharacteristic connections.
Corollary 6.8 Letm: (N,h) — (M, g) be a Riemannian submersion, endowed with its canonical

orthogonal splitting TN =V @& H. Let us suppose that H is endowed with an orthogonal complex
structure, that is to say N is endowed with a metric f-structure compatibleﬁl with the previous

656. ker F =V and Im F = H.
66ie. ker F =V and ImF = H.
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splitting.
Let us suppose that there exists some metric connection V¢ on'V for which (N, q) is V¢-reductive,
and that vag, is skew-symmetric. Then the following statements are equivalent

(1) There exists a paracharacteristic connection on (N, F,h).
(ii) (N, F,h) is of horizontal type G .
(iii) The canonical connection V¢ can be extended to a paracharacteristic connection.

In particular, these equivalences hold when w: (N, h) — (M, g) is a homogeneous fibre bundle
with a naturally reductive fibre H/ K.

6.3.2 Reductions of f-submersions

Definition 6.22 We will say that w: (N,q,h) — (M, g) is a metric g-submersion if w: (N, h) —
(M,g) is a Riemannian submersion and if (N,q,h) is the metric g-manifold defined by the
orthogonal spitting TN = H &V, with V = kerdr and H = V*.

Definition 6.23 e A map 7: (N, F) — M from a f-manifold (N, F) to a manifold M is called
a f-submersion if it is a submersion and ker F' = ker dmr.

o A map m: (N,F,h) — (M, g) from a metric f-manifold to a Riemannian manifold is called a
metric f-submersion if m: (N,h) — (M, g) is a Riemannian submersion and if w: (N, F) —
M is a f-submersion.

Remark 6.18 Since F'is compatible with h, a metric f-submersion is also a metric g-submersion:
the splitting defined by F' coincides with the orthogonal splitting defined by the Riemannian sub-
mersion.

Remark 6.19 A metric f-submersion 7: (N, F, h) — (M, g) is a metric g-submersion 7: (N, h) —
(M, g) with an orthogonal complex structure J € C(X(n*TM)) ~ C(X(H)).

Definition 6.24 Let m1: (N1, F1) — My and 7a: (Na, Fy) — My be two f-submersions. Then
a map ¥: (N1, F1) — (Na, Fy) is a morphism of f-submersions if it satisfies the following con-
ditions

(i) ¥ is f-holomorphic: d¥ o Fy = Fy 0 dV¥
(ii) U is a morphism of submersion: there exists a map ¥: My — M such that mgo ¥ = omy.

If My = M5 and ¢ = 1d, we will say that V is a morphism of f-submersion over M.

Definition 6.25 e A morphism of metric f-submersion is a morphism of f-submersion which
is also an isometry.

o A reduction of f-submersion is a morphism of f-submersion which is also an injective immer-
stom.

o A reduction of metric f-submersion is a morphism of metric f-submersion which is injective.
We will then say that it is a complete reduction of metric f-submersion it is a complete reduction
of metric f-manifolds.
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Definition 6.26 e We will say that w: (N, F) — M is a f-fibration if it is a f-submersion and
a fibration.

o We will say that w: (N, F,h) — (M, g) is a homogeneous fibre f-bundle if w: (N, h) — (M, g)
is a homogeneous fibre bundle and w: (N, F,h) — (M, g) is a metric f-submersion.

Proposition 6.25 Let m: N — M be a homogeneous fibre bundle. Then a homogeneous fibre
subbundle w: NV — M, of m: N — M defines a reduction of homogeneous fibre bundleEl if and
only if the inclusion iv: NY — N is a reduction of g-manifolds. Moreover, a metric reduction of
homogenous fibre bundle is always a complete reduction.

Proof. We have seen in subsection that m: NY — M is a reduction of homogeneous fibre
bundle if and only if the equation ([123]) holds. This proves the first assertion. The second one
follows from (@), lemma EI, and the fact that according to subsection , the connection V¢
leaves invariant the subbundle V", so that DV is reducible inVV. This completes the proof. [

Therefore, we obtain, more particularly,

Proposition 6.26 In the same situation as in proposition , let us suppose that the homoge-
neous fibre bundle m: N — M admits an orthogonal complex structure J € C(X(n*TM)) defin-
ing then a metric f-structure and therefore a structure of homogeneous fibre f-bundle. Then
the homogeneous fibre subbundle v : NY — M inherits also a structure of homogeneous fibre
f-subbundle defined by JV = (iy)*J € C(X ((7V)*TM)). If this subbundle defines a metric reduc-
tion of homogeneous fibre bundle, then it defines also a complete reduction of homogeneous fibre

f-subbundle.

Definition 6.27 Let w: (N, F,h) — (M, g) be a homogeneous fibre f-bundle with a naturally
reductive fibre H/K. Suppose thatﬁ (N, F,h) is horizontally of type G1 (respectively of global
type G1). Then we call the canonical paracharacteristic (respectively characteristic) connection
of the homogeneous fibre f-bundle (N, F,h) its paracharacteristic (respectively characteristic)
connection extending its vertical canonical connectionﬂ ve.

Proposition yields the following.

Proposition 6.27 Let w: (N,h) — (M, g) be a homogeneous fibre bundle with a naturally re-
ductive fibre H/K, and ©¥: N¥ — M a homogeneous fibre subbundle such that the inclusion
iv: NV — N is a metric reduction of homogeneous fibre bundleﬂ. Suppose also that is given
an orthogonal complex structure J € C(S(n*TM)) defining then structures of homogeneous fi-
bre f-bundles: w: (N,F,h) = (M,g) and #¥: (NY,FY,h¥) — (M,g). Suppose that (N, F,h) is
horizontally of type G1 (of global type G1 ) then the canonical paracharacteristic (respectively char-
acteristic) connection of (N, F, h) is reducible in (NY, FV h") to the canonical paracharacteristic
(respectively characteristic) connection of (NV, F¥, hV).

6.3.3 Horizontally Kéhler f-manifolds and horizontally projectible f-submersions.

Definition 6.28 Let (N, F,h) be a metric f-manifold. We will say that (N, F,h) is

o horizontally Hermitian if Nj = 0.

67See definition @

68Keep in mind that a homogeneous fibre bundle is always reductive, according to corollary @
69See section.

"in the sens of definition @
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e horizontally Kdhler if DFjys = 0.

Lemma 6.6 Let w: (N, F,h) — (M, g) be a metric f-submersion. Let us suppose that (N, F,h)
is reductive. Then it is horizontally Kdahler if and only if

D%,.J =0,VH € H.
where, as usual DY denotes the Levi-Civita connections of g.

Proof. This follows from proposition . (I

Theorem 6.6 Let w: (N, F,h) — (M,g) be a metric f-submersion. We suppose that (N, F,h)
1s reductive. o Then we have

N(X°,Y" 2" = (D% J)JY", Z")

where XY, Z € TN.

o Let us suppose moreover that (N, F,h) horizontally Kdihler. Then (N, F,h) is horizontally
Hermitian: Nj = 0. In particular, (N, F,h) is horizontally of type G1. Therefore (N, F,h)
admits a paracharacteristic connection (unique up to C(A3V*)).

Furthermore, let T € C(A3H*) be the unique horizontal 3-form, such that the torsion T of
any metric f-connection V in N with a skew-symmetric component Tys, satisfies Tys = T
(see proposition ) Then we have T = 0, so that for any such connection V, we have
(VxnYh, ZMy = (D9 nYh, 20y, vXh Yh ZM € C(H).

Proof. Concerning the first assertion, it can be proved by applying propositions and .
Or more simply by using directly remark .

Further, according to proposition _, DF3s = 0 implies Npj3s = 0. Moreover, DFj3s =0
implies also dQ2p|3s = 0 which implies T' = 0 since d€QQpj3s = JOT. This completes the proof. [J

Definition 6.29 Let m: (N, F,h) — (M,g) be a metric f-submersion. Let us suppose that
(N, F,h) is a reductive and horizontally Gi. A metric connection V will be sayed to be the
canonical connection on M (w.r.t. the f-submersion) if its torsion T satisfies the equation

T = Tjys where T is the torsion of any paracharacteristic connection (see proposition ) and

T is the lift in H of T. If such a connection exists, we will say that the metric f-submersion is
horizontally projectible.

Remark 6.20 The canonical connection is unique when it exists (since it is metric and its torsion
is given). Moreover it has a skew-symmetric torsion. The metric f-submersion is horizontally
projectible if and only if the horizontal 3-form T} is projectible to a 3-form on M.

Proposition 6.28 Let 7: (N,F,h) — (M, g) be a metric f-submersion. Let us suppose that
there exists a metric connection V geodesically equivalent to the Levi-Civita connection, i.e. with
a skew-symmetric torsion, such that

VuJ =0, VHeH.

Then (N, F, h) is horizontally of type Gy, and horizontally projectible, V being then the canonical
connection of M.
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Proof. Any metric connection V on N which satisfies
(Vi,Ha, Hs) = (V, Hy, Hs),

satisfies VFjys = 0 and Tjys = T. Then proposition allows us to conclude. This completes
the proof. (I

In particular, we have

Corollary 6.9 Letw: (N, F,h) — (M, g) be a metric f-submersion. Let us suppose that (N, F, h)
1s reductive and horizontally kdhler. Then it is horizontally projectible and the canonical connec-
tion on M is its Levi-Civita connection D9Y.

Proof. This follows immediately from lemma @ and proposition . More directly, according
to theorem @, we have Tjys = 0 and therefore this 3-form is projectible. This completes the
proof. ([

6.3.4 The example of a naturally reductive homogeneous space

Proposition 6.29 Let N = G/K be a Riemannian homogeneous space and g = £®n a reductive
decomposition of g. Let us suppose that n admits an AdK -invariant decomposition n = m @ p,
defining then a splitting TN = H &V, where H = [m] and V = [p]. Let us suppose that there
exists on m an AdK -invariant complex structure Jy, defining then a f-structure F on N. Then
for any G-invariant metric h for which Jy and the decomposition n = m@p are orthogonal (such
a metric always exists), (N, F,h) is a metric f-manifold.

Furthermore, let us suppose that N = G/K is naturally reductive, and that one can choose
a naturally reductive metric h as aboveﬂ, then (N, F,h) is reductive and of global type Gi.
Moreover, the canonical connection V° is a characteristic connection. Therefore, in this case
this characteristic connection V° has a parallel torsion VOT = 0.

Proof. The naturally reductivity means exactly that the torsion of the canonical connection is
skew-symmetric. This completes the proof. O

Proposition 6.30 Let us consider the situation described by (the 2 first sentences of) propo-
sition . Then the horizontal curvature and its linear representation, and the horizontal
curvature operator are given (in terms of their lifts in G) by

O(X.Y) = —[Xum, Yal,
p(V) = —adnly
RX.Y)Z = adw[Xw,Yal,

In the second equality, we have supposed that G/K is endowed with a naturally reductive metric.

Definition 6.30 Let N = G/K be a Riemannian homogeneous space and H D K a subgroup
of G such that M = G/H is Riemannian. Then we will say that o G-invariant metric h on N
induces a G-invariant metric g on M if m: (G/K,h) — (G/H,g) is a Riemannian submersion
and therefore a homogeneous fibre bundle. We will then say that h is projectible on M and that
g 1s induced by h.

"lwhich means that denoting by G(n), the compact subgroup in GL(n) generated by An(n) := {[adn(X)]n, X €
n} C gl(n), and by (G(n), Ip) the closed subgroup generated by G(n) and Ip := Jo & —Idy, then (G(n), Ip)/G(n)
is compact.
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Remark 6.21 If n: (G/K,h) — (G/H,g) is a Riemannian submersion, then we are in the
situation described by . Indeed if m is an AdH-invariant complement of § in g and p is
an AdH-invariant complement of ¢ in h, then n = p & m is an AdK-invariant complement of ¢
in g. Moreover, the AdK-invariant inner product (-,-)y := hy,, where yo = 1.K, defining the
G-invariant metric h, satisfies the equation () i.e. its restriction (-,)m to m is AdH-invariant.
Conversely, if there exists such p and m such that (-, )m := hygjmxm is AdH-invariant then h is
projectible on M.

Proposition 6.31 Let us suppose that N = G/K s a (locally) 2k-symmetric space endowed
with its canonical f-structure F' and its canonical connection V°. Let us suppose that N = G/K
s naturally reductive.

o Then there exists a G-invariant naturally reductive metric h on N such that 7, is orthogonal
and thus which is compatible with F. Then (N, F,h) is a reductive metric f-manifold of global
type Gy, and its horizontal curvature ® is pure.

e Furthermore, any naturally reductive metric h chosen as above, induces a G-invariant Rie-
mannian metric g on the k-symmetric space M = G/H, and w: (G/K,h) — (G/H,g) is a
homogeneous fibre f-bundle.

Proof. The existence of h follows from lemma @, in the Appendix. The fact that (N, F, h) is
a reductive metric f-manifold of global type G; follows from proposition . Moreover, ® is
pure because of proposition and since

[Xma Ym]P = [va Ym]gk = Z [Xj’ Y*jJrk]v VXma Yo € m,
1<]j1<k—1

and by definition of J.
The second point of the proposition follows from proposition @, in the Appendix, definition
and definition . This completes the proof. O

6.3.5 The example of the twistor space Z$ (M).

Let (M,g) be a (even dimensional) Riemannian manifold endowed with a metric connection
V. Then we consider the homogeneous fibre bundle 7: (25 (M), h) — (M, g) defined by the
Riemannian vector bundle (T'M,g,V). (See sections ﬁ(e){ample 9 and [£3.3) Let us
consider also its canonical 2k-structure J € C(Z$, (7*TM)), to which corresponds the orthogonal
complex structure J € C(X(n*TM)) = C(X(7n*H)). This complex structure defines then a
metric f-structure F on Z$, (M). Then the twistor bundle (23 (M), F, h) is a reductive metric

f-manifold, more precisely a homogeneous fibre f-bundle.

Proposition 6.32 Let (M, g) be a Riemannian manifold endowed with a metric connection V.
Then we have

VuJ =0, VHEH.
Proof. We have the following sequence of morphisms of bundle over M which are SO(2n)-
invariant projections on the fibres:

Q =SO(TM) —"2 Q/Uo(J§) = 25, (M) —2— S(M) = Q/U(JS)

In particular, the structure of homogeneous fibre bundle of Ny, = ¥(M) (defined by V) is the
image by the projection P of the structure of homogeneous fibre bundle of Nz = Z, (M) (defined
by V):

TQ =12 V0 "= rn, = uZgpz Py PNy = 1S o VS,

154



In particular we have VJ = P.(VJ) and therefore
VuJ =0, VHEH,
according to theorem (i). This completes the proof. O

Theorem 6.7 Let (M,g) be a Riemannian manifold endowed with a metric connection V. Let
us suppose that V is geodesically equivalent to the Levi-Civita connection, i.e. it admits a skew-
symmetric torsion. Then the twistor bundle (23, (M), F, h) is horizontally of type Gi, and hori-
zontally projectible, V being the canonical connection of M.

Proof. This follows immediately from proposition and proposition . (]

Corollary 6.10 Let (M, g) be a Riemannian manifold endowed with a metric connection V. If
V = D9 is the Levi-Civita connection, then (2. (M),F,h) is horizontally Kdhler.

Proof. This follows immediately from proposition and lemma [.g. g

6.3.6 The example of the twistor space Z3; (M, J;).

Let (M, g) be a Riemannian manifold endowed with a metric connection V and J; a section of
(Z25,,(M))’. Then we consider the the homogeneous fibre bundle 7: (25, (M, J;),h) — (M, g)

defined by the Riemannian vector bundle (7'M ,g,vm). We denote by F; the canonical f-
structure defined as above in [.3.§. Then the twistor bundle (23, ;(M, J;), Fj, h) is a reductive
metric f-manifold, more precisely a homogeneous fibre f-bundle.

Theorem 6.8 Let (M,g) be a Riemannian manifold endowed with a metric connection V and

Jj a section of (Zg‘k(M))] Let us suppose that ﬁm

connection, i.e. it admits a skew-symmetric torsion.
o Then the twistor bundle (23 ;(M, J;), Fj, h) is horizontally of type G1, and horizontally pro-

is geodesically equivalent to the Levi-Civita

jectible, VU] being the canonical connection of M.

e Furthermore, ifv[]j =0 so that (Zg‘kj (M, J;),F;,h) = (M, g) is a reduction of (Zo1,(M), F, h) —
(M, g), the paracharacteristic connection of (Zax,(M), F, h) is reducible in (23, ;(M, J;), Fj, h)
and its reduction is the paracharacteristic connection of (ng,j (M, J;),Fj,h).

Proof. For the first point, proceed as in . For the second point, apply proposition . (]
Corollary 6.11 Let (M,g) be a Riemannian manifold endowed with a metric connection v

and J; a section of (Z5.(M))’. If in particular V = D9 is the Levi-Civita connection, then
(25, ;(M, J;), Fj, h) horizontally Kdhler.

Proof. Proceed as in [5.3.5. g

6.3.7 The reduction of homogeneous fibre bundle J,,: G/Go < Z5¢,(G/H, J2).

We consider the situation described by and use the same notations.
We have seen in [L4.1] that Jj,: G/Go — Z505(G/H, Jz) is a reduction of homogeneous fi-
bre bundles (theorem [.24). Moreover by definition of J;, and 7, this is also an f-immersion.
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Therefore, since (G/Go, F,h) and[] (2912(G/H, J2), Fa, ho) are both metric f-manifolds, it fol-
lows that J;, is a reduction of homogeneous fibre f-bundle. Moreover, we suppose that the
G-invariant metric g on G/H, inducedﬁ by the metric h on G/Gj, is naturally reductive. This
is the case in particular if h is naturally reductive (see proposition p.31)).

Therefore according to proposition , we have

Proposition 6.33 The canonical paracharacteristic connection of 257 ,(G/H, J3) is reducible
in G/Gy and its reduction is the canonical connection of G/Gy.

Remark 6.22 To apply proposition , we need a priori a metric reduction of homogeneous
fibre bundle, i.e. the inner product (-,-), on the fibre H/Gy of the fibration G/Gy — G/H,
must be in the form described by remark @ That is to say the inner product on n defining h
on G/Gy is on the form (-, )m + (-, )p with (-, -)m AdH-invariant and naturally reductive (and
invariant by 7 ), and (-, -), given by remark h But in fact, proposition still holds for any
G-invariant metric A which induces a naturally reductive metric g on M: in other words (-, -),
can be any AdK-invariant inner product on p. Indeed, it suffices to remark that V° is always the
paracharacteristic connection of (G/Go, F, h) for any h inducing a naturally reductive metric g
on G/H. Indeed, we have (adwV)Jy = —Jy(adn V), VV € p = g, by definition of J,. Therefore,
the component T}y ;3 of VY is pure so that V° is always the paracharacteristic connection of
(G/Gy, F, h) and proposition holds in general for all possible choice of (-, ),.

6.4 Stringy Harmonic maps in f-manifolds.
6.4.1 Definitions

We have defined the notion of stringy harmonic maps in the context of almost complex manifolds
(endowed with a linear connection) and we have seen that it corresponds to a generalisation of
harmonic maps. Now, we will extend this notion of stringy harmonicity to f-manifolds endowed
with a linear connection. Indeed, the preliminary study of the maximal determined system done
in section @, leads us to introduce the following generalisation of (stringy) harmonic maps.

Definition 6.31 Let (N, F) be a f-manifold with V a linear connection. Then we will say that
a map f: L = N from a Riemann surface into N is stringy harmonic if it is solution of the
stringy harmonic maps equation:

—79(f) + (FeT)y(f) =0

Definition 6.32 Let (N, F) be a f-manifold with V a linear connection. Then we will say that
a map f: L — N from a Riemann surface into N is *-stringy harmonic if it is solution of the
modified stringy harmonic maps equation:

—14(f)+ (F*T)y4(f) =0.

Proposition 6.34 Let (N, F_) be a f-manifold with V a linear f-connection. Let us suppose
that Ry = 0. Then, setting T = T;fz, the equation of stringy harmonicity, w.r.t. V, for maps

"2We denote the metric in 25,0, (G/H, J2) by ha to differentiate it from the metric in G/Go. See the convention
of notations in

73In the sens of déﬁnition , see remark , and also .
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f: L — N is written

—x7V(f) + 1<I>(de Jdf) =0
—xTh(f) + 5(JT)(dedf) + %Np(dvf/\jdhf) =0

whereas the equation of x-stringy harmonicity is written:

() + ®(df A Jdf) =0
et (f) + 5 (T D) A df) + 5 Ne(d'f A Td"f) = 0

where T°(f), T"(f) are respectively the vertical and horizontal component of the tension field
w.r.t. V (which coincide also with the vertical and horizontal tension fields respectively, since
V preserves the splitting TN =V ® H). Moreover, as usual, * is the Hodge operator for some
Hermaitian metric on L.

Proof. Use theorem [6.9. g

Remark 6.23 We see that stringy harmonicity in (N, F) can be viewed as a kind of coupling
between some equation of J-stringy harmonicity and the equation of vertical harmonicity. We
will come back to this in details elsewhere [B6), @]

Proposition 6.35 Leti,: (NV,hV,FV) — (N, F, h) be a complete reduction of metric f-manifolds.
Let V¢ € Con(V) reducible in VY, and V¢V its reduction. Let us suppose that (N, F,h) is hori-
zontally of type G1 and almost reductive. Let f: L — NV be a map.

o The (x-)stringy harmonicity of f w.r.t. to the paracharactersitic connection V of (N, h,F)
extending V¢, is equivalent to the (x-)stringy harmonicity of f w.r.t. to the paracharactersitic
connection of (NY,hY, FV) extending V.

o In the same way, if (N, F, h) is reductive and of global type G1, then the (x-)stringy harmonicity
of f w.r.t. to the charactersitic connection V of (N, h, F) extending V¢, is equivalent to the (x-
)stringy harmonicity of f w.r.t. to the charactersitic connection of (NV,h", F¥) extending V.
In particular, these properties hold when iy: (NY,hV, F¥) — (N, F,h) is a reduction of homoge-
neous fibre bundle as described in proposition [5.27.

Proof. This results immediately from proposition and lemma @ This completes the
proof. O

Proposition 6.36 Leti,: (NV,hV,FV) — (N, h, F) be a complete reduction of metric f-manifolds.
Let us suppose that (N, F,h) is horizontally of type G1 and almost reductive. Let f: L — NV be
a map.

o The (x-)stringy harmonicity of f w.r.t. to one paracharactersitic connection V of (N,h, F)
is equivalent to the (x-)stringy harmonicity of f w.r.t. to any paracharactersitic connection of
(N, hY, FY).

o In the same way, if (N, F,h) is reductive and of global type Gy, then the (%-)stringy harmonic-
ity of f w.r.t. to one charactersitic connection V of (N, h, F) is equivalent to the (x-)stringy
harmonicity of f w.r.t. to any charactersitic connection of (NV,h¥, FV).

Proof. We deduce from proposition [.21], theorem B.§ and equation (123), that the terms
in V*df + (F @ T)4(f) which could be no reducible in NV are only those corresponding to the
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vertical terms (F T )y xyxy and (FeT )y xaxy equal to Ry(Y?, Z¥, JX") and Ry(Z%, XV, JY™")
respectively. These terms do not depend on the choice of V (and VY for the corresponding terms
in NV) and from proposition , we know that for a convenient choice of V and VV, these terms
are reductible, i.e. if B (resp. B") is one of these terms then By (f) = B,(f). This completes
the proof. (I
6.4.2 The closeness of the 3-forms F el and F *T.

Let us see under which conditions on a reductive metric f-manifold of global type G;, the 3-forms
F eT and F x T defined by one characteristic connection are closed.

Proposition 6.37 Let (N, F,h) be a reductive metric f-manifold of global type G1. Let V be
some characteristic connection on N. Let us consider the following statements:

(i) The 3-forms H =F T is closed.
(ii) The 3-forms H* = F x T is closed.

(iii) The horizontal 3-form F - Np is closed.

1
(iv) The S-form F - Np — §F & (Skew(®) 4+ Skew(Ry)) is closed.

(v) The 3-form % (F - Np — F ©(Skew(®) 4+ Skew(Ry))) is closed.
(vi) The 3-form F & (Skew(®) + Skew(Ry)) is closed.

Then we have the following equivalences: (i) < (i) and (i) < (v). Moreover any couple of state-
ments in {(i), (i1), (ii1)} imply the third one. Any couple of statements in {(ii1), (iv), (v), (vi)}
imply the two others. In other words identifying (i) with (iv) and (ii) with (v) (since they are
respectively equivalent) in the set of six elements {(i), ..., (vi)}, then in the obtained set of four
elements, any couple of two statements is equivalent to the couple of the two others.

Proof. This follows from the following identities:

%F-NF = FeT —FxT
1
FeT = F-Np-— §F ©(Skew(®) + Skew(Ry)) — dQp  (proposition f.14)
1 1 1
FxT = FOT*iFNF:§FNF*§FO(SkeW((I))+SkeW(RV))7dQF

O
Definition 6.33 Let (N, F,h) be a reductive metric f-manifold of global type G1. We will say

that (N, F,h) has a closed stringy structure if the 3-forms F-Np and F©®(Skew(®) 4+ Skew(Ry))
are closed. This is equivalent to say that the two 3-forms H and H* are closed.
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Characteristic connections with parallel torsion. In this paragraph, (N, F, h) is a reduc-
tive metric f-manifold of global type G;. Let us suppose that one of its characteristic connections,
V, has a parallel torsion VT = 0.

Now, let us compute all the components in each space (APH*) A (A2V*), p+q = 4, of the exterior
differential do of the different 3-forms o we have considered in proposition .

Lemma 6.7 Let o be a V-parallel 3-form. Then
da(X,Y,V,2) = & a(T(V,2),X,Y)+a(T(X,Y),V,2)

In particular, if o is horizontal then

da|A4v = 0
da\(Aﬂ))/\H =0
doyazvynne (Vo, Vi, Hay H3) = a(Ry(Vo, V1), Ha, H3)

deqynaor (Vo, iy Ho, Hs) - = 6 o(T"(Vo, i), Hj, Hy)

Notation We set S(H,V) = S(H x H x V) ® S(H x V x V). Then for any B € T, we set
B = B\s#,v)- Let us remark that we have

—F OT =dQpsayy and —J OT = dQpyps.

Lemma 6.8 We have the following identity:
—d(J &T) = d(F &T)

Proof. We have o )
0=—d(dQr) =d(J &T) + d(F &T).

This completes the proof. (Il
Proposition 6.38 The following identity holds:
d(F - Np)pys = d (F O(Skew(®) + Skew(Ry)) )\H“

Therefore the following statements are equivalent

(1) dH‘HzL =0 (IV) 6X7y,z_A X, Y)Z =0
(i) dHfy. =0 (v) GxyzA(X,Y)Z =0.

(iii) d(F"- Np)ps =0
We will say that J is a cyclic derivation of the horizontal curvature when (iv) holds. .

Proof. We consider 4-forms on H and denote by (X,Y,V, Z) the variable in H*. Proceeding as
in the proof of proposition , we obtain according to lemma @

d(J oT) = X?,Z(j oT) (X,Y,T(V,2)) + (J ¢T) (V, Z,T(X,Y))

- 5 > (T eD)(X,Y),T(V,2))

X,Y,Z
(X, Y)=2(V,2)

IR

=6, Y MTTT(XY)JTTHV.Z)+ AT (X,Y), JTVY(V, Z) =T (X,Y), JTVH (V. 2)).
T(X,)Y)=2(V,2)

159



Moreover, using the same arguments as in the end of the proof of proposition , we can
conclude that the two last terms inside the sum vanish. More precisely, using the fact that
JT~~ is a 3-form, we can write the second term inside the sum in two different forms which
have different types in @*H*, therefore, this terms vanishes. Idem for the third term, by using
the corollary .2 applied to T7F. Therefore

diJ oT) = & S ATT(X,Y),JTTHV, Z)). (125)
(X,Y)=(V,2)

sy

Furthermore, we also have according to lemma m

d(F - Nr) = & (F-Np) (X,Y,T(V,2)) + (F - Np) (V, Z,T(X,Y))
= .6 > AT (X,Y),T(V, 2))
(X, Y)=2(V,2)

sy

= &, > WIrTEY).TV.Z)
(X,Y):(V,Z)

— Fp—— e+
= &, > AWTTXY),TTHV2)
(X,Y):(V,Z)

Hence, we obtain o
d(F - Np) = —d(J &T).

This proves the first assertion according to lemma @ Moreover, using lemma @, we compute
that
dF OT)pa = & ((JOP)X,Y),2(W.2)) + ((J ©@)(W, 2),®(X,Y)).  (126)

sy

Furthermore, introducing the linear representation p: ¥V — so(H), we have

(J ©)(X,Y), (W, 2)) + ((J ©2)(W, 2), 2(X,Y)) = (p(JOV(X,Y))W,Z) (], p(®(X, Y)W, Z)

= (AX,Y)W,Z) = —(A(X,Y)Z, W)

Finally, according to ([2§), we see that the 4-form d(J ¢/T) is of type (4,0) + (0,4), and thus

A — A=)
(& AEYZW) = & (AD(XY)Z,W).

This completes the proof. (I

Notation Given B € C(A?’T*N ® H), we denote simply Im B = {B(X,Y) € #,X,Y € TN} C
H. In particular, we have In Ny = Nj(H,H) C H and ImRy =Ry(V,V) C H.

Moreover, we will also use the notations ker C = {X € H|C(X,-) = 0} and Supp(C) = (ker C)*,
for any C' € C(A*H* @ TN).

Proposition 6.39 Let us supppose that Ry = 0. Then the following identities hold:

(i) dH"HZXVZ = 0 (iii) d(F . NF)|H2XV2 == 0
(i) dH[32,02 =0 (iv) d(F O(Skew(®) + Skew(Ry)) )z 12 = 0.

Proof.It results from lemma @ applied to the horizontal 3-forms F - Nr and JOT, and then
from lemma @
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Proposition 6.40 Let us supppose that Ry = 0 and that the horizontal curvature ® is pure.
Then the following statements are equivalent

(i) dH33xy =0 (iii) d(F - NF_)l?-L3><V =0
(i) dH|* =0 (iv) 6xyv,zJN;(p(V)X,Y,Z)=0.

H3XV
Moreover these later are also equivalent to the following equivalent statements
(iv) N3 (X,Y,p(V)Z) =0.
(v) Nj(H,H) L p(V)(H), or equivalently ker N5 L ker ®, i.e. Supp(Ny) L Supp(®).
We will say that the 2-forms Nz and ® have orthogonal supports, when (v) is satisfied.

Proof. According to lemma @, we have

d(J &T)(Vo, Hy, Hy, H3) = i]G’k(j ST (p(Vo)Hy,y Hy, Hy,)
— '6k<j (=37~ +T*" —T"Y) (H;, Hy), p(Vo)Hy)
7,
= ,6k<j (=37~ +TH =TV (H;, Hy), p ) (Vo) Hy) (128)
7

In the same way, we have

d(F - Np)(Vo, Hy, Ha, Hs) = & ((4JT~7)(H;, Hy), p'™) (Vo) Hy).

PN
Moreover, for any V-parallel 3-form a € C ((AQH*) A V*), we have
do((Vo, H1, Hz, H3) = Z_(?ka(T(VOvHi)ijaHk) +o(T(H;, Hy), Vo, Hy)

= 6 .a(TV(Vo, Hy), Hj, Hy) + o(T(H;, Hy), Vo, Hy)

]
= Gka(T(H’UH])v‘/O;Hk)
0,7,
since RY = 0 and hence T (Vp, H;) = 0. Therefore let us apply this:

d(F QT)(%,Hl,HQ,Hg) = d(F @Skew(@))(VO,Hl,Hg,Hg) = Gk(F OSkeW((I)))(Hk,T(H“H]),Vo)
7,

= 6 (J O®)(Hy, T(Hy, Hy), Vo) = 6 ([p(Vo),J | Hy, T(H;, Hy))

.5,k .5,k

:2_6k<0(_)(Vo)Hk7jT(Hi,Hj» (129)
¥R

Then applying lemma p.g to ([.2§) and ([[29) , we obtain

S (J (=T~ +T" 37 (H;, Hy), p ) (Vo) Hy,) = 0

.3,k

and then taking respectively the (3,0) + (0, 3)-type and the (2,1) 4 (1, 2)-type part w.r.t. to the
horizontal variables (Hy, Ha, H3) € H3, of this equation we obtain

(JT*H(H;, Hy), p ) (Vo) Hy) = 0 (130)
(J (=T~ +T"") (Hi, H;), p ) (Vo) Hi) = 0 (131)
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This proves the equivalence between the four first statements.

The equivalence (v) < (vi) is obvious. It remains to prove the equivalence (iv) < (v). But this
results immediately from the fact that Ny = 47~ is a 3-form of type (3,0)4(0,3) and p = P,
This completes the proof. O

Finally,

Lemma 6.9 The components in A*V* and (A3V*) A H* of the following exterior derivatives:
dH, dH*, d(F - Np) and d (F&(Skew(®) 4+ Skew(Ry)) ), vanishes.

Proof. Apply lemma @ to the horizontal 3-forms .J &T and F - Np. Then use lemma @ This
completes the proof. O

Let us summarize:

Theorem 6.9 Let (N, F,h) be a reductive metric f-manifold of global type G1. Let us suppose
that one of its characteristic connections, V, has a parallel torsion VI = 0. Let us supppose
that Ry = 0 and that the horizontal curvature ® is pure.

e Then (N, F,h) has a closed stringy structure if and only if the horizontal 3-form F - Np is
closed.

e Moreover, this happens if and only if the horizontal complex structure J is a cyclic permutation
of the horizontal curvature, and the 2-forms N3 and ® have orthogonal supports.

The particular case of Horizontally Hermitian f-manifolds. In horizontally Hermitian
f-manifolds, we have F'- Np = 0 and therefore F'- Np = 0 is a closed 3-form. Therefore we can

apply theorem E

Corollary 6.12 Let w: (N,F,h) — (M,g) be a Riemannian submersion from a metric f-
manifold into a Riemannian manifold. Let us suppose that (N, F, h) is reductive and horizontally
Hermitian, so that it is in particular horizontally of type G1. Let us suppose also that one of its
characteristic connections, V, has a parallel torsion VT = 0 and that the horizontal curvature
® is pure. Then (N, F,h) has a closed stringy structure.

6.4.3 The sigma model with a Wess-Zumino term in reductive metric f-manifold
of global type G;.

Now, we can conclude with the following variational interpretation of the stringy harmonicity.

Theorem 6.10 Let (N, F,h) be a reductive metric f-manifold of global type Gi. Let us suppose
that (N, F, h) is stringy closed. Let V be one characteristic connection.

e Then the equation for stringy harmonic maps (w.r.t. V) f: L — N is exactly the Euler-
Lagrange equation for the sigma model in N with a Wess-Zumino term defined by the closed
3-form

1
H = ~dQp + F - Np — 5 F &(Skew(®)).

e Moreover the equation for x-stringy harmonic maps f: L — N 1is exactly the Euler-Lagrange
equation for the sigma model in N with a Wess-Zumino term defined by the closed 3-form

1 1
H* = —dQp + 5F - Ny — 5 F O (Skew(®)).
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6.4.4 The example of a naturally reductive homogeneous space

By definition of (x-)stringy harmonicity and the expression of the torsion of V° in term of the
Lie bracket, we have the following.

Proposition 6.41 Let N = G/K be a Riemannian homogeneous manifold endowed with a G-
invariant complex structure F'. Let g = € & n be a reductive decomposition of g, andn =m ®p
the AdK -invariant decomposition defined by F. Let f: L — N be a smooth map, U: L — G be
a (local) lift of f and o = U~1.dU the corresponding Maurer-Cartan form. Then in term of a,
the equation of stringy harmonicity (w.r.t. V°) is written

1 .
d* o + [ae A xap] + §[J0am Aam]p =0

1- .- - 1 - _
d * am + [ A xau) — §J0 [Joam A Joam] + 3 ([ap A Jooum] — Jolap A am]) =0

m

whereas the equation of x-stringy harmonicity is written:

1 -
d* ap + [ag A *oy] + §[J0am A lp =0

1 .
d * g + [ae A x| + i[Joozm A amm +

where Jy is the complex structure on m corresponding to F.

6.4.5 Geometric interpretation of the maximal determined even case.

In this subsection, we suppose that N = G/K is a (locally) (2k + 1)-symmetric space, and we
use the notations and the conventions of @

Theorem 6.11 Let us suppose that N = G/K is a (locally) 2k-symmetric space endowed with

its canonical f—structureﬁ F and its canonical connection V°. Then the associated mazimal de-
termined system, Syst(2k — 1, 7) is the equation of x-stringy harmonicity for the geometric map
frL—=N: (VOdf + (FxT)(f) =0

Moreover, if we consider now that N = G /K is endowed with the f-structure F* := @?;i(—l)jF[mj]EB
O(g,], then this system is the equation of stringy harmonicity for the geometric map f: L — N:
(VO)'df + (F*-T)(f) =0.

Proof. The first point follows from theorem @, proposition and the fact that the compo-
nent T = T|77{{2 of the torsion T of V° satisfies the same kind of identities as in proposition .
The second point follows from proposition and remark applied to the complex vector
bundle (H, J), the 2-form T' € T (H) and the J-invariant decomposition TN = E+ @ E~, defined
by ET = @kj;ll [my], and E~ = @@;11 [m;]. This completes the proof. O

j even j odd

Theorem 6.12 Let us suppose that N = G/K is a (locally) 2k-symmetric space endowed with
its canonical f-structure F and its canonical connection V°. Let us suppose that N = G/K is

Tdefined by (B7)
75Where we have removed the index ”g” which precises that the previous terms are computed with respect to
some Hermitian metric g on L.
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naturally reductive and we choose a naturally reductive G-invariant metric h for which 7, is or-
thogonalm and thus which is compatible with F'. Then (N, F,h) is a reductive metric f-manifold
of global type G1, and its horizontal curvature ® is pure. Moreover, (N, F,h) has a closed stringy
structure.

Therefore, the associated mazimal determined system, Syst(2k — 1,7), is exactly the FEuler-
Lagrange equation for the sigma model in N with a Wess-Zumino term defined by the closed
3-form

H* = —dQp + %F - Np — %F & (Skew(®)) .

Moreover, if we consider now that N = G/K is endowed with the f-structure F*, then the
previous system is exactly the Fuler-Lagrange equation for the sigma model in N with a Wess-
Zumino term defined by the closed 3-form

1
The theorem will follow from the two following lemmas.

Lemma 6.10 In the metric f-manifold (N, F,h) of theorem , J is a cyclic derivation of the
horizontal curvature.

Proof. According to subsection , we have

AXYZ = [[JoXm: Yulp: Za] + [ X, JoYaalps Zin| — Jo [[Xn, Yanlps Zin) + [ [ X Yanlps J0Zm]
= 2([[j0Xm’Ym]P’Zm} + [[Xmaym]pajozm}) (132)

In this equation, X,Y, Z € C(H) with lifts X, Y, Zm € C°(G, m), and A(X,Y)Z € C®(G,m)

denotes the lift of A(X,Y)Z € C(H). An other possibility is to consider that X,Y,Z € H are

horizontal vectors at some point y € N and that we have chosen g € G such that ¢g.Gy = y and

that we have set X = Adg(Xm), and idem for Y and Z. Then the equation ([[33), when written

in the form A = By, means in fact that we have A = Adg(By).

In the following, we will use this kind of notation without recalling these precisions.

Moreover, since ® is pure (proposition[p.31), we have [Jo Xm, Ymlp = [Xm, JoYm]p and (admgr) Jo =
—Jo (admgr), then we obtain

X’KZA(X,Y)Z = 2.6, S sENIXLY il Z + Y s(=D X, Yokl Z)]
1<l <k-1 1<|il 1l <k-1
= 2.6 dSos=) > XYl 2]
1< || <k-1 1<]j[<k-1
>0

e~

where s(n) is the sign of n € Z. Furthermore, o := X(‘é ZA X,Y)Z defines a element of A%g* ®g,

sy

which in fact corresponds to a 4-form of type (4,0) + (0,4) according to the proof of propo-

sition (see in particular, equations (126) and ([[27)). Let us consider the component in
(g}f Ay WA gf) ® g of this the element of this element of A3g* ® g. We remark first that this

"6See proposition .
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component is in fact in (g"f Nk N gl*) ® gr+1- Let us set

J

It = {{j—j+ki}, 1<j1<k-1}
Iﬁ = {{j77‘7+k71}7 7(k71>§]7l§*1}171+
I = ITuIl".
Then, denoting by k + [ the representant modulo 2k of k41 in {—(k—1),...,—1}U{1,..., k—1},

we have {j,k 4+ [,1} ¢ I because k + [ has a opposite sign to j and [. Therefore, the component
in (g;‘ ANgra N g?‘) ® g—j+k of our element a vanishes, which since a is a 4-form implies that
a = 0. This completes the proof. (]

Lemma 6.11 In the metric f-manifold (N, F,h) of theorem , the 2-forms Nj and ® have
orthogonal supports.

Proof. Denoting by 7' the torsion of the canonical connection V°, we have

— 8ii
T__(Xa Y) = Z (1 a 7]) ([Xmi’ymj]mi+j + [X‘"“J’Ymi]miﬂ') :
k41<it+j<2(k—1)
1<i<j<k—1
Therefore
__ i
(T~ (X,Y),p(V)Z) = — Z (1 - TJ) (X Yoy I s [Zmi s Vi)
k+1<itj<2(k—1)

1<i<j<k-—1

but we have

<[Xm¢ ) ij]mi+j’ [ZmiJrj—k’ Vk]> <[Xm¢ ) ij]i-i-j’ [Zi-i-j—k’ Vk]> + <[Xm¢ ) ij]f(iJrj)’ [Zf(iJrj)fk’ Vk])

= ([[Xwi» Yoy litss Zivi—r] > Vie) + ([Xmis Yoyl (i) Z— (i) —k) > Vie)

and these two scalar products vanishes, because 2(i + j) — k # k mod 2k and —2(i+j) + k # k
mod 2k. Indeed 2(i+ j) # 0 mod 2k, since k+1 < i+ j < 2(k—1). This completes the proof.(]

Proof of theorem - It follows from proposition p.31 - lemmas and - theorems @
and - This completes the proof.

Remark 6.24 Let us remark that a 4-symmetric space, endowed with its canonical f-structure
F and a naturally reductive metric is horizontally Kahler.

6.4.6 Twistorial Geometric interpretation of the maximal determined even case.

We come back to the situation of 5.3.7. We use also the notation of definition B.J. Then according
to proposition and theorem B.11], we obtain

Theorem 6.13 Let (L, j) be a Riemann surface, f: L = N = G/Gy be a map and J = f*7,
the corresponding map into ZQO‘,C“Q(M ,J2). Then f is a geometric solution of the even maximal
determined system (Syst(2k — 1,7)) if and only if J: L — Z;,;Q(M, J2) is x-stringy harmonic
w.r.t. the canonical paracharacteristic connection in the twistor space 220;32(M , J2).

770r we can use proposition as well
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Moreover, let us consider now that N = G /Gy is endowed with the f-structure F* := @?;ll(fl)jF[mj]EB
Otg,.)> and that 237 ,(M, Jo) is endowed with the f-structure F* := @?;}(—1)jimj(j) ® Oy ()
where mj(J) is defined as in definition 3.4, and my,(J) = ker(J + Id).

Then f is a geometric solution of this system if and only if J: L — ZQO‘,;),Q(M, Jo) is stringy
harmonic w.r.t. the canonical paracharacteristic connection in the twistor space Z;,;”Q(M , J2).

6.4.7 About the variational interpretation in the Twistor spaces.

We have seen that the twistor spaces (25, (M), F, k), and in particular (X(M), F, k), endowed
with their structure of homogeneous fibre f-bundle defined in , are reductive and horizontally
of type G1. Are they in general of global type G17 More generally, which are their subbundles
which are of global type G17 We give below the answer to these questions which are studied in
BY], in which the following results are proved.

Let us remark that since the twistor spaces and their subbundles are horizontally of type Gy,
the question is in fact to know if these spaces satisfy the condition that N FIS(HxHxV) 18 skew-
symmetric, or equivalently according to remark , the condition

[p(V),J] = —INs(V), YV e V.

This condition implies strong conditions on the curvature of the metric connection V on M, as
we can see from the expression of ® in terms of the curvature of V (theorem [.13-(ii)). Now, let
us present the results obtained after some investigations (see [Bg] for more details).

Lemma 6.12 /@] Let V be a metric connection on the Riemannian manifold (M, g). Suppose
that the sectional curvature k(P) of V depends only on the point x € M and not on the plan
P e A’T, M. Then we have

R(X,Y)Z =k ((Z,Y)X — (Z,X)Y)
{ T(X,Y)=(Y k)X — (X -k)Y.

In particular, V is geodesically equivalent to Levi-Civita if and only if it coincides with Levi-
Civita.

Theorem 6.14 [3§] Let (M, g) be a Riemannian manifold endowed with a metric connection V.
Let us consider the homogeneous fibre f-bundle (S(M), h, F) defined in[6.3.4. Then (Z(M), h, F)
is globally of type G1 if and only if V. = V9 and (M, g) has a constant sectional curvature.
Therefore M is a locally symmetric space and (M) is locally 4-symmetric.

Theorem 6.15 [@/ Let (M, g) be a Riemannian manifold endowed with a metric connection
V. Let us consider the homogeneous fibre f-bundle (23, (M), F,h) defined in . Then it is
globally of type G1 if and only if V. = V9 and (M, g) has a constant sectional curvature. Therefore
M is a locally symmetric space and X(M) is locally 2k-symmetric.

Theorem 6.16 [@/ Let (M, g) be a Riemannian manifold endowed with a metric connection
V with parallel torsion VI = 0. Let (N, F,h) be a subbundle of (Z5.(M),F,h). Then N is

globally of type Gy if and only if M is a locally homogeneous space, i.e. its universal covering
M

satisfies M = G/H, and V coincides with VY the canonical connection of M. Moreover N is a
locally homogeneous space, i.e. N = G/K, and the characteristic connection coincides with the
canonical connection of N.
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7 Generalized harmonic maps into reductive homogeneous
spaces

This section has 3 objectives.

1. We want to precise clearly and concretely the geometric meaning of each component of the
zero curvature equation on a 1-form « taking values in a finite dimensional vector subspace of
a loop Lie algebra. Indeed, we would like to interpret each component of this equation with a
geometric property, as we have already done that, for example for the even miminal determined
system, in section . But here, we would like to keep our study in the Lie algebra setting
and in the corresponding homogeneous space for the geometric interpretation. Moreover, we
would like to see how one can derive naively some of the results obtained in sections @, E, and
E. In other words, we would like to continue and complete, in the light of the studies done in
sections E, E, and E, the preliminary and naive study begun in section E, keeping the same naive
spirit. Then, over and above recovering by a different way, precising, or completing results of
the previous sections, as well as outlining results already implicitly contained in the previous
more general studies but which can be precised in more particular contexts, we also prove some
new results. For example, we prove that the strongly harmonicity in a reductive homogeneous
space has a formulation in terms of a zero curvature equation (that we call elliptic integrable
system associated to a reductive homogeneous space). Moreover, we complete the study of the
odd minimal determined system begun in section .

2. Moreover, we want to precise the geometric interpretation of the intermediate determined
systems (myp < m < k' —1). We already know that these are the equations of stringy harmonic
maps which satisfies some additonnal holomorphicity conditions. We would like to make this
more precise.

3. Finally, we conclude with some remarks about the twistorial interpretation.

7.1 Affine harmonic maps into reductive homogeneous spaces.

Let N = G/K be a reductive homogeneous space and g = ¢®m a reductive decomposition of the
Lie algebra g. We use the notations of section [l| (applied to N = G/K instead of M = G/H).

Theorem 7.1 Let (L,j) be a Riemann surface and f: (L,j) — N be a smooth map, let F: L —
G be a (local) lift of u and « = F~1.dF. Then the following statements are equivalent:

(i) f is Vi-harmonic for one t € [0,1].

(ii) f is V'-harmonic for every t € [0,1].

(iii) d* am + [ae A *om] = 0.

(iv) Im (0, + [af A aly] +t{alh A dylm) =0, VE € [0,1].

In fact, the tension field Tt(f) of f with respect to V' is independent of t € [0,1].
Theorem 7.2 In the same situation as above, the following statements are equivalent:
(i) f is strongly V'-harmonic for one t € [0,1]\ {3}

(ii) f is strongly V*-harmonic for every t € [0,1]\ {3}.

(iii) Ol + [of A o] + t{ah A alylm =0, VE € [0,1]\ {3}
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(iv) f is Vi-harmonic for one t € [0,1] and [am A am]m = 0.
1
(iv) day + 5[(34)\ Aay] =0, VA € St with ay = A1, + ae + Aalh.
Furthermore f is strongly V2 -harmonic if and only if it is V2 -harmonic: indeed V2 is torsion
free.
Proof of theorem [7.1] The tension field 7¢(f) of f with respect to V* is given by
T(f) = «dV xdf = *AdF (d * am + [ae A %] + tatm A *Qm]m)
= *AdF (d * am + [oe A *0m))

(see section [L.4 (especially equation (f])) and section [L.9). This proves the equivalence between (i),
(ii) and (iii). Then we conclude by remarking that 2Im (Oaj, + [af A o)) = d* am + [ae A ko)

1
and that [af, A @il ]m = §[am A Qm]m is real. This completes the proof. O

Proof of theorem [7.2 We have for all ¢ € [0, 1]
8V af = AdF (Dol + [ A ] + tlall A dly]m) (133)
so that the Vi-strongly harmonicity of f is written:
Dol + [af A alh] 4 t[alh A ol ]m = 0. (SL)

Then the imaginary part of av'o f = 0 gives us the Vi-harmonicity whereas the real part gives
us
dowm + [oe A o] + tam A o] =0 (Re(t))

which is nothing but the lift of the torsion free equation: f*T* = 0, where T? = TV'. Moreover
the projection on m of the Maurer-Cartan equation (on «) gives us the structure equation

1
do + o A o] + a[am Aamlm =0 [MCl

which is nothing but (Re(1)) (so that we recover that T2 = 0) but (since it can be written
((Re(0)) 4 2 [atm A im]m = 0) it is also the lift of (the f-pullback of) the equation expressing the
canonical torsion T° in term of the Lie bracket (see theorem [L.4 or equation ([l4)) :

TO 41, Jw = 0. (134)
which combining with the fact that the left hand side of (Re(t)) is the lift of f*T", gives us back
T'= (2t =1)[, Jm (see (L4)). )

Hence according to (13) and [MC],, the strongly harmonicity for one # # 3 is equivalent to the

harmonicity (imaginary part) and [em A @m]m = 0 (real part (Re(t)) combining with [MCly,).
We can also simply say that f is strongly harmonic if and only if f is harmonic and torsion free
ie. [am A am|m = 0 according to ([14). This proves the equivalence between (i), (ii), and (iii).
Now, let us decompose the curvature of aiy, with respect to powers of A:

1
day + loa nan] = A7 (dag, + [oe A ag])

1 1 1
+ (dag + 5[@; A o] + a[am A amle) + a[am A Gm)m

A (dadl + [oe A aln])
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hence using the fact that «) is real (i.e. g-valued)

1 dog, +[ae Aag] =0 (Sp) (S0)

daA+_[OéAAaA] =0 [MC]E = m ,
2 . [MC]

[m A am]m =0

In the last equivalence, we use the fact that (S%) + (S9) is the equation day + e A ] = 0

which combined with [MC]y, (above) gives us [am A &um]m = 0. Thus the zero curvature equation

on ay is equivalent to the strongly V°-harmonicity, i.e. the strongly V’-harmonicity for all

t €10,1]\ {3}. Finally the last assertion is obvious. This completes the proof. O

We are led naturally to the following definitions.

Definition 7.1 We will say that f: L — G/K s torsion free if f*T* =0 fort € [0,1]\ {%}
(this equation does not depend on t).

Definition 7.2 In the situation described by theorem @- (iv), we will say that the g-valued 1-
form on L, «, is solution of the the first elliptic system associated to the reductive homogeneous
space G/ K, and that the corresponding geometric map f is a geometric solution of this system.

Remark 7.1 The independence of the V¢-tension field w.r.t. to ¢ (and therefore the equivalence
between the statements (i) and (ii) in theorem ), are in fact a consequence of the geodesic
equivalence of the connections V! (see propositions and @) Moreover, the equivalence of
the V'-strongly harmonicities, for ¢ # 1, in theorem [.4-(i, ii), is a particular case of remark B4

Remark 7.2 Our so-called "strongly harmonic” maps in homogeneous space already appeared
in the literature. It seems that they appeared for the first time in [[L1l]. Moreover, in @], a
concrete example of these maps is given: Gauss maps of CMC surfaces in H3.

However, it seems to us very strange that nobody has remarked before that the torsion free

1
condition [am A |m = 0 is already contained in the zero curvature equation day + 3 [axAay] =0,

VA € S'. Indeed everybody in the literature (in particular [[1]) adds the torsion free condition
to the zero curvature equation to characterise the torsion free harmonic maps - i.e. strongly
harmonic maps -, whereas the strongly harmonicity is exactly and simply equivalent to the zero
curvature equation.

Affine harmonic maps into symmetric spaces

Now, if we suppose in particular that N is (locally) symmetric, i.e. [m,m] C €, then all the
connections V¥, 0 < t < 1, coincide. Moreover, if N is also Riemannian then these are equal to
the Levi-Civita connection. Therefore we obtain:

Corollary 7.1 The first elliptic integrable system associated to a (locally) symmetric space N =
G/K s the equation for V°-harmonic maps f: L — N. If N is Riemannian this means that it
is the equation for harmonic maps f: L — N (with respect to Levi-Civita in N ).

7.2 Affine/holomorphically harmonic maps into 3-symmetric spaces

Let us suppose now that N = G/Gy is a (locally) 3-symmetric space. We use the notations
of section E N is endowed with its canonical almost complex structure J defined by (@) We
continue here the study begun in concerning the lowest order determined odd system.
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Theorem 7.3 Let (L,j) be a Riemann surface and f: L — N a smooth map. Let F: L — G
be a (local) lift of f and o = F~1.dF. Then the following statement are equivalent

(i) 9’y +lag Aoy +[af Aaf]=0  (S1)
(i) 0a) +[af Aaj] =0 (S2)

_ 1,0
(iii) f is holomorphically V*-harmonic: {8v18f} =0.

_ 0,1
(iv) f is anti-holomorphically V°-harmonic: {av‘)af} =0.

(v) f is a geometric solution of the second elliptic integrable system associated to the (locally)
3-symmetric space G/Gy:

1
day + E[cm Aay] =0, VYreS!

where ay = A72ay + A7t | + ag + Aol + N2 .

Proof. The equivalences (i) < (i) < (v) have been proved in R.3.3. To prove (i) & (iii): just
take the (1,0)-component in TN® of ([[3]) for ¢ = 1. Idem for (i) < (iv). This completes the
proof. ([

Remark 7.3 In fact, the equivalences (iv) < (v) and (iii) < (iv) has also been already derived
in , so that this theorem has already been completely proved there.

Now, additionning theorems , E, @ and proposition @, we obtain

Corollary 7.2 The following statements are equivalent

(i) f is strongly V*-harmonic for one t € [0,1]\ {3}.

(ii) f is V'-harmonic for one t € [0,1] and torsion free.

(iii) f is holomorphically Vt-harmonic for one t € [0,1] and torsion free.

(iv) f is a geometric solution of the first elliptic system associated to the reductive homogeneous

space G/Gy.

(v) f is a geometric solution of the second elliptic system associated to the 3-symmetric space
G /Gy, and moreover [a; A az] = 0.

(vi) f isin the same time a geometric solution of the determined odd elliptic systems (Syst(2,7))
and (Syst(2,771)).

Now, let us apply theorem @ to the equivalence (iv) < (v) of theorem E

Theorem 7.4 The second elliptic integrable system associated to a naturally reductive 3-symmetric
space N = G /G is the Euler-Lagrange equation for the sigma model in N with the Wess-Zumino

term defined by the closed 3-form H = —ngi, where J is the canonical almost complex structure.
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7.3 (Affine) vertically (holomorphically) harmonic maps
7.3.1 Affine vertically harmonic maps: general properties

Here we generalise the definition of vertical harmonicity for maps from a Riemannian surface
into an affine manifold.

Definition 7.3 Let (N, V) be an affine manifold. Let us suppose that we have a splitting TN =
V@ H. In other words N is endowed with a Pfaffian system (the vertical subbundle V) and with

a connection on this Pfaffian system. Let f: (L,b) — N be a smooth map from a Riemannian
manifold (L,b) into N. Then we set

TV(f) = Trp(VVdU f) = %dV" = dVf,

where VVd'f is the vertical component of the covariant derivative of df with respect to the
connection on T*L® f*T N induced by the Levi-Civita connection of L and the linear connection
V. We will say that f is affine vertically harmonic with respect to NV or V-vertically harmonic

if TV(f) = 0.

Theorem 7.5 Let (L,j) be a Riemann surface and f: (L,j) — (N, V) a smooth map. Then we
have -

20V 0V f =dV dUf +idY xdf,
moreover d¥"d¥ f = f*T?, where TV is the vertical torsion (see[f.1.3) and d¥" «d’f = 7°(f)vol,

for any hermitian metric b in L. Therefore the following statements are equivalent:
(1) (V") o f=0.
(ii) oV ovf =0.

(iii) VY% (ang) =0, for any holomorphic local coordinate z = x + iy (i.e. (x,y) are conformal
oz

coordinates for any hermitian metric in L).

(iv) f is VV-vertically harmonic with respect to any hermitian metric in L and vertically torsion

free: f*TY =0 (i.e. T”(%, 2—5) =0 for any x,y conformal coordinates).

We will say in this case that f is strongly V-vertically harmonic.

Remark 7.4 In the previous characterisation of strongly vertical harmonicity, we only need a
connection V? in V, and V is useless.

7.3.2 Affine vertically holomorphically harmonic maps

Here we generalize the notion of holomorphic harmonicity by introducing a new notion of ver-
tical holomorphic harmonicity (in the same way that the vertical harmonicity generalizes the
harmonicity).

Definition 7.4 Let (N, V) be an affine manifold with a splitting TN = V®H as in definition .
Let us suppose that the subbundle V admits a complex structure JY. Let us denote by V& =
VL0 @ VYOI the splitting induced by the complex structure JY. Then we will say that a map
f:(L,jr) = N from a Riemann surface into N, is vertically holomorphicaly harmonic with
respect to V or V-vert. hol. harmonic if

1,0

[5V”avf} -
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Theorem 7.6 Let (L, j1,) be a Riemann surface and (N, V) be an affine manifold with a splitting
TN =V ®H and a complex structure JY on 'V as in the previous definition. Then f: L — N is
V-vert. hol. harmonic if and only if

TV 4+ JUdY" «dVf = 0.

Proof. The same as the one of proposition @ (I

7.4 Affine vertically harmonic maps into reductive homogeneous space

Let G be a Lie group, and K C H C G subgroups of G such that M = G/H and H/K are
reductive. We use the notations of (but we do not suppose a priori that the reductive
homogeneous spaces are Riemannian).

Theorem 7.7 Let (L,j) be a Riemann surface and f: L — N = G/K be a smooth map,
F: L— G a (local) lift of f and o = F~Y.dF. Then the following statements are equivalent:

(1) f is Vt-vertically harmonic for one t € [0,1].
(ii) f is V'-vertically harmonic for all t € [0,1].
(iii) d*ap + (o A xap] = 0.
(iv) Im (dap, + [off A o] + tlog A agly) =0, Vit € [0,1].
The vertical tension field 79V (f), with respect of V¢, is independent of t € [0, 1].
Proof. Setting V¥ = (V*)?, we have
() =xdV " wd'f = =AdF(d* ap + [ae A xap] + tlom A xaglp)
*AdF(d * ap + [ae A xoyp) + oy A *ay)p)

since [m,p] C [m,h] Cm
= *AdF(d* ap + [ae A xapl).

This gives us the equivalences (i) < (ii) < (iii) as well as the last assertion of the theorem.
Moreover let us compute the complex second derivative:

VoS = *AdF (D, + [0 N ay] + [ay Aaglp).

Then the equivalence (ii) < (iv) follows from theorem [7.§. For this equivalence, we could also
1 _

remark that [ay Aayly, = 5 [ap A ]y is in the real subspace p and that 2Im (day, + [off A a;]) =

d % ap + [ag A *ay]. This completes the proof. O

According to theorem EI, we deduce the following.

Corollary 7.3 , In the situation of the previous theorem, if f: L — N is harmonic (w.r.t. some

V) then it is also vertically harmonic. More generally, the vertical tension field is the vertical
component of the tension field.
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Remark 7.5 In the case N = G/K is endowed with a naturally reductive metric, then \&
coincides with the Levi-civita connection and therefore the previous corollary is nothing but a
particular case of theorem [L.§-(iii).

Now, let f: L — N be an arbitrary map from a Riemann surface into N. Then the f-pullback
of the vertical torsion with respect ot V* is

P =dV"df = AdF (doyp + [ae A ay) + tom A aply)
= AdF (dayp + [ae A ap| + tlap A ayly)
= T+ tp A Bl

where ¢: TN — [p] is the projection on the vertical subbundle along the horizontal subbundle
[m]. Therefore
TH = T%v 4 t[o A @] [p]- (135)

Moreover, recall that, according to section , the projection on [p] of the Maurer-Cartan
equation gives us the homogeneous structure equation (see equations (f3), ([7d) and footnote BJ)

T = & — %[Qﬁ A lip]

1
where ® = —§[w A Y]pp) is the homogeneous curvature form and +p: TN — [m] is the projection

on [m] along [p]. Then we have

1
THY — + (t — §> [¢ AN d)][p] (136)
Therefore

Theorem 7.8 Let us consider the same situation as in theorem [1.7.

o If fis flat then the strongly Vt-vertical harmonicity and the freedom from torsion, for f, do

not depend on t, if t € [0,1]\ {3}.

Moreover T2V = ® so that (if f is flat) strongly vertical harmonicity and vertical harmonicity
1

with respect to V2 are equivalent.

o If H/K s locally symmetric, i.e. [p,p] C &, then Vt € [0,1], T"" = ®.

In particular, the V-vertical torsion does not depend on t € [0, 1], and thus neither does strongly

harmonicity.

Now, we can conclude

Corollary 7.4 Let us suppose now that N = G/K is a (locally) 2k-symmetric space and that
M = G/H is the corresponding (locally) k-symmetric space. Then the even minimal determined
system (Syst(k, 7)) associated to N means that the geometric map f: L — N is horizontally
holomorphic and vertically harmonic with respect to any linear connection V¥, 0 <t < 1. More-
over the horizontal holomorphicity implies the flatness of f and thus its freedom from vertical
torsion (with respect to any connection V', 0 <t < 1). More precisely the (last) equation (Sk)
of the system means

v f=0

i.e. that f is strongly Vt-vertically harmonic, so that its real part means that f is vertically
torsion free and its imaginary part that f is vertically harmonic.
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The Riemannian case

Now, let us suppose that the reductive homogeneous space M = G/H is Riemannian, and then
so is N = G/K. In other words, we are in the situation described by . Let us consider the
metric connections in NV:

met
Vi=v04tBY, 0<t<1

with BY = [, Jjy + UY and U" defined by equation (3.
For any AdK-invariant subspace [ C n, we will denote by U': [ x [ — [ the bilinear symmetric

map defined by
<U[(X’ Y)aZ> = <[Za X][’Y> + <X’ [Z’ Y][> VX,Y €l

and by UlY its extension to the subbundle [I] C TN. Then we have in particular
UV =0l and U=TUW

where, let us recall it, U is defined by (@)

met
Now, let us project the definition equation of V ! in the vertical subbundle: we obtain YV €
C(TN),

met
o(V1V) = VOV + 160 BN (-, V)
Moreover, according to , equation (I@), we have ¢ o BY = ¢*B — ® so that

met

H(VIV)=V'V +t(¢*B — ®)(-, V)

and in particular VYV € C(V), VA € TN,

o(Va'V) = VAV 11 (64, V] + UP (04, V) (137)

met
Then according to theorem @ and remark @, and denoting by V ¥? the vertical component

met
of V¢, it follows:

Theorem 7.9 o If H/K is naturally reductive, then the connections defined by the restriction
met
toV of VH, 0 <t <1, are all ¢p-equivalent. Therefore the vertical harmonicity, with

met

respect to V %, is the same for all 0 <t < 1.

met
o If H/K s locally symmetric, then all the V %, 0 <t < 1, coincide in V. In particular the
met
strongly vertical harmonicity coincides for all the connections V', 0 <t <1.

met met
The vertical torsion of V t. We have seen in E that the torsion of V! is the same as the

one of V¢. Now let us see what happens for the vertical torsion. The vertical torsion with respect
met

to V v is given, according to ([[37), by
met met,
T =dV"™"¢ = dV¢+t[p Al + UP(oA )

= T + [ A @l + UPL (¢ A ).

174



But UFl(¢ A ¢) = 0 because Ul is symmetric, so that, according to ([[35),

met

T 0 =Th, (138)

Remark 7.6 We see that the value t = 1, i.e. the Levi-Civita connection, plays a special role
according to theorem and equation (@) Indeed for the Levi-Civita connection, we always

met
have T =¥ = ®, so that if f is flat, the strongly harmonicity and the vertical harmonicity are
equivalent.
met
However, if H/K is (locally) symmetric, then we have Vt € [0,1], T ¥ = T*%? = ®  and we have
met
even more, since all the connections V v coincides on V. Therefore the special role played by

met
the Levi-Civita connection is shared, in this case, with all the other connections V f.

Remark 7.7 As already mentioned in section , the equation (@), ie. poBYN = ¢*B—®, can
be obtained directly by computation (without using the general theorem @, as in section )
Let us do this. Lifting this equation we then have to prove that VX,Y € g,

[Xt‘lv}/ﬂ])ﬁ + [Un(XrUYﬂ)]p = [Xpa}/P]P + Up(XPvYP) + [Xm,Ym]p,

since [m, pJ, = {0}. It then suffices to prove that [U"(Xu, V)], = 0. This equality holds. Indeed,
we have V7 € g,

<Un(XmYm)a Zp) = <[Zann]mYm> + <Xm [Zpaym]n> = <[Zanm]aYm> + <Xma [ZpaYmD =0
since admp C admb C so(m).

The metric geometric interpretation of the even minimal determined system. Now,
according to theorem @, we can conclude by rewriting corollary @ in terms of the metric

met
connection V! instead of the linear connection V*.

Corollary 7.5 Let us suppose now that N = G/K is a (locally) 2k-symmetric space and that
M = G/H is the corresponding (locally) k-symmetric space. Then the even minimal determined
system (Syst(k, 7)) associated to N means that the geometric map f: L — N is horizontally

met
holomorphic and vertically harmonic with respect to any metric connection Vi, 0 <t < 1.
Moreover the horizontal holomorphicity implies the flatness of f and thus its freedom from vertical

met
torsion (with respect to any connection V', 0 <t <1). More precisely the (last) equation (S)
of the system means

met

AV orf=0

met
i.e. that f is strongly V t-vertically harmonic, so that its real part means that f is vertically
torsion free and its imaginary part that f is vertically harmonic.

Remark 7.8 In particular for ¢t = £, we recover theorem k.1d.
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7.5 Harmonicity vs vertically harmonicity

In this subsection, we endow all the reductive homogeneous spaces with their connections V?.
The harmonicity, the strongly and vertical harmonicity are therefore considered w.r.t. to these
connections. These notions are independent of ¢, with a exception at t = % for strongly har-
monicity, see @ and E) When we will say ”strongly harmonic” without other precisions, we

will mean "w.r.t. to any V¢, t # %”. Let us recall that if a naturally reductive invariant metric
is given, then V2 coincides with Levi-Civita. We use the notations of the previous sections: in

particular, L is a Riemann surface. Moreover, we keep in mind the results of @ and @

Theorem 7.10 Let N = G/K be a (locally) 2k-symmetric space. Let f: L — N = G/K be
horizontally holomorphic. Then the following statements are equivalent:

(i) f is harmonic,
(i) f 4s vertically harmonic and torsion free,
(iii) f is strongly harmonic.

Proof. e Let us prove: (i) = (ii) and (i) < (iii). According to corollary [7.3, the harmonicity

implies the vertical harmonicity. We have seen that the horizontal holomorphicity implies the
1

flatness so that [y A g, = [0m A ]y, = 0. Moreover we know that the VZz-harmonicity

R
coincides with the strongly V%—harmonicity so that we have 9V?0f = 0. Writing this equation
in terms of « and projecting it on m%! = Zlffl g5, yields

_ 1
aag-—i—[ag/\a;-]—i—Q[a;’/\a;]gj:0, 1<j<k-1

Now, the horizontal holomorphicity o; = 0,1 < j < k—1, reduces this equation to [aj; Ao ]g; = 0,
1<j<k-1ie [aff Ady]m = 0. Therefore we obtain finally [a) Aaj]n = 0 i.e. f is torsion free.
Combining the torsion freedom with the strongly V%—harmonicity, we obtain that f is strongly
harmonic w.r.t. any connection V?.

e Now we prove: (ii) = (iii). In terms of the Maurer-Cartan form «, the torsion freedom
of f is written [ay A an]n = 0. Moreover the horizontal holomorphicity implies the flatness:
[am A am]p = 0 so that [an A au], = 0. Finally we have [ay A an]m = 0 and therefore, the
projection on m of the Maurer-Cartan equation becomes

dom + [ag A am] = 0.
Then projecting it on m™° and using the horizontal holomorphicity, we obtain
oal, + [ag A aly] =0,

which is nothing but the horizontal part of the strongly V°-harmonicity for f. The vertical part
comes from the vertical harmonicity and the fact that the flatness implies the vertical torsion
freedom (see theorem E or corollary @) This completes the proof. (]

From the expression of the tension field 7(f) computed in section IZII, we deduce the following.

Proposition 7.1 Let G be a Lie group, and K C H C G subgroups of G such that M = G/H
and H/K are reductive. Let f: L — N = G/K be a map and u = wo f its projection on
M = G/H. Then the horizontal component of the tension field of f is related to the tension field
of u by:

() = T(w) + <[d f A <],
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In the case N is endowed with a naturally reductive invariant metric h, inducing then a naturally
reductive invariant metricﬁ g on M, and N and M are resp. endowed with their Levi-Civita
connections, this relation is nothing but a particular case of theorem @—(m) In particular,
strongly flatness of f means [d° f Axd"f] = 0. If f is strongly flat and vertically harmonic, then
its harmonicity is equivalent to the harmonicity of its projection u on M.

Convention. We will continue to say that f is strongly flat when [d°f A xd" f] = 0, even if N
and M are not endowed with metrics.

Remark 7.9 We have —[V,H]| =T (V,H) = p(V)H, VYV € V,H € H, where T is the torsion of
the canonical connection on N and p: V — so(H) is the linear representation of the curvature ®

defined by ([[20)).

Suppose that N = G/K is loc. 2k-symmetric and endowed with its canonical f-structure,
then using the fact (admV)J, = —Jy(adnV), VV € gk, we obtain that Np(V, H) = —2[V, H],
VYV € V, H € H. Therefore f is strongly flat if and only if Tr (f*NF|V><H) =0.

Proposition 7.2 Let N = G/K be a (locally) 2k-symmetric space and f: L - N = G/K a
map. We suppose that f: L — N = G/K is horizontally holomorphic and that its projection
u=mof:L — M = G/H, on the associated k-symmetric space, is torsion free. Then the
following statements are equivalent:

(i) f is harmonic.

(ii) w is harmonic and f is vertically harmonic.

(iii) f s strongly harmonic.

(iv) w is strongly harmonic and f is strongly vertically harmonic.

Proof. According to theorem [[.10, we have (i) < (iii). Moreover, since u is torsion free,
its harmonicity is equivalent to its strongly harmonicity. Furthermore, since f is flat because
horizontally holomorphic then it is vertically torsion free, according to theorem E Therefore
(ii) & (iv). Now, we have %[an/\an]m = [ap Aam]+ §[am AQm]m = [om A ] because u is torsion
free. Besides, (i) implies that f is torsion free, according to theorem .10, hence [ap A am] =0
so that owing to the horizontal holomorphicity [ap A *am] = [ap A —Jgam] = Jglap A am] = 0.
Therefore f is strongly flat which gives us: (i) = (ii). Conversely, let us suppose (ii) and therefore
(iv). Then writting the equation of strongly harmonicity for u, projecting it on m%!, and using
the horizontal holomorphicity of f (same method as in the proof of theorem ), we obtain
[y A aji0] = 0 and hence f is strongly flat so that (ii) = (i). This completes the proof. O

In particular, if K = 2 then M = G/H is loc. symmetric: [m, m],, = {0}, so that we recover:

Corollary 7.6 [B4] Let N = G/K be a (locally) 4-symmetric space. Let f: L — N = G/K be a
map and u: L — M = G/H its projection on the associated symmetric space. We suppose that
f: L = N = G/K is horizontally holomorphic. Then the following statements are equivalent:

(i) f is harmonic.

(ii) uw =mo f is harmonic and f is vertically harmonic.

"8See proposition @
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7.6 (Affine) vertically (holomorphically) harmonic maps into reductive

homogeneous space with an invariant Pfaffian structure

Let N = G/K be a reductive homogeneous space and g = € ® m a reductive decomposition of g.

Let us suppose that m admits an AdK-invariant decomposition

m=m ®p.

Then p defines a vertical subbundle V = [p] and m’ an horizontal subundle H = [m’] giving a

splitting TN = H @ V.
The curvature of the horizontal distribution H is given by

= [, ¥l = — 3 A ¥l
where ¢: TN — [m/] is the projection on [m’] along [p]. We will set
$ := R™.
The vertical torsion of the linear connection V* is given by T%? = d(vt)vqb and lifts into

Tt = dfy + [0 A Op] + t[0m A Gl,
= dby + [0e A Op] + t[0m A Oyl + t[0p A Oplp.

On the other hand, the projection on p of the Maurer-Cartan equation gives
Ay + 00 A Bp] + 5[0 A el + O Ayl + 310 A By =0
so that ([L40) can be written
T8 = e A Bl + (0= Db A Byl + (t - 1> 18 7 04y
which projected in N becomes
T =@ (- 0 A dly + (1 5 ) DGl

We remark that the values t = % 1 play special roles. In particular:

(139)
(140)

o If [m’,p], = {0} then we have T2 = &. More generally we recover equation ([[36) and the
results of theorem [7.§ (by taking the following values in the notations m := n and m’ := m).

e If [p,p], = {0} then we have 71 = &.
Now, if the two conditions are satisfied, [m’, p], = [p,p], = {0}, then we have
Vie[0,1], T =a.

Now let f: (L,j) — N be a map from a Riemann surface into N. Let us compute the vertical
tension field 75V (f) of f with respect to V' (and some Hermitian metric b in L). In order to do

that, let F': L — G be a lift of f and o = F~'.dF. Then we have

U (f) = «dV'"" % d°f = *AdF (d*ap + (o A xap) + tlam A *xop)p)

= OVt [ A ()
= 70U(f) 4+ tTry ([f*, [0y

(

= *AdF (d* ap + o A *op] + tow A *aglp + tlap A xaply)
)
)
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Now, let us consider the AdK-invariant vector subspace
m, = {X € m'| [X,p], = {0}}
and let m; be an AdK-invariant complementﬂ of m, in m’
m =m,Em.

Then we can rewrite the Vi-vertical torsion in the form
1
T =@+ (t — 1)[thy A ¢y + (f - 5) [0 A Blip) (141)

and the V'-vertical tension field (of f) in the form:
) = )+ [ A (T (142)

where ¢, : TN — [my] is the projection on [m;] along [m,] @ [p] i.e. the [my]-component of .

Definition 7.5 Let us suppose that N = G/K admits a G-invariant almost complex structure J
which leaves invariant the decomposition TN =YV @& H, that is to say the vector space m admits
an AdK -invariant almost complex structure J,, leaving invariant the decomposition m = m’ @ p.
Then we will say that J anticommutes with the reductivity term [, @l if

I, Ol = =30, Ol = — [, I

If J anticommutes with the reductivity term then m, is J-invariant so that it admits a J-invariant
complement m; in m'.

We obtain immediately the following characterisation of the anticommutation of J with the
reductivity term.

Proposition 7.3 Let us that N = G/K is endowed with a G-invariant almost complex structure
J leaving invariant the decomposition TN = H®V. For any J,-invariant AdK -invariant subspace
[ C m, let us denote by [T respectively the +i-eigenspace of Jji- Then J anticommutes with the
reducivity term [, @] if and only if

{m’i,pih cpt and {m’i,pﬂp c {0}.

In particular, if my, = {X € w/|[X,p], = {0}} admits a J-invariant AdK -invariant complement
my, then these conditions are equivalent to

[mip*], CpF and  [my,pF] C {0}

The following theorem presents some relations between vert. hol. harmonicity, vertical har-
monicity, flatness and torsion freedom.

Theorem 7.11 Let us suppose that N = G/K is endowed with a G-invariant almost complex
structure J leaving invariant the decomposition TN = H &V and which anticommutes with the
reductivity term [, ¢ljp). Let my be a J-invariant AdK -invariant complement in m’ of m, =
{X ew!|[X,p], ={0}}. Let f: (L,jr) = N be a map from a Riemann surface into N, F': L —
G a (local) lift of f and o = F~1.dF.

o Then if f is flat, f*® = 0, and [my]-holomorphic then the following statements are equivalent:

™Such an AdK-invariant complement always exists if m’ admits an AdK-invariant Pseudo-Euclidean inner
product non degenerated on m.. For example if g is semisimple, take the restriction to m’ of the Killing form and
then my = ([p, plwr) "
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1 1,0
(i) f is vert. hol. harmonic w.r.t. V' and J : {aVl‘ avf] =0.

o 0,1
(ii) f is vert. hol. harmonic w.r.t. V9 and —J : [av"’ avf} =0.

Moreover if [p,p], = {0}, then these are also equivalent to
(iii) f is vertically harmonic w.r.t. V1.

o Furthermore, if [p,plp, = {0} and f is flat, then f is V'-torsion free so that V'-vertical
harmonicity is equivalent to strongly V' -vertical harmonicity.

Proof. The V'!-vertical holomorphic harmonicity is written

FTY 4+ 3dV s df =0 (143)
1 1
but f*TH = 379 0l and AT = —[f* A f* @l — 579 A Olip) whereas

AV wd = dV w4 [ A ()
so that
1,v 1 0,v
P JdT e d = SO F Gl + AT A A A O (144)
Now let us use the fact that J anticommutes with [¢), @],
LFUA=(F oy = —BF ) Aol
= [%(f"Y1) A*%(f*¢)] because f is [m;]-holomorphic,
= [ffhinfiol="YvA[figl.
Therefore, injecting this in (), we obtain

f*Tl,v + idvl’v* dvf - _ (f*TO’v _ idvo'”* dvf) )

This proves the equivalence (i) < (ii). Now, if we suppose that [p,p], = {0}, then f*T™v =
0. Therefore the V!-vertical holomorphic harmonicity () is equivalent to the V!-vertical
harmonicity A d’ f = 0. This completes the proof. (I

Now, let us see how the vertical holomorphic harmonicity is written in terms of the Maurer-
Cartan form « of a lift F' of f: L — N. We obtain immediately

Proposition 7.4 Let us suppose that N = G/K is endowed with a G-invariant almost complex
structure J leaving invariant the decomposition TN = H & V. Then f: L — N is vert. hol.
harmonic w.r.t. VO and —J if and only if

dags + [af Ay ] = 0.

Moreover, if J anticommutes with the reductivity term [, ¢|fy) and m, admits an AdK -invariant
J-invariant complement my inw’, then a [mq]-holomorphic map f: L — N is vert. hol. harmonic
w.r.t. V! and J if and only if

5a;+ + [af A O‘M + [a

" ’ " / _
- /\ap,L + o Ao, =0,
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Now, let us suppose that N = G/K is a (locally) (2k + 1)-symmetric space, then the AdK-
invariant decomposition m = m’ ¢ p is given by p = my and m’ = @?;fmj with the notations of
B.1.9 Moreover according to the commutation relations [g€, g;c] C g;-cﬂ-, we have

m, = {X e, [X,p], = {0}} = @ ;m;

so that my is an AdGg-invariant supplement to m,. Moreover N is endowed naturally with its
canonical almost complex structure J defined in , which leaves invariant all the m; and
thus the subspaces my, m,, p. Furthermore, using once again the commutation relations, one
can see that J anticommutes with the reductivity term [t), ;. Finally, let us remark that
[p,plp = Mk, mg], = {0}. Now, the theorem can be applied.

Corollary 7.7 Let us suppose that N = G/K is a (locally) (2k + 1)-symmetric space endowed
with its canonical almost complex structure J, and with the J-invariant splittings TN = [m'] @ [p]
and [m'] = [m;] @ [m.]. Let f: L — N be a map, F: L — G a lift of f and o = F~1.dF. Then
if f is flat, f*® = 0, and [my]-holomorphic then f is V*-vertically torsion free f*T1? =0, and
the following statements are equivalent

1,0

(i) f is vert. hol. harmonic w.r.t. V* and J : {5V1'U8Uf} =0.

o 0,1
(ii) f is vert. hol. harmonic w.r.t. V° and —J : [8V0’ 8”f} =0.

(iii) f is vertically harmonic w.r.t. V1.
(iv) f is strongly vertically harmonic w.r.t. V*.
Now, let us apply proposition @

Proposition 7.5 Let us suppose that N = G/K is a (locally) (2k + 1)-symmetric space. Then
f: L — N is vert. hol. harmonic w.r.t. V° and —J if and only if

o + [a A o) = 0.

Moreover, if f: L — N is flat and [my]-holomorphic, then it is vert. hol. harmonic w.r.t. V1
and J if and only if ~
Ao+ [ag ANl ]+ [af Aag] = 0.
Furthermore, as in the even case (i.e. N = G/K is (locally) 2k-symmetric), the horizontal
holomorphicity implies the flatness.
Proposition 7.6 Let us suppose that N = G/K is a (locally) (2k + 1)-symmetric space. Then
if f: L — N is horizontallly holomorphic (i.e. [m']-holomorphic) then f is flat f*® = 0.
Proof. It follows from the equation
o= [0, O]y = — Z [0, 05lq.
i+ji=k
1<i],|il<k—1

and the fact that if i + j = k and 1 < |i],|j| < k — 1, then ¢ and j have the same sign. This
completes the proof. O

Now let us conclude with the following geometric interpretation of the odd minimal determined
system.
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Corollary 7.8 Let us suppose that N = G/K s a (locally) (2k 4+ 1)-symmetric space. Then the
odd minimal determined system (Syst(k + 1,7)) associated to N means that the geometric map
f: L = N is horizontally holomorphic and vertically harmonic w.r.t. the linear connection V1.
Moreover the horizontal holomorphicity implies the flatness of f and its freedom from V! -vertical
torsion, f*THY = 0.

More pecisely, the (last) equation (Sk+1) of the system (which lies in gi) means the vert. hol.
harmonicity of f w.r.t. V° and —J

07" 0] Moo

whereas the equation (Sy) (which lies in g_x) means the vert. hol. harmonicity of f w.r.t. V!
and J

07" 0] Yo

Moreover the sums (Sk)+(Sk+1) (which lies inmy,) means (taking account of the [my]-holomorphicity
o' = 0) the strongly vertical harmonicity of f w.r.t. V*:

v ovf =0,

so that its real part means that f is V'-vertically torsison free and its imaginary part that f is
V1 vertically harmonic.

All the other equations of the system, (S;), 0 < j <k —1 are (after having taken account of the
horizontal holomorphicity a’ij =0, 1<j <k—1) nothing but the projections on the subspace
g-;, 1 <j<k—1 of the Maurer-Cartan equation (which means the existence of the geometric
map f corresponding to «).

Proof. The first assertion has been proved in section P.3.9, theorem P.j. Moreover, the V-
vertical harmonicity will follows from the next assertions, according to corollary @

The second assertion follows from proposition E and theorem . The third assertion fol-
lows from propositions @ and @ The fourth assertion has been proved in subsection ,
paragraph The strictly minimal determined case. Finally, the fifth assertion follows from propo-
sition E This completes the proof. (I

Strongly vertical harmonicity w.r.t. V{. Let us see what the strongly vertical harmonicity
w.r.t. to V!, with ¢ € [0,1] \ {1}, means.

We have seen that the tension field of a map f: L — N = G/K, with respect to V', does not
depend on t € [0,1] (see theorem [.1)). Let us set 7(f) := 7¢(f).

Proposition 7.7 Let f: L - N = G/K be a map.
o Then we have

O (f) = ()] =2 [avéafr.

o If [p,ply = {0} and f is flat, then f*TH" =0 ie. 75°(f) = 20V 0F.

e Moreover, under these hypothesisﬂ, let my be an AdK -invariant complement of m,, in mw'.

Then, the following statements are equivalent:
(i) f*T4° =0 for one t € [0,1]\ {1},

80i.e. the hypothesis [p,p] = {0} and f is flat.
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(i) f*[1 A @l =0,

(iii) 75v(f) = 7%V(f) for one t € [0,1] \ {0}.

Proof. In the first point, the first equality comes from the fact that V' leaves invariant the
splitting TN = V @ H, since then (VO)U d’f = [Vodf}v. The second equality follows from
theorem @ and the fact that T2 = 0.

The second point follows from theorem . The third point follows from the equations ()
and ([[42)). This completes the proof. O

Corollary 7.9 Let us suppose that N = G/K is endowed with a G-invariant almost complex
structure J leaving invariant the decomposition TN = H ® V and which anticommutes with
the reductivity term [, @] We also suppose that there erists a J-invariant AdK -invariant
complement my in m’ of m,. Lastly, we suppose that [p,p], = {0}.

Let f: L - N = G/K be a map which is flat. Let F: L — N be a lift of f and o = F~1.dF.

Then the following statements are equivalent

(i) OV 9vf =0 for one t €[0,1]\ {1},
(ii) [5Vfafr =0 for one t € [0,1]\ {1},

(iii) 717(f) =0 and f*[11 A ¢l =0,
(iv) [7(f)]’ =0 and f*[th1 A Pl =

) [avt”av ] ? =0 for one t € [0,1] and f*[7/’1/\¢][p] =0,

(vi) { o tva”f}ojl =0 for onet € [0,1] and f*[hr A ¢l =0,

(vii) f is a geometric solution of the first elliptic integrable system associated to the adé-
invariant decomposition g = (¢ @ m') ® p, i.e. the I-form By = X" oy, + (e + amr) + Aoy
satisfies the zero curvature equation

dpx + = [ﬁmm]_o VA e C*.

Proof. The statement (i) is equivalent to the statement: ” f*[1)1 A¢]fy = 0 and 7V(f) = 0, Vt €
[0,1]”, according to proposition 7.7 and theorem [.J. Moreover, since [T%]" = (2t — 1[0, Om]p =
(2t — 1) (B A Omr]p + 5[0m, ABylp), We have

[T']" = (2t = 1) (@ + [t1 A ¢l -

Therefore, (ii) < ([1A@];) = 0 and [7(f)]” = 0), which is nothing but (iv). Moreover, according

to theorem .4 and equations ([141]) and ([149), we have (v) & (vi) & ( f*[t1 A ¢] p) = 0 and
Ttv(f) =0, Vt € [0,1]). Moreover, proposition gives us the equivalences

(i1i) < (iv) < (f*[1h1 A @y =0 and 757(f) =0, Vt € [0,1]).
We have then proved the equivalence between the six first assertions. Finally, we have
] = 0

b
(vii) & [am Aey] = 0 )
[(ve + amr) A (e + amr)] =0



Moreover, we have [a, Aoy ], = 0, since [p, p], = {0}. Furthermore, [(ae+ /) A (e +ams)]p = 0
because [m’,p], = 0 and the flatness of f means that [am: A am/], = 0. Therefore, the last
equation in ) is nothing but [MCJegm’, the projection of the Maurer-Cartan equation on
£ @ m’. Hence, we conclude that

(vii) & (7°(f) = 0 and f*[t1 A ]y = 0)
This completes the proof. (I

Now, we come back to the case of a (locally) (2k + 1)-symmetric space.

Corollary 7.10 Let us suppose that N = G/K is a (locally) (2k 4+ 1)-symmetric space. Let

f: L - N=G/K be amap, F: L — N be a lift of f and o = F~1.dF. Then the following
statements are equivalent:

(i) f is horizontally holomorphic and strongly Vt-vertically harmonic for one t € [0,1]\ {1},
(ii) f is a geometric solution of (Syst(k + 1,7)) and [a1 A ag] =0,

(iii) f is horizontally holomorphic and is a geometric solution of the first elliptic integrable
system associated to the adgg-invariant decomposition g = (go ® m') G my.

Proof. According to corollary . and corollary [.§, we have (i) < (iii). Moreover, according to
corollaries [7.§ and [7.9, the equivalent statements (i) and (iii) are also equivalent to (ii). O

7.7 The intermediate determined systems.
7.7.1 The odd case.

Here, we consider a (locally) (2k + 1)-symmetric space, N = G/K , endowed with its canonical
almost complex structure J and its canonical connection V. Let k 4+ 1 < m < 2k be an integer
and set m = 2k — m. Then we consider the G-invariant splitting TIN = H™ & V™, where

H™ = @jm:l[mj] and V" = @?:ﬂ+1[mj]~

Let us remark that this splitting is also J-invariant and V°-parallel.
According to proposition @ and theorem , we have the following.

Proposition 7.8 Let N = G/K be a (locally) (2k+1)-symmetric space endowed with its canon-
ical almost complex structure J and its canonical connection V°. Let m be an integer such that
k+1<m < 2k. Then the associated determined system, Syst(m,T) means that the geometric
map f: L — N is x-stringy harmonic and H™-holomorphic.

We will need the following definition.

Definition 7.6 Let (N, J) be an almost complex manifold endowed with a linear connection V.
Let E C TN be some subbundle. We will say that a map f: L — N from a Riemann surface
into N is E-x-stringy harmonic if

(=75 (f) + (T x D)y()]" = 0.

where g is a Hermitian metric on L. If E inherits the name of vertical or horizontal subbundle
then we will say that f is vertically, resp. horizontally x-stringy harmonic.
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Then the proposition gives us:

Theorem 7.12 Let N = G/K be a (locally) (2k+1)-symmetric space endowed with its canonical
almost complex structure J and its canonical connection V°. Let m be an integer such that
k+1<m < 2k. Then the associated determined system, Syst(m,T) means that the geometric
map f: L — N is H™-holomorphic and vertically x-stringy harmonic.

Proof. Let us come back to section @, then the equation (Ey,), in theorem @, means that f is
*-stringy harmonic, according to theorem and its proof. Therefore, the projection [(F)], in
proposition means that f is vertically *-stringy harmonic. Then the proposition allows
us to conclude. This completes the proof. (I

In fact this theorem is a particular case of a more general result:

Proposition 7.9 Let (N,J,V) be an almost complex affine manifold, with TN = H SV a
J-invariant, V-parallel splitting. Let T be the torsion of V. Let us suppose that

TV, V)V and T (H,V)CV. (146)

Let (L,j) be a Riemann surface. Then any H-holomorphic map f: L — N is horizontally -
stringy harmonic. Therefore a horizontally holomorphic map f: L — N is x-stringy harmonic if
and only if it is vertically *-stringy harmonic.

Proof. Using the fact that the splitting is V-parallel and the horizontal holomorphicity, we have
[PV (O = dY « [@f] = —Td7 (@] =TT (df. df).

Moreover, recall that J«T = J(T++ —T~~ —T11). We then have to prove that f*(T++)* =0,
which will imply the horizontal *-stringy harmonicity of f. Moreover, remark that we have

T5(T*°N, T"'N) =0, Ve € Z,.

Therefore, since f is horizontally holomorphic, we have T%°([d] ] [ﬁ] M) = 0. Furthermore,
according to the hypothesis ([[46) on T+, we conclude that f*(7++)* = 0. This completes the
proof. (I

It is not difficult to see that a (locally) (2k + 1)-symmetric space endowed with its canonical
almost complex structure J, its canonical connection VY and the splitting TN = H™ & V™,
satisfies the hypothesis of the previous proposition.

7.7.2 The even case.

Here, we counsider a (locally) 2k-symmetric space, N = G/K , endowed with its canonical f-
structure F' and its canonical connection V°. Let k < m < 2k — 1 be an integer and set
m = 2k — 1 —m. Then we consider the G-invariant splitting TN = H™ & V™, where

H™ =@z, [my] and V™ = oF_ 11 myl,

and my = gr. This splitting is also J-invariant and VO-parallel.
According to proposition @ and theorem , we have the following.
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Proposition 7.10 Let N = G/K be a (locally) 2k-symmetric space endowed with its canonical
f-structure F' and its canonical connection VY. Let m be an integer such that k < m < 2k — 1.
Then the associated determined system, Syst(m,T) means that the geometric map f: L — N s
*-stringy harmonic and H™-holomorphic.

We will need the following definition.

Definition 7.7 Let (N, F) be a f-manifold endowed with a linear connection V, and E C TN
some subbundle. We will say that a map f: L — N from a Riemann surface into N is E-x-
stringy harmonic if

[—7y(f) + (F*T),(f)]" =0.

where g is a Hermitian metric on L. If E inherits the name of vertical or horizontal subbundle
then we will say that f is vertically, resp. horizontally x-stringy harmonic.

Then the proposition gives us:

Theorem 7.13 Let N = G/K be a (locally) 2k-symmetric space endowed with its canonical
f-structure F and its canonical connection VO. Let m be an integer such that k < m < 2k — 1.
Then the associated determined system, Syst(m,T) means that the geometric map f: L — N is
H™-holomorphic and vertically x-stringy harmonic.

Proof. It is analogous to the one of theorem . O

In fact this theorem is a particular case of a more general result:

Proposition 7.11 Let (N, F, V) be a f-manifold endowed with a f-connection. As usual, we set
H=InF and V = ker F. Suppose that Ry = 0. Moreover, let TN = H ®V be a F-invariant,
V-parallel splitting, such that H C H and V D V. Let us set T := T;j2, where T is the torsion of
V. Let us suppose that

T VNHIYNH) CVNH and T (H,VNH) CVNH.

Suppose also that T;_Q‘Xv 18 pureﬂ.

Let (L,j) be a Riemann surface. Then any H-holomorphic map f: L — N is horizontally *-
stringy harmonic. Therefore a horizontally holomorphic map f: L — N is x-stringy harmonic if
and only if it is vertically x-stringy harmonic.

Proof. It is analogous to the one of theorem .13, O

It is not difficult to see that a (locally) 2k-symmetric space endowed with its canonical f-structure
F, its canonical connection V° and the splitting TN = H™ @ V™, satisfies the hypothesis of the
previous proposition.

7.7.3 Sigma model with a Wess-Zumino term.

We have seen that the maximal determined system has an interpretation in terms of a sigma
models with a Wess-Zumino term defined by a 3-form H. In fact, more generally, let my < m <
k' — 1, and let us consider the splitting TN = H™ @ V™ defined above. Then one can prove

81je. T;-.ttxv anticommutes with J, see definition .
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that any m-th determined system is the Euler-Lagrange equation w.r.t. vertical variations (i.e.
in V™) of the following functional

EY(f) = %/L|d@f|2dvolg+/BH@

where d° f = [df]V", H® = H — H = Hs(ym 3m), H = H|(3ym)s, and B is a 3-submanifold of N
with boundary 0B = f(L).
We will come back to this in [Bg.

7.8 Some remarks about the twistorial interpretation.
7.8.1 The even case.

We have seen that in the even case, each geometric property of the geometric map f: L —
N = G/Gy like horizontal holomorphicity, vertical harmonicity, stringy harmonicity is naturally
translated into the same geometric property of the twistor lift J: L — ZZ&kQ(M ,J2) in the
twistor space Z$ 5(M, J2). Moreover, the very particular structure of homogeneous fibre f-
bundle of N = G/ Go can be realised as a subbundle of the universal homogeneous fibre f-
bundle Zg ,(M, J2). ”Universal” means that we can define it for any Riemannian manifold

(M, g) endowed with a global k-structure J2 (and a metric connection V). Remark that since
Z5}.2(M, J2) is a complete reduction of Za; (M) (w.r.t. to the structures of homogeneous fibre f-
bundles defined by the canonical connection of M) then we can also as well embedd N in Zop (M)
which is more universal because defined for any Riemannian manifold (M, g) (endowed with a
metric connection V). Then all the geometric properties below are also preserved under this
embedding and hold in Zs;(M). However, it is perhaps better to use the universal homogeneous
fibre f-bundle containing N which looks like the most to N and which is also the smallest one
(a kind of "universal homogeneous fibre f-bundle closure”). This exists and this is Z5; (M, J2).
For example, Zg; ,(M, J2) has a symmetric fibre like IV, whereas Zo; (M) has a 2k-symmetric
fibre.

7.8.2 The odd case.

In the odd case the use of the twistor space Zop41(N) is less pertinent than in the even case.
Indeed in the even case, we had some particular fibration that twistor space allows to realise
more universally as some bundle of endormophisms over M. Here we do not have this problem
of fibration and therefore do not need a priori the twistor space. In the odd case, we have a
canonical sectionfd J;: G/Go — Zar41(G/Go), which allows to duplicate each geometric prop-
erty satisfied by the geometric map f: L — N into 2 ”identical” properties in each subbundle H
and V of the tangent bundle of the twistor space.

However, the twistor space Za,41 (V) is still universal since it can be defined for any Rieman-
nian manifold (N,h) (endowed with some metric connection V). Moreover, under the embed-
ding defined by the canonical section Ji: G/Go — Za4+1(G/Go), any geometric property like
J-holomorphicity, F!"-holomorphicity, vertical harmonicity, stringy harmonicity and so on is
preserved and holds for the twistor lift J = f*J;: L — Zo;4+1(N) in the twistor space.

We have to precise that the structure of homogeneous fibre bundle of Z5541 (V) is defined with
respect toﬁ V¢, In particular, this connection defines a splitting TN = H ® V. Then, we can

82Defined by lemma E
83Recall that VO is metric w.r.t. any G-invariant metric, whereas V¢, for t # 0 is metric when N is endowed
with a naturally reductive metric
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define a canonical almost complex structure .J := ((dm)*d)3 ® 7" (AdJ1). That is to say on the
horizontal subbundle we take complex structure defined by (the lift of) J and moreover the fibre
is (2k + 1)-symmetric and is therefore endowed with a canonical almost complex structure, that
we endow the vertical subbundle with.

Then, with respect to this almost complex structure, .J1: (G/Go,J) — (Zax41(G/Gy), J) is holo-
morphic.

We will come back to that in [BJ.
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8 Appendix

8.1 Vertical harmonicity

Theorem 8.1 Let us consider the situation described by example B and suppose that w: N —
M is a Riemannian submersion and u: L — M is an isometry. Then f: L — N is vertically
harmonic if and only if the corresponding section f: L — u*N 1is a harmonic section. Further-
more f: L — N is harmonic if and only if f: L — u*N is harmonic and [7’(]”)]117'[*(71)L =0 i.e.
the component of the tension field in the subspace of H corresponding by the isometry dmq to
the normal bundle u,(T L)% in TM, vanishes, or equivalently [dr(T(f))u, (rr)r = 0.

Proof. The Levi-Civita in u*N is the orthogonal projection ofthe Levi-Civita connection in
L x N, on the tangent bundle T'(u*N). Let us determine this orthonormal projection. First let
us express clearly what is the tangent subbundle T'(u*N) in T'(L x N).

Ty (w"N) = {(&n) € TanyL x Nldu(§) = dr(n)}.

Let us do some identifications. First an usual one: consider that T'L is a subbundle of 7'M,
(and forget the ”u,” in u.(TL)), secondly: we consider that 7*TM = H, identifying these by
the isometry dm3,, so that we will write H -1y = 7"T'L & 7*TL', where TL' is the normal
bundle of L in M. Moreover, for any n € T'N|-1(z) let us write its decomposition following
TN,,T—I(L) =m'TL&m*TLt & Vﬂ-—l(L) as

n=nfy +nrge +1".

Then under the previous identifications, we have

Tiw™N) = {(&n) € L x T,N|n¥, = &0y . =0}

This gives us a splitting T(u*N) = V¥ N @ H*" N where ¥(I,n) € u*N,
Vit = {0} x Vu and Mg = L x Ho 0 Ty (uN) = {(6,€) € Tl x TiL}.
Let us determine the orthogonal of the tangent space T'(u*N):

(. 8) € (T (W' N)) " =
V(€,n) €Tyn(u*N), 0 =

o~ o~~~

g (a + ﬂ?ﬂLvﬂv) =0.

Therefore
(Tl (0 N)) " = {(=BFy. B), 8 € Ha).
Decomposing each (a,b) € T'(L x N )|« following the decomposition T'(L x N)j,«n = T'(u*N) ©
T(u*N)*‘: (a,b) = (&,1) + (o, B), then we obtain
{ a=n}y - BTy
b= (nfy + BFL) + BFL +n”
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so that this decomposition is therefore given by
b b, — b
(a,b) = (a+2TL a+ bt +bv) (_( TL2 a)’( TL2 )+bTLi)'

Now, let us come back to our fonction f: L — N and the corresponding section f: (L,b) = u*N.
Then let us compute

N

ey
7 0,0°f) = (190, e

i
[0, V" f)] o N))

uw'N

u* N VN
@ f =90 L dpv =

*

V’LLN
(% (Va P 5V Dy + V'
(0,9 )

Finally, we have proved

u* N

VUdAUf =VUdYf (147)
and by taking the trace, we obtain the first assertion of the theorem.
Now, in the same way we obtain

uw'N 1

Vdf(;VWﬁb W#>L+V%O (148)
so that f: N — w*N is harmonic if and only if [7(f)]}, = 0 and [r(f)]¥ = 0. Therefore
f: L — N is harmonic if and only if f: N — w*N is harmonic and [7(f)]%,. = 0. This
completes the proof. O

From the proof of theorem B.1] (more precisely from ([[47) and ([[4§)), we obtain:

Theorem 8.2 Let us consider the situation described by theorem @ Then f: L — N is
superflat if and only if the corresponding section f: L — u*N is superflat. Furthermore f: L —
N s totally geodesic if and only if f: L — u*N 1is totally geodesic and [Vdf];LLL =0 (ie

[dn(Vdf)l e =0).

Remark 8.1 The metric defined in example @ in u*N (and thus in theorems @ and @, ie.
the metric induced by the product metric, is given by

&) = 20 + V[ (149)
whereas, when 7: N — M is a Homogeneous fibre bundle, the metric in «* N, considered as an
Homogeneous fibre bundle, is defined in @ by equation (@) and is given by

&) = 1€l + "] (150)

However, theorems @ and @ hold, of course, also with the metric () Indeed, first remark
that the theorems hold if we multiply the product metric in L x N by a constant factor. Then
just apply these theorems with the same (M, g) (and thus the same (L,u*g)), N endowed with
the new metric | - |3, + 2| - 3 (the old one being |- |3, + |- |}) and endow L x N with 1 times the

1
product metric, then the induced metric on w*N is ([[50): §(|§|2 + (€2 +2nY ) = |€12 + V|2
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8.2 (G-invariant metrics
8.2.1 About the natural reductivity.

Lemma 8.1 Let N = G/K be a naturally reductive Riemannian homogeneous space. Let H D K
be a subgroup of G such that M = G/H is reductive. Then any naturally reductive metric h
induces a Riemannian metric on M = G/HY, in particular G/H° is Riemannian.

Proof. A G-invariant metric h on N = G/K is naturally reductive if and only if the torsion T
of the canonical connection is a 3-form w.r.t. h. In particular, the identity

(17, X]n,Y) = —(X,[Z,Y]s), VXY, Z€n (151)

characterising the natural reductivity, holds for any reductive decomposition g = ¢®n. Moreover
since G/H is reductive, we have an AdH-invariant decomposition g = h @ m. Let us choose some
AdK-invariant summand n°, i.e. g = £ @ n°. Then, the subspace p := h N n® is AdK-invariant
and we have h = £ @ p (because dim(h Nn’) = dimbh + dimn® — dimg = dim b — dim £). Now,
let us set n = p ® m. Then, let us apply () for X, Y € mand Z = V € p, we obtain:
(V. X, Yim) = —(Xm, [V, Yal), ice. admb C so(m, hyy) and therefore Ady H® C SO(m, ), or
in other words hy, is AdH O_invariant. This completes the proof. (I

In fact, we can do more by using a result of Kostant [[J).

Definition 8.1 [iJ] Let g =¢®n, tnn = {0}, [¢,n] C n. We will say that a inner product B
on n is stricly invariant if adyt C so(n, B) and it satisfies (L51)); i.e. [adyX]n is skew-symmetric
for all X € g.

Theorem 8.3 [iJ] Let g = ¢ @ n, tNn = {0}, [(,n] C n and (g,¥) effective. Let B be a stricly
invariant inner product on n. Let g(n) = n+ [n,n], & = g(n) N¢E, so that the ideal g(n) = ¢ G n.
There exists one and only one invariant symmetric bilinear form B* on g(n) extending B and
such that B*(¢1,n) = 0. Moreover, B* is nonsingular on g(n) and hence on ;.

Definition 8.2 [@] We will say, in the situation of the previous theorem that n is pervasive in
g if g(n) = g. This is also equivalent to [n,n]y = £.

According to this theorem, we see that if B is stricly invariant on n, and g(n) = g, then it is
automatically AdK-invariant (and not only AdK°-invariant) for any subgroup K C G with Lie
algebra G (remember that G is always supposed connected, according to our convention). There-
fore the fact for p to be natural (42]) w.r.t. G/K is a purely Lie algebra concept. Recall that p is
natural means that p is AdK-invariant and admits an AdK-invariant naturally reductive inner
product. In other words G/K is Riemannian and V3 coincides with the Levi-civita connection
of some G-invariant metric (or equivalently G/K is Riemannian and the torsion of the canonical
connection is totally skew-symmetric w.r.t. some G-invariant metric) and p = T,G/K.
Moreover, in the situation of lemma @, we can take m = h* -w.r.t. B* - which is then AdH-
invariant, as well as Bjmxm = (-, -)m and therefore G/H is Riemannian.

Proposition 8.1 Let N = G/K be a naturally reductive Riemannian homogeneous space. Let
H D K be a subgroup of G. Then M = G/H is Riemannian. Moreover, any G-invariant
naturally reductive metric h on N induces a G-invariant metric g on M such that 7: (G/K,h) —
(G/H,g) is a Riemannian submersion and therefore a homogeneous fibre bundle.
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Proof. First remark that, if g = g(n), then this follows immediately from theorem @ Moreover,
according to [@, Chap. I], the connected normal subgroup G; C G generated by the ideal g(n)
is acting transitively on N = G/K. Moreover, since of course the projection 7: G/K — G/H is
G-invariant: g.7(y) = 7(g9.y), Vg € G,y € N, we see that G1.7(yo) = 7(G1.y0) = 7(N) = M so
that G acts transitively on M = G/H. This completes the proof. (I

Moreover, let us remark the following interesting fact.
Proposition 8.2 Let g be a real Lie algebra and 7: g — g be an automorphism. Let us assume

that T defines in g a T-invariant reductive decomposition: g = go ®n with n = Im (Id — 7). Let
us suppose that there exists a stricly invariant inner product B on n, then we have g(n) = g.

Proof. According to [@, Corollary 4], there exists an ideal a C g complementary to the ideal
g(n) : g = g(n) ® a. Moreover, the restriction to a of the projections X — —X, and X — X
are isomorphisms. Furthermore, g(n) is clearly invariant by 7 and idem for a (this results from
the exact definition of a in [@, Corollary 4]). Therefore, we then have a = a N € @ a N n, which
implies that a = 0, since the restriction to a of the projections are isomorphisms. This completes
the proof. O

In the following subsections, we use the notations of section .

8.2.2 Existence of an AdH-invariant inner product on m for which 7, is an isometry.

Lemma 8.2 Let G be a connected Lie group and o: G — G an automorphism of order p. Then
G? has finite many connected components.

Proof. This is proved in [@, Lemma 2.7], for p = 2, i.e. ¢ is an involution. The proof in [@] can
be generalized without any difficulty to the case of an order p automorphism. (I

Proposition 8.3 Let 0: g — g be an automorphism of order p, of a real Lie algebra g with
trivial center. Let G be a connected Lie group with Lie algebra g, then AdG? /Ad(G?)° is finite.

Proof. According to remark EI, it suffices to apply lemma @ to the adjoint group G’ = AdG.
O

Theorem 8.4 Let 7: g — g be an automorphism of order 2k, of a real Lie algebra g with
trivial center. Let G be a connected Lie group with Lie algebra g and H a subgroup such that
(G°)° Cc H C G°, where 0 = 72. If AdwH is compact, then the subgroup generated by Ady, H
and Tjm 18 compact.

Proof. Follow the proof of [@, theorem 21] by using the lemma E and prop. E above instead
of [}, Lemma 2.7]. O

8.2.3 Existence of a naturally reductive metric for which J is an isometry, resp. F
is metric.

The odd case Let 7: g — g be an automorphism of order 2k + 1. We have
T [adm (X)) T b = [adm (T X)]m, VX € m.

Therefore
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Lemma 8.3 Let N = G/K be a (locally) (2k + 1)-symmetric space endowed with its canonical
almost complex structure J. Suppose also that N = G/K is naturally reductive. Denoting by
G(m) the compact subgroup in GL(m) generated by Am(m) := {[adm (X )]m, X € m} C gl(m), then
(G(m), T ), the subgroup generated by G(m) and 7w, is compact. Therefore for any metric h on
m invariant by (G(m), Twm), then h is naturally reductive, and J, is orthogonal.

The even case Let 7: g — g be an automorphism of order 2k. We have
Taladn (X)]amn ! = [ada (70 X)]n, VX €n.

Therefore

Lemma 8.4 Let N = G/K be a (locally) 2k-symmetric space endowed with its canonical f-
structure F. Suppose also that N = G/K is naturally reductive. Denoting by G(n) the compact
subgroup in GL(n) generated by Ax(n) = {[ada(X)]n, X € n} C gl(n), then (G(n), ), the
subgroup generated by G(n) and 1., is compact. Therefore for any metric h on n invariant by
(G(n),Ta), then h is naturally reductive, and Iy = J, ® —1Idg, is orthogonal, i.e. F is metric.
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