# Geometric Interpretation of $m$-th Elliptic Integrable System 

Idrisse Khemar

## To cite this version:

Idrisse Khemar. Geometric Interpretation of $m$-th Elliptic Integrable System. 2009. hal-00374546v4

## HAL Id: hal-00374546 <br> https://hal.science/hal-00374546v4

Preprint submitted on 2 Dec 2009 (v4), last revised 15 Apr 2011 (v7)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Geometric Interpretation of $m$-th Elliptic Integrable System

Idrisse Khemar

## Contents

- Introduction ..... 3
0.1 The primitive systems ..... 4
0.2 The determined case
0.2.1 The minimal determined system
0.2.2 The general structure of the maximal determined case.
0.2.3 The model system in the even case
0.2.4 The model system in the odd case6
0.2.5 The coupled model system ..... 8
0.2.6 The General maximal determined odd system ..... 9
0.2.7 General maximal determined even system. $\left(k^{\prime}=2 k, m=2 k-1\right)$ ..... 10
0.2.8 The intermediate determined systems ..... 12
0.3 The underdetermined case ..... 12
0.4 In the twistor space. ..... 12
0 Index of notations ..... 13
0.5 Generalities ..... 13
0.6 Almost complex geometry ..... 13
1 Invariant connections on reductive homogeneous spaces ..... 14
1.1 Linear isotropy representation ..... 14
1.2 Reductive homogeneous space ..... 15
1.3 The (canonical) invariant connection ..... 15
1.4 Associated covariant derivative ..... 15
1.5 $G$-invariant affine connections in terms of equivariant bilinear maps ..... 16
1.6 A Family of connections on the reductive space $M$ ..... 18
1.7 Differentiation in $\operatorname{End}(T(G / H))$ ..... 19
$2 m$-th elliptic integrable system associated to a $k^{\prime}$-symmetric space ..... 21
2.0.1 Definition of $G^{\tau}$ (even when $\tau$ does not integrate in $G$ ) ..... 21
2.1 Finite order Lie algebra automorphisms ..... 22
2.1.1 The even case: $k^{\prime}=2 k$ ..... 22
2.1.2 the odd case: $k^{\prime}=2 k+1$ ..... 24
2.2 Definitions and general properties of the $m$-th elliptic system. ..... 24
2.2.1 Definitions ..... 24
2.2.2 The geometric solution ..... 26
2.2.3 The increasing sequence of spaces of solutions: $(\mathcal{S}(m))_{m \in \mathbb{N}}$ ..... 29
2.2.4 The decreasing sequence $\left(\operatorname{Syst}\left(m, \tau^{p}\right)\right)_{p / k^{\prime}}$ ..... 30
2.3 The minimal determined case ..... 30
2.3.1 The even minimal determined case: $k^{\prime}=2 k$ and $m=k$ ..... 30
2.3.2 The minimal determined odd case ..... 33
2.4 The maximal determined case ..... 36
2.5 The underdetermined case ..... 37
2.6 Examples ..... 37
2.6.1 The trivial case: the 0-th elliptic system associated to a Lie group. ..... 37
2.6.2 Even determined case ..... 37
2.6.3 Primitive case ..... 37
2.6.4 Odd determined case ..... 37
2.6.5 Underdetermined case ..... 38
3 Finite order isometries and Twistor spaces ..... 39
3.1 Isometries of order $2 k$ with no eigenvalues $= \pm 1$ ..... 39
3.1.1 The set of connected components in the general case ..... 39
3.1.2 $\quad$ Study of $\operatorname{Ad} J$, for $J \in \mathcal{Z}_{2 k}^{a}\left(\mathbb{R}^{2 n}\right)$ ..... 41
3.1.3 Study of $\operatorname{Ad} J^{j}$ ..... 42
3.2 Isometries of order $2 k+1$ with no eignevalue $=1$ ..... 44
3.3 The effect of the power maps on the finite order isometries ..... 44
3.4 The Twistor spaces of a Riemannian manifolds and its reductions ..... 45
3.5 Return to an order $2 k$ automorphism $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$. ..... 46
3.5.1 Case $r=k$ ..... 46
3.5.2 Action of $\operatorname{Ad} \tau_{\mid \mathfrak{m}}$ on $\operatorname{adg}_{j}$ ..... 47
3.6 The canonical section in $\left(\mathcal{Z}_{2 k}(G / H)\right)^{2}$, the canonical embedding, and the Twistor lifts ..... 47
3.6.1 The Twistor lifts ..... 48
4 Vertically Harmonic maps and Harmonic sections of submersions ..... 49
4.1 Definitions, general properties and examples ..... 49
4.1.1 The vertical energy fonctional ..... 49
4.1.2 Examples ..... 49
4.1.3 $\Psi$-torsion, $\Psi$-difference tensor, and curvature of a Pfaffian system ..... 54
4.2 Harmonic sections of homogeneous fibre bundles ..... 56
4.2.1 Definitions and Geometric properties ..... 56
4.2.2 Vertical harmonicity equation ..... 59
4.2.3 Reductions of homogeneous fibre bundles ..... 62
4.3 Examples of Homogeneous fibre bundles ..... 63
4.3.1 Homogeneous spaces fibration ..... 63
4.3.2 The twistor bundle of almost complex structures $\Sigma(E)$ ..... 67
4.3.3 The twistor bundle $\mathcal{Z}_{2 k}(E)$ of a Riemannian vector bundle ..... 70
4.3.4 The Twistor subbundle $\mathcal{Z}_{2 k, j}^{\alpha}(E)$ ..... 72
4.4 Geometric interpretation of the even determined system ..... 78
4.4. $\quad$ The injective morphism of homogeneous fibre bundle $\mathfrak{I}_{J_{0}}: G / G_{0} \hookrightarrow \mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(G / H, J_{2}\right)$. 784.4.2 Conclusion81
5 Generalized harmonic maps ..... 82
5.1 Affine harmonic maps and holomorphically harmonic maps ..... 82
5.1.1 Affine harmonic maps: general properties ..... 82
5.1.2 Holomorphically harmonic maps ..... 83
5.2 The sigma model with a Wess-Zumino term in Nearly Kähler manifolds ..... 89
5.2.1 Totally skew-symmetric torsion ..... 89
5.2.2 The general case of an almost Hermitian manifold ..... 91
5.2.3 The example of a 3 -symmetric space ..... 93
5.2.4 The good geometric context/setting ..... 94
5.2.5 $J$-twisted harmonic maps ..... 95
5.3 The sigma model with a Wess-Zumino term in $\mathcal{G}_{1}$-manifolds ..... 96
5.3.1 $T N$-valued 2-forms ..... 96
5.3.2 Stringy Harmonic maps ..... 98
5.3.3 Almost Hermitian $\mathcal{G}_{1}$-manifolds ..... 99
5.3.4 Characterisation of Hermitian connections in terms of their torsion ..... 102
5.3.5 The example of a naturally reductive homogeneous space ..... 103
5.3.6 Geometric interpretation of the maximal determined odd case. ..... 104
$5.4 \quad f$-structures on homogeneous fibre bundles ..... 104
5.4.1 Connections preserving a $f$-structure ..... 104
5.4.2 $f$-connections on fibre bundles ..... 116
5.5 Stringy Harmonic maps in $f$-manifolds. ..... 118
5.5.1 Definitions ..... 118
5.5.2 The closeness of the 3 -forms $F \bullet T$ and $F \star T$. ..... 119
5.5.3 The sigma model with a Wess-Zumino term in reductive Riemannian $f$ - manifold of global type $\mathcal{G}_{1}$ ..... 121
5.5.4 The example of a naturally reductive homogeneous space ..... 121
5.5.5 Geometric interpretation of the maximal determined even case ..... 122
6 Generalized harmonic maps into reductive homogeneous spaces ..... 123
6.1 Affine harmonic maps into reductive homogeneous spaces. ..... 123
6.2 Affine (holomorphically) harmonic maps into 3 -symmetric spaces ..... 125
6.3 Affine vertically (holomorphically) harmonic maps ..... 126
6.3.1 Affine vertically harmonic maps: general properties ..... 126
6.3.2 Affine vertically holomorphically harmonic maps ..... 127
6.4 Affine vertically harmonic maps into reductive homogeneous space ..... 127
6.5 Affine vertically (holomorphically) harmonic maps into reductive homogeneous space with an invariant Pfaffian structure ..... 130
7 Appendix ..... 137
7.1 Vertical harmonicity ..... 137
7.2 Riemannian $f$-structures ..... 138


## Introduction

In this paper, we give a geometric interpretation of all the $m$-th elliptic integrable systems associated to a $k^{\prime}$-symmetric space $N=G / G_{0}$ (in the sense of C.L. Terng 38]).

This system can be written as a zero curvature equation

$$
d \alpha_{\lambda}+\frac{1}{2}\left[\alpha_{\lambda} \wedge \alpha_{\lambda}\right]=0, \quad \forall \lambda \in \mathbb{C}^{*}
$$

where $\alpha_{\lambda}=\sum_{j=0}^{m} \lambda^{-j} u_{j}+\lambda^{j} \bar{u}_{j}=\sum_{j=-m}^{m} \lambda^{j} \hat{\alpha}_{j}$ is a 1-form on a Riemann surface $L$ taking values in the Lie algebra $\mathfrak{g}$. The "coefficient" $u_{j}$ is a (1,0)-type 1 -form on $L$ with values in the eigenspace $\mathfrak{g}_{-j}$ of the automorphism $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ of order $k^{\prime}$ (defining the (locally) $k^{\prime}$-symmetric
space $N=G / G_{0}$ ) with respect to the eigenvalue $\omega_{k^{\prime}}^{-j}$. We denote by $\omega_{k^{\prime}}$ a $k^{\prime}$-th primitive root of unity. Moreover, we call the integer $m$ the order of the system.
First, we remark that any solution of the system of order $m$ is a solution of the system of order $m^{\prime}$, if $m \leq m^{\prime}$ (and the automorphism $\tau$ is fixed). In other words, the system of order $m$ is a reduction of the system of order $m^{\prime}$, if $m \leq m^{\prime}$.
Moreover, it turns out that we have to introduce the integer $m_{k^{\prime}}$ defined by

$$
m_{k^{\prime}}=\left[\frac{k^{\prime}+1}{2}\right]=\left\{\begin{array}{l}
k \text { if } k^{\prime}=2 k \\
k+1 \text { if } k^{\prime}=2 k+1
\end{array} \quad \text { if } k^{\prime}>1, \text { and } m_{1}=0\right.
$$

Then the general problem splits into three cases : the primitive case ( $m<m_{k^{\prime}}$ ), the determined case ( $m_{k^{\prime}} \leq m \leq k^{\prime}-1$ ) and the underdetermined case ( $m \geq k^{\prime}$ ).

### 0.1 The primitive systems

The primitive systems have an interpretation in terms of $F$-holomorphic maps, with respect to an $f$-struture $F\left(F^{3}+F=0\right)$. More precisely:

- In the even case $\left(k^{\prime}=2 k\right)$, we have a fibration $G / G_{0} \rightarrow G / H$ over a $k$-symmetric space $M=G / H$ (defined by the square of the automorphism $\tau$ of order $k^{\prime}$ defining $N=G / G_{0}$ ). We also have a $G$-invariant splitting $T N=\mathcal{H} \oplus \mathcal{V}$ corresponding to this fibration (i.e. a connection $\mathcal{H}$ on this fibration), and then $N$ is naturally endowed with a $f$-structure $F$ which defines a complex structure on the horizontal subbundle $\mathcal{H}$ and vanishes on the vertical subbundle $\mathcal{V}$. Moreover the eigenspace decomposition of the order $k^{\prime}$ automorphism $\tau$ gives us some $G$-invariant decomposition $\mathcal{H}=\oplus_{j=1}^{k-1}\left[\mathfrak{m}_{j}\right]$, where $\mathfrak{m}_{j} \subset \mathfrak{g}$ is defined by $\mathfrak{m}_{j}=\mathfrak{g}_{-j} \oplus \mathfrak{g}_{j}$, and $\left[\mathfrak{m}_{j}\right] \subset T N$ the corresponding $G$-invariant subbundle. This allows to define, by multiplying $F$ on the left by the projections on the subbundles $\mathcal{H}^{m}=\oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right]$, a family of $f$-structures $F^{[m]}, 1 \leq m \leq k-1$. Then the primitive system of order $m\left(m<m_{k^{\prime}}=k\right)$ associated to $G / G_{0}$ is exactly the equation for $F^{[m]}$-holomorphic maps. In particular any solution of a primitive system is $F$-holomorphic.
- In the odd case $\left(k^{\prime}=2 k+1\right), N=G / G_{0}$ is naturally endowed with an almost complex structure $\underline{\mathbf{J}}$. Then the solutions of the primitive systems are exactly the $\underline{J}$-holomorphic curves. Moreover, in the same way as for the even case, the eigenspace decomposition of $\tau$ provides a $G$-invariant decomposition $T N=\oplus_{j=1}^{k}\left[\mathfrak{m}_{j}\right]$, which allows to define a family of $f$-structures $F^{[m]}, 1 \leq m \leq k$, with $F^{[k]}=\underline{\mathbf{J}}$. Then the primitive system of order $m\left(m<m_{k^{\prime}}=k+1\right)$ associated to $G / G_{0}$ is exactly the equation for $F^{[m]}$-holomorphic maps. In other words, the solutions of the primitive system of order $m$ are exactly the integral holomorphic curves of the complex Pfaffian system $\oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right] \subset T N$ in the almost complex manifold $(N, \underline{\mathrm{~J}})$.


### 0.2 The determined case

We call "the minimal determined system" the determined system of minimal order $m_{k^{\prime}}$, and "the maximal determined system" the determined system of maximal order $k^{\prime}-1$.
Any solution of a determined system is solution of the corresponding maximal determined system. More precisely, a map $f: L \rightarrow G / G_{0}$ is solution of a determined system (associated to $G / G_{0}$ ) if and only if it is solution of the maximal determined system (associated to $G / G_{0}$ ) and satisfies an additional holomorphicity condition. When this holomorphicity condition is maximal, then we obtain the minimal determined system.

### 0.2.1 The minimal determined system

The minimal determined system has an interpretation in terms of horizontally holomorphic and vertically harmonic maps $f: L \rightarrow N=G / G_{0}$. It also has an equivalent interpretation in terms of vertically harmonic twistor lifts in some twistor space. Let us make precise this point.

In the even case. As we have seen in the subsection 0.1 below, the homogeneous space $N=G / G_{0}$ admits a $G$-invariant splitting $T N=\mathcal{H} \oplus \mathcal{V}$ corresponding to the fibration $\pi: N \rightarrow M$ and $N$ is naturally endowed with a $f$-structure $F$ which defines a complex structure on the horizontal subbundle $\mathcal{H}$ and vanishes on the vertical subbundle $\mathcal{V}$. Then we say that a map $f: L \rightarrow N$ is horizontally holomorphic if

$$
\left(d f \circ j_{L}\right)^{\mathcal{H}}=F \circ d f .
$$

Then we prove that the even minimal determined system (Syst $(k, \tau))$ means that the geometric map $f$ is horizontally holomorphic and vertically harmonic, i.e.

$$
\tau^{v}(f):=\operatorname{Tr}_{g}\left(\nabla^{v} d^{v} f\right)=0
$$

(for any hermitian metric $g$ on the Riemann surface $L$ ).
We prove also that this system also has an equivalent interpretation in terms of vertically harmonic twistor lifts in the twistor space $\mathcal{Z}_{2 k, j}\left(M, J_{2}\right)$ which is a subbundle of $\mathcal{Z}_{2 k}(M)$, where

$$
\mathcal{Z}_{k^{\prime}}(M)=\left\{J \in S O(T M) \mid J^{k^{\prime}}=\mathrm{Id}, J^{p} \neq \operatorname{Id} \text { if } p<k^{\prime}, \operatorname{ker}(J \pm \mathrm{Id})=\{0\}\right\}
$$

is the bundle of isometries of $T M$ with finite order $k^{\prime}$ and with no eigenvalues $= \pm 1$. More precisely denoting by $J_{2}$ the order $k$ isometry of $M$ defined by $\tau_{\mathfrak{m}}^{2}$, then we define $\mathcal{Z}_{2 k, j}\left(M, J_{2}\right)=$ $\left\{J \in \mathcal{Z}_{2 k}(M) \mid J^{2}=J_{2}\right\}$. Then we prove that $N=G / G_{0}$ can be embedded into the twistor space $\mathcal{Z}_{2 k, j}\left(M, J_{2}\right)$ via a natural morphism of bundle over $M=G / H$. We prove that $f: L \rightarrow N$ is solution of the system if and only if the corresponding map $J^{f}: L \rightarrow \mathcal{Z}_{2 k, j}\left(M, J_{2}\right)$ is a vertically harmonic twistor lift.

In the odd case. We obtain an analogous interpretation as in the even case. An interpretation in terms of horizontally holomorphic and vertically harmonic maps $f: L \rightarrow N=G / G_{0}$. And by embedding $G / G_{0}$ into the twistor space $\mathcal{Z}_{2 k+1}(N)$ of order $2 k+1$ isometries in $N$, we obtain an interpretation in terms of vertically harmonic twistor lift.

### 0.2.2 The general structure of the maximal determined case.

First, the maximal determined system has 3 model cases. This means that there are 3 maximal determined systems, namely the three maximal determined systems with lowest order of symmetry ( $2,3,4$ ), of which the corresponding geometric equations (when put all together) contain already all the structure terms - in a simple form- that will appear in the further maximal determined systems in a more complex and general form due to the more complex geometric structure in the further maximal determined systems. That is in this sense that we can say that all the further determined systems associated to target spaces $N$ with higher order of symmetry will be modeled on these model systems.

### 0.2.3 The model system in the even case

In the even case, this model is the first elliptic integrable system associated to a symmetric space ( $m=1, k^{\prime}=2$ ) which is - as it is well known - exacly the equation of harmonic maps from the Riemann surface $L$ into the symmetric space under consideration. This is the "smallest" determined system, i.e. with lowest order of symmetry in the target space $N=G / G_{0}$. In this case $-N$ is symmetric- the determined case is reduced to one system, the one of order 1 .

### 0.2.4 The model system in the odd case

In the odd case, this model is the second elliptic integrable system associated to a 3 -symmetric space. This is the "smallest" determined system in the odd case, i.e. with lowest odd order of symmetry in the target space $N=G / G_{0}$. We prove that this system is exactly the equation for holomorphically harmonic maps into the almost complex manifold ( $N, \underline{\mathrm{~J}}$ ) with respect to the anticanonical connection $\nabla^{1}=\nabla^{0}+[,]_{[\mathfrak{m}]}$, where $\nabla^{0}$ is the canonical connection. Or equivalently this is the equation for holomorphically harmonic maps into the almost complex manifold ( $N,-\underline{J}$ ) with respect to the canonical connection $\nabla^{0}$.

Holomorphically harmonic maps. Given a general almost complex manifold $(N, J)$ with a connection $\nabla$, we define holomorphically harmonic maps $f: L \rightarrow N$ as the solutions of the equation

$$
\begin{equation*}
\left[\bar{\partial}^{\nabla} \partial f\right]^{1,0}=0 \tag{1}
\end{equation*}
$$

where [ ] ${ }^{1,0}$ denotes the (1,0)-component according to the splitting $T N^{\mathbb{C}}=T^{1,0} N \oplus T^{0,1} N$ defined by $J$. This equation is equivalent to

$$
d^{\nabla} d f+J d^{\nabla} * d f=0
$$

or, equivalently, using any Hermitian metric $g$ on $L$

$$
T_{g}(f)+J \tau_{g}(f)=0
$$

where $T_{g}(f)=* f^{*} T=f^{*} T\left(e_{1}, e_{2}\right)$, with $\left(e_{1}, e_{2}\right)$ an orthonormal basis of $T L$, and $\tau_{g}(f)=$ $* d^{\nabla} * d f=\operatorname{Tr}_{g}(\nabla d f)$ is the tension field of $f$. Of course $\operatorname{Tr}_{g}$ denotes the trace with respect to $g$, and the expression $\nabla d f$ denotes the covariant derivative of $d f$ with respect to the connection induced in $T^{*} L \otimes f^{*} T N$ by $\nabla$ and the Levi-Civita connection in $L$.
In particular, we see that if $\nabla$ is torsion free or more generally if $f$ is torsion free, i.e. $f^{*} T=$ 0 , then holomorphic harmonicity is equivalent to harmonicity. Therefore, this new notion is interesting only in the case of a non torsion free connection $\nabla$.

The vanishing of some $\bar{\partial} \partial$-derivative. Now, let us suppose that the connection $\nabla$ on $N$ is almost complex, i.e. $\nabla J=0$. Then, according to equation (11), we see that any holomorphic curve $f:\left(L, j_{L}\right) \rightarrow(N, J)$ is anti-holomorphically harmonic, i.e. holomorphically harmonic with respect to $-J$. In particular, this allows to recover that a 1-primitive solution (i.e. of order $m=1$ ) of the elliptic system associated to a 3 -symmetric space is also solution of the second elliptic system associated to this space.
Moreover, the holomorphically harmonic maps admit a formulation very analogous to that of harmonic maps in term of the vanishing of some $\bar{\partial} \partial$-derivative, which implies a well kown caracterisation in term of holomorphic 1-forms. Indeed we prove that $f:\left(L, j_{L}\right) \rightarrow(N, J, \nabla)$ is holomorphically harmonic if and only if

$$
\begin{equation*}
\overline{\hat{\partial}}^{\hat{\nabla}} \hat{\partial} f=0 \tag{2}
\end{equation*}
$$

i.e. $\hat{\partial} f$ is a holomorphic section of $T_{1,0}^{*} L \otimes_{\mathbb{C}} f^{*} T N$. Here the hat " ${ }^{\prime} "$ means that we extend a 1-form on $T L$, like $d$ or $\nabla$, by $\mathbb{C}$-linearity as a linear map from $T L^{\mathbb{C}}$ into the complex bundle $(T N, J)$. In other words instead of extending these 1 -forms as $\mathbb{C}$-linear maps from $T L^{\mathbb{C}}$ into $T N^{\mathbb{C}}$ as it is usual, we use the already existing structure of complex vector bundle in $(T N, J)$ and extend these very naturally as $\mathbb{C}$-linear map from $T L^{\mathbb{C}}$ into the complex bundle $(T N, J)$. Therefore we can conclude that holomorphically harmonic maps have the same formulation as harmonic maps with the difference that instead of working in the complex vector bundle $T N^{\mathbb{C}}$, we stay in $T N$ which is already a complex vector bundle in which we work.

The sigma model with a Wess-Zumino term. Finally, let us suppose that $N$ is endowed with a $\nabla$-parallel Hermitian metric $h$. Therefore $(N, J, h)$ is an almost Hermitian manifold with a Hermitian connection $\nabla$. Suppose also that $J$ anticommutes with the torsion $T$ of $\nabla$ i.e.

$$
T(X, J Y)=-J T(X, Y)
$$

which is equivalent to

$$
T=\frac{1}{4} N_{J}
$$

where $N_{J}$ denotes the torsion of $J$ i.e its Nijenhuis tensor.
Suppose also that the torsion of $\nabla$ is totally skew-symmetric i.e.

$$
T^{*}(X, Y, Z)=\langle T(X, Y), Z\rangle
$$

is a 3 -form. Lastly, we suppose that the torsion is $\nabla$-parallel, i.e. $\nabla T^{*}=0$ which is equivalent to $\nabla T=0$. Then we prove that this implies that the 3 -form

$$
H(X, Y, Z)=-T^{*}(X, Y, J Z)=\langle J T(X, Y), Z\rangle
$$

is closed $d H=0.1$
Then the equation for holomorphically harmonic maps $f: L \rightarrow N$ is the equation of motion (i.e. Euler-Lagrange equation) for the sigma model in $N$ with the Wess-Zumino term defined by the closed 3 -form $H$. The action functional is given by

$$
S(f)=E(f)+S^{W Z}(f)=\frac{1}{2} \int_{L}|d f|^{2} d \mathrm{vol}_{g}+\int_{B} H
$$

where $B$ is 3 -submanifold (or indeed a 3 -chain) in $N$ whose boundary is $f(L)$.
Then since $d H=0$, the variation of the Wess-Zumino term is a boundary term

$$
\delta S^{W Z}=\int_{B} L_{\delta f} H=\int_{B} d \imath_{\delta f} H=\int_{f(L)} \imath_{\delta f} H
$$

whence its contribution to the Euler-Lagrange equation involves only the original map $f: L \rightarrow N$. In particular, applying this result to the case we are interseted in, i.e. $N$ is 3 -symmetric, we obtain:
The second elliptic system associated to 3-symmetric space $N=G / G_{0}$ is the equation of motion for the sigma model in $N$ with the Wess-Zumino term defined by the closed 3-form $H$, corresponding to the canonical almost complex structure - $\underline{\mathbf{J}}$ and the canonical connection $\nabla^{0}$. ${ }^{2}$

[^0]The good geometric context/setting In the previous variational interpretation, we need to make 3 hypothesis on the torsion of the almost Hermitian connection: $T$ anticommutes with $J$, is totally skew-symmetric and $\nabla$-parallel. It is natural to ask ourself what do these hypothesis mean geometrically and what is the good geometric context in which these take place. It turns out that the good geometric context is the one of Nearly Kähler manifold.
An Hermitian manifold $(N, J, h)$ is Nearly Kähler if and only if $\left(\nabla_{X}^{h} J\right) X=0$, for all $X \in T N$, where $\nabla^{h}$ is the Levi-Civita connection. Then we prove that the almost Hermitian manifolds for which there exists an Hermitian connection satisfiying the three hypothesis above are exactly Nearly Kähler manifolds. Then the variational interpretation can be rewritten as follows:

Theorem 0.1 Let $(N, h, J)$ be a nearly Kähler manifold then the equation of holomorphic harmonicity for maps $f: L \rightarrow N$ is exactly the Euler-Lagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the 3-form:

$$
H=\frac{1}{3} d \Omega_{J}
$$

where $\Omega_{J}=\langle J \cdot, \cdot\rangle$ is the Kähler form.
Therefore: the second elliptic system associated to 3-symmetric space $N=G / G_{0}$, endowed with its canonical almost complex structure $\underline{\mathbf{J}}$, is the equation of motion for the sigma model in $N$ with the Wess-Zumino term defined by the closed 3-form $H=-\frac{1}{3} d \Omega_{J}$.
$J$-twisted harmonic maps. We prove that we can also interpret the holomorphic harmonicity in terms of $J$-twisted harmonic maps (w.r.t. the Levi-Civita connection). Let us define this notion. Let $(E, J)$ be a complex vector bundle over an almost complex manifold $\left(M, j_{M}\right)$. Then let $\bar{\nabla}$ be a connection on $E$. Then we can decompose it in an unique way as the sum of a $J$-commuting and a $J$-anticommuting part, i.e. in the form

$$
\bar{\nabla}=\nabla^{0}+A
$$

where $\nabla^{0} J=0$ and $A \in \mathcal{C}\left(T^{*} M \otimes \operatorname{End}(E)\right), A J=-J A$. More precisely, we have $A=\frac{1}{2} J \bar{\nabla} J$. Then we set

$$
\bar{\nabla}^{J}=\nabla^{0}-\left(A \circ j_{M}\right) J=\bar{\nabla}-\frac{1}{2} J \bar{\nabla} J-\frac{1}{2} \bar{\nabla} J \circ j_{M}
$$

Now let $f:\left(L, j_{L}\right) \rightarrow(N, J)$ be a map from a Riemann surface into the almost complex manifold $(N, J)$ endowed with a connection $\nabla$. Then let us take in what precede $\left(M, j_{M}\right)=\left(L, j_{L}\right)$ and $(E, \bar{\nabla})=\left(f^{*} T N, f^{*} \nabla\right)$. Then we say that the map $f:\left(L, j_{L}\right) \rightarrow(N, J, \nabla)$ is $J$-twisted harmonic if and only if

$$
\operatorname{Tr}_{g}\left(\bar{\nabla}^{J} d f\right)=0
$$

(for any hermitian metric $g$ on the Riemann surface $L$ ).

### 0.2.5 The coupled model system

This is the third elliptic integrable system associated to a 4 -symmetric space. It can be viewed as a coupling between the even model case and the second ellitpic system associated to this 4 -symmetric space (minimal determined system).

[^1]
### 0.2.6 The General maximal determined odd system

The maximal determined system has a geometric interpretation in terms of stringy harmonic maps $f: L \rightarrow\left(G / G_{0}, \underline{J}\right)$, with respect to the canonical connection and the canonical almost complex structure.

Stringy harmonic maps. Let $(N, J)$ be an almost complex manifold with $\nabla$ an affine connection then we will say that a map $f: L \rightarrow N$ from a Riemann surface into $N$ is stringy harmonic if it is solution of the harmonic map equation with a JT-term:

$$
-\tau_{g}(f)+(J \cdot T)_{g}(f)=0
$$

We have used the notation $J \cdot B=-J B(J \cdot, \cdot), \forall B \in\left(\Lambda^{2} T^{*} N\right) \otimes T N$. This action of $J$ on $\forall B \in\left(\Lambda^{2} T^{*} N\right) \otimes T N$ can be written more naturally is $(N, J)$ is endowed with a Hermitian metric $h$. Indeed, in this case, we have an identification, $\forall B \in\left(\Lambda^{2} T^{*} N\right) \otimes T N=\left(\Lambda^{2} T^{*} N\right) \otimes T^{*} N \subset$ $\otimes^{3} T^{*} N$, between $T N$-valued 2-forms on $N$ and trilinear forms on $N$ skew-symmetric w.r.t. the 2 first variables: $B(X, Y, Z):=\langle B(X, Y), Z\rangle$. Then $J \cdot B$ is written:

$$
J \cdot B=B(J \cdot, J \cdot, J \cdot)=:-B^{c}
$$

We remark that if $T$ anticommutes with $J$ then stringy harmoniciy coincides with holomorphic harmonicity (since in this case $J \cdot T=J T$ ). Furtermore, we looks for a general geometric setting in which the stringy harmonicity has a interesting interpretation. First of all, let us remark that in the context of homogeneous reductive space, in which our system takes places, we have a canonical connection, with respect to which the stringy harmonicity can be written "canonically". But in general we do not have a "special" connection with respect to which one can consider the stringy harmonicity. Therefore, if one wants to place stringy harmonicity in a more meaningfull, interesting and fruitful context (than the general context of almost complex manifolds endowed with some affine manifold) and, in so doing, obtain a better understanding of our elliptic integrable system by writting its geometric interpretation in the best geometric context, a first problem - that we solved - is to find a general class of (almost complex) manifold in which there exists some unique "canonical" connection, with respect to which we then could consider the stringy harmonicity. This provides us, firstly, some special connection (in the same sense that the Levi-Civita connection is special in Riemannian geometry), which solves the problem of the choice of the connection, but secondly it turns out that it provides also a variationnal interpretation of the stringy harmonicity.

Best geometric setting It turns out that the more rich geometric context in which stringy harmonicity admits interesting properties is the one of $\mathcal{G}_{1}$-manifolds, more precisely $\mathcal{G}_{1}$-manifolds whose the characteristic connection has a parallel torsion. Making systematic use of the covariant derivative of the Kähler form, A. Gray and L. M. Hervella, in the late seventies, classified almost Hermitian structures into sixteen classes. Denoting by $\mathcal{W}$ the space of all trilinear forms (on some Hermitian vector spaces, say $T_{y_{0}} N$ for some reference point $y_{0} \in N$ ) having the same algebraic properties as $\nabla^{h} \Omega_{J}$. Then they proved that we have a $U(n)$-irreducible decomposition $\mathcal{W}=\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$. The sixteen classes are then respectively the classes of almost Hermitian manifold for which $\nabla^{h} \Omega_{J}$ 'lies in' the $U(n)$-invariant subspaces $\mathcal{W}_{I}=\oplus_{i \in I} \mathcal{W}_{i}, I \subset\{1, \ldots, 4\}$, respectively. In particular, if we take as invariant subspace $\{0\}$, we obtain the Kähler manifolds, if we take $\mathcal{W}_{1}$, we obtain the class of nearly Kähler manifolds. Moreover the class of $\mathcal{G}_{1}$-manifolds is the one defined by $\mathcal{G}_{1}=\mathcal{W}_{1} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$. It is characterised by : $(N, J, h)$ is of type $\mathcal{G}_{1}$ if and only if the Nijenhuis tensor $N_{J}$ is totally skew-symmetric (i.e. a 3 -form).
In this paper, we prove the following theorem:

Theorem 0.2 An almost complex Hermitian manifold ( $N, J, h$ ) admits a Hermitian connection with totally skew-symmetric torsion if and only if the Nijenhuis tensor $N_{J}$ is itself totally skewsymmetric. In this case, the connection is unique and determined by its torsion which is given by

$$
T=-d^{c} \Omega_{J}+N_{J} .
$$

The characteristic connection is then given by $\nabla=\nabla^{h}-\frac{1}{2} T$.
Then we prove that
Proposition 0.1 Let us suppose that the almost Hermitian manifold ( $N, J, h$ ) is a $\mathcal{G}_{1}$-manifold. Let us suppose that its characteristic connection $\nabla$ has a parallel torsion $\nabla T=0$. Then the 3-form

$$
H(X, Y, Z)=T(J X, J Y, J Z)=\langle(J \cdot T)(X, Y), Z\rangle
$$

is closed $d H=0$.
which then gives us the following variational interpretation
Theorem 0.3 Let us suppose that the almost Hermitian manifold $(N, J, h)$ is a $\mathcal{G}_{1}$-manifold. Let us suppose that its characteristic connection $\nabla$ has a parallel torsion $\nabla T=0$.
Then the equation for stringy harmonic maps $f: L \rightarrow N$ is exactly the Euler-Lagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the closed 3-form

$$
H=-d \Omega_{J}+J N_{J}
$$

Moreover any $(2 k+1)$-symmetric space $\left(G / G_{0}, \underline{\mathrm{~J}}, h\right)$ endowed with its canonical complex structure and a naturally reductive $G$-invariant metric $h$ (for which $\underline{J}$ is orthogonal) is $\mathcal{G}_{1}$-manifold and moreover its characteristic connection coincides with its canonical connection $\nabla^{0}$. Finally, the torsion of the canonical connection is obviously parallel. Therefore we obtain an interpretation of the maximal determined odd system associated to a $(2 k+1)$-symmetric space in terms of a sigma models with a Wess-Zumino term.
0.2.7 General maximal determined even system. $\left(k^{\prime}=2 k, m=2 k-1\right)$

In the even case, the geometric structure of the target space $G / G_{0}$ is more complex (and more rich): as we have already seen, there is a fibration $\pi: N=G / G_{0} \rightarrow M=G / H$, a splitting $T N=\mathcal{H} \oplus \mathcal{V}$ with $\mathcal{V}=\operatorname{ker} \pi$, and a $f$-structure $F$ such that $\operatorname{ker} F=\mathcal{V}$ and $\operatorname{Im} F=\mathcal{H}$ (in particular $\bar{J}:=F_{\mathcal{H}}$ is a complex structure on $\left.\mathcal{H}\right)$. Moreover the geometric PDE obtained from our elliptic integrable system calls for this geometric structure. In particular, this geometric PDE splits into its horizontal and vertical parts and can be viewed as a coupling between the equation of $\bar{J}$-stringy harmonicity and the equation of vertical harmonicity, the coupling terms calling out the curvature of $\mathcal{H}$.
The maximal determined even system has a geometric interpretation in terms of stringy harmonic maps $f: L \rightarrow\left(G / G_{0}, F\right), F$ being the canonical $f$-structure on $G / G_{0}$.

Stringy harmonic maps w.r.t. a $f$-structure. Let $(N, F)$ be a $f$-manifold with $\nabla$ an affine connection. Then we will say that a map $f: L \rightarrow N$ from a Riemann surface into $N$ is stringy harmonic if it is solution of the stringy harmonic maps equation:

$$
-\tau_{g}(f)+(F \bullet T)_{g}(f)=0
$$

where $F \bullet B$, for $B \in \mathcal{C}\left(\Lambda^{2} T^{*} N \otimes T N\right)$, denotes some natural (linear) action of $F$ on $\mathcal{C}\left(\Lambda^{2} T^{*} N \otimes\right.$ $T N)$. For more simplicity, let us write it in the case $(N, F)$ is endowed with a compatible metric $h$ (i.e. $\mathcal{V} \perp \mathcal{H}$ and $\bar{J}$ is orthogonal with respect to $h_{\mid \mathcal{H} \times \mathcal{H}}$ ):

$$
\begin{aligned}
F \bullet B & =B(F \cdot, F \cdot, F \cdot)+F \circlearrowleft\left(B-B_{\mathcal{H}}^{3}\right) \\
F \hookleftarrow A & =A(F \cdot, \cdot \cdot \cdot)+A(\cdot, F \cdot, \cdot)+A(\cdot, \cdot, F \cdot)
\end{aligned}
$$

for all $B, A \in \mathcal{C}\left(\Lambda^{2} T^{*} N \otimes T N\right)$.
Now, we want to proceed as in the case of stringy harmonicity with respect to a complex structure. That is to say find a class a $f$-manifolds for which there exists some unique characteristic connection which preserves the structure and then look for a variational interpretation of the stringy harmonicity with respect to this connection.

Best Geometric context. We looks for Riemannian $f$-manifolds ( $N, F, h$ ) for which there exists metric $f$-connection $\nabla$ (i.e. $\nabla F=0$ and $\nabla h=0$ ) wiht skew-symmetric torsion $T$. On a first step, we consider metric connections which preserves the splitting $T N=\mathcal{V} \oplus \mathcal{H}$ (i.e. $\nabla q=0$, where $q$ is the projection on $\mathcal{V}$ ) and characterize the manifolds ( $N, h, q$ ) for which there exists such a connection with skew-symmetric torsion, and call these reductive Riemannian $f$-manifolds.
Then saying about a Riemannian $f$-manifolds $(N, F, h)$ that it is of global type $\mathcal{G}_{1}$ if its extended Nijenhuis tensor $\tilde{N}_{F}$ is skew-symmetric, we prove the following theorem:

Theorem 0.4 A Riemannian $f$-manifold $(N, F, h)$ admits a metric $f$-connection $\nabla$ with skewsymmetric torsion if and only if it is reductive and of global type $\mathcal{G}_{1}$. Moreover, in this case, for any $\alpha \in \mathcal{C}\left(\Lambda^{3} \mathcal{V}^{*}\right)$, there exists a unique metric connection $\nabla$ with skew-symmetric torsion such that $T_{\mid \Lambda^{3} \mathcal{V}}=\alpha$. This unique connection is given by

$$
T=\left(-d^{c} \Omega_{F}+N_{F \mid \mathcal{H}^{3}}\right)+\operatorname{Skew}(\Phi)+\operatorname{Skew}\left(\mathrm{R}_{\mathcal{V}}\right)+\alpha .
$$

where $\Omega_{F}=\langle F \cdot, \cdot\rangle, \Phi$ and $\mathrm{R}_{\mathcal{V}}$ are resp. the curvature of $\mathcal{H}$ and $\mathcal{V}$ resp., and Skew the sum of all the circular permutations on the three variables.

On a Riemannian $f$-manifold $(N, F, h)$, a metric $f$-connection $\nabla$ with skew-symmetric torsion will be called characteristic connection.

Moreover, we prove that for any reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$, the closedness of $H=F \bullet T$ is equivalent to the closedness of the horizontal 3 -form $F \cdot N_{F}$, so that:

Theorem 0.5 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let us suppose that the horizontal 3-form $F \cdot N_{F}$ is closed. Let $\nabla$ be one characteristic connection. Then the equation for stringy harmonic maps (w.r.t. $\nabla$ ) $f: L \rightarrow N$ is exactly the Euler-Lagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the closed 3-form

$$
H=-d \Omega_{F}+F \cdot N_{F}
$$

Contrary to the case of stringy harmonic maps into an almost Hermitian $\mathcal{G}_{1}$-manifolds, in the present case, the hypothesis that the torsion of one characteristic connection is parallel $\nabla T=0$ does not imply the closedness of the 3-form $H=F \bullet T$. However, we characterize this closedness under the hypothesis $\nabla T=0$ by some 3 conditions that we will not explain in this introduction (see section 5.5.2): the horizontal complex structure $\bar{J}$ is a cyclic permutation of the horizontal curvature, the vertical curvature $\mathrm{R}_{\mathcal{V}}$ is in the Kernel of the horizontal Nijenhuis 2-form $N_{\bar{J}}$, and
the 2 -forms $N_{\bar{J}}$ and $\Phi$ have orthogonal supports.
Moreover any $2 k$-symmetric space $\left(G / G_{0}, F, h\right)$ endowed with its canonical $f$-structure and a naturally reductive $G$-invariant metric $h$ (compatible with $F$ ) is reductive and of global type $\mathcal{G}_{1}$, and moreover its canonical connection $\nabla^{0}$ is a characteristic connection. Furthermore, the torsion of the canonical connection is obviously parallel. Finally, we prove that any $2 k$-symmetric space $\left(G / G_{0}, F, h\right)$ satisfies the three hypothesis above. Therefore we obtain an interpretation of the maximal determined even system associated to a $2 k$-symmetric space in terms of a sigma models with a Wess-Zumino term.

### 0.2.8 The intermediate determined systems

For the intermediate determined systems ( $m_{k^{\prime}}<m<k^{\prime}-1$ ), these are obtained from the maximal determined case by adding holomorphicity in the subbundle $\mathcal{H}^{\bar{m}}=\oplus_{j=1}^{k^{\prime}-1-m}\left[\mathfrak{m}_{j}\right] \subset \mathcal{H}$, where $\bar{m}=k^{\prime}-1-m$. It means that the $m$-th determined system has a geometric interpretation in terms of stringy harmonic maps which are $\mathcal{H}^{\bar{m}}$-holomorphic:

$$
\left(d f \circ j_{L}\right)^{\mathcal{H}^{m}}=F^{[\bar{m}]} \circ d f .
$$

### 0.3 The underdetermined case

We prove that the $m$-th underdetermined system $\left(m>k^{\prime}-1\right)$ is in fact equivalent to some $m$-th determined or primitive system associated to some new automorphism $\tilde{\tau}$ defined in a product $\mathfrak{g}^{q+1}$ of the initial lie algebra $\mathfrak{g}$. More precisely, we write

$$
m=q k^{\prime}+r, \quad 0 \leq r \leq k^{\prime}-1
$$

the Euclidean division of $m$ by $k^{\prime}$. Then we consider the automorphism in $\mathfrak{g}^{q+1}$ defined by

$$
\tilde{\tau}\left(a_{1}, \ldots, a_{q+1}\right) \in \mathfrak{g}^{q+1} \longmapsto\left(a_{q+1}, \tau\left(a_{1}\right), \ldots, a_{q}\right) \in \mathfrak{g}^{q+1} .
$$

Then $\tilde{\tau}$ is of order $(q+1) k^{\prime}$. We prove that the initial $m$-th (underdetermined) system associated to $(\mathfrak{g}, \tau)$ is in fact equivalent to the $m$-th (determined) system associated to ( $\mathfrak{g}^{q+1}, \tilde{\tau}$ ).

### 0.4 In the twistor space.

For each previous geometric interpretation in the target space $N=G / G_{0}$, there is a corresponding geometric interpretation in the Twistor space. Indeed, in the odd case we have a section defined by the embedding

$$
G / G_{0} \hookrightarrow \mathcal{Z}_{2 k+1}\left(G / G_{0}\right)
$$

whereas in the even case we have a morphim of bundle over $M=G / H$ defined by the embedding

$$
G / G_{0} \hookrightarrow \mathcal{Z}_{2 k}(G / H)
$$

The geometric interpretations in the twistor spaces are universal since these twistor space are defined for any Riemannian manifold and are endowed canonically with the different geometric structure that we need to suppose the target space $N$ to be endowed with, in our previous geometric interpretations.

Aknowledgements The author wishes to thank Josef Dorfmeister for his comments on the first parts of this paper. He is also grateful to him for his interest in the present work, his encouragements as well as his support during the preparation of this paper.

## Index of notations

### 0.5 Generalities

- Let $k \in \mathbb{N}$. Then we will often confuse - when it is convenient to do it- an element in $\mathbb{Z}_{k}$ with one of its representants. For example, let $\left(a_{i}\right)_{i \in \mathbb{Z}_{k}}$ be a family of elements in some vector space $E$, and $0 \leq m<k / 2$ an integer. Then we will write

$$
a_{i}=a_{-i} \quad 1 \leq i \leq m
$$

to say that this equality holds for all $i \in\{1+k \mathbb{Z}, \ldots, m+k \mathbb{Z}\} \subset \mathbb{Z}_{k}$.

- Let us suppose that a vector space $E$ admits some decomposition $E=\oplus_{i \in I} E_{i}$. Then, for any vector $v \in E$ we denote by $[v]_{E_{i}}$ its component in $E_{i}$.


### 0.6 Almost complex geometry

Let $E$ be a real vector space endowed with a complex structure: $J \in \operatorname{End}(E), J^{2}=-\mathrm{Id}$. Then we denote by $E^{1,0}$ and $E^{0,1}$ respectively the eigenspaces of $J$ associated to the eigenvalues $\pm i$ respectively. Then we have the following eigenspace decomposition

$$
\begin{equation*}
E^{\mathbb{C}}=E^{1,0} \oplus E^{0,1} \tag{3}
\end{equation*}
$$

and the following equalities

$$
\begin{align*}
& E^{1,0}=\operatorname{ker}(J-i \mathrm{Id})=(J+i \mathrm{Id}) E^{\mathbb{C}} \\
& E^{0,1}=\operatorname{ker}(J+i \mathrm{Id})=(J-i \mathrm{Id}) E^{\mathbb{C}} \tag{4}
\end{align*}
$$

so that remarking that $(J \pm i \mathrm{Id}) i E=(\operatorname{Id} \mp i J) E=(\operatorname{Id} \mp i J) J E=(J \pm i \mathrm{Id}) E$, we can also write

$$
\begin{align*}
& E^{1,0}=(J+i \mathrm{Id}) E=(\operatorname{Id}-i J) E=\{X-i J X, X \in E\}  \tag{5}\\
& E^{0,1}=(J-i \mathrm{Id}) E=(\operatorname{Id}+i J) E=\{X+i J X, X \in E\}
\end{align*}
$$

In the same way we denote by

$$
\left(E^{*}\right)^{\mathbb{C}}=E_{1,0}^{*} \oplus E_{0,1}^{*}
$$

the decomposition induced on the dual $E^{*}$ by the complex structure $J^{*}: \eta \in E^{*} \rightarrow \eta J \in E^{*}$. Besides, given a vector $Z \in E^{\mathbb{C}}$, we denote by

$$
Z=[Z]^{1,0}+[Z]^{0,1}
$$

its decomposition according to (3). Let us remark that

$$
[Z]^{1,0}=(\operatorname{Id}-i J) Z \quad \text { and } \quad[Z]^{0,1}=(\operatorname{Id}+i J) Z
$$

Moreover, given $\eta$ a $n$-form on $E$, we denote by $\eta^{(p, q)}$ its component in $\Lambda^{p, q} E^{*}$ according to the decomposition

$$
\Lambda^{n} E^{*}=\oplus_{p+q=n} \Lambda^{p, q} E^{*},
$$

where $\Lambda^{p, q} E^{*}=\left(\Lambda^{p} E_{1,0}^{*}\right) \wedge\left(\Lambda^{q} E_{0,1}^{*}\right)$. However for 1-forms, we will often prefer the notation $\eta=\eta^{\prime}+\eta^{\prime \prime}$, where $\eta^{\prime}$ and $\eta^{\prime \prime}$ denote respectively $\eta^{(1,0)}$ and $\eta^{(0,1)}$.
More generally, all what precedes holds naturally when $E$ is a real vector bundle over a manifold $M$, endowed with a complex structure $J$.
We will write

$$
d=\partial+\bar{\partial}
$$

the decompostion of the exterior derivative of differential forms on an almost complex manifold $(M, J)$, according to the decomposition $T M^{\mathbb{C}}=T^{1,0} M \oplus T^{0,1} M$.

In this paper, we will use the following definitions.
Definition 0.1 Let $E$ be a real vector bundle. A f-structure in $E$ is an endomorphism $F \in$ $\mathcal{C}(\operatorname{End} E)$ such that $F^{3}+F=0$. An $f$-structure on a manifold $M$ is a $f$-structure in $T M$.

An $f$-structure $F$ in a vector bundle $E$ is determined by its eigenspaces decomposition that we will denote by

$$
E^{\mathbb{C}}=E^{+} \oplus E^{-} \oplus E^{0}
$$

where $E^{ \pm}=\operatorname{ker}(F \mp i \mathrm{Id})$ and $E^{0}=\operatorname{ker} F$. In particular if $E=T M$, then we will set $T^{i} M=$ $(T M)^{i}, \forall i \in\{0, \pm 1\}$.

Definition 0.2 Let $\left(M, J^{M}\right)$ be an almost complex manifold and $N$ a manifold with a splliting $T N=\mathcal{H} \oplus \mathcal{V}$. Let us suppose that the subbundle $\mathcal{H}$ is endowed with a complex structure $J^{\mathcal{H}}$. Then we will say that a map $f:\left(M, J^{M}\right) \rightarrow N$ is $\mathcal{H}$-holomorphic if it satisfies the equation

$$
[d f]^{\mathcal{H}} \circ J^{M}=J^{\mathcal{H}}[d f]^{\mathcal{H}},
$$

where $[d f]^{\mathcal{H}}$ is the projection of $d f$ on $\mathcal{H}$ along $\mathcal{V}$. Moreover, if for some reason, $\mathcal{H}$ inherits the name of horizontal subbundle, then we will say that $f$ is horizontally holomorphic.

This situation occurs for example if $N$ is endowed with a $f$-structure $F$ which leaves invariant $\mathcal{H}$ and $F_{\mid \mathcal{H}}$ is a complex structure (i.e. $T^{0} N \cap \mathcal{H}=\{0\}$ ).

## 1 Invariant connections on reductive homogeneous spaces

The references for this section where we recall some results that we will need in this paper, are [33], (35], 10], and to a lesser extent [25] and (1].

### 1.1 Linear isotropy representation

Let $M=G / H$ be a homogeneous space with $G$ a Lie group and $H$ a closed subgroup of $G$. $G$ acts transitively on $M$ in a natural manner which defines a natural representation: $\phi: g \in G \mapsto$ $\left(\phi_{g}: p \in M \mapsto g \cdot p\right) \in \operatorname{Diff}(M)$. Then ker $\phi$ is the maximal normal subgroup of $G$ included in $H$. Further, let us consider the linear isotropy representation:

$$
\rho: h \in H \mapsto d \phi_{h}\left(p_{0}\right) \in G L\left(T_{p_{0}} M\right)
$$

where $p_{0}=1 . H$ is the reference point in $M$. Then we have $\operatorname{ker} \rho \supset \operatorname{ker} \phi$. Moreover the linear isotropy representation is faithful (i.e. $\rho$ is injective) if and only if $G$ acts freely on the bundle of linear frame $L(M)$.
We can always suppose without loss of generality that the action of $G$ on $M$ is effective (i.e. $\operatorname{ker} \phi=\{1\})$ but it does not imply in general that the linear isotropy representation is faithful. However if there exists on $M$ a $G$-invariant affine connection, then the linear isotropy representation is faithful provided that $G$ acts effectively on $M$. (Indeed, given a manifold $M$ with an affine connection, and $p \in M$, an affine transformation of $M$ is determined by $(f(p), d f(p))$, i.e. $f$ is the identity if and only if it leaves one linear frame fixed).

### 1.2 Reductive homogeneous space

Let us suppose now that $G / H$ is reductive, i.e. there exists a decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ such that $\mathfrak{m}$ is $\operatorname{Ad} H$-invariant: $\forall h \in H, \operatorname{Ad} h(\mathfrak{m})=\mathfrak{m}$. Then the surjective map $\xi \in \mathfrak{g} \mapsto \xi \cdot p_{0} \in T_{p_{0}} M$ has $\mathfrak{h}$ as kernel and so its restriction to $\mathfrak{m}$ is an isomorphism $\mathfrak{m} \cong T_{p_{0}} M$. This provides an isomorphism of the associated bundle $G \times_{H} \mathfrak{m}$ with $T M$ by:

$$
\begin{equation*}
[g, \xi] \mapsto g \cdot\left(\xi \cdot p_{0}\right)=\operatorname{Ad} g(\xi) \cdot p \tag{6}
\end{equation*}
$$

where $p=\pi(g)=g . p_{0}$.
Moreover, we have a natural inclusion $G \times_{H} \mathfrak{m} \mapsto G \times_{H} \mathfrak{g}$ and the associated bundle $G \times_{H} \mathfrak{g}$ is canonically identified with the trivial bundle $M \times \mathfrak{g}$ via

$$
\begin{equation*}
[g, \xi] \mapsto(\pi(g), \operatorname{Ad} g(\xi)) . \tag{7}
\end{equation*}
$$

Thus we have an identification of $T M$ with a subbundle [ $\mathfrak{m}$ ] of $M \times \mathfrak{g}$, which we may view as a $\mathfrak{g}$-valued 1-form $\beta$ on $M$ given by:

$$
\beta_{p}(\xi . p)=\operatorname{Ad} g\left[\operatorname{Ad} g^{-1}(\xi)\right]_{\mathfrak{m}},
$$

where $\pi(g)=p, \xi \in \mathfrak{g}$ and [ $]_{\mathfrak{m}}$ is the projection on $\mathfrak{m}$ along $\mathfrak{h}$. Equivalently, for all $X \in T_{p} M$, $\beta(X)$ is the unique element $\xi \in[\mathfrak{m}]_{p}(=\operatorname{Ad} g(\mathfrak{m})$, with $\pi(g)=p)$ such that $X=\xi \cdot p$, in other words $\beta(X)$ is caracterized by

$$
\beta(X) \in[\mathfrak{m}]_{p} \subset \mathfrak{g} \quad \text { and } \quad X=\beta(X) \cdot p .
$$

In fact, $\beta$ is nothing but the projection on $M$ of the $H$-equivariant 1 -form on $G, \theta_{\mathfrak{m}}$ (i.e. $\theta_{\mathfrak{m}}$ is the $H$-equivariant lift of $\beta$ ), defined as the $\mathfrak{m}$-component of the left invariant Maurer-Cartan form of $G$, which can be written

$$
\begin{equation*}
\left(\pi^{*} \beta\right)_{g}=\operatorname{Ad} g\left(\theta_{\mathfrak{m}}\right) \forall g \in G \tag{8}
\end{equation*}
$$

with $\theta_{g}\left(\xi_{g}\right)=g^{-1} . \xi_{g}$ for all $g \in G, \xi_{g} \in T_{g} G$.
Notation For any $\operatorname{Ad} H$-invariant subspace $\mathfrak{l} \subset \mathfrak{m}$, we will denote by [l] the subundle of $[\mathfrak{m}] \subset$ $M \times \mathfrak{g}$ defined by $[l]_{g \cdot p_{0}}=\operatorname{Ad} g(\mathfrak{l})$.

### 1.3 The (canonical) invariant connection

On a reductive homogeneous space $M=G / H$, the $\operatorname{Ad}(H)$-invariant summand $\mathfrak{m}$ provides by left translation in $G$, a $G$-invariant distribution $\mathcal{H}(\mathfrak{m})$, given by $\mathcal{H}(\mathfrak{m})_{g}=g \cdot \mathfrak{m}$ which is horizontal for $\pi: G \rightarrow M$ and right $H$-invariant and thus defines a $G$-invariant connection in the principal bundle $\pi: G \rightarrow M$. In fact this procedure defines a bijective correspondance between reductive summands $\mathfrak{m}$ and $G$-invariant connections in $\pi: G \rightarrow M$ (see [33], chap. 2, Th 11.1). Then the corresponding $\mathfrak{h}$-valued connection 1-form $\omega$ on $G$ (of this $G$-invariant connection) is the $\mathfrak{h}$-component of the left invariant Maurer-Cartan form of $G$ :

$$
\omega=\theta_{\mathfrak{h}} .
$$

### 1.4 Associated covariant derivative

The connection $\omega$ induces a covariant derivative in the associated bundle $G \times{ }_{H} \mathfrak{m} \cong T M$ and thus a $G$-invariant covariant derivative $\nabla^{0}$ in the tangent bundle $T M$. In particular, we can
conclude according to section 1.1 that if $G / H$ is reductive then the linear isotropy representation is faithful (provided that $G$ acts effectively) or equivalently that $\operatorname{ker} \operatorname{Ad}_{\mathfrak{m}}=\operatorname{ker} \rho=\operatorname{ker} \phi$. We will suppose in the following that, without explicit or implicit reference to the contrary, the action of $G$ is effective and (thus) the linear isotropy representation is faithful.
One can compute explicitely $\nabla^{0}$.

## Lemma 1.1 10

$$
\beta\left(\nabla_{X}^{0} Y\right)=X . \beta(Y)-[\beta(X), \beta(Y)], \quad X, Y \in \Gamma(T M)
$$

Let us write (locally) $\beta(X)=\operatorname{Ad} U\left(X_{\mathfrak{m}}\right), \beta(Y)=\operatorname{Ad} U\left(Y_{\mathfrak{m}}\right)$ where $U$ is a (local) section of $\pi$ and $X_{\mathfrak{m}}, Y_{\mathfrak{m}} \in C^{\infty}(M, \mathfrak{m})$ then we have (using the previous lemma)

$$
\begin{aligned}
\beta\left(\nabla_{X}^{0} Y\right) & =\operatorname{Ad} U\left(d Y_{\mathfrak{m}}(X)+\left[\alpha(X), Y_{\mathfrak{m}}\right]-\left[X_{\mathfrak{m}}, Y_{\mathfrak{m}}\right]\right) \\
& =\operatorname{Ad} U\left(d Y_{\mathfrak{m}}(X)+\left[\alpha_{\mathfrak{h}}(X), Y_{\mathfrak{m}}\right]+\left[\alpha_{\mathfrak{m}}(X)-X_{\mathfrak{m}}, Y_{\mathfrak{m}}\right]\right)
\end{aligned}
$$

where $\alpha=U^{-1} . d U$. Besides since $U$ is a section of $\pi(\pi \circ U=\mathrm{Id})$, then pulling back (8) by $U$, we obtain $\beta=\operatorname{Ad} U\left(\alpha_{\mathfrak{m}}\right)$ and then $\alpha_{\mathfrak{m}}(X)=X_{\mathfrak{m}}$, so that

$$
\begin{equation*}
\beta\left(\nabla_{X}^{0} Y\right)=\operatorname{Ad} U\left(d Y_{\mathfrak{m}}(X)+\left[\alpha_{\mathfrak{h}}(X), Y_{\mathfrak{m}}\right]\right) \tag{9}
\end{equation*}
$$

Remark 1.1 We could also say that $X_{\mathfrak{m}}, Y_{\mathfrak{m}}$ are respectively the pullback by $U$ of the $H$ equivariant lifts $\tilde{X}, \tilde{Y}$ of $X, Y$ (given by $\beta\left(X_{\pi(g)}\right)=\operatorname{Ad} g(\tilde{X}(g))$ ). Then $\nabla_{X}^{0} Y$ lifts as the $\mathfrak{m}$-valued $H$-equivariant map on $G$ :

$$
\widetilde{\nabla_{X}^{0} Y}=d \tilde{Y}(\tilde{X})+\left[\theta_{\mathfrak{h}}(\tilde{X}), \tilde{Y}\right]
$$

and then taking the $U$-pullback we obtain the previous result (without using lemma 1.1).
Moreover, we can express $\nabla^{0}$ in term of the flat differentiation in the trivial bundle $M \times \mathfrak{g}(\supset[\mathfrak{m}])$. Let us differentiate the equation $Y=\operatorname{Ad} U\left(Y_{\mathfrak{m}}\right)$ (we do the identification $T M=[\mathfrak{m}] \subset M \times \mathfrak{g}$ )

$$
d Y=\operatorname{Ad} U\left(d Y_{\mathfrak{m}}+\left[\alpha, Y_{\mathfrak{m}}\right]\right)=\operatorname{Ad} U\left(d Y_{\mathfrak{m}}+\left[\alpha_{\mathfrak{h}}, Y_{\mathfrak{m}}\right]\right)+\operatorname{Ad} U\left(\left(\left[\alpha_{\mathfrak{m}}, Y_{\mathfrak{m}}\right]\right)\right)=\nabla^{0} Y+[\beta, Y]
$$

Finally,

$$
\begin{equation*}
d Y=\nabla^{0} Y+[\beta, Y] \tag{10}
\end{equation*}
$$

and we recover lemma 1.1.

## 1.5 $G$-invariant affine connections in terms of equivariant bilinear maps

Now let us recall the following results about invariant connections on reductive homogeneous spaces.

Theorem 1.1 33] Let $\pi_{P}: P \rightarrow M$ be a $K$-principal bundle over the reductive homogeneous space $M=G / H$ and suppose that $G$ acts on $P$ as a group of automorphisms and let $u_{0} \in P$ be a fixed pont in the fibre of $p_{0} \in M\left(\pi_{P}\left(u_{0}\right)=p_{0}\right)$. There is a bijective correspondance between the set of $G$-invariant connections $\omega$ in $P$ and the set of linear maps $\Lambda_{\mathfrak{m}}: \mathfrak{m} \rightarrow \mathfrak{k}$ such that

$$
\begin{equation*}
\Lambda_{\mathfrak{m}}\left(h X h^{-1}\right)=\lambda(h) \Lambda_{\mathfrak{m}}(X) \lambda(h)^{-1} \quad \text { for } X \in \mathfrak{m} \text { and } h \in H \tag{11}
\end{equation*}
$$

where $\lambda: H \rightarrow K$ is the morphism defined by $h u_{0}=u_{0} \lambda(h)$ ( $H$ stabilizes the fibre $P_{p_{0}}=u_{0} \cdot K$ ). The correspondance is given by

$$
\begin{equation*}
\Lambda(X)=\omega_{u_{0}}(\tilde{X}), \quad \forall X \in \mathfrak{g} \tag{12}
\end{equation*}
$$

where $\tilde{X}$ is the vector field on $P$ induced by $X$ (i.e. $\forall u \in P, \phi_{t}^{\tilde{X}}(u)=\exp (t X)$.u) and $\Lambda: \mathfrak{g} \rightarrow \mathfrak{k}$ is defined by $\Lambda_{\mid \mathfrak{m}}=\Lambda_{\mathfrak{m}}$ and $\Lambda_{\mid \mathfrak{h}}=\lambda$ (hence completely determined by $\Lambda_{\mathfrak{m}}$ ).

Corollary 1.1 In the previous theorem, let us suppose that $P$ is a $K$-structure on $M=G / H$, i.e. $P$ is a subbundle of the bundle $L(M)$ of linear frame on $M$ with structure group $K \subset$ $G L(n, \mathbb{R})=G L(\mathfrak{m})$ (we identify as usual $\mathfrak{m}$ to $T_{p_{0}} M$ by $\xi \mapsto \xi . p_{0}$, and $T_{p_{0}} M$ to $\mathbb{R}^{n}$ via the linear frame $u_{0} \in P \subset L(M)$ ). Then in terms of the $G$-invariant covariant derivative $\nabla$ corresponding to the $G$-invariant affine connection in $P, \omega$, the previous bijective correspondance may be given by

$$
\Lambda(X)(Y)=\nabla_{\tilde{X}} \tilde{Y}
$$

where $\tilde{X}, \tilde{Y}$ are any (local) left $G$-invariant vector field extending $X, Y$ i.e. there exists a local section of $\pi: G \rightarrow M, g: U \subset M \rightarrow G$ such that $\tilde{X}=\operatorname{Ad} g_{(p)}(X) . p$.

Remark 1.2 In theorem 1.1, the $G$-invariant connection in $P$ defined by $\Lambda_{\mathfrak{m}}=0$ is called the canonical connection (with respect to the decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ ). If we set $P(M, K)=$ $G(G / H, H)$ with group of automorphisms $G$, the $G$-invariant connection defined by the horizontal distribution $\mathcal{H}(\mathfrak{m})$ is the canonical connection.
Now, let $P$ be a $G$-invariant $K$-structure on $M=G / H$ as in corollary 1.1. Let $P^{\prime}$ be an $G$ invariant subbundle of $P$ with structure group $K^{\prime} \subset K$, then the canonical connection in $P^{\prime}$ defined by $\Lambda_{\mathfrak{m}}=0$ is (the restriction of ) the canonical connection in $P$ which is itself the restriction to $P$ of the canonical connection in $L(M)$. In particular, if we set $P^{\prime}=G . u_{0}$, this is a subbundle of $P$ with group $H$, which is isomorphic to the bundle $G(G / H, H)$. Then the canonical affine connection in $P^{\prime}$ corresponds to the invariant connection in $G(G / H, H)$ defined by the distribution $\mathcal{H}(\mathfrak{m})$.

Theorem 1.2 Let $P \subset L(M)$ be a $K$-structure on $M=G / H$. Then the canonical affine connection $\left(\Lambda_{\mathfrak{m}}=0\right)$ in $P$ defines the covariant derivative $\nabla^{0}$ in $T M$ (obtained from $\mathcal{H}(\mathfrak{m})$ in the associated bundle $\left.G \times_{H} \mathfrak{m} \cong T M\right)$. Moreover there is a bijective correpondance between the set of of $G$-invariant affine connections on $M, \nabla$, determined by a connection in $P$, and the set of linear maps $\Lambda_{\mathfrak{m}}: \mathfrak{m} \rightarrow \mathfrak{k} \subset \mathfrak{g l}(\mathfrak{m})$ such that

$$
\begin{equation*}
\Lambda_{\mathfrak{m}}\left(h X h^{-1}\right)=\operatorname{Ad}_{\mathfrak{m}}(h) \Lambda_{\mathfrak{m}}(X) \operatorname{Ad}_{\mathfrak{m}}(h)^{-1} \quad \forall X \in \mathfrak{m}, \forall h \in H \tag{13}
\end{equation*}
$$

given by

$$
\nabla=\nabla^{0}+\bar{\Lambda}_{\mathfrak{m}}
$$

i.e. $\nabla_{X} Y=\nabla_{X}^{0} Y+\bar{\Lambda}_{\mathfrak{m}}(X) Y$ for any vector fields $X, Y$ on $M$, where with the help of (13) we extended the $\operatorname{Ad}(H)$-equivariant map $\Lambda_{\mathfrak{m}}: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ to the bunlde $G \times_{H} \mathfrak{m}=T M$ to obtain a $\operatorname{map} \bar{\Lambda}_{\mathfrak{m}}: T M \times T M \rightarrow T M$.

Example 1.1 Let us suppose that $M$ is Riemannian (i.e. $\operatorname{Ad}_{\mathfrak{m}} H$ is compact and $\mathfrak{m}$ is endowed with an $\operatorname{Ad} H$ invariant inner product which defines a $G$-invariant metric on $M$ ) and let us take $P=O(M)$ the bundle of orthonormal frames on $M$, the previous correspondance is between the set of $G$-invariant metric affine connection and the set of $\operatorname{Ad}(H)$-equivariant linear maps $\Lambda_{\mathfrak{m}}: \mathfrak{m} \rightarrow \mathfrak{s o}(\mathfrak{m})$.
In particular the canonical connection $\nabla^{0}$ is metric (for any $G$-invariant metric on $M$ ).

Theorem 1.3 - G-invariant tensors on the reductive homogeneous space $M=G / H$ (or more generally $G$-invariant sections of associated bundles) are parallel with respect to the canonical connection.

- The canonical connection is complete (the geodesics are exactly the curves $x_{t}=\exp (t X) \cdot p_{0}$, for $X \in \mathfrak{m})$.
- Let $P$ be a $G$-invariant $K$-structure on $M=G / H$, then the $G$-invariant connection defined by $\Lambda: \mathfrak{m} \rightarrow \mathfrak{k}$ has the same geodesics as the canonical connection if and only if

$$
\Lambda_{\mathfrak{m}}(X) X=0, \quad \forall X \in \mathfrak{m}
$$

Theorem 1.4 The torsion tensor $T$ and the curvature tensor $R$ of the $G$-invariant connection corresponding to $\Lambda_{\mathfrak{m}}$ is given at the origin point $p_{0}$ as follows:

1. $T(X, Y)=\Lambda_{\mathfrak{m}}(X) Y-\Lambda_{\mathfrak{m}}(Y) X-[X, Y]_{\mathfrak{m}}$,
2. $R(X, Y)=\left[\Lambda_{\mathfrak{m}}(X), \Lambda_{\mathfrak{m}}(Y)\right]-\Lambda_{\mathfrak{m}}\left([X, Y]_{\mathfrak{m}}\right)-\operatorname{ad}_{\mathfrak{m}}\left([X, Y]_{\mathfrak{h}}\right)$,
for $X, Y \in \mathfrak{m}$.
In particular, for the canonical connection we have $T(X, Y)=-[X, Y]_{\mathfrak{m}}$ and $R(X, Y)=-\operatorname{ad}_{\mathfrak{m}}\left([X, Y]_{\mathfrak{h}}\right)$, for $X, Y \in \mathfrak{m}$; moreover we have $\nabla T=0, \nabla R=0$.

### 1.6 A Family of connections on the reductive space $M$

We take in what precede (i.e. in section 1.5) $P=L(M)$. Then let us consider the one parameter family of connections $\nabla^{t}, 0 \leq t \leq 1$ defined by

$$
\Lambda_{\mathfrak{m}}^{t}(X) Y=t[X, Y]_{\mathfrak{m}}, \quad 0 \leq t \leq 1
$$

For $t=0$, we obtain the canonical connnection $\nabla^{0}$. Since for any $t \in[0,1], \Lambda_{\mathfrak{m}}^{t}(X) X=0$, $\forall X \in \mathfrak{m}, \nabla^{t}$ has the same geodesics as $\nabla^{0}$ and in particular is complete. The torsion tensor is given (at $p_{0}$ ) by

$$
\begin{equation*}
T^{t}(X, Y)=(2 t-1)[X, Y]_{\mathfrak{m}} \tag{14}
\end{equation*}
$$

In particular $\nabla^{\frac{1}{2}}$ is the unique torsion free $G$-invariant affine connection having the same geodesics as the canonical connection (according to theorems 1.3 and 1.4).
If $M$ is Riemannian, then let us take $P=O(M)$, then $\nabla^{t}$ is metric if and only if $\Lambda_{\mathfrak{m}}^{t}$ takes values in $\mathfrak{k}=\mathfrak{s o}(\mathfrak{m})$ if and only if (for $t \neq 0) M$ is naturally reductive (which means by definition that $\forall X \in \mathfrak{m},[X, \cdot]_{\mathfrak{m}}$ is skew symmetric). Now (still in the Riemannian case) let us construct a family of affine connections, $\nabla^{t}, 0 \leq t \leq 1$, which are always metric:

$$
\stackrel{\text { met }}{\nabla^{t}}=\nabla^{0}+t\left([,]_{[\mathfrak{m}]}+\mathcal{U}^{M}\right)
$$

where $\mathcal{U}^{M}: T M \oplus T M \rightarrow T M$ is the naturally reductivity term which is the symmetric bilinear map defined by ${ }^{3}$

$$
\begin{equation*}
\left\langle\mathcal{U}^{M}(X, Y), Z\right\rangle=\left\langle[Z, X]_{[\mathfrak{m}]}, Y\right\rangle+\left\langle X,[Z, Y]_{[\mathfrak{m}]}\right\rangle \tag{15}
\end{equation*}
$$

for all $X, Y, Z \in[\mathfrak{m}]$. Since $\mathcal{U}^{M}$ is symmetric, the torsion of ${\stackrel{m}{ }{ }^{t} \text { is once again given by }}^{\text {m }}$ is

$$
T^{t}(X, Y)=(2 t-1)[X, Y]_{[\mathfrak{m}]}
$$

[^2]and thus $\nabla^{\frac{1}{2}}$ is torsion free and metric and we recover that $\nabla^{\frac{1}{2}}$ is the Levi-Civita connection
$$
\nabla^{\frac{1}{2}}=\nabla^{\mathrm{L} . \mathrm{C}}
$$

Obviously if $M$ is naturally reductive then $\nabla^{\text {met }}=\nabla^{t}, \forall t \in[0,1]$. Moreover if $M$ is (locally) symmetric, i.e. $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$, then all the connections coincide and are equal to the Levi-Civita connection: $\nabla^{t}=\nabla^{t}=\nabla^{0}=\nabla^{\text {L.C. }}$.

Remark $1.3 \nabla^{1}$ is interesting since it is nothing but the flat differentiation in the trivial bundle $M \times \mathfrak{g}$ followed by the projection onto [ $\mathfrak{m}]$ (along [ $\mathfrak{h}]$ ) (see remark 1.1). So this connection is very natural and following [1], we will call it the anticanonical connection.

### 1.7 Differentiation in $\operatorname{End}(T(G / H))$

According to section 1.2, we have

$$
\operatorname{End}(T(G / H))=G \times_{H} \operatorname{End}(\mathfrak{m}) \subset(G / H) \times \operatorname{End}(\mathfrak{g})
$$

the previous inclusion being given by $[g, A] \mapsto\left(\pi(g), \operatorname{Ad} g \circ A \circ \operatorname{Ad} g^{-1}\right)$ and we embedd $\operatorname{End}(\mathfrak{m})$ in $\mathfrak{g}$ by extending the an endomorphism in $\mathfrak{m}$ by 0 in $\mathfrak{h}$. In other words $\operatorname{End}(T(G / H))$ can be identified to the subbundle $[\operatorname{End}(\mathfrak{m})]$ of the trivial bundle $(G / H) \times \operatorname{End}(\mathfrak{g})$, with fibers $[\operatorname{End}(\mathfrak{m})]_{g \cdot p_{0}}=$ $\operatorname{End}(\operatorname{Ad} g(\mathfrak{m}))=\operatorname{Ad} g(\operatorname{End}(\mathfrak{m})) \operatorname{Ad} g^{-1}=\operatorname{Ad} g(\operatorname{End}(\mathfrak{m}) \oplus\{0\}) \operatorname{Ad} g^{-1}$.
Now, let us compute in terms of the Lie algebra setting, the derivative of the inclusion map $\mathfrak{I}: \operatorname{End}(T(G / H)) \rightarrow M \times \operatorname{End}(\mathfrak{g})$ or more concretely the flat derivative in $M \times \operatorname{End}(\mathfrak{g})$ of any section of $\operatorname{End}(T(G / H))$; to do that, we compute the derivative of

$$
\tilde{\mathfrak{I}}:\left(g, A_{\mathfrak{m}}\right) \in G \times \operatorname{End}(\mathfrak{m}) \longmapsto\left(g \cdot p_{0}, \operatorname{Ad} g \circ A_{\mathfrak{m}} \circ \operatorname{Ad} g^{-1}\right) \in M \times \operatorname{End}(\mathfrak{g}),
$$

we obtain

$$
d \tilde{\mathfrak{I}}\left(g, A_{\mathfrak{m}}\right)=\left(\operatorname{Ad} g\left(\theta_{\mathfrak{m}}\right) \cdot \pi(g), \operatorname{Ad} g\left(d A_{\mathfrak{m}}+\left[\operatorname{ad} \theta, A_{\mathfrak{m}}\right]\right) \operatorname{Ad} g^{-1}\right)
$$

Then let us decompose the endomorphisms in $\mathfrak{g}$ by blocs (following $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ ):

$$
\operatorname{End}(\mathfrak{g})=\left(\begin{array}{cc}
\operatorname{End}(\mathfrak{h}) & \operatorname{End}(\mathfrak{m}, \mathfrak{h})  \tag{16}\\
\operatorname{End}(\mathfrak{h}, \mathfrak{m}) & \operatorname{End}(\mathfrak{m})
\end{array}\right)
$$

and by regrouping terms, we obtain the following splitting

$$
\operatorname{End}(\mathfrak{g})=\operatorname{End}(\mathfrak{m}) \oplus(\operatorname{End}(\mathfrak{m}, \mathfrak{h}) \oplus \operatorname{End}(\mathfrak{h}, \mathfrak{m}) \oplus \operatorname{End}(\mathfrak{h})),
$$

which applied to $d \tilde{\mathfrak{I}}\left(g, A_{\mathfrak{m}}\right)$, gives us the decomposition

$$
\begin{align*}
d \tilde{\mathfrak{I}}\left(g, A_{\mathfrak{m}}\right)= & \left(0, \operatorname{Ad} g\left(d A_{\mathfrak{m}}+\left[\operatorname{ad}_{\mathfrak{m}} \theta_{\mathfrak{h}}, A_{\mathfrak{m}}\right]+\left[\left[\operatorname{ad}_{\mathfrak{m}} \theta_{\mathfrak{m}}\right]_{\mathfrak{m}}, A_{\mathfrak{m}}\right]\right) \operatorname{Ad} g^{-1}\right)  \tag{17}\\
& +\left(\operatorname{Ad} g\left(\theta_{\mathfrak{m}}\right) \cdot \pi(g), \operatorname{Ad} g\left(\left[\operatorname{ad}_{\mathfrak{m}} \theta_{\mathfrak{m}}\right]_{\mathfrak{h}} \circ A_{\mathfrak{m}}-A_{\mathfrak{m}} \circ \operatorname{ad}_{\mathfrak{h}} \theta_{\mathfrak{m}}\right) \operatorname{Ad} g^{-1}\right) .
\end{align*}
$$

The first term is in the vertical space $\mathcal{V}_{\tilde{\mathfrak{J}}\left(g, A_{\mathfrak{m}}\right)}=\operatorname{Ad} g(\operatorname{End}(\mathfrak{m})) \operatorname{Ad} g^{-1}=\operatorname{End}\left(T_{\pi(g)} M\right)$ and the previous decomposition (17) provides us with a splitting $T \operatorname{End}(M)=\mathcal{V} \oplus \mathcal{H}=\pi_{M}^{*}(\operatorname{End}(M)) \oplus \mathcal{H}$, i.e. a connection on $\operatorname{End}(M)$. Let us determine this connection: we see that the projection on the vertical space (along the horizontal space) corresponds to the projection on $[\operatorname{End}(\mathfrak{m})]$ following (16) so that according to remark 1.3, we can conclude that the horizontal distribution $\mathcal{H}$ defines the connection $\nabla^{1}$ on $\operatorname{End}(T M)=T M^{*} \otimes T M$.

Remark 1.4 We can recover this fact directly from the first term of (17) and the definition of $\nabla^{1}$. Indeed, first recall that given two affine connections $\nabla, \nabla^{\prime}$ on $M$, we can write $\nabla^{\prime}=\nabla+F$, where $F$ is a section of $T M^{*} \otimes \operatorname{End}(T M)$, and then for any section $A$ in $\operatorname{End}(T M)$,

$$
\nabla^{\prime} A=\nabla A+[F, A] .
$$

Besides $\nabla^{1}=\nabla^{0}+[,]_{[\mathfrak{m}]}$, and moreover if we write (locally) $A=\left(\pi(U), \operatorname{Ad} U \circ A_{\mathfrak{m}} \circ \operatorname{Ad} U^{-1}\right)$ where $U$ is a local section of $\pi$ and $A_{\mathfrak{m}} \in C^{\infty}(M, \operatorname{End}(\mathfrak{m}))$, then according to (9),

$$
\begin{equation*}
\nabla^{0} A=\operatorname{Ad} U\left(d A_{\mathfrak{m}}+\left[\operatorname{ad}_{\mathfrak{m}} \alpha_{\mathfrak{h}}, A_{\mathfrak{m}}\right]\right) \tag{18}
\end{equation*}
$$

so that we conclude that

$$
\nabla^{1} A=\operatorname{Ad} U\left(d A_{\mathfrak{m}}+\left[\operatorname{ad}_{\mathfrak{m}} \alpha_{\mathfrak{h}}, A_{\mathfrak{m}}\right]+\left[\left[\operatorname{ad}_{\mathfrak{m}} \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}, A_{\mathfrak{m}}\right]\right) \operatorname{Ad} U^{-1}
$$

which is the (pullback of) the first term of (17).
Furthermore if $G / H$ is (locally) symmetric (i.e. [ $\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$ ), then $\nabla^{L . C .}=\nabla^{0}=\nabla^{1}$ and in particular

$$
\begin{equation*}
\nabla^{L \cdot C \cdot} A=\operatorname{Ad} U\left(d A_{\mathfrak{m}}+\left[\operatorname{ad}_{\mathfrak{m}} \alpha_{\mathfrak{h}}, A_{\mathfrak{m}}\right]\right) \tag{19}
\end{equation*}
$$

## 2 $m$-th elliptic integrable system associated to a $k^{\prime}$-symmetric space

### 2.0.1 Definition of $G^{\tau}$ (even when $\tau$ does not integrate in $G$ )

Here, we will extend the notion of subgroup fixed by an automorphism of Lie group to the situation where only a Lie algebra automorphism is provided. Indeed, let $\tau: G \rightarrow G$ be a Lie group automorphism, then usually one can define $G^{\tau}=\{g \in G \mid \tau(g)=g\}$ the subgroup fixed by $\tau$. Now, we want to extend this definition to the situation where we only have a Lie algebra automorphism, and so that the two definitions coincide when the Lie algebra automorphism integrates in $G$.

Let $\mathfrak{g}$ be a Lie algebra and $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an automorphism. Then let us denote by

$$
\begin{equation*}
\mathfrak{g}_{0}=\mathfrak{g}^{\tau}:=\{\xi \in \mathfrak{g} \mid \tau(\xi)=\xi\} \tag{20}
\end{equation*}
$$

the subalgebra of $\mathfrak{g}$ fixed by $\tau$. Let us assume that $\tau$ defines in $\mathfrak{g}$ a $\tau$-invariant reductive decomposition

$$
\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{n}, \quad\left[\mathfrak{g}_{0}, \mathfrak{n}\right] \subset \mathfrak{n}, \quad \tau(\mathfrak{n})=\mathfrak{n} .
$$

Without loss of generality, we assume that $\mathfrak{g}_{0}$ does not contain non-trivial ideal of $\mathfrak{g}$, i.e. that $\operatorname{ad}_{\mathfrak{n}}: \mathfrak{g}_{0} \rightarrow \mathfrak{g l}(\mathfrak{n})$ is injective (the kernel is a $\tau$-invariant ideal of $\mathfrak{g}$ that we factor out). We then have

$$
\begin{equation*}
\mathfrak{g}_{0}=\left\{\xi \in \mathfrak{g} \mid \tau_{\mid \mathfrak{n}} \circ \operatorname{ad}_{\mathfrak{n}} \xi \circ \tau_{\mid \mathfrak{n}}^{-1}=\operatorname{ad}_{\mathfrak{n}} \xi\right\} \tag{21}
\end{equation*}
$$

Let $G$ be a Lie group with Lie algebra $\mathfrak{g}$. Then since $\mathfrak{g}_{0}$ satisfies: $\forall \xi \in \mathfrak{g}_{0}, \operatorname{ad} \xi(\mathfrak{n})=\mathfrak{n}$ and $\tau_{\mathfrak{n}} \circ \operatorname{ad}_{\mathfrak{n}} \xi \circ \tau_{\mathfrak{n}}^{-1}=\operatorname{ad}_{\mathfrak{n}} \xi$, then the (connected) subgroup $G_{0}^{0}$ generated in $G$ by $\mathfrak{g}_{0}$ satisfies: $\forall g \in G_{0}^{0}, \operatorname{Ad} g(\mathfrak{n})=\mathfrak{n}$ and $\tau_{\mathfrak{n}} \circ \operatorname{Ad}_{\mathfrak{n}} g \circ \tau_{\mathfrak{n}}^{-1}=\operatorname{Ad}_{\mathfrak{n}} g$.
Now, let us consider the subgroup

$$
G_{0}=\left\{g \in G \mid \operatorname{Ad} g(\mathfrak{n})=\mathfrak{n} \text { and } \tau_{\mathfrak{n}} \circ \operatorname{Ad}_{\mathfrak{n}} g \circ \tau_{\mathfrak{n}}^{-1}=\operatorname{Ad}_{\mathfrak{n}} g\right\}
$$

Then $G_{0}$ is a closed subgroup of $G$ and $G_{0} \supset G_{0}^{0}$, so that Lie $G_{0} \supset \mathfrak{g}_{0}$. Conversely, differentiating the second relation defining $G_{0}$, we obtain, according to (21), Lie $G_{0} \subset \mathfrak{g}_{0}$ and thus Lie $G_{0}=\mathfrak{g}_{0}$, and $G_{0}^{0}=\left(G_{0}\right)^{0}$.
Moreover, without loss of generality, we will suppose that $G_{0}$ does not contain non-trivial normal subgroup of $G$, i.e. that $\operatorname{Ad}_{\mathfrak{n}} G_{0} \rightarrow G L(\mathfrak{n})$ is injective (see section [1). Now, we want to prove that if $\tau$ integrates in $G$, then we have $G_{0}=G^{\tau}$, where $G^{\tau}$ is the subgroup fixed by $\tau: G \rightarrow G$. First, we have $\forall g \in G^{\tau}, \operatorname{Ad} g(\mathfrak{n})=\mathfrak{n}$ and $\tau_{\mathfrak{n}} \circ \operatorname{Ad}_{\mathfrak{n}} g \circ \tau_{\mathfrak{n}}^{-1}=\operatorname{Ad} \tau(g)_{\mid \mathfrak{n}}=\operatorname{Ad}_{\mathfrak{n}} g$, thus $G^{\tau} \subset G_{0}$. Conversely, $\forall g \in G_{0}, \operatorname{Ad}_{\mathfrak{n}} g=\tau_{\mathfrak{n}} \circ \operatorname{Ad}_{\mathfrak{n}} g \circ \tau_{\mathfrak{n}}^{-1}=\operatorname{Ad} \tau(g)_{\mid \mathfrak{n}}=\operatorname{Ad}_{\mathfrak{n}} \tau(g)$ and thus $g=\tau(g)$ since $\operatorname{Ad}_{\mathfrak{n}}: G_{0} \rightarrow G L(\mathfrak{n})$ is injective. We have proved $G^{\tau}=G_{0}$. This allows us to make the following:

Definition 2.1 Let $\mathfrak{g}$ be a Lie algebra and $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an automorphism, and $G$ a Lie group with Lie algebra $\mathfrak{g}$. Let us assume that $\tau$ defines in $\mathfrak{g}$ a $\tau$-invariant reductive decomposition: $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{n}$. Then we will set

$$
G^{\tau}:=\left\{g \in G \mid \operatorname{Ad} g(\mathfrak{n})=\mathfrak{n} \text { and } \tau_{\mathfrak{n}} \circ \operatorname{Ad}_{\mathfrak{n}} g \circ \tau_{\mathfrak{n}}^{-1}=\operatorname{Ad}_{\mathfrak{n}} g\right\} .
$$

Let us conclude this subsection by some notations:
Notation and convention In all the paper, when a Lie algebra $\mathfrak{g}$ and an automorphism $\tau$ will
be given, then $\mathfrak{g}_{0}$ will denote the Lie subalgebra defined by $(20), G$ will denote a connected Lie group with Lie algebra $\mathfrak{g}$ and $G_{0} \subset G$ a closed subgroup such that $\left(G^{\tau}\right)^{0} \subset G_{0} \subset G^{\tau}$ (which implies that its Lie algebra is $\mathfrak{g}_{0}$ ).
Moreover, without loss of generality, we will always suppose that $\mathfrak{g}_{0}$ does not contain non-trivial ideal of $\mathfrak{g}$ - we will then say that $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ is effective - and also suppose that $G^{\tau}$ does not contain non-trivial normal subgroup of $G$ (by factoring out, if needed, by some discrete subgroup of $G$ ). Consequently, when $\tau$ can be integrated in $G$, then $G^{\tau}$ will coincide with the subgroup of $G$ fixed by $\tau: G \rightarrow G$.

### 2.1 Finite order Lie algebra automorphisms

Let $\mathfrak{g}$ be a real Lie algebra and $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an automorphism of order $k^{\prime}$. Then we have the following eigenspace decomposition:

$$
\mathfrak{g}^{\mathbb{C}}=\bigoplus_{j \in \mathbb{Z} / k^{\prime} \mathbb{Z}} \mathfrak{g}_{j}^{\mathbb{C}}, \quad\left[\mathfrak{g}_{j}^{\mathbb{C}}, \mathfrak{g}_{l}^{\mathbb{C}}\right] \subset \mathfrak{g}_{j+l}^{\mathbb{C}}
$$

where $\mathfrak{g}_{j}^{\mathbb{C}}$ is the $e^{2 i j \pi / k^{\prime}}$-eigenspace of $\tau$.
We then have to distinguish two cases.

### 2.1.1 The even case: $k^{\prime}=2 k$

Then we have $\mathfrak{g}_{0}^{\mathbb{C}}=\left(\mathfrak{g}_{0}\right)^{\mathbb{C}}$. Moreover let us remark that

$$
\begin{equation*}
\overline{\mathfrak{g}_{j}^{\mathbb{C}}}=\mathfrak{g}_{-j}^{\mathbb{C}}, \quad \forall j \in \mathbb{Z} / k^{\prime} \mathbb{Z} \tag{22}
\end{equation*}
$$

Therefore $\overline{\mathfrak{g}_{k}^{\mathbb{C}}}=\mathfrak{g}_{-k}^{\mathbb{C}}=\mathfrak{g}_{k}^{\mathbb{C}}$ so that we can set $\mathfrak{g}_{k}^{\mathbb{C}}=\left(\mathfrak{g}_{k}\right)^{\mathbb{C}}$ with

$$
\mathfrak{g}_{k}=\{\xi \in \mathfrak{g} \mid \tau(\xi)=-\xi\} .
$$

Moreover, owing to (22), we can define $\mathfrak{m}_{j}$ as the unique real subspace in $\mathfrak{g}$ such that its complexified is given by

$$
\mathfrak{m}_{j}^{\mathbb{C}}=\mathfrak{g}_{j}^{\mathbb{C}} \oplus \mathfrak{g}_{-j}^{\mathbb{C}} \text { for } j \neq 0, k,
$$

and $\mathfrak{n}$ as the unique real subspace such that

$$
\mathfrak{n}^{\mathbb{C}}=\bigoplus_{j \in \mathbb{Z}_{k}^{\prime} \backslash\{0\}} \mathfrak{g}_{j}^{\mathbb{C}},
$$

that is $\mathfrak{n}=\left(\oplus_{j=1}^{k-1} \mathfrak{m}_{j}\right) \oplus \mathfrak{g}_{k}$. In particular $\tau$ defines a $\tau$-invariant reductive decomposition $\mathfrak{g}=$ $\mathfrak{g}_{0} \oplus \mathfrak{n}$.
Hence the eigenspace decomposition is written:

$$
\mathfrak{g}^{\mathbb{C}}=\left(\mathfrak{g}_{-(k-1)}^{\mathbb{C}} \oplus \ldots \oplus \mathfrak{g}_{-1}^{\mathbb{C}}\right) \oplus \mathfrak{g}_{0}^{\mathbb{C}} \oplus\left(\mathfrak{g}_{1}^{\mathbb{C}} \oplus \ldots \oplus \mathfrak{g}_{k-1}^{\mathbb{C}}\right) \oplus \mathfrak{g}_{k}^{\mathbb{C}}
$$

so that by grouping

$$
\begin{aligned}
\mathfrak{g}^{\mathbb{C}} & =\mathfrak{g}_{0}^{\mathbb{C}} \oplus \mathfrak{g}_{k}^{\mathbb{C}} \oplus\left[\oplus_{j=1}^{k-1} \mathfrak{m}_{j}^{\mathbb{C}}\right] \\
& =\mathfrak{h}^{\mathbb{C}} \oplus \mathfrak{m}^{\mathbb{C}}
\end{aligned}
$$

where $\mathfrak{h}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{k}$ and $\mathfrak{m}=\oplus_{j=1}^{k-1} \mathfrak{m}_{j}$. Considering the automorphism $\sigma=\tau^{2}$, we have $\mathfrak{h}=\mathfrak{g}^{\sigma}$ and $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ is the reductive decomposition defined by the order $k$ automorphism $\sigma$. Without
loss of generality, and according to our convention applied to $\mathfrak{g}$ and $\sigma$, we will suppose in the following that $(\mathfrak{g}, \mathfrak{h})$ is effective i.e. $\mathfrak{h}$ does not contain non trivial ideal of $\mathfrak{g}$. This implies in particular that $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ is also effective.

Now let us integrate our setting: let $G$ be a Lie group with Lie algebra $\mathfrak{g}$ and we choose $G_{0}$ such that $\left(G^{\tau}\right)^{0} \subset G_{0} \subset G^{\tau}$. Then $G / G_{0}$ is a (locally) $2 k$-symmetric space (it is globally $2 k$ symmetric if $\tau$ integrates in $G$ ) and is in particular a reductive homogeneous space (reductive decomposition $\left.\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{n}\right)$.
Moreover since $\sigma=\tau^{2}$ is an order $k$ automorphism, then for any subgroup $H$, such that $\left(G^{\sigma}\right)^{0} \subset$ $H \subset G^{\sigma}, G / H$ is a (locally) $k$-symmetric space. In all the following we will always do this choice for $H$ and suppose that $H \supset G_{0}$ (it is already true up to covering since $\mathfrak{h} \supset \mathfrak{g}_{0}$ ) so that $N=G / G_{0}$ has a structure of associated bundle over $M=G / H$ with fibre $H / G_{0}: G / G_{0} \cong G \times_{H} H / G_{0}$. We can add that on $\mathfrak{h}, \tau$ is an involution: $\left(\tau_{\mid \mathfrak{h}}\right)^{2}=\mathrm{Id}_{\mathfrak{h}}$, whose symmetric decomposition is $\mathfrak{h}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{k}$, and gives rise to the (locally) symmetric space $H / G_{0}$. The fibre $H / G_{0}$ is thus (locally) symmetric (and globally symmetric if the inner automorphism $\operatorname{Int} \tau_{\mid \mathfrak{m}}$ stabilizes $\operatorname{Ad}_{\mathfrak{m}} H$ ). Owing to the effectivity of $(\mathfrak{g}, \mathfrak{h})$, we have the following caracterisation:

$$
\begin{align*}
& \mathfrak{g}_{0}=\left\{\xi \in \mathfrak{h} \mid\left[\operatorname{ad}_{\mathfrak{m}} \xi, \tau_{\mid \mathfrak{m}}\right]=0\right\}  \tag{23}\\
& \mathfrak{g}_{k}=\left\{\xi \in \mathfrak{h} \mid\left\{\operatorname{ad}_{\mathfrak{m}} \xi, \tau_{\mid \mathfrak{m}}\right\}=0\right\} \tag{24}
\end{align*}
$$

$\}$ being the anticommutator.
Besides $\left(\tau_{\mid \mathfrak{m}}\right)^{k}$ is an involution hence there exists two invariant subspaces, sum of $\mathfrak{m}_{j}$ 's, $\mathfrak{m}^{\prime}$ and $\mathfrak{m}^{\prime \prime}$, such that

$$
\left(\tau_{\mid \mathfrak{m}}\right)^{k}=-\mathrm{Id}_{\mathfrak{m}^{\prime}} \oplus \mathrm{Id}_{\mathfrak{m}^{\prime \prime}}
$$

with $\mathfrak{m}^{\prime}=\oplus_{j=0}^{\left[\frac{k-2}{2}\right]} \mathfrak{m}_{2 j+1}$ and $\mathfrak{m}^{\prime \prime}=\oplus_{j=1}^{\left[\frac{k-1}{2}\right]} \mathfrak{m}_{2 j}$, or in other words

At this stage, there is two possibilities:

- if $\mathfrak{m}^{\prime \prime}=0$ then $\left(\tau_{\mid \mathfrak{m}}\right)^{k}=-\operatorname{Id}_{\mathfrak{m}}$ and $\tau_{\mid \mathfrak{m}}$ admits eigenvalues only on the set $\left\{z^{k}=-1, z \neq-1\right\}$.
- if $\mathfrak{m}^{\prime \prime} \neq 0$ then $\left(\tau_{\mid \mathfrak{m}}\right)^{k} \neq-\mathrm{Id}_{\mathfrak{m}}$ and $\tau_{\mid \mathfrak{m}}$ admits eigenvalues in both the sets $\left\{z^{k}=1, z \neq \pm 1\right\}$ and $\left\{z^{k}=-1, z \neq-1\right\}$.
These two cases give rise to two different types of $2 k$-symmetric spaces (see section 3.5).
Now, let us suppose that $M=G / H$ is Riemannian (i.e. $\operatorname{Ad}_{\mathfrak{m}} H$ is compact) then we can choose an $\mathrm{Ad} H$-invariant inner product on $\mathfrak{m}$ for which $\tau_{\mid \mathfrak{m}}$ is an isometry (see the Appendice for the proof of the existence of such a inner product). We will always do this choice. Therefore, $\tau_{\mid \mathfrak{m}}$ is an order $2 k$ isometry. We will study this kind of endomorphisms in section 3 .
Moreover, let us remark that if $G / H$ is Riemannian then so is $G / G_{0}$. Further, since the elliptic system we will study in this paper is given in the Lie algebra setting it is useful to know how the fact that $G / H$ is Riemannian can be read in the Lie algebra setting. In fact, under our hypothesis of effectivity, $G / H$ is Riemannian if and only if $\mathfrak{h}$ is compactly embedded in $\mathfrak{g}$.
2.1.2 the odd case: $k^{\prime}=2 k+1$

As in the even case we have $\mathfrak{g}_{0}^{\mathbb{C}}=\left(\mathfrak{g}_{0}\right)^{\mathbb{C}}$ and $\overline{\mathfrak{g}_{j}^{\mathbb{C}}}=\mathfrak{g}_{-j}^{\mathbb{C}}, \forall j \in \mathbb{Z} / k^{\prime} \mathbb{Z}$. Then we obtain the following eigenspace decomposition:

$$
\begin{equation*}
\mathfrak{g}^{\mathbb{C}}=\left(\mathfrak{g}_{-k}^{\mathbb{C}} \oplus \ldots \oplus \mathfrak{g}_{-1}^{\mathbb{C}}\right) \oplus \mathfrak{g}_{0}^{\mathbb{C}} \oplus\left(\mathfrak{g}_{1}^{\mathbb{C}} \oplus \ldots \oplus \mathfrak{g}_{k}^{\mathbb{C}}\right), \tag{25}
\end{equation*}
$$

which provides in particular the following reductive decomposition:

$$
\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{m}
$$

with $\mathfrak{m}=\oplus_{j=1}^{k} \mathfrak{m}_{j}$ and $\mathfrak{m}_{j}$ is the real subspace whose the complexified is $\mathfrak{m}_{j}^{\mathbb{C}}=\mathfrak{g}_{-j}^{\mathbb{C}} \oplus \mathfrak{g}_{j}^{\mathbb{C}}$. According to our convention, we suppose that ( $\mathfrak{g}, \mathfrak{g}_{0}$ ) is effective.
Then, as in the even case, integrating our setting and choosing $G_{0}$ such that $\left(G^{\tau}\right)^{0} \subset G_{0} \subset$ $G^{\tau}$, we consider $N=G / G_{0}$ which is a locally $(2 k+1)$-symmetric space and in particular a reductive homogeneous space. Moreover, the decomposition (25) gives rises to a splitting $T N^{\mathbb{C}}=T^{1,0} N \oplus T^{0,1} N$ defined by

$$
\begin{array}{rlccc}
T N^{\mathbb{C}} & =\left(\oplus_{j=1}^{k}\left[\mathfrak{g}_{-j}^{\mathbb{C}}\right]\right) & \oplus & \left(\oplus_{j=1}^{k}\left[\mathfrak{g}_{j}^{\mathbb{C}}\right]\right)  \tag{26}\\
& =T^{1,0} N & \oplus & T^{0,1} N
\end{array}
$$

This splitting defines a canonical complex structure on $G / G_{0}$, that we will denote by $\underline{\mathrm{J}}$. Moreover, we have the following caracterisation

$$
\mathfrak{g}_{0}=\left\{\xi \in \mathfrak{g} \mid\left[\mathrm{ad}_{\mathfrak{m}} \xi, \tau_{\mid \mathfrak{m}}\right]=0\right\}
$$

Let us suppose that $N=G / G_{0}$ is Riemannian then the subgroup generated by $\operatorname{Ad}_{\mathfrak{m}} G_{0}$ and $\tau_{\mid \mathfrak{m}}$ is compact (because $\tau_{\mid \mathfrak{m}} \operatorname{Ad}_{\mathfrak{m}} g \tau_{\mid \mathfrak{m}}^{-1}=\operatorname{Ad}_{\mathfrak{m}} g, \forall g \in G_{0}$, and $\tau_{\mathfrak{m}}$ is of finite order) and thus we can choose an $\operatorname{Ad} G_{0}$-invariant inner product in $\mathfrak{m}$ for which $\tau_{\mid \mathfrak{m}}$ is an isometry. We will always do this choice (when $N$ is Riemannian).

### 2.2 Definitions and general properties of the $m$-th elliptic system.

### 2.2.1 Definitions

Let $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an order $k^{\prime}$ automorphism with $k^{\prime} \in \mathbb{N}^{*}$ (if $k^{\prime}=1$ then $\tau=\mathrm{Id}$ ). We use the notations of 2.1. Let us begin by defining some useful notations.
Notation and convention Given $I \subset \mathbb{N}$, we denote by $\prod_{j \in I} \mathfrak{g}_{j}^{\mathbb{C}}$, the product $\prod_{j \in I} \mathfrak{g}_{j \operatorname{Cod} k^{\prime}}^{\mathbb{C}}$. In the case $\sum_{j \in I} \mathfrak{g}_{j \bmod k^{\prime}}^{\mathbb{C}}$ is a direct sum in $\mathfrak{g}^{\mathbb{C}}$, we will identify it with the previous product via the canonical isomorphism

$$
\begin{equation*}
\left(a_{j}\right)_{j \in I} \longmapsto \sum_{j \in I} a_{j}, \tag{27}
\end{equation*}
$$

and we will denote these two subspaces by the same notation $\oplus_{j \in I} \mathfrak{g}_{j}^{\mathbb{C}}$.
Now, let us define the $m$-th elliptic integrable system associated to a $k^{\prime}$-symmetric space, in the sense of Terng [38].

Definition 2.2 Let $L$ be a Riemann surface. The $m$-th $(\mathfrak{g}, \tau)$-system (with the ( - )-convention) on $L$ is the equation for $\left(u_{0}, \ldots, u_{m}\right),(1,0)$-type 1 -form on $L$ with values in $\prod_{j=0}^{m} \mathfrak{g}_{-j}^{\mathbb{C}}$ :

$$
\left\{\begin{array}{ll}
\bar{\partial} u_{j}+\sum_{i=0}^{m-j}\left[\bar{u}_{i} \wedge u_{i+j}\right]=0 & \left(S_{j}\right),  \tag{Syst}\\
\bar{\partial} u_{0}+\partial \bar{u}_{0}+\sum_{j=0}^{m}\left[u_{j} \wedge \bar{u}_{j}\right]=0
\end{array} \quad\left(S_{0}\right) \quad l \leq m, ~\right.
$$

It is equivalent to say that the 1-form

$$
\begin{equation*}
\alpha_{\lambda}=\sum_{j=0}^{m} \lambda^{-j} u_{j}+\lambda^{j} \bar{u}_{j}=\sum_{j=-m}^{m} \lambda^{j} \hat{\alpha}_{j} \tag{28}
\end{equation*}
$$

satisfies the zero curvature equation:

$$
\begin{equation*}
d \alpha_{\lambda}+\frac{1}{2}\left[\alpha_{\lambda} \wedge \alpha_{\lambda}\right]=0, \quad \forall \lambda \in \mathbb{C}^{*} \tag{29}
\end{equation*}
$$

Definition 2.3 Let L be a Riemann surface. The m-th $(G, \tau)$-system (with the $(+)$-convention) on $L$ is the equation (Syst) as in definition 2.2 but for $\left(u_{0}, \ldots, u_{m}\right),(1,0)$-type 1-form on $L$ with values in $\prod_{j=0}^{m} \mathfrak{g}_{j}^{\mathbb{C}}$. T $^{\text {D }}$
It is equivalent to say that the 1-form

$$
\begin{equation*}
\alpha_{\lambda}=\sum_{j=0}^{m} \lambda^{j} u_{j}+\lambda^{-j} \bar{u}_{j}=\sum_{j=-m}^{m} \lambda^{j} \hat{\alpha}_{j} \tag{30}
\end{equation*}
$$

satisfies the zero curvature equation (2g).
Remark 2.1 The difference between the two conventions is that in the first one $\alpha_{\lambda}^{\prime}=\sum_{j=0}^{m} \lambda^{-j} u_{j}$ involves negative powers of $\lambda$ whereas in the second one $\alpha_{\lambda}^{\prime}$ involves positive powers of $\lambda$ (in other words $\hat{\alpha}_{-j}^{\prime \prime}=0$, for $j \geq 1$ in the first one whereas $\hat{\alpha}_{j}^{\prime \prime}=0$, for $j \geq 1$ in the second one). In fact the second system is the first system associated to $\tau^{-1}$ and vice versa.
The first convention is the traditional one: it was used for harmonic maps into symmetric space (see [12) and by Hélein-Romon [21, 22, 23] for Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric space - first example of second elliptic integrable system associated to a 4 -symmetric space. Then the tradition was perpetuated in [28, 29, 30]. Terng [38], herself, in her definition of the elliptic integrable system uses also this convention. However in (7], this is the second convention which is used.
The ( + )-convention is in fact the most natural, as we will see, since it uses the automorphism $\tau$ whereas in the ( - )-convention, this is the automorphim $\tau^{-1}$ which appears in the geometrical interpretation. But the $(+)$-convention leads to several changes like for example in the DPW method [12, we must use the Iwasawa decomposition $\Lambda G_{\tau}^{\mathbb{C}}=\Lambda G_{\tau} \cdot \Lambda_{\mathcal{B}}^{-} G_{\tau}^{\mathbb{C}}$ instead of $\Lambda G_{\tau}^{\mathbb{C}}=\Lambda G_{\tau} \cdot \Lambda_{\mathcal{B}}^{+} G_{\tau}^{\mathbb{C}}$ and in particular the holomorphic potential involves positive power of $\lambda$ instead of negative one as it is the case traditionally. We decided here to continue to perpetuate the tradition as in 30 and to use the first convention. So in the following when we will speak about the $m$-th elliptic integrable system, it will be according to the definition 2.2 .

[^3]Notation Sometimes, when it will be necessary to do precision we will denote (Syst) either by (Syst $(m, \mathfrak{g}, \tau))$, (Syst $(m, \tau))$ or simply by $(\operatorname{Syst}(m))$ depending on the context and the needs.
For shortness we will also often say the $(m, \mathfrak{g}, \tau)$-system instead of the $m$-th ( $\mathfrak{g}, \tau)$-system. We will also say the $m$-th elliptic (integrable) system associated to (the $k^{\prime}$-symmetric space) $G / G_{0}$. We will say that a family of 1 -forms $\left(\alpha_{\lambda}\right)_{\lambda \in \mathbb{C}^{*}}$ (denoted by abuse of notation, simply by $\alpha_{\lambda}$ ) is solution of the $(m, \mathfrak{g}, \tau)$-system (or of (Syst)) if it corresponds to some solution $u$ of this system, according to (28). Therefore $\alpha_{\lambda}$ is solution of the $(m, \mathfrak{g}, \tau)$-system if and only if it can be written in the form (28), for some (1,0)-type 1 -form $u$ on $L$ with values in $\prod_{j=0}^{m} \mathfrak{g}_{-j}^{\mathbb{C}}$, and satisfies the zero curvature equation (29).

Definition 2.4 Let us set $m_{k^{\prime}}=\left[\frac{k^{\prime}+1}{2}\right]=\left\{\begin{array}{l}k \text { if } k^{\prime}=2 k \\ k+1 \text { if } k^{\prime}=2 k+1\end{array} \quad\right.$ if $k^{\prime}>1$, and $m_{1}=0$. Concerning the m-th $(G, \tau)$-system, we will say that:

- we are in the primitive case (or that that the system is primitive) if $0 \leq m<m_{k^{\prime}}$,
- in the determined case (or that that the system is determined) if $m_{k^{\prime}} \leq m \leq k^{\prime}-1$,
- and in the underdetermined case (or that that the system is underdetermined) if $m>k^{\prime}-1$. Moreover, the determined system of minimal order $m_{k^{\prime}}$ will be called "the minimal determined system", and the one of maximal order $k^{\prime}-1$ will be called "the maximal determined system".

Let us consider the $\mathfrak{g}$-valued 1 -form $\alpha:=\alpha_{\lambda=1}$. Then we have $\alpha=\sum_{j=0}^{m} u_{j}+\bar{u}_{j}$ according to (28) which is equivalent to $\alpha^{\prime}=\sum_{j=0}^{m} u_{j}$, since $\alpha$ is $\mathfrak{g}$-valued.

- In the primitive and determined cases $\left(m \leq k^{\prime}-1\right), \sum_{j=0}^{m} \mathfrak{g}_{-j}^{\mathbb{C}}$ is a direct sum so that $u=$ $\left(u_{0}, \ldots, u_{m}\right)$ and $\sum_{j=0}^{m} u_{j}=\alpha^{\prime}$ can be identified via (27) and according to our convention. We will then write simply $u=\alpha^{\prime}$. In particular we have

$$
u_{j}=\alpha_{-j}^{\prime} \quad \forall j, 0 \leq j \leq m
$$

with $\alpha_{j}:=[\alpha]_{\mathfrak{g}_{j}} \forall j \in \mathbb{Z} / k^{\prime} \mathbb{Z}$. Hence in the primitive and determined cases the $m$-th $(G, \tau)$ system can be considered as a system on $\alpha$. Consequently, we can recover $\alpha_{\lambda}$ from $\alpha$ and we will speak about the "extended Maurer Cartan form" $\alpha_{\lambda}$ which is then associated to $\alpha$ by

$$
\alpha_{\lambda}=\sum_{j=1}^{m} \lambda^{-j} \alpha_{-j}^{\prime}+\alpha_{0}+\sum_{j=1}^{m} \lambda^{j} \alpha_{j}^{\prime \prime}
$$

according to (28).

- In the underdetermined case, $\sum_{j=0}^{m} \mathfrak{g}_{-j}^{\mathbb{C}}$ is not a direct sum so that to a given $\alpha$ (coming from some solution $\alpha_{\lambda}$ of the $m$-th $(G, \tau)$-system, according to $\left.\alpha=\alpha_{\lambda=1}\right)$ there are a priori many (other) corresponding solutions $u=\left(u_{0}, \ldots, u_{m}\right)$ since

$$
\forall j \in \mathbb{Z} / k^{\prime} \mathbb{Z}, \alpha_{-j}^{\prime}=\sum_{i \equiv j\left[k^{\prime}\right]} u_{i}
$$

In fact, we will prove that there are effectively an infinity of other solutions satisfying the condition $\alpha_{\lambda=1}=\alpha$ (see 2.5 for a begining of explanation).

### 2.2.2 The geometric solution

The equation (29) (as well as (28)) is invariant by gauge transformations by the group $C^{\infty}\left(L, G_{0}\right)$ :

$$
U_{0} \cdot \alpha_{\lambda}=\operatorname{Ad} U_{0}^{-1} \alpha_{\lambda}-d U_{0} \cdot U_{0}^{-1}
$$

where $U_{0} \in C^{\infty}\left(L, G_{0}\right)$. This allows us to define a geometric solution of (Syst) as a map $f: L \rightarrow G / G_{0}$ which can be lifted (locally, i.e. in the neighbourhood of each point in $L$ ) to some $U: L \rightarrow G$ (defined locally, on the neighbourhood under consideration) such that $U^{-1} . d U=\alpha_{\lambda=1}$ for some solution $\alpha_{\lambda}$ of (Syst) (on the neighbourhood under consideration) ${ }^{5}$.

Now, to simplify the exposition, let us suppose that $L$ is simply connected (until the end of 2.2.2). Then $\left(\alpha_{\lambda}\right)_{\lambda \in \mathbb{C}^{*}} \mapsto \alpha=\alpha_{\lambda=1}$ is a surjective map from the set of solution of (Syst) to the set of Maurer-Cartan forms of lifts of geometric solutions. According the discussion at the end of subsection 2.2.1, this map is bijective in the primitive and determined case $\left(m \leq k^{\prime}-1\right)$ and not injective in the underdetermined case $\left(m>k^{\prime}-1\right)$. By quotienting by $C^{\infty}\left(L, G_{0}\right)$, we obtain a surjective map $\pi_{m}$ with the same properties, taking values in the set of geometric solutions.
Let us precise all that. We suppose, until the end of this subsection, that the automorphism $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ is fixed (so that the only data which varies in the ( $m, \mathfrak{g}, \tau$ )-system is the order $m$ ). First, let us give an explicit expression of the space $\mathcal{S}(m)$ of solutions $\alpha_{\lambda}$ of the system $(\operatorname{Syst}(m))$, i.e. the solutions of the zero curvature equation (29), which satisfies the equality (28) for some (1,0)-type 1-form $u$ on $L$ with values in $\prod_{j=0}^{m} \mathfrak{g}_{-j}^{\mathbb{C}}$. To do that, we want to express the condition (to be written in the form) (28) as a condition on the loop $\alpha_{\bullet}: \lambda \in S^{1} \mapsto \alpha_{\lambda}:$ :

$$
\begin{equation*}
28) \Longleftrightarrow\left(\alpha_{\bullet} \in \Lambda_{m} \mathfrak{g}_{\tau} \quad \text { and } \quad \alpha_{\bullet}^{\prime} \in \Lambda^{-} \mathfrak{g}_{\tau}^{\mathbb{C}}\right) \tag{31}
\end{equation*}
$$

where

$$
\begin{aligned}
\Lambda_{\mathfrak{g}_{\tau}} & =\left\{\eta_{\bullet} \in H^{1}\left(S^{1}, \mathfrak{g}\right) \mid \eta_{\omega \lambda}=\tau\left(\eta_{\lambda}\right), \forall \lambda \in S^{1}\right\} \\
\Lambda_{m} \mathfrak{g}_{\tau} & =\left\{\eta_{\bullet} \in \Lambda \mathfrak{g}_{\tau} \mid \eta_{\lambda}=\sum_{|j| \leq m} \lambda^{j} \hat{\eta}_{j}\right\} \\
\Lambda^{-} \mathfrak{g}_{\tau}^{\mathbb{C}} & =\left\{\eta_{\bullet} \in \Lambda \mathfrak{g}_{\tau}^{\mathbb{C}} \mid \eta_{\lambda}=\sum_{j \leq 0} \lambda^{j} \hat{\eta}_{j}\right\}
\end{aligned}
$$

and $\omega$ is a $k^{\prime}$-th root of unity; so that

$$
\begin{equation*}
\mathcal{S}(m)=\left\{\alpha_{\bullet} \in \mathcal{C}\left(T^{*} L \otimes \Lambda_{m} \mathfrak{g}_{\tau}\right) \mid \alpha_{\bullet}^{\prime} \in \Lambda^{-} \mathfrak{g}_{\tau}^{\mathbb{C}} \quad \text { and } \quad d \alpha_{\bullet}+\frac{1}{2}\left[\alpha_{\bullet} \wedge \alpha_{\bullet}\right]=0\right\} \tag{32}
\end{equation*}
$$

Let us remark that the condition $\alpha_{\bullet}^{\prime} \in \Lambda^{-} \mathfrak{g}_{\tau}^{\mathbb{C}}$ can be interpretated as a condition of $\mathbb{C}$-linearity. Indeed, the Banach vector space $\Lambda \mathfrak{g}_{\tau} / \mathfrak{g}_{0}$ is naturally endowed with the complex structure defined by the following decomposition

$$
\begin{equation*}
\left(\Lambda \mathfrak{g}_{\tau} / \mathfrak{g}_{0}\right)^{\mathbb{C}}=\Lambda \mathfrak{g}_{\tau}^{\mathbb{C}} / \mathfrak{g}_{0}^{\mathbb{C}}=\Lambda_{*}^{-} \mathfrak{g}_{\tau} \oplus \Lambda_{*}^{+} \mathfrak{g}_{\tau} \tag{33}
\end{equation*}
$$

where $\Lambda_{*}^{ \pm} \mathfrak{g}_{\tau}=\left\{\eta_{\bullet} \in \Lambda \mathfrak{g}_{\tau}^{\mathbb{C}} \mid \eta_{\lambda}=\sum_{j \geqslant 0} \lambda^{j} \hat{\eta}_{j}\right\}$. Then the condition $\alpha_{\bullet}^{\prime} \in \Lambda^{-} \mathfrak{g}_{\tau}^{\mathbb{C}}$ means that $\left[\alpha_{\bullet}^{\prime}\right]_{*}: T L \rightarrow\left(\Lambda \mathfrak{g}_{\tau} / \mathfrak{g}_{0}\right)^{\mathbb{C}}$ is $\mathbb{C}$-linear, where []$_{*}$ denotes the component in $\Lambda_{*} \mathfrak{g}_{\tau}=\left\{\eta_{\bullet} \in \Lambda \mathfrak{g}_{\tau} \mid \eta_{\lambda}=\right.$ $\left.\sum_{j \neq 0} \lambda^{j} \hat{\eta}_{j}\right\} \cong \Lambda \mathfrak{g}_{\tau} / \mathfrak{g}_{0}$.
Now let us integrate our setting. Firstly, let us define the twisted loop group

$$
\Lambda G_{\tau}=\left\{U_{\bullet} \in H^{1}\left(S^{1}, G\right) \mid U_{\omega \lambda}=\tau\left(U_{\lambda}\right)\right\}
$$

[^4]Then, let us set

$$
\begin{aligned}
\mathcal{E}^{m} & =\left\{U_{\bullet}: L \rightarrow \Lambda G_{\tau} \mid U_{\lambda}(0)=1, \forall \lambda \in S^{1} ; \alpha_{\lambda}:=U_{\lambda}^{-1} . d U_{\lambda} \text { is a solution of }(\operatorname{Syst}(m))\right\} \\
\mathcal{E}_{1}^{m} & =\left\{U: L \rightarrow G \mid \exists U_{\bullet} \in \mathcal{E}^{m}, U=U_{1}\right\} \\
\mathcal{G}^{m} & =\left\{f: L \rightarrow G / G_{0} \text { geom. sol. of }(\operatorname{Syst}(m)), f(0)=1 . G_{0}\right\} \\
\mathcal{G}_{\bullet}^{m} & =\left\{f_{\bullet}=\pi_{G / G_{0}} \circ U_{\bullet}, U_{\bullet} \in \mathcal{E}^{m}\right\}
\end{aligned}
$$

The space of geometric solutions is obviously obtained from the space of extended geometric solutions $\mathcal{G}_{\bullet}^{m}$ by $\mathcal{G}^{m}=\mathcal{G}_{1}^{m}$. Moreover $\mathcal{S}(m) \simeq \mathcal{E}^{m}$ is determined by $\mathcal{G}_{\bullet}^{m}$ because of the gauge invariance: $\mathcal{E}(m) \cdot \mathcal{K} \subset \mathcal{E}(m)$ where $\mathcal{K}=C_{*}^{\infty}\left(L, G_{0}\right)=\left\{U \in C^{\infty}\left(L, G_{0}\right) \mid U(0)=1\right\}$ so that we can write $\mathcal{G}_{\bullet}^{m}=\mathcal{E}(m) / \mathcal{K}$. Consequently, we have also $\mathcal{G}^{m}=\mathcal{E}_{1}^{m} / \mathcal{K}$.
Finally, we obtain the following diagram


Then $\pi_{m}$ is bijective for $m \leq k^{\prime}-1$ and not injective for $m>k^{\prime}-1$. Therefore, in the primitive and determined case, we can consider that $(\operatorname{Syst}(m))$ is a system on the map $f$ corresponding to $\alpha$ (since the Maurer-Cartan equation for $\alpha$ is always contained in (Syst $(m)$ ) according to (29), and thus the existence of $f$ is always guaranteed). This system on $f$ is an elliptic PDE on $f$ of order $\leq 2$. In particular, we are led to the following definition:

Definition 2.5 Given $a \mathfrak{g}$-valued Maurer-Cartan 1 -form $\alpha$ on L, we define the geometric map corresponding to $\alpha$, as $f=\pi_{G / G_{0}} \circ U, U$ integrating $\alpha: U^{-1} . d U=\alpha, U(0)=1$.

Let us summarize:
Proposition 2.1 The natural map $\pi_{m}: \mathcal{G}_{\bullet}^{m} \rightarrow \mathcal{G}^{m}$ from the set of extended geometric solutions of the ( $m, \mathfrak{g}, \tau$ )-system into the set of geometric solutions is surjective. Moreover, it is bijective in the primitive and determined cases $\left(m \leq k^{\prime}-1\right)$ and not injective in the underdetermined case $\left(m>k^{\prime}-1\right)$. Moreover, in the primitive and determined cases, the ( $m, \mathfrak{g}, \tau$ )-system - on the (family of) 1-form $\alpha_{\lambda}$ - is in fact a system on the 1-form $\alpha:=\alpha_{\lambda=1}$, itself equivalent to an elliptic PDE of order $\leq 2$ on the corresponding geometric map $f: L \rightarrow G / G_{0}$.

Furthermore, let us interpret the $\mathbb{C}$-linearity of $\left[\alpha_{\bullet}^{\prime}\right]_{*}: T L \rightarrow\left(\Lambda \mathfrak{g}_{\tau} / \mathfrak{g}_{0}\right)^{\mathbb{C}}$ in terms of the corresponding geometric solution $f_{\bullet}: L \rightarrow \Lambda G_{\tau} / G_{0}$, defined by $f_{\bullet}=\pi_{G / G_{0}} \circ U_{\bullet}$ where $U_{\bullet}$ integrates $\alpha_{\bullet}$. Firstly, the complex structure defined in $\Lambda \mathfrak{g}_{\tau} / \mathfrak{g}_{0}$ by (33) is $\operatorname{Ad} G_{0}$-invariant so that it defines a $\Lambda G_{\tau}$-invariant complex structure on the homogeneous space $\Lambda G_{\tau} / G_{0}$. Therefore the $\mathbb{C}$-linearity of $\left[\alpha_{\bullet}^{\prime}\right]_{*}$ means exactly that $f_{\bullet}: L \rightarrow \Lambda G_{\tau} / G_{0}$ is holomorphic. Now, let us interpret the condition $\alpha_{\bullet} \in \Lambda_{m} \mathfrak{g}_{\tau}$ in terms of the map $f_{\bullet}$. Let us consider the following $\operatorname{Ad} G_{0}$-invariant decomposition

$$
\Lambda \mathfrak{g}_{\tau} / \mathfrak{g}_{0}=\Lambda_{m *} \mathfrak{g}_{\tau} \oplus \Lambda_{>m} \mathfrak{g}_{\tau}
$$

where $\Lambda_{m *} \mathfrak{g}_{\tau}=\Lambda_{m} \mathfrak{g}_{\tau} \cap \Lambda_{*} \mathfrak{g}_{\tau}$ and $\Lambda_{>m} \mathfrak{g}_{\tau}=\left\{\eta_{\bullet} \in \Lambda_{\mathfrak{g}}^{\tau} \mid \eta_{\lambda}=\sum_{|j|>m} \lambda^{j} \hat{\eta}_{j}\right\}$, which gives rise respectively to some $\Lambda G_{\tau}$-invariant splitting

$$
T\left(\Lambda G_{\tau} / G_{0}\right)=\mathcal{H}_{m}^{\Lambda} \oplus \mathcal{V}_{m}^{\Lambda}
$$

Then $\mathcal{H}_{m}^{\Lambda}$ and $\mathcal{V}_{m}^{\Lambda}$ inherit respectively the qualificatifs horizontal and vertical subbundle respectively. Therefore, in the same spirit as [12] (remark 2.5 and proposition 2.6), the equation (32) gives us the following familiar twistorial caracterisation

Proposition 2.2 $A$ map $f_{\bullet}: L \rightarrow \Lambda G_{\tau} / G_{0}$ is an extended geometric solution of the ( $m, \mathfrak{g}, \tau$ )system if and only if it is holomorphic and horizontal.

### 2.2.3 The increasing sequence of spaces of solutions: $(\mathcal{S}(m))_{m \in \mathbb{N}}$

Again, we suppose in all 2.2 .3 that the automorphism $\tau$ is fixed and that $L$ is simply connected. Then according to the realisation of $(\operatorname{Syst}(m))$ in the forms (29) and (28), we see that any solution of $(\operatorname{Syst}(m))$ is solution of $\left(\operatorname{Syst}\left(m^{\prime}\right)\right)$ for $m \leq m^{\prime}$ (take $u_{j}=0$ for $\left.m<j \leq m^{\prime}\right)$. More precisely, (Syst $(m))$ is a reduction of $\left(\operatorname{Syst}\left(m^{\prime}\right)\right)$ : (Syst $\left.(m)\right)$ is obtained from ( $\left.\operatorname{Syst}\left(m^{\prime}\right)\right)$ by putting $u_{j}=0$, $m<j \leq m^{\prime}$, in $\left(\operatorname{Syst}\left(m^{\prime}\right)\right)$. In particular, $\mathcal{S}(m) \subset \mathcal{S}\left(m^{\prime}\right)$ for $m \leq m^{\prime}$; so that any solution in the primitive case ( $m<m_{k^{\prime}}$ ) is solution of any determined system ( $m_{k^{\prime}} \leq m \leq k^{\prime}-1$ ), and any solution of a determined system is solution of any underdetermined system ( $m>k^{\prime}-1$ ). Besides we see that $\pi_{m^{\prime} \mid \mathcal{G}_{\bullet}^{m}}=\pi_{m}$ if $m \leq m^{\prime}$. In particular, $\pi_{m^{\prime}}\left(\mathcal{G}_{\bullet}^{m}\right)=\mathcal{G}^{m}$. Thus we can set $\mathcal{S}(\infty)=\cup_{m \in \mathbb{N}} \mathcal{S}(m)$ and $\mathcal{G}^{\infty}=\cup_{m \in \mathbb{N}} \mathcal{G}^{m}$, then we can define a surjective map $\pi_{\infty}: \mathcal{E}^{\infty} / \mathcal{K} \rightarrow \mathcal{G}^{\infty}$ such that $\left.\pi_{\infty}\right|_{\mathcal{E}^{m} / \mathcal{K}}$ is a bijection onto $\mathcal{G}^{m}$ for each $m \leq k^{\prime}-1$.
Moreover any geometric solution $f \in \mathcal{G}^{\infty}$ has an order $m$ which is the smaller $m^{\prime}$ such that $f \in \mathcal{G}^{m^{\prime}}$. Then for any solution $\alpha_{\lambda} \in \mathcal{S}(\infty)$ giving rise to $f$, we have $\alpha_{\lambda} \in \mathcal{S}(m)$ ( $m$ is the maximal power on $\lambda$ of $\alpha_{\lambda}$, which does not depend on the choice of $\alpha_{\lambda}$ since these are all equivalent modulo the gauge group $\mathcal{K})$. Thus we have $\pi_{\infty}^{-1}\left(\mathcal{G}^{m}\right)=\mathcal{G}_{\bullet}^{m}$ or equivalently $\pi_{\infty}\left(\mathcal{G}_{\bullet}^{m+1} \backslash \mathcal{G}_{\bullet}^{m}\right)=\mathcal{G}^{m+1} \backslash \mathcal{G}^{m}$.

Remark 2.2 We can call $\mathcal{S}(\infty)$ the ( $\mathfrak{g}, \tau$ )-system, and then we can speak about its subsystem of order $m$, namely $\mathcal{S}(m)$. In particular, we have the following caracterization:

$$
\mathcal{S}(\infty)=\left\{\alpha_{\bullet} \in \mathcal{C}\left(T^{*} L \otimes \Lambda_{(\infty)} \mathfrak{g}_{\tau}\right) \mid \alpha_{\bullet}^{\prime} \in \Lambda^{-} \mathfrak{g}_{\tau} \quad \text { and } \quad d \alpha_{\bullet}+\frac{1}{2}\left[\alpha_{\bullet} \wedge \alpha_{\bullet}\right]=0\right\}
$$

where $\Lambda_{(\infty)} \mathfrak{g}_{\tau}=\cup_{m \in \mathbb{N}} \Lambda_{m} \mathfrak{g}_{\tau}$.
The primitive and determined cases $\left(m \leq k^{\prime}-1\right)$ Now, let us apply the previous discussion (about the increasing sequence $(\mathcal{S}(m))_{m \in \mathbb{N}}$ ) to the study of the determined case. Let us recall that in this case, we can consider that the system ( $\operatorname{Syst}(m)$ ) deals only with $\mathfrak{g}$-valued 1-forms $\alpha$.

Proposition 2.3 The solutions of a determined system $(\operatorname{Syst}(m)), m_{k^{\prime}} \leq m \leq k^{\prime}-1$, are exactly the solutions of the maximal determined system, i.e. $\left(\operatorname{Syst}\left(k^{\prime}-1\right)\right)$, which satisfy the holomorphicity conditions:

$$
\alpha_{-j}^{\prime \prime}=0, m-m_{k^{\prime}}+1 \leq j \leq k-1 .
$$

Moreover, the solutions of a primitive system $(\operatorname{Syst}(m)), 1 \leq m \leq m_{k^{\prime}}-1$, are the solutions of the minimal determined system, i.e. $\left(\operatorname{Syst}\left(m_{k^{\prime}}\right)\right)$, which satisfy
(i) if $k^{\prime}=2 k$ is even, the horizontality conditions:

$$
\alpha_{k}=\alpha_{ \pm(k-1)}=\ldots \alpha_{ \pm(m+1)}=0
$$

(ii)
if $k^{\prime}=2 k+1$ is odd,

- the holomorphicity condition : $\alpha_{-k}^{\prime \prime}=0 \quad$ if $m=k$,
- the horizontality conditions : $\alpha_{ \pm k}=\alpha_{ \pm(k-1)}=\ldots \alpha_{ \pm(m+1)}=0 \quad$ if $m \leq k-1$.

The non injectivity of $\pi_{m}$ in the underdetermined case Now, let us turn ourself to the underdetermined case.

Proposition 2.4 In the underdetermined case, $m>k^{\prime}-1$, the map $\mathrm{ev}_{1}: \alpha_{\bullet} \in \mathcal{S}(m) \rightarrow \alpha \in$ $\mathcal{S}(m)_{1}$ is not injective.

Sketch of Proof. Since in the underdetermined case, we have $m \geq k^{\prime}$, then $\mathcal{S}(m) \supset \mathcal{S}\left(k^{\prime}\right)$ and thus it suffices to prove the non-injectivity on $\mathcal{S}\left(k^{\prime}\right)$. Let $\alpha_{\lambda}$ be a solution of $\left(\operatorname{Syst}\left(k^{\prime}\right)\right)$ and $\alpha$ its value at $\lambda=1$. Then let us consider the fibre $\mathrm{ev}_{1}^{-1}(\alpha)$. Let us denote by $\tilde{\alpha}_{\lambda}$ the current element in $\mathrm{ev}_{1}^{-1}(\alpha)$, varying arbitrary, to differentiate it from the fixed element $\alpha_{\lambda}$. Then let us consider the corresponding (1,0)-type 1-form $\tilde{u}=\left(\tilde{u}_{0}, \ldots, \tilde{u}_{k^{\prime}-1}, \tilde{u}_{k^{\prime}}\right)$ taking values in $\prod_{j=0}^{k^{\prime}} \mathfrak{g}_{-j}^{\mathbb{C}}=\left(\oplus_{j=0}^{k^{\prime}-1} \mathfrak{g}_{-j}^{\mathbb{C}}\right) \times \mathfrak{g}_{0}$ and then let us set $u=\left(\underline{\tilde{u}}, \tilde{u}_{k^{\prime}}\right)$. Then we have by definition $\underline{\tilde{u}}+\tilde{u}_{k^{\prime}}=\alpha^{\prime}$ so that $\tilde{u}_{0}=\alpha_{0}^{\prime}-\tilde{u}_{k^{\prime}}$ and $\tilde{u}_{j}=\alpha_{-j}^{\prime}$. Therefore, the variable $\tilde{u}$ can be parametrized, in $\operatorname{ev}_{1}^{-1}(\alpha)$, by $\tilde{u}_{k^{\prime}}$. Furthermore, injecting these two previous equations in the system $\left(\operatorname{Syst}\left(k^{\prime}\right)\right)$ satisfied by $\tilde{u}$, this one becomes a system on $\tilde{u}_{k^{\prime}}$ with some parameters depending on $\alpha$, which by a straightforward computation can be written in the form

$$
\left\{\begin{array}{l}
\bar{\partial} \tilde{u}_{k^{\prime}}+\left[\alpha_{0}^{\prime \prime} \wedge \tilde{u}_{k^{\prime}}\right]-\left[\overline{\tilde{u}}_{k^{\prime}} \wedge \tilde{u}_{k^{\prime}}\right]=0  \tag{a}\\
\beta+\left[\gamma \wedge\left(\tilde{u}_{k^{\prime}}+\tilde{\tilde{u}}_{k^{\prime}}\right)\right]=0 \quad \text { (b) }
\end{array}\right.
$$

Hence, $\mathrm{ev}_{1}^{-1}(\alpha)$ is (parametrized by) the solutions of (a) which lie in the affine space defined by (b). Therefore since we already know a solution of the system (a)-(b), namely the component $u_{k^{\prime}}$ of the fixed solution $\alpha_{\lambda}$, we can now apply the implicit functions theorem to the following initial value problem

$$
\left\{\begin{array}{l}
\bar{\partial} \tilde{u}_{k^{\prime}}+\left[\alpha_{0}^{\prime \prime} \wedge \tilde{u}_{k^{\prime}}\right]-\left[\overline{\tilde{u}}_{k^{\prime}} \wedge \tilde{u}_{k^{\prime}}\right]=0 \\
\tilde{u}_{k^{\prime}}\left(z_{0}\right)=x_{0} \in\left\{\xi_{0} \in g_{0} \mid\left[\gamma\left(z_{0}\right) \wedge\left(\xi_{0}+\bar{\xi}_{0}\right)\right]=0\right\}
\end{array}\right.
$$

restricted to the affine space of functions, defined by (b).

### 2.2.4 The decreasing sequence $\left(\operatorname{Syst}\left(m, \tau^{p}\right)\right)_{p / k^{\prime}}$

Any solution of the $m$-th $(\mathfrak{g}, \tau)$-system is solution of the $m$-th $\mathfrak{g}$-system (take $\tau=\mathrm{Id}$, i.e. $u=$ $\left.\left(u_{0}, \ldots, u_{m}\right) \in\left(\mathfrak{g}^{\mathbb{C}}\right)^{m+1}\right)$. More precisely, the $m$-th $(\mathfrak{g}, \tau)$-system is the restriction to $\oplus_{j=0}^{m} \mathfrak{g}_{-j}^{\mathbb{C}}(\tau)$ of the $m$-th $\mathfrak{g}$-system.
More generally, for any $p \in \mathbb{N}^{*}$ such that $p$ divides $k^{\prime}$, the $m$-th $(\mathfrak{g}, \tau)$-system is the $m$-th $\left(\mathfrak{g}, \tau^{p}\right)$ system restricted to $\oplus_{j=0}^{m} \mathfrak{g}_{-j}(\tau)$, or equivalently - in terms of $\alpha_{\lambda} \in \Lambda \mathfrak{g}_{\tau^{p}}^{\mathbb{C}}$ - restricted to $\Lambda \mathfrak{g}_{\tau}^{\mathbb{C}}$.

### 2.3 The minimal determined case

We study here the elliptic system $(\operatorname{Syst}(m))$ in the minimal determined case and by the way its subcase the primitive case. Let us recall again that in this case, we can consider that the system (Syst $(m)$ ) deals only with Maurer-cartan forms $\alpha$ and consequently also with geometric maps $f$. Then we have to translate the equations on $\alpha$ into geometric conditions on $f$. This is what we will begin to do now.
The minimal determined case splits into two cases.
2.3.1 The even minimal determined case: $k^{\prime}=2 k$ and $m=k$

Let us recall the following decomposition

$$
\mathfrak{g}^{\mathbb{C}}=\left(\mathfrak{g}_{-(k-1)}^{\mathbb{C}} \oplus \ldots \oplus \mathfrak{g}_{-1}^{\mathbb{C}}\right) \oplus \mathfrak{g}_{0}^{\mathbb{C}} \oplus\left(\mathfrak{g}_{1}^{\mathbb{C}} \oplus \ldots \oplus \mathfrak{g}_{k-1}^{\mathbb{C}}\right) \oplus \mathfrak{g}_{k}^{\mathbb{C}}
$$

It is useful for the following to keep in mind that $k=-k \bmod 2 k$.
The system $(\operatorname{Syst}(k, \tau))$ can be written

$$
\left\{\begin{array}{lc}
\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1 & \left(H_{j}\right)  \tag{34}\\
d \alpha+\frac{1}{2}[\alpha \wedge \alpha]=0 & (\mathrm{MC}) \\
\bar{\partial} \alpha_{-k}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{-k}^{\prime}\right]=0 & \left(S_{k}\right)
\end{array}\right.
$$

More precisely the equations $\left(S_{j}\right), 0 \leq j \leq k-1$, of ( $\operatorname{Syst}(k, \tau)$ ) are respectively the projection on $\mathfrak{g}_{-j}^{\mathbb{C}}, 0 \leq j \leq k-1$, of (MC) (owing to the holomorphicity conditions $\left(H_{j}\right)$ given by proposition 2.3). Moreover, the projection of (MC) on $\mathfrak{g}_{k}$ gives us

$$
d \alpha_{k}+\left[\alpha_{0} \wedge \alpha_{k}\right]=0
$$

which is the real part of $\left(S_{k}\right)$. Hence the only new information (in addition to (MC) and $(H)$ ) given by the minimal determined elliptic integrable system in the even case is the imaginary part of $\left(S_{k}\right)$ :

$$
d\left(* \alpha_{k}\right)+\left[\alpha_{0} \wedge\left(* \alpha_{k}\right)\right]=0 \quad\left(E_{k}\right)
$$

which is as we will see the vertical part of a harmonic map equation. Hence $(\operatorname{Syst}(k, \tau))$ is equivalent to

$$
\left\{\begin{array}{lc}
\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1 & \left(H_{j}\right) \\
d\left(* \alpha_{k}\right)+\left[\alpha_{0} \wedge\left(* \alpha_{k}\right)\right]=0 & \left(E_{k}\right) \\
d \alpha+\frac{1}{2}[\alpha \wedge \alpha]=0 & (\mathrm{MC})
\end{array}\right.
$$

Besides $\left(S_{k}\right)$ can be written in the form:

$$
\left[\bar{\partial}\left(\operatorname{Ad} U\left(\alpha_{k}^{\prime}\right)\right)\right]_{\mathfrak{g}_{k}}=0
$$

where $U$ integrates $\alpha$. In term of $f: L \rightarrow G / G_{0}$, the projection of $U$, this last equation means (as we will see in section (4)

$$
\bar{\partial}^{\nabla^{v}} \partial^{v} f=0
$$

where $\nabla^{v}$ is the vertical part of the Levi-Civita connection $\nabla$ on the Riemannian homogeneous space $G / G_{0}$, the vertical and horizontal spaces are defined by $\mathcal{V}=\left[\mathfrak{g}_{k}\right]$ and $\mathcal{H}=[\mathfrak{m}]$ since we can do the splitting: $T\left(G / G_{0}\right)=[\mathfrak{m}] \oplus\left[\mathfrak{g}_{k}\right]$.
Then the equation $\left(E_{k}\right)$ is equivalent to (see section (4)

$$
d^{\nabla^{v}}\left(* d^{v} f\right)=0 \Longleftrightarrow \tau^{v}(f):=\operatorname{Tr}_{b}\left(\nabla^{v} d^{v} f\right)=0
$$

(for any hermitian metric $b$ on the Riemann surface $L$ ). It is easy to see that the equation $\left(E_{k}\right)$ is a vertically harmonic map equation $\left(\tau^{v}(f)=0\right)$ for the canonical connection $\nabla^{0}=d+\alpha_{0}$. In fact, we will see that in the vertical subbundle $\mathcal{V}$ we have $\nabla^{v}=\nabla^{0}$ (see section 4).

The primitive case The $m$-primitive case is obtained by putting $\alpha_{k}=\alpha_{ \pm(k-1)}=\ldots \alpha_{ \pm(m+1)}=$ 0 in the minimal determined case (34). In particular $\alpha_{k}=0$ and ( $S_{k}$ ) is trivial so that the only additionnal conditions on the geometric map $f: L \rightarrow G / G_{0}$ (whose existence is guaranted by $(\mathrm{MC}))$ are the equations $\left(H_{j}\right): \alpha_{-j}^{\prime \prime}=\alpha_{j}^{\prime}=0,1 \leq j \leq m$, and $\alpha_{k}=\alpha_{ \pm(k-1)}=\ldots \alpha_{ \pm(m+1)}=0$ (which both, let us recall it, come from $\alpha^{\prime}=u \in \oplus_{j=0}^{m} \mathfrak{g}_{-j}^{\mathbb{C}}$ ).

Proposition 2.5 Let $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an order $2 k$ automorphism, and an integer $m<k$ then the $m$-th elliptic integrable system (Syst $(m, \tau)$ ) means that the geometric map $f: L \rightarrow G / G_{0}$ satisfies

$$
\partial f \in \oplus_{j=1}^{m}\left[\mathfrak{g}_{-j}^{\mathbb{C}}\right] \subset T\left(G / G_{0}\right)^{\mathbb{C}}
$$

Proof. Let $f$ be the geometric map corresponding to the Maurer-Cartan form $\alpha$, that we integrate by $U: L \rightarrow G$, then we have $\partial f=\operatorname{Ad} U\left(\alpha_{\mathfrak{n}}^{\prime}\right)$ and $\alpha$ is solution of $(\operatorname{Syst}(m, \tau))$ if and only if

$$
\alpha_{\mathfrak{n}}^{\prime}=\alpha_{-1}^{\prime}+\ldots+\alpha_{-m}^{\prime} \in \oplus_{j=1}^{m} \mathfrak{g}_{-j}^{\mathbb{C}} \Longleftrightarrow \partial f \in \oplus_{j=1}^{m}\left[\mathfrak{g}_{-j}^{\mathbb{C}}\right] .
$$

This completes the proof.
Remark 2.3 In particular, in the primitive case $f$ is horizontal $\left(\alpha_{k}=0\right)$. Therefore $\left(S_{k}\right)$ is trivial and (owing to the holomorphicity conditions $\left(H_{j}\right), 1 \leq j \leq k-1$ ) the free curvature equation (29) is equivalent to (MC) in the primitive case.

Definition 2.6 We will call m-primitive map (into the locally ( $2 k$ )-symmetric space $G / G_{0}$ ) a geometric solution of the system $(\operatorname{Syst}(m, \tau))$ for $m<k$.

Geometric interpretation of the equations $\left(H_{j}\right)$. For $m<k$, let $F^{[m]}$ be the $f$-structure on $N=G / G_{0}$ defined by the following (eigenspace) decomposition:

$$
\begin{array}{rllll}
T N^{\mathbb{C}} & =\left(\oplus_{j=1}^{m}\left[\mathfrak{g}_{-j}^{\mathbb{C}}\right]\right) & \oplus & \left(\oplus_{|j|>m}\left[\mathfrak{g}_{j}^{\mathbb{C}}\right]\right) & \oplus  \tag{35}\\
& = & T^{+} N & \left(\oplus_{j=1}^{m}\left[\mathfrak{g}_{j}^{\mathbb{C}}\right]\right) \\
T^{0} N
\end{array} .
$$

We will set $F=F^{[k-1]}$, and we will call $F$ the canonical $f$-structure on $N$. Then according to proposition 2.5 we have

Theorem 2.1 A map $f: L \rightarrow G / G_{0}$ is m-primitive if and only if it is $F^{[m]}$-holomorphic.
Remark 2.4 The equations $\left(H_{j}\right): \alpha_{-j}^{\prime \prime}=0,1 \leq j \leq m$, on a Maurer-Cartan 1-form $\alpha$ means that the corresponding geometric map $f: L \rightarrow G / G_{0}$ satisfies $\mathrm{pr}_{m} \circ\left(d f \circ j_{L}\right)=F^{[m]} \circ d f$ where $j_{L}$ is the complex structure in $L$, and $\mathrm{pr}_{m}: T N \rightarrow \oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right]$ is the projection on $\oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right]$ along $\left(\oplus_{j=m+1}^{k-1}\left[\mathfrak{m}_{j}\right]\right) \oplus\left[\mathfrak{g}_{k}\right]$. This means that the projection $\operatorname{pr}_{m} \circ d f: T L \rightarrow \oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right]$ is a morphism of complex vector bundle. Let us denote $C_{m}^{\infty}\left(L, G / G_{0}\right)=\left\{f \in C^{\infty}\left(L, G / G_{0}\right) \mid d f \in \oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right]\right\}$. Then we have the following equivalences between the Maurer-Cartan 1-form $\alpha$ and its geometric map:

$$
\begin{align*}
\alpha \in \mathfrak{g}_{0} \oplus\left(\oplus_{j=1}^{m} \mathfrak{m}_{j}\right) & \Longleftrightarrow f \in C_{m}^{\infty}\left(L, G / G_{0}\right)  \tag{36}\\
\left(H_{j}\right): \alpha_{-j}^{\prime \prime}=0,1 \leq j \leq m & \Longleftrightarrow \operatorname{pr}_{m} \circ\left(d f \circ j_{L}\right)=F^{[m]} \circ d f
\end{align*}
$$

Then additionning these two equivalences, we recover the equivalence: " $\alpha$ solves $(\operatorname{Syst}(m, \tau))$ " $\Longleftrightarrow " f$ is $F^{[m]}$-holomorphic". Moreover, the equations $\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1$, mean that $f$ is horizontally holomorphic.

Theorem 2.2 Let $\alpha$ be $a \mathfrak{g}$-valued 1-form on $L$ and $f$ its geometric map. The following statements are equivalent:
(i) $\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1$
(ii) $f$ is horizontally holomorphic: $\left(d f \circ j_{L}\right)^{\mathcal{H}}=F^{[k-1]} \circ d f, \mathcal{H}=[\mathfrak{m}]$ being the horizontal space and $F^{[k-1]}{ }_{\mid \mathcal{H}}$ defining a complex structure on $\mathcal{H}$.

So that we can conclude: the even minimal determined system (Syst $(k, \tau)$ ) means that the geometric map $f$ is horizontally holomorphic and vertically harmonic.

Remark 2.5 We can express what precedes in terms of the projection map $\bar{\pi}_{G / G_{0}}: \alpha \rightarrow f$ defined as follows. Let $\mathcal{M C}$ be the set of $\mathfrak{g}$-valued Maurer-Cartan 1-form on $L$ and for $m<k$, $\mathcal{M C}{ }^{m}$ the subset of Maurer-Cartan 1-form taking values in $\mathfrak{g}_{0} \oplus\left(\oplus_{j=1}^{m} \mathfrak{m}_{j}\right)$, then $\bar{\pi}_{G / G_{0}}: \mathcal{M C} \rightarrow$ $C^{\infty}\left(L, G / G_{0}\right)$ is defined by:

$$
\bar{\pi}_{G / G_{0}}: \alpha \in \mathcal{M C} \xrightarrow{\mathrm{int}} U \in C_{*}^{\infty}(L, G) \xrightarrow{\pi_{G / G_{0}}} f=\pi_{G / G_{0}} \circ U \in C^{\infty}\left(L, G / G_{0}\right) .
$$

The preceding results can be summarized as follows: for any $m<k$

$$
\bar{\pi}_{G / G_{0}}\left(\mathcal{M C}^{m}\right)=C_{m}^{\infty}\left(L, G / G_{0}\right) \quad \text { and } \quad \bar{\pi}_{G / G_{0}}(\mathcal{S}(m))=\operatorname{Hol}\left((L, j),\left(G / G_{0}, F^{[m]}\right)\right)
$$

the set of $F^{[m]}$-holomorphic maps; and the equations $\left(H_{j}\right), 1 \leq j \leq m$, in $\mathcal{M C}$ are transformed by $\bar{\pi}_{G / G_{0}}$ into the equation $\operatorname{pr}_{m} \circ\left(d f \circ j_{L}\right)=F^{[m]} \circ d f$ in $C^{\infty}\left(L, G / G_{0}\right)$.

### 2.3.2 The minimal determined odd case

The order of the automorphism $\tau$ is odd $k^{\prime}=2 k+1$, and $m=k+1$. Let us recall the following decomposition

$$
\mathfrak{g}^{\mathbb{C}}=\left(\mathfrak{g}_{-k}^{\mathbb{C}} \oplus \ldots \oplus \mathfrak{g}_{-1}^{\mathbb{C}}\right) \oplus \mathfrak{g}_{0}^{\mathbb{C}} \oplus\left(\mathfrak{g}_{1}^{\mathbb{C}} \oplus \ldots \oplus \mathfrak{g}_{k}^{\mathbb{C}}\right) .
$$

The equations $\left(S_{j}\right), 0 \leq j \leq k-1$, of $(\operatorname{Syst}(k+1, \tau))$ are respectively the projection on $\mathfrak{g}_{-j}^{\mathbb{C}}$, $0 \leq j \leq k-1$, of the Maurer-Cartan equation (MC) (owing to the holomorphicity conditions given by proposition 2.3). Hence the elliptic system (Syst $(k+1, \tau)$ ) can be written:

$$
\left\{\begin{array}{lc}
\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1 & \left(H_{j}\right)  \tag{37}\\
\bar{\partial} \alpha_{k}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{k}^{\prime}\right]=0 & \left(S_{k+1}\right) \\
\bar{\partial} \alpha_{-k}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{-k}^{\prime}\right]+\left[\alpha_{1}^{\prime \prime} \wedge \alpha_{k}^{\prime}\right]=0 & \left(S_{k}\right) \\
d \alpha+\frac{1}{2}[\alpha \wedge \alpha]=0 & (\mathrm{MC})
\end{array}\right.
$$

Then we see that the projection on $\mathfrak{g}_{-k}^{\mathbb{C}}$ of (MC):

$$
\begin{equation*}
d \alpha_{-k}+\left[\alpha_{0} \wedge \alpha_{-k}\right]+\left[\alpha_{1} \wedge \alpha_{k}\right]=0 \tag{38}
\end{equation*}
$$

is nothing but $\left(S_{k}\right)+\left(\overline{S_{k+1}}\right)$.
Now we have to distinguish two cases.

- The strictly minimal determined case Let us suppose that $k \geq 2$, then we have

$$
\left(S_{k}\right) \vee\left(S_{k+1}\right) \equiv\left(S_{k}\right)+\left(S_{k+1}\right) \Longleftrightarrow\left[\bar{\partial}\left(\operatorname{Ad} U\left(\alpha_{\mathfrak{m}_{k}}^{\prime}\right)\right)\right]_{\mathfrak{m}_{k}}=0
$$

where $U$ integrates $\alpha$. For the last equivalence, just do the computation:

$$
\begin{aligned}
{\left[\bar{\partial}\left(\operatorname{Ad} U\left(\alpha_{\mathfrak{m}_{k}}^{\prime}\right)\right)\right]_{\mathfrak{m}_{k}} } & =\bar{\partial} \alpha_{\mathfrak{m}_{k}}^{\prime}+\left[\alpha^{\prime \prime} \wedge \alpha_{\mathfrak{m}_{k}}^{\prime}\right]_{\mathfrak{m}_{k}} \\
& =\bar{\partial} \alpha_{\mathfrak{m}_{k}}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{\mathfrak{m}_{k}}^{\prime}\right]+\left[\alpha_{1}^{\prime \prime} \wedge \alpha_{k}^{\prime}\right]+\left[\alpha_{-1}^{\prime \prime} \wedge \alpha_{-k}^{\prime}\right] \\
& =\left(S_{k}\right)+\left(S_{k+1}\right)
\end{aligned}
$$

[^5]since $\alpha_{-1}^{\prime \prime}=0$. Hence we obtain that
\[

$$
\begin{gathered}
(\text { Syst }) \Longleftrightarrow \begin{cases}\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1 & \left(H_{j}\right) \\
\bar{\partial} \alpha_{k}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{k}^{\prime}\right]=0 & \left(S_{k+1}\right) \\
d \alpha+\frac{1}{2}[\alpha \wedge \alpha]=0 & (\mathrm{MC})\end{cases} \\
\left\{\begin{array} { l l } 
{ \alpha _ { - j } ^ { \prime \prime } = 0 , 1 \leq j \leq k - 1 } \\
{ \overline { \partial } \alpha _ { - k } ^ { \prime } + [ \alpha _ { 0 } ^ { \prime \prime } \wedge \alpha _ { - k } ^ { \prime } ] + [ \alpha _ { 1 } ^ { \prime \prime } \wedge \alpha _ { k } ^ { \prime } ] = 0 } & { ( S _ { k } ) } \\
{ d \alpha + \frac { 1 } { 2 } [ \alpha \wedge \alpha ] = 0 } & { ( \mathrm { MC } ) }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1 & \left(H_{j}\right) \\
{\left[\bar{\partial}\left(\operatorname{Ad} U\left(\alpha_{\mathfrak{m}_{k}}^{\prime}\right)\right)\right]_{\mathfrak{m}_{k}}=0} & \left(S_{\mathfrak{m}_{k}}\right) \\
d \alpha+\frac{1}{2}[\alpha \wedge \alpha]=0 & (\mathrm{MC})
\end{array}\right.\right.
\end{gathered}
$$
\]

In terms of the geometric map $f: L \rightarrow G / G_{0}$, we have according to remark 1.3 (see also section 5 ) the following geometric interpretation:

$$
\left.\left(S_{\mathfrak{m}_{k}}\right) \Longleftrightarrow \bar{\partial}^{\left(\nabla^{1}\right)^{v}} \partial^{v} f\right)=0
$$

where the splitting $T N=\mathcal{H} \oplus \mathcal{V}$ is defined by $\mathcal{H}=\left[\mathfrak{m}^{\prime}\right], \mathcal{V}=\left[\mathfrak{m}_{k}\right]$ and $\mathfrak{m}^{\prime}=\oplus_{j=1}^{k-1} \mathfrak{m}_{j}$. Moreover since $2 \operatorname{Re}\left(S_{\mathfrak{m}_{k}}\right)$ is

$$
d \alpha_{\mathfrak{m}_{k}}+\left[\alpha_{0} \wedge \alpha_{\mathfrak{m}_{k}}\right]+\left[\alpha_{\mathfrak{m}_{1}} \wedge \alpha_{\mathfrak{m}_{k}}\right]_{\mathfrak{m}_{k}}=0
$$

which is nothing but $[\mathrm{MC}]_{\mathfrak{m}_{k}}$ (in the presence of $(H)$ ), the projection of (MC) on $\mathfrak{m}_{k}$, then the only new information (in addition to (MC) and $(H)$ ) given by the determined elliptic integrable system in the odd case is the imaginary part of $\left(S_{\mathfrak{m}_{k}}\right)$ which means that $f$ is vertically harmonic (with respect to $\nabla^{1}$ ):

$$
2 \operatorname{Im}\left(S_{\mathfrak{m}_{k}}\right): d * \alpha_{\mathfrak{m}_{k}}+\left[\alpha_{0} \wedge * \alpha_{\mathfrak{m}_{k}}\right]+\left[\alpha_{\mathfrak{m}_{1}} \wedge * \alpha_{\mathfrak{m}_{k}}\right]_{\mathfrak{m}_{k}}=0 \Longleftrightarrow \tau_{1}^{v}(f):=\operatorname{Tr}\left(\left(\nabla^{1}\right)^{v} d^{v} f\right)=0
$$

- The model case. Let us suppose that $k=1$. Let us remark that, in this situation, the determined case reduces to the (model) system ( $\operatorname{Syst}(2, \tau)$ ) which is then simultaneously minimal and maximal. Furthermore, coming back to (37), we have

$$
\left(S_{1}\right) \Longleftrightarrow\left[\bar{\partial}\left(\operatorname{Ad} U\left(\alpha_{\mathfrak{m}}^{\prime}\right)\right)\right]_{\mathfrak{m}}^{1,0}=0
$$

where $U$ integrates $\alpha$ and []$^{(1,0)}$ denotes the ( 1,0 )-component with respect to the canonical complex structure $\underline{J}$ in $N$ defined by the decomposition $(26)$, i.e. in our case $T N^{\mathbb{C}}=\left[\mathfrak{g}_{-1}^{\mathbb{C}}\right] \oplus\left[\mathfrak{g}_{1}^{\mathbb{C}}\right]$. Indeed we have

$$
\begin{aligned}
{\left[\bar{\partial}\left(\operatorname{Ad} U\left(\alpha_{\mathfrak{m}}^{\prime}\right)\right)\right]_{\mathfrak{m}} } & =\bar{\partial} \alpha_{\mathfrak{m}}^{\prime}+\left[\alpha^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]_{\mathfrak{m}} \\
& =\bar{\partial} \alpha_{\mathfrak{m}}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]+\left[\alpha_{\mathfrak{m}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]_{\mathfrak{m}} \\
& =\bar{\partial} \alpha_{-1}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{-1}^{\prime}\right]+\left[\alpha_{1}^{\prime \prime} \wedge \alpha_{1}^{\prime}\right] \\
& +\bar{\partial} \alpha_{1}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{1}^{\prime}\right]+\left[\alpha_{-1}^{\prime \prime} \wedge \alpha_{-1}^{\prime}\right]
\end{aligned}
$$

the up term being the $(1,0)$-component and the down one, the $(0,1)$-component. Then recalling that $\left(S_{1}\right)+\overline{\left(S_{2}\right)}$ is the projection on $\mathfrak{g}_{-1}^{\mathbb{C}}$ of (MC), we obtain that

$$
(\text { Syst }) \Leftrightarrow\left\{\begin{array} { l } 
{ ( S _ { 2 } ) } \\
{ ( \mathrm { MC } ) }
\end{array} \Leftrightarrow \left\{\begin{array} { l } 
{ ( S _ { 1 } ) } \\
{ ( \mathrm { MC } ) }
\end{array} \Leftrightarrow \left\{\begin{array}{ll}
{\left[\bar{\partial}\left(\operatorname{Ad} U\left(\alpha_{\mathfrak{m}}^{\prime}\right)\right)\right]_{\mathfrak{m}}^{1,0}=0} & \left(S_{\mathfrak{m}}^{(1,0)}\right) \\
d \alpha+\frac{1}{2}[\alpha \wedge \alpha]=0 & (\mathrm{MC})
\end{array}\right.\right.\right.
$$

and the only new information (in addition to (MC)) given by the determined elliptic integrable system in this case is $\left(S_{\mathfrak{m}}^{(1,0)}\right)$.

In terms of the geometric map, $f: L \rightarrow G / G_{0}$, we have according to remark 1.3 the following geometric interpretation

$$
\left(S_{1}\right) \equiv\left(S_{\mathfrak{m}}^{(1,0)}\right) \Longleftrightarrow\left[\bar{\partial}^{\nabla^{1}} \partial f\right]^{1,0}=0
$$

we will say that $f$ is holomorphically harmonic w.r.t. $\nabla^{1}$ and $\underline{\mathrm{J}}$ (see section 5 , definition 5.2, for a precise definition).
In the same way, we also have the following (equivalent) geometric interpretation

$$
\left(S_{2}\right) \Longleftrightarrow\left[\bar{\partial}^{\nabla^{0}} \partial f\right]^{0,1}=0
$$

we will say that $f$ is holomorphically harmonid w.r.t. $\nabla^{0}$ and $-\underline{J}$.
Moreover, let us write the equations of the system as a real equation and then write the corresponding geometric equation (which will then take place in $T N$ and not in $T N^{\mathbb{C}}$ ). We have that the real equation $\left(S_{1}\right)+\overline{\left(S_{2}\right)}$ is the projection on $\mathfrak{g}_{-1}^{\mathbb{C}}$ of (MC). Now, let us write the equation

$$
\left(E_{-1}\right) \equiv \frac{\left(S_{1}\right)+\overline{\left(S_{2}\right)}}{i} \equiv\left(d * \alpha_{-1}+\left[\alpha_{0} \wedge * \alpha_{-1}\right]+\frac{1}{2 i}\left[\alpha_{1} \wedge \alpha_{1}\right]=0\right)
$$

then taking the sum with its complex conjugate, we obtain

$$
\begin{aligned}
\left(E_{-1}\right)+\overline{\left(E_{-1}\right)} & \equiv\left(d * \alpha_{\mathfrak{m}}+\left[\alpha_{0} \wedge * \alpha_{\mathfrak{m}}\right]+\frac{1}{2 i}\left(\left[\alpha_{1} \wedge \alpha_{1}\right]-\left[\alpha_{-1} \wedge \alpha_{-1}\right]\right)=0\right) \\
& \equiv\left(d * \alpha_{\mathfrak{m}}+\left[\alpha_{0} \wedge * \alpha_{\mathfrak{m}}\right]-\frac{1}{2} \underline{J}_{0}\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]=0\right)
\end{aligned}
$$

since $\frac{1}{2 i}\left(\left[\alpha_{1} \wedge \alpha_{1}\right]-\left[\alpha_{-1} \wedge \alpha_{-1}\right]\right)=\frac{1}{2}\left[\underline{\mathrm{~J}}_{0} \alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]=-\frac{1}{2} \underline{\mathrm{~J}}_{0}\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]$. Then written in terms of the geometric maps $f: L \rightarrow N$, the last equation means

$$
\tau_{0}^{v}(f)+\underline{\mathrm{J}} T^{0}(f)=0
$$

where $\tau_{0}^{v}(f)=\operatorname{Tr}\left(\left(\nabla^{0}\right)^{v} d^{v} f\right)$ is the tension field of $f$ w.r.t. $\nabla^{0}$ (and some Hermitian metric $g$ on $L$ ), and $T^{0}(f)=*\left(f^{*} T^{0}\right)$. As we will see in section 5.1.2, this equation is in fact a general characterization for holomorphically harmonic maps.

The primitive case. The $m$-primitive case is obtained by putting, in the minimal determined case (37), $\alpha_{k}^{\prime}=0$, if $m=k$, and $\alpha_{j}=0, m+1 \leq|j| \leq k$, if $m \leq k-1$. As in the even case we obtain:

Proposition 2.6 Let $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an order $2 k+1$ automorphism, and an interger $m \leq k$ then the $m$-elliptic integrable system $(\operatorname{Syst}(m, \tau))$ means that the geometric map $f: L \rightarrow G / G_{0}$ satisfies:

$$
\partial f \in \oplus_{j=1}^{m}\left[\mathfrak{g}_{-j}^{\mathbb{C}}\right] \subset T\left(G / G_{0}\right)^{\mathbb{C}}
$$

[^6]Geometric interpretation of the equations $\left(H_{j}\right)$. Recall that $\underline{J}$ denotes the canonical complex structure on $N=G / G_{0}$ (see (26)) and set $F^{[m]}:=\operatorname{pr}_{m} \circ \underline{J}=\underline{\mathbf{J}} \circ \mathrm{pr}_{m}$ for $m \leq k$, where $\mathrm{pr}_{m}: T N \rightarrow \oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right]$ is the projection on $\oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right]$ along $\oplus_{j \geq m+1}^{k}\left[\mathfrak{m}_{j}\right]$ (remark that $\mathrm{pr}_{k}=\mathrm{Id}$ ). Then $F^{[m]}$ is a $f$-structure on $N$ (remark that $F^{[k]}=\underline{\mathrm{J}}$ is a complex structure). Then we have:

Theorem 2.3 $A$ map $f: L \rightarrow G / G_{0}$ is m-primitive if and only if it is $F^{[m]}$-holomorphic. In particular, $f$ is $k$-primitive if and only if it is holomorphic (with respect to the canonical complex structure on $G / G_{0}$ ), and thus any m-primitive map is in particular a holomorphic curve in $G / G_{0}$. More precisely, m-primitive maps are exactly the integral holomorphic curves of the complex Pfaff system $\oplus_{j=1}^{m}\left[\mathfrak{m}_{j}\right] \subset T N$.

Remark 2.6 The equivalences (36) hold also in the odd case. However for $m=k$, the first equivalence of (36) is trivial: $\alpha \in \mathfrak{g} \Longleftrightarrow f \in C^{\infty}\left(L, G / G_{0}\right)$. There is no restriction (in the form " $\alpha$ takes values in a subspace of $\mathfrak{g} ")$ in the highest primitive case.

Theorem 2.4 Let $\alpha$ be a $\mathfrak{g}$-valued 1 -form on $L$ and $f$ its geometric map. The following statements are equivalent:
(i) $\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1$
(ii) $f$ is horizontally holomorphic: $\left(d f \circ j_{L}\right)^{\mathcal{H}}=F^{[k-1]} \circ d f$, where $\mathcal{H}=\left[\mathfrak{m}^{\prime}\right]$ is the horizontal space, and $F^{[k-1]}{ }_{\mathcal{H}}=\underline{\mathrm{J}}_{\mid \mathcal{H}}$ defines a complex structure on $\mathcal{H}$.
We can conclude that the odd minimal determined system ( $\operatorname{Syst}(k+1, \tau)$ ) means that the geometric map $f$ is horizontally holomorphic and vertically harmonic if $k \geq 2$, and if $k=1$, it means that $f$ is holomorphically harmonic.

### 2.4 The maximal determined case

Let us see how can be rewritten the elliptic system in this case in terms more geometric. Let us recall that the determined systems can be considered as a system on the 1 -form $\alpha$.

Theorem 2.5 Let $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an automorphism of odd order $k^{\prime}=2 k+1$. Let us set $J_{0}=\tau_{\mathfrak{m}}^{-1}$ and $\underline{\mathrm{J}}_{0}$ the corresponding complex structure on $\mathfrak{m}$ (i.e. the value of $\underline{\mathrm{J}}$ at the reference point $y_{0}=$ 1. $G_{0} \in N$, see equation (2ひ)). Then the associated maximal determined system, $\operatorname{Syst}\left(k^{\prime}-1, \tau\right)$, is equivalent to

$$
\left\{\begin{array}{l}
d * \alpha_{\mathfrak{m}}+\left[\alpha_{0} \wedge * \alpha_{\mathfrak{m}}\right]+\frac{1}{2}\left[\underline{\mathrm{~J}}_{0} \alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}+\sum_{i \leq i<j \leq k}\left[\underline{\mathrm{~J}}_{0} \alpha_{\mathfrak{m}_{i}} \wedge \alpha_{\mathfrak{m}_{j}}\right]_{\mathfrak{m}_{j-i}}=0 \quad\left(E_{\mathfrak{m}}\right) \\
d \alpha+\frac{1}{2}[\alpha \wedge \alpha]=0 \quad(\mathrm{MC})
\end{array}\right.
$$

Theorem 2.6 Let $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an automorphism of even order $k^{\prime}=2 k$. Let us set $J_{0}=\tau_{\mathfrak{m}}^{-1}$ and $\underline{\mathrm{J}}_{0}$ the corresponding complex structure on $\mathfrak{m}$ (i.e. the value of $F_{\mid \mathcal{H}}$ at the reference point $y_{0}=$ $1 . G_{0} \in N$, see equation (35)). Then the associated maximal determined system, $\operatorname{Syst}\left(k^{\prime}-1, \tau\right)$, is equivalent to

$$
\left\{\begin{array}{l}
d * \alpha_{k}+\left[\alpha_{0} \wedge * \alpha_{k}\right]+\frac{1}{2}\left[\underline{J}_{0} \alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{g}_{k}}=0 \\
d * \alpha_{\mathfrak{m}}+\left[\alpha_{0} \wedge * \alpha_{\mathfrak{m}}\right]+\frac{1}{2}\left[\underline{\mathrm{~J}}_{0} \alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}+\sum_{i \leq i<j \leq k}\left[\mathrm{~J}_{0} \alpha_{\mathfrak{m}_{i}} \wedge \alpha_{\mathfrak{m}_{j}}\right]_{\mathfrak{m}_{j-i}}+\left[\alpha_{k} \wedge \underline{\mathrm{~J}}_{0} \alpha_{\mathfrak{m}}\right]=0 \quad\left(E_{\mathfrak{m}}\right) \\
d \alpha+\frac{1}{2}[\alpha \wedge \alpha]=0 \quad \text { (MC) }
\end{array}\right.
$$

### 2.5 The underdetermined case

Here we study the underdetermined case.

Theorem 2.7 Let us consider an underdetermined system $(\operatorname{Syst}(m, \mathfrak{g}, \tau)), m \geq k^{\prime}$. Let us write

$$
m=q k^{\prime}+r, \quad 0 \leq r \leq k^{\prime}-1
$$

the Euclidean division of $m$ by $k^{\prime}$. Then let us consider the automorphism in $\mathfrak{g}^{q+1}$ defined by

$$
\tilde{\tau}\left(a_{0}, a_{1}, \ldots, a_{q}\right) \in \mathfrak{g}^{q+1} \longmapsto\left(a_{1}, \ldots, a_{q}, \tau\left(a_{0}\right)\right) \in \mathfrak{g}^{q+1} .
$$

Then $\tilde{\tau}$ is of order $(q+1) k^{\prime}$. Moreover the $m$-th system associated to $(\mathfrak{g}, \tau)$ is in fact equivalent to the $m$-th system associated to $\left(\mathfrak{g}^{q+1}, \tilde{\tau}\right)$. More precisely, denoting by $\tilde{\omega} a(q+1) k^{\prime}$-th primitive root of unity, then the map

$$
\alpha_{\lambda} \longmapsto\left(\alpha_{\lambda}, \alpha_{\tilde{\omega} \lambda}, \ldots, \alpha_{\tilde{\omega}^{p} \lambda}\right)
$$

is a bijection from the set of solutions of the underdetermined ( $m, \mathfrak{g}, \tau$ )-system into the set of solutions of the determined ( $m, \mathfrak{g}^{q+1}, \tilde{\tau}$ )-system.

### 2.6 Examples

### 2.6.1 The trivial case: the 0 -th elliptic system associated to a Lie group.

We consider the determined system $(\operatorname{Syst}(m, \tau))$ with $\tau=\mathrm{Id}$ and (thus) $k^{\prime}=1$ so that $m_{k}^{\prime}=$ $m_{1}=0=k^{\prime}-1$. Then the determined system (Syst( $0, \mathrm{Id}$ )) is nothing but the Maurer-Cartan equation for $\mathfrak{g}$-valued 1 -form $\alpha$ (i.e. in other words the "equation" for the trivial geometric map $f: L \rightarrow G / G)$.

### 2.6.2 Even determined case

The first elliptic system associated to a symmetric space [12]. We consider the even determined system $(\operatorname{Syst}(k, \tau))$, with $k=1$ and $\tau$ an involution. Then the horizontal subbundle is trivial $\mathcal{H}=[\mathfrak{m}]=\{0\}$ and $T N=[\mathcal{V}]=\left[\mathfrak{g}_{1}\right]$ so that the horizontal holomorphicity is trivial and vertical harmonicity means harmonicity. Hence the first elliptic system associated to a symmetric space, $(\operatorname{Syst}(1, \tau))$, is the equation for harmonic maps $f: L \rightarrow G / G_{0}$.

The second elliptic system associated to a 4-symmetric space ([30, 7]). Here $\tau$ is an order four automorphism and (thus) $k=2$. Then we consider the even determined system (Syst $(2, \tau)$ ). ...
Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric spaces, ([23, 21, 22]). $\rho$ harmonic surfaces in $\mathbb{O}$, 28]. Surfaces with holomorphic mean curvature vector in 4-dimensional spaces form, surfaces with anti-holomorphic mean curvature vector in $\mathbb{C} P^{2}$, [7.

### 2.6.3 Primitive case

$\tau$ order $k^{\prime}, m=1$. Affine Toda fields, [8]. Non-superminimal (weakly) conformal harmonic maps into $S^{n}$; (weakly) conformal non-isotropic harmonic maps into $\mathbb{C} P^{n}$; [6].

### 2.6.4 Odd determined case

$\tau$ of order $3, m=2$. Holomorphically harmonic maps (see 5.1.2).

### 2.6.5 Underdetermined case

First elliptic integrable system associated to a Lie group ([39, 38]). (Syst $(m, \tau)$ ) with $m=1$ and $\tau=\mathrm{Id}, k^{\prime}=1$ and $m_{1}=0<m$, thus underdetermined system.

Second elliptic integrable system associated to the symmetric space $S^{n}$. Constrained Willmore surfaces in $S^{n} \ldots$ [9].

## 3 Finite order isometries and Twistor spaces

### 3.1 Isometries of order $2 k$ with no eigenvalues $= \pm 1$

Let $E$ be an Euclidean space and let us define (for $p \in \mathbb{N}^{*}$ )

$$
\begin{gathered}
\mathcal{U}_{p}(E)=\left\{A \in S O(E), A^{p}=\operatorname{Id}, A^{k} \neq \operatorname{Id} \text { if } 1 \leq k<p\right\} \\
\mathcal{U}_{p}^{*}(E)=\left\{A \in \mathcal{U}_{p}(E) \mid 1 \notin \operatorname{Spect}(A)\right\}, \quad \mathcal{U}_{p}^{* *}(E)=\left\{A \in \mathcal{U}_{p}(E) \mid \pm 1 \notin \operatorname{Spect}(A)\right\} .
\end{gathered}
$$

Then for $k \in \mathbb{N}^{*}$ we set

$$
\mathcal{Z}_{2 k}(E)=\mathcal{U}_{2 k}^{* *}(E) \quad \text { and } \quad \mathcal{Z}_{2 k+1}(E)=\mathcal{U}_{2 k+1}^{*}(E)=\mathcal{U}_{2 k+1}^{* *}(E)
$$

We will be interested here in the study of $\mathcal{Z}_{2 k}(E)$. Then for each $A \in \mathcal{Z}_{2 k}(E)$, we have the following eigenspace decomposition:

$$
E^{\mathbb{C}}=\oplus_{j=1}^{k-1}\left(E_{A}\left(\omega_{2 k}^{j}\right) \oplus E_{A}\left(\omega_{2 k}^{-j}\right)\right)
$$

with $E_{A}(\lambda)=\operatorname{ker}(A-\lambda \mathrm{Id})$ and $\omega_{2 k}=e^{i \pi / k}$.
Let us set $\mathfrak{m}_{j}^{\mathbb{C}}=E_{A}\left(\omega_{2 k}^{j}\right) \oplus E_{A}\left(\omega_{2 k}^{-j}\right)$ for $j \geq 0$. Then we have $\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{j}=\frac{1}{2}\left(\operatorname{dim}_{\mathbb{R}} E_{A}\left(\omega_{2 k}^{j}\right)+\operatorname{dim}_{\mathbb{R}} E_{A}\left(\omega_{2 k}^{-j}\right)\right)=$ $\operatorname{dim}_{\mathbb{R}} E_{A}\left(\omega_{2 k}^{j}\right)=2 \operatorname{dim}_{\mathbb{C}} E_{A}\left(\omega_{2 k}^{j}\right)$. Hence $\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{j}$ is even and hence we will suppose now that $E=\mathbb{R}^{2 n}$ (in all section 3.1).

Example 3.1 We have $\mathcal{Z}_{2}(E)=\emptyset$, and $\mathcal{Z}_{4}(E)=\Sigma(E)$ the set of almost complex structure in E.

Situation in the plan Here $E=\mathbb{R}^{2}$, and any element of $\mathcal{Z}_{2 k}(E)$ is written $A=R\left(\frac{l \pi}{k}\right)$, with $(l, 2 k)=1(R(\theta)$ being the rotation of angle $\theta \in \mathbb{R} / 2 \pi \mathbb{Z})$ i.e. $A$ is a primitive $(2 k)$-th root of the unity. Hence $\operatorname{card}\left(\mathcal{Z}_{2 k}\left(\mathbb{R}^{2}\right)\right)=\phi(2 k), \phi$ being the Euler characteristic.

### 3.1.1 The set of connected components in the general case

Theorem $3.1 \pi_{0}\left(\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)\right.$ ), the set of connected components of $\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$ is (in one to one correspondance with):

$$
X_{2 k}:=\left\{\left(\varepsilon,\left(p_{1}, \ldots, p_{k-1}\right)\right) \in \mathbb{Z}_{2} \times \mathbb{N}^{k-1} \mid \sum_{j=1}^{k-1} p_{j}=n \text { and } \exists j,(j, 2 k)=1 \mid p_{j} \neq 0\right\}
$$

Proof. Let $A \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$, then $A_{\mid \mathfrak{m}_{j}^{\mathbb{C}}}=\omega_{2 k}^{j} \operatorname{Id}_{E_{A}\left(\omega_{2 k}^{j}\right)} \oplus \omega_{2 k}^{-j} \operatorname{Id}_{E_{A}\left(\omega_{2 k}^{-j}\right)}$. We choose an orientation on each $\mathfrak{m}_{j}$ (such that the induced orientation on $\oplus_{1}^{k-1} \mathfrak{m}_{j}$ is the one of $\mathbb{R}^{2 n}$ ). Then there exist oriented plans $P_{j}^{l}$ such that $\mathfrak{m}_{j}=\oplus_{l=1}^{p_{j}} P_{j}^{l}$ (sum of non oriented spaces), where $p_{j}=\frac{\operatorname{dim} \mathfrak{m}_{j}}{2}$, and

$$
A_{\mid \mathfrak{m}_{j}}=\oplus_{l=1}^{p_{j}} R_{P_{j}^{l}}\left(\theta_{j}\right)
$$

where $R_{P_{j}^{l}}\left(\theta_{j}\right)$ is the rotation on $P_{j}^{l}$ of angle $\theta_{j}=\frac{j \pi}{k}$. Let $\varepsilon_{j}$ be the orientation ${ }^{10}$ of $\oplus_{l=1}^{p_{j}} P_{j}^{l}$ (sum of oriented spaces) in $\mathfrak{m}_{j}$. Now let us consider the map

$$
f: A \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right) \mapsto\left(\Pi_{j=1}^{k-1} \varepsilon_{j},\left(p_{j}\right)_{1 \leq j \leq k-1}\right) \in X_{2 k}
$$

[^7]Then it is a continuous ${ }^{11}$ surjection and $f^{-1}(\{(\varepsilon, \underline{p})\})$ is an $S O(2 n)$-orbit in the action of $S O(2 n)$ on $\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$. This completes the proof.

## Remark 3.1

## Remark 3.2

Each connected component is a $S O(2 n)$-orbit and thus is compact, and consequently closed. Hence its complementary which is an finite union of closed subset is closed: each connected component is an open and closed submanifold of $\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$ (which is itself a compact submanifold in $S O(2 n)$ ).

Definition 3.1 We will denote by $\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)$ (and sometimes only by $\mathcal{Z}_{2 k}^{\alpha}$ ) the connected component $f^{-1}(\{\alpha\})$, for $\alpha=(\varepsilon, \underline{p}) \in X_{2 k}$. We define

$$
\begin{aligned}
& \mathcal{Z}_{2 k}^{0}\left(\mathbb{R}^{2 n}\right)=\left\{A \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right) \mid A^{k}=-\mathrm{Id}\right\}=\bigsqcup_{\left\{\alpha \mid \forall j, p_{2 j}=0\right\}} \mathcal{Z}_{2 k}^{\alpha} \\
& \mathcal{Z}_{2 k}^{*}\left(\mathbb{R}^{2 n}\right)=\left\{A \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right) \mid A^{k} \neq-\mathrm{Id}\right\}=\bigsqcup_{\left\{\alpha \mid \exists j, p_{2 j} \neq 0\right\}} \mathcal{Z}_{2 k}^{\alpha}
\end{aligned}
$$

$\mathcal{Z}_{2 k}^{0}\left(\mathbb{R}^{2 n}\right)$ is the union of order $k$ components in $\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$, and $\mathcal{Z}_{2 k}^{*}\left(\mathbb{R}^{2 n}\right)$ is the union of order $2 k$ components (see below for the meaning of this appellation).
In the following we will denote by $\mathcal{Z}_{2 k}^{a}\left(\mathbb{R}^{2 n}\right)$, for $a \in\{0, *\}$ any of the two spaces $\mathcal{Z}_{2 k}^{0}\left(\mathbb{R}^{2 n}\right)$ and $\mathcal{Z}_{2 k}^{*}\left(\mathbb{R}^{2 n}\right)$, and $r$ the order of these two spaces i.e. $r=\left\{\begin{array}{ll}2 k & \text { in } \mathcal{Z}_{2 k}^{*}\left(\mathbb{R}^{2 n}\right) \\ k & \text { in } \mathcal{Z}_{2 k}^{0}\left(\mathbb{R}^{2 n}\right)\end{array} \cdot r\right.$ is in fact the order of $\operatorname{Ad} J$, for $J \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$ (see below). Let us compute the tangent space of $\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$ : $\forall J \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$,

$$
\begin{equation*}
T_{J} \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)=\left\{A \in J . \mathfrak{s o}(2 n) \mid \sum_{p+l=2 k-1} J^{p} A J^{l}=0\right\} \tag{39}
\end{equation*}
$$

and for $J \in \mathcal{Z}_{2 k}^{0}\left(\mathbb{R}^{2 n}\right)$, we have in addition

$$
\begin{equation*}
T_{J} \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)=T_{J} \mathcal{Z}_{2 k}^{0}\left(\mathbb{R}^{2 n}\right)=\left\{A \in J . \mathfrak{s o}(2 n) \mid \sum_{p+l=k-1} J^{p} A J^{l}=0\right\} \tag{40}
\end{equation*}
$$

It could seem strange that the two expressions (39) and (40) are equal for $J \in \mathcal{Z}_{2 k}^{0}\left(\mathbb{R}^{2 n}\right)$, but as we will see below, it comes from the fact that the "even" eigenspaces of $\operatorname{Ad} J$ vanish, for $J \in \mathcal{Z}_{2 k}^{0}\left(\mathbb{R}^{2 n}\right)$, which leads to this last equality (which is in general an inclusion " $\supset$ ")

Example 3.2 If $k=2$, then $X_{2 k}=\{ \pm 1\}=\mathbb{Z}_{2}$ and $\mathcal{Z}_{4}\left(\mathbb{R}^{2 n}\right)=\mathcal{Z}_{4}^{0}\left(\mathbb{R}^{2 n}\right)=\Sigma\left(\mathbb{R}^{2 n}\right)=\{J \in$ $\left.S O\left(\mathbb{R}^{2 n}\right) \mid J^{2}=-\mathrm{Id}\right\}=\Sigma^{+}\left(\mathbb{R}^{2 n}\right) \bigsqcup \Sigma^{-}\left(\mathbb{R}^{2 n}\right)$ (resp. the positive and negative components of $\Sigma\left(\mathbb{R}^{2 n}\right)$ ), whereas $\mathcal{Z}_{4}^{*}\left(\mathbb{R}^{2 n}\right)=\emptyset$.

[^8]
### 3.1.2 Study of $\operatorname{Ad} J$, for $J \in \mathcal{Z}_{2 k}^{a}\left(\mathbb{R}^{2 n}\right)$

Let $J \in \mathcal{Z}_{2 k}^{a}\left(\mathbb{R}^{2 n}\right)$. $\operatorname{Ad} J$ is then an order $r$ automorphism of $\operatorname{End}\left(\mathbb{R}^{2 n}\right)\left(\right.$ since $(\operatorname{Ad} J)^{p}=\operatorname{Id} \Leftrightarrow$ $J^{p}= \pm \mathrm{Id}$ ) thus we have the following eigenspaces decomposition:

$$
\operatorname{End}\left(\mathbb{R}^{2 n}\right)^{\mathbb{C}}=\bigoplus_{j \in \mathbb{Z} / r \mathbb{Z}} \operatorname{ker}\left(\operatorname{Ad} J-\omega_{r}^{j} \mathrm{Id}\right)
$$

with $\omega_{r}=e^{2 i \pi / r}$. Let us set

$$
\mathcal{A}_{j}(J)=\operatorname{ker}\left(\operatorname{Ad} J-\omega_{r}^{j} \mathrm{Id}\right) .
$$

Then $\mathcal{A}_{0}(J)=\operatorname{Com}(J):=\left\{A \in \operatorname{End}\left(\mathbb{R}^{2 n}\right) \mid[A, J]=0\right\}$ and for $j \neq 0$ we have: $\forall A \in \mathcal{A}_{j}(J)(j \neq$ 0 ),

$$
\sum_{l+p=r-1} J^{l} A J^{p}=\sum_{l+p=r-1}\left(\omega_{r}^{j}\right)^{l} A J^{p+l}=\left[\sum_{0}^{l-1}\left(\omega_{r}^{j}\right)^{l}\right] J^{r-1}=0
$$

Hence

$$
\bigoplus_{j \in \mathbb{Z} / r \mathbb{Z} \backslash\{0\}} \mathcal{A}_{j}(J) \subset \operatorname{ker}\left(\sum_{l+p=r-1} L\left(J^{l}\right) \circ R\left(J^{p}\right)\right)
$$

with obvious notation. This inclusion is in fact an equality. Indeed, let $A \in \operatorname{End}\left(\mathbb{R}^{2 n}\right)$, then $A=\sum_{j=0}^{r-1} A_{j}$, with $A_{j} \in \mathcal{A}_{j}(J)$, thus $\sum_{j=0}^{r-1} J^{l} A J^{r-1-l}=r A_{0} J^{r-1}+0=r A_{0} J^{r-1}$ which vanishes if and only if $A_{0}=0$. This proves the equality:

$$
\bigoplus_{j \in \mathbb{Z} / r \mathbb{Z} \backslash\{0\}} \mathcal{A}_{j}(J)=\operatorname{ker}\left(\sum_{l+p=r-1} L\left(J^{l}\right) \circ R\left(J^{p}\right)\right) .
$$

Now, let us restrict ourself to $J . \mathfrak{s o}(2 n)$, resp. to $\mathfrak{s o}(2 n)$, (which does not change the order of $\operatorname{Ad} J_{\mid J . \mathfrak{s o}(2 n)}$, resp. $\left.\operatorname{Ad} J_{\mid \mathfrak{s o}(2 n)}\right)$ and set ${ }^{12}$

$$
\mathcal{B}_{j}(J)=\mathcal{A}_{j}(J) \cap(J . \mathfrak{s o}(2 n))^{\mathbb{C}}, \quad \text { resp. } \quad \mathfrak{s o}_{j}(J)=\mathcal{A}_{j}(J) \cap \mathfrak{s o}(2 n)^{\mathbb{C}}
$$

Then we have, according to (39)-(40),

$$
\begin{equation*}
T_{J} \mathcal{Z}_{2 k}^{a}\left(\mathbb{R}^{2 n}\right)=\left(\oplus_{j=1}^{r-1} \mathcal{B}_{j}(J)\right) \cap \operatorname{End}\left(\mathbb{R}^{2 n}\right) \tag{41}
\end{equation*}
$$

The inner automorphism ${ }^{13} T=\operatorname{Int} J_{\mid S O(2 n)}$ gives rise to the $r$-symmetric space $S O(2 n) / \mathbb{U}_{0}(J)$, where $\mathbb{U}_{0}(J)=S O(2 n)^{T}=\operatorname{Com}(J) \cap S O(2 n)$, which is nothing but the connected component $\mathcal{Z}_{2 k}^{\alpha}$ of $J$ (which is also the orbit $\left.S O(2 n) \cdot J=\operatorname{Int}(S O(2 n))(J)\right)$ :

$$
\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)=S O(2 n) / \mathbb{U}_{0}(J)
$$

Consider now

$$
\mathbb{U}_{j-1}(J):=\operatorname{Com}\left(J^{j}\right) \cap S O(2 n)=S O(2 n)^{T^{j}}
$$

Then $T$ is an order $j$ automorphism on $\mathbb{U}_{j-1}(J)$ and gives rises to the $j$-symmetric space $\mathbb{U}_{j-1}(J) / \mathbb{U}_{0}(J)$ which is in fact equal to

$$
\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right):=\left\{J^{\prime} \in \mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right) \mid\left(J^{\prime}\right)^{j}=J^{j}\right\}
$$

[^9]Indeed let $J^{\prime} \in \mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)$, then there exists $g \in S O(2 n)$ such that $J^{\prime}=g J g^{-1}$, then $\left(J^{\prime}\right)^{j}=J^{j}$ if and only if $g J^{j} g^{-1}=J^{j}$ i.e. $g \in \mathbb{U}_{j-1}(J)$, which proves that $\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)=\operatorname{Int}\left(\mathbb{U}_{j-1}(J)\right)(J)$ i.e.

$$
\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)=\mathbb{U}_{j-1}(J) / \mathbb{U}_{0}(J)
$$

Remark 3.3 Obviously, in this equation $J$ can be replaced by any $J^{\prime} \in \mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)$.
Example 3.3 If $k=2$, then we have $\mathcal{Z}_{4,2}^{\alpha}\left(\mathbb{R}^{2 n}, J^{2}\right)=\mathcal{Z}_{4,2}^{\alpha}\left(\mathbb{R}^{2 n},-\mathrm{Id}\right)=\mathcal{Z}_{4}^{\alpha}\left(\mathbb{R}^{2 n}\right)=\Sigma^{\alpha}\left(\mathbb{R}^{2 n}\right)=$ $S O(2 n) / U(n)$, and the other values of $j$ are trivial $\mathcal{Z}_{4, \pm 1}^{\alpha}\left(\mathbb{R}^{2 n}, J^{ \pm 1}\right)=\{J\}$.

Remark 3.4 Sometimes, we will need to precise clearly what is the eignevalues of the eigenspaces $\mathcal{A}_{i}(J)$ and $\mathfrak{s o}_{i}(J)$, then we will simply use the notation

$$
\mathcal{A}_{(\omega)}(J)=\operatorname{ker}(\operatorname{Ad} J-\omega \mathrm{Id})
$$

and idem for $\mathfrak{s o}_{(\omega)}(J)$ and $\mathcal{B}_{(\omega)}(J)$.
Besides, sometimes for the homogeneity of the equations, we will extend the notations $\mathcal{A}_{i}(J)$ for real index and set for $t \in \mathbb{R}$

$$
\mathcal{A}_{t}(J)=\operatorname{ker}\left(\operatorname{Ad} J-\omega_{r}^{t} \mathrm{Id}\right)
$$

### 3.1.3 Study of $\operatorname{Ad} J^{j}$

Let $j \in \mathbb{Z}^{*}$. Then we have

$$
\operatorname{Ad} J^{j}=(\operatorname{Ad} J)^{j}=\oplus_{l=0}^{r-1}\left(\omega_{r}^{l}\right)^{j} \operatorname{Id}_{\mathcal{A}_{l}}(J)
$$

$\omega_{r}^{j}$ is of order $p=\frac{r}{(r, j)}$, i.e. it is in $\hat{U}_{p}=\left\{z \in S^{1} \mid z^{p}=1\right\}=\exp \left((\mathbb{Z} / p \mathbb{Z}) \cdot \frac{2 i \pi}{p}\right)$. Hence

$$
\operatorname{Ad} J^{j}=\bigoplus_{q=0}^{(r, j)-1}\left[\oplus_{l=0}^{p-1}\left(\omega_{r}^{j}\right)^{l} \operatorname{Id}_{\mathcal{A}_{q p+l}}(J)\right]
$$

hence writing $\left(\operatorname{Ad} J^{j}\right.$ is of order $\left.p\right)$ :

$$
\operatorname{Ad} J^{j}=\oplus_{l=0}^{p-1} \omega_{p}^{l} \operatorname{Id}_{\mathcal{A}_{l}}\left(J^{j}\right)
$$

we obtain that

$$
\begin{equation*}
\mathcal{A}_{l}\left(J^{j}\right)=\oplus_{q=0}^{(r, j)-1} \mathcal{A}_{q p+l^{\prime}}(J) \tag{42}
\end{equation*}
$$

where $l^{\prime}=\left(j^{\prime}\right)^{-1} l$ in the ring $\mathbb{Z} / p \mathbb{Z}$, and $j^{\prime}=\left[\frac{j}{(j, r)}\right]_{\bmod p}\left(j^{\prime}\right.$ is inversible in the $\operatorname{ring} \mathbb{Z} / p \mathbb{Z}$, since $\left(j^{\prime}, p\right)=1$ by definition of $\left.(r, j)\right)$.
In particular,

$$
\begin{equation*}
\operatorname{Com}\left(J^{j}\right)=\mathcal{A}_{0}\left(J^{j}\right)=\oplus_{q=0}^{(r, j)-1} \mathcal{A}_{q p}(J) \tag{43}
\end{equation*}
$$

More particulary,

$$
\operatorname{Com}\left(J^{k}\right)= \begin{cases}\oplus_{q=0}^{k-1} \mathcal{A}_{q}(J)=\operatorname{End}\left(\mathbb{R}^{2 n}\right)^{\mathbb{C}} & \text { if } r=k \\ \oplus_{q=0}^{k-1} \mathcal{A}_{2 q}(J) & \text { if } r=2 k\end{cases}
$$

and

$$
\operatorname{Com}\left(J^{2}\right)=\left\{\begin{array}{ll}
\mathcal{A}_{0}(J) \oplus \mathcal{A}_{k}(J) & \text { if } r=2 k \\
\mathcal{A}_{0}(J) \oplus \mathcal{A}_{\frac{k}{2}}(J) & \text { if } r=k \in 2 \mathbb{Z}
\end{array}\right\}=\mathcal{A}_{0}(J) \oplus \mathcal{A}_{\frac{r}{2}}(J) \quad \text { if } r \text { is even } .
$$

We can rewrite all what precedes in $J . \mathfrak{s o}(2 n)$ (resp. in $\mathfrak{s o}(2 n))$ by replacing $\mathcal{A}_{l}$ by $\mathcal{B}_{l}$ (resp. $\mathfrak{s o}_{l}$ ). In particular we have, according to (43),

$$
\mathfrak{u}_{j-1}(J):=\operatorname{Lie}\left(\mathbb{U}_{j-1}(J)\right)=\mathfrak{s o}_{0}\left(J^{j}\right) \cap \mathfrak{s o}(2 n)=\left(\oplus_{q=0}^{(r, j)-1} \mathfrak{s o}_{q p}(J)\right) \cap \mathfrak{s o}(2 n)
$$

this ${ }^{15}$ is the eigenspace decomposition of the order $j$ automorphism obtained by restricting $T=\operatorname{Ad} J$ to $\mathfrak{u}_{j-1}(J)$. Moreover we have

$$
\begin{equation*}
T_{J} \mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)=\left(\bigoplus_{q=1}^{(r, j)-1} \mathcal{B}_{q p}(J)\right) \cap \operatorname{End}\left(\mathbb{R}^{2 n}\right) \tag{44}
\end{equation*}
$$

Indeed, $g \in \mathbb{U}_{j-1}(J) \mapsto g J g^{-1} \in \mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)$ is a surjective submersion whose the (surjective) derivative at $g=1$,

$$
A \in \mathfrak{u}_{j-1}(J) \mapsto[A, J]=\sum_{q=0}^{(r, j)-1}\left[A_{q p}, J\right]=\sum_{q=0}^{(r, j)-1}\left(1-\omega_{r}^{q p}\right) A_{q p} J \in T_{J} \mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)
$$

has $\left(\oplus_{q=1}^{(r, j)-1} \mathcal{B}_{q p}(J)\right) \cap \operatorname{End}\left(\mathbb{R}^{2 n}\right)$ as image, which proves the equality (44).
More simply by differentiating the definition equation of $\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)$ we obtain

$$
\begin{equation*}
T_{J} \mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)=\left\{A \in J . \mathfrak{s o}(2 n) \mid \sum_{p+l=j-1} J^{p} A J^{l}=0\right\} \tag{45}
\end{equation*}
$$

In particular, let us apply (44) for $j=2$ :

$$
T_{J} \mathcal{Z}_{2 k, 2}^{\alpha}\left(\mathbb{R}^{2 n}, J^{2}\right)= \begin{cases}\mathcal{B}_{\frac{r}{2}}(J)=\{A \in J . \mathfrak{s o}(2 n) \mid A J+J A=0\} & \text { if } r \text { is even } \\ 0 & \text { if } r \text { is odd }\end{cases}
$$

This can be recovered from (45) by remarking that if $r$ is odd then -1 is not a $r$-th root of unity (and thus not an eigenvalue of $\operatorname{Ad} J$ ).

Remark 3.5 If $(j, 2 k)=1$ (so that $(j, r)=1$ also) then $J^{j} \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$ and $T^{j}$ is of order $r$ and we have, according to (42)

$$
\mathcal{A}_{l}\left(J^{j}\right)=\mathcal{A}_{[j]_{r}^{-1} \cdot l}(J), \quad \forall l \in \mathbb{Z} / r \mathbb{Z}
$$

in others words $\mathcal{A}_{l}(J)=\mathcal{A}_{j \cdot l}\left(J^{j}\right), \forall l \in \mathbb{Z} / r \mathbb{Z}$. In particular

$$
\mathbb{U}_{j-1}(J)=\mathcal{A}_{0}\left(J^{j}\right) \cap S O(2 n)=\mathcal{A}_{0}(J) \cap S O(2 n)=\mathbb{U}_{0}(J)
$$

[^10]Hence

$$
\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)=\{J\}
$$

More generally, we have, according to (43), since $(j l, r)=(l, r)$,

$$
\operatorname{Com}\left(\left(J^{j}\right)^{l}\right)=\operatorname{Com}\left(J^{j l}\right)=\oplus_{q=0}^{(l, r)-1} \mathcal{A}_{q p}(J)=\operatorname{Com}\left(J^{l}\right)
$$

with $p=\frac{r}{(l, r)}$, and thus

$$
\operatorname{Com}\left(\left(J^{j}\right)^{l}\right)=\operatorname{Com}\left(J^{l}\right) \quad \forall l \in \mathbb{Z} / r \mathbb{Z}
$$

In particular, $\mathbb{U}_{l-1}\left(J^{j}\right)=\mathbb{U}_{l-1}(J) \forall l \in \mathbb{Z} / r \mathbb{Z}$ and thus

$$
\mathcal{Z}_{2 k, l}^{\alpha}\left(\mathbb{R}^{2 n},\left(J^{j}\right)^{l}\right)=\mathcal{Z}_{2 k, l}^{[j]_{2 k}^{-1} \cdot \alpha}\left(\mathbb{R}^{2 n}, J^{l}\right)
$$

where $[j]_{2 k}^{-1} \cdot \alpha$ is the action of $[j]_{2 k}^{-1}$ on $\alpha \in X_{2 k}$, the action of $l \in(\mathbb{Z} / r \mathbb{Z})^{*}$ on $X_{2 k}$ being defined by the bijective map

$$
J \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right) \mapsto J^{l} \in\left(\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)\right)^{l}=\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)
$$

which sends a connected component onto another one

$$
\left(\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)\right)^{l}=: \mathcal{Z}_{2 k}^{l \cdot \alpha}\left(\mathbb{R}^{2 n}\right)
$$

In particular, for $j=1$, we have

$$
\mathbb{U}_{l-1}\left(J^{-1}\right)=\mathbb{U}_{l-1}(J) \quad \forall l \in \mathbb{Z} / r \mathbb{Z}
$$

and thus

$$
\mathcal{Z}_{2 k, l}^{\alpha}\left(\mathbb{R}^{2 n},\left(J^{-1}\right)^{l}\right)=\mathcal{Z}_{2 k, l}^{-\alpha}\left(\mathbb{R}^{2 n}, J^{l}\right)
$$

where $-(\varepsilon, \underline{p})=\left((-1)^{n} \varepsilon, \underline{p}\right)$ in $X_{2 k}$. Hence $\mathcal{Z}_{2 k, l}^{\alpha}\left(\mathbb{R}^{2 n},\left(J^{-1}\right)^{l}\right)=\mathcal{Z}_{2 k, l}^{\alpha}\left(\mathbb{R}^{2 n}, J^{l}\right)$ if and only if $n$ is even (i.e. $J$ and $J^{-1}$ are in the same connected component).

### 3.2 Isometries of order $2 k+1$ with no eignevalue $=1$

We can do exactly the same study for $\mathcal{Z}_{2 k+1}(E)$ as we did for $\mathcal{Z}_{2 k}(E)$, with however the following simplification: all the connected components have the same order $r=2 k+1$ and we do not have to distinguish two types of orbits as previously.

### 3.3 The effect of the power maps on the finite order isometries

Let $J \in \mathcal{U}_{k^{\prime}}$ then $J^{j} \in \mathcal{U}_{p}$ with $p=\frac{k^{\prime}}{\left(k^{\prime}, j\right)}$. Moreover it is easy to see (from the diagonalisation) that the power map

$$
J \mapsto J^{j}
$$

is surjective from $\mathcal{U}_{k^{\prime}}$ onto $\mathcal{U}_{p}$ (since $z \in \hat{U}_{k^{\prime}} \mapsto z^{j} \in \hat{U}_{p}$ is surjective). Besides, since each connected component in $\mathcal{U}_{k^{\prime}}$ (and in $\mathcal{U}_{p}$ ) is a $S O(2 n)$-orbit, then the power map $J \mapsto J^{j}$ sends one component in $\mathcal{U}_{k^{\prime}}$ onto another one in $\mathcal{U}_{p}$ so that it induces a map:

$$
\alpha \in \pi_{0}\left(\mathcal{U}_{k^{\prime}}\right) \longrightarrow j \cdot \alpha \in \pi_{0}\left(\mathcal{U}_{p}\right)
$$

such that

$$
\left(\mathcal{U}_{k^{\prime}}^{\alpha}\right)^{j}=: \mathcal{U}_{p}^{j \cdot \alpha}, \quad \forall \alpha \in \pi_{0}\left(\mathcal{U}_{k^{\prime}}\right) .
$$

Remark 3.6 In general we have $\left(\mathcal{Z}_{2 k}\right)^{j} \nsubseteq \mathcal{Z}_{p}$. For example, for $j=2$, we have

$$
\left(\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)\right)^{2}= \begin{cases}\mathcal{U}_{k}^{*} & \text { if } \mathrm{k} \text { is even } \\ \mathcal{Z}_{k} & \text { if } \mathrm{k} \text { is odd }\end{cases}
$$

Besides, given $J \in \mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)$, then $\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)$ is the inverse image of $J^{j}$ by the map

$$
J^{\prime} \in \mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right) \longmapsto\left(J^{\prime}\right)^{j} \in\left(\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)\right)^{j}=\mathcal{U}_{p}^{j \cdot \alpha}\left(\mathbb{R}^{2 n}\right)
$$

Since $\left(J^{\prime}\right)^{j}$ is constant in $\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)$, we can denote it by $J_{j}$ and then

$$
\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J^{j}\right)=\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n}, J_{j}\right)
$$

Furthermore, we have also for any $J \in \mathcal{U}_{k^{\prime}}^{\alpha}, \mathbb{U}_{0}\left(J^{j}\right)=\mathbb{U}_{j-1}(J)$ so that

$$
\mathcal{U}_{k^{\prime}}^{j \cdot \alpha}=S O(2 n) / \mathbb{U}_{0}\left(J^{j}\right)=S O(2 n) / \mathbb{U}_{j-1}(J)
$$

so that

$$
\begin{equation*}
\left(\mathcal{U}_{k^{\prime}}^{\alpha}\right)^{j}=S O(2 n) / \mathbb{U}_{j-1}(J) \tag{46}
\end{equation*}
$$

which we can recover directly by taking the power $j$ in the equality $\mathcal{U}_{k^{\prime}}^{\alpha}=\left\{g J g^{-1}, g \in S O(2 n)\right\}$.
Convention: for each $\alpha \in \pi_{0}\left(\mathcal{Z}_{2 k}\right)$, we will choose (and fix) a canonical representant in $\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)$. For example, let $\left(\epsilon_{1}, \ldots, \epsilon_{2 n}\right)$ be the canonical basis in $\mathbb{R}^{2 n}$, and

$$
\begin{aligned}
e_{2 l+1} & =\frac{\epsilon_{2 l+1}+i \epsilon_{2 l+2}}{\sqrt{2}}, 0 \leq l \leq n-1 \\
e_{2 l} & =\bar{e}_{2 l-1}, 1 \leq l \leq n
\end{aligned}
$$

Then $e=\left(e_{1}, \ldots, e_{2 n}\right)$ is a hermitian basis in $\mathbb{C}^{2 n}$ and we can take $J_{0}^{\alpha}$ such that

$$
\operatorname{Mat}_{e}\left(J_{0}^{\alpha}\right)=\operatorname{Diag}\left(\left(\begin{array}{cc}
e^{i \theta_{j}} \operatorname{Id}_{p_{j}} & 0 \\
0 & e^{-i \theta_{j}} \operatorname{Id}_{p_{j}}
\end{array}\right), 1 \leq j \leq n-1\right)
$$

where $\underline{p}=\left(p_{1}, \ldots, p_{k-1}\right)$ is determined by $\alpha=(\varepsilon, \underline{p}) \in \pi_{0}\left(\mathcal{Z}_{2 k}\right)$ (see section 3.1.1), $\theta_{j}=\frac{j \pi}{k}$, and $\mathcal{M a t}(\cdot)$ means "the matrice in the basis $e$ of".

### 3.4 The Twistor spaces of a Riemannian manifolds and its reductions

Let $M$ be an oriented (even dimensional) Riemannian manifolds and let us consider the bundle of order $2 k$ isometries $\mathcal{U}_{2 k}(M)$ as well as its subbundles $\mathcal{U}_{2 k}^{*}(M)$ and $\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$. Let us fix $\alpha \in \pi_{0}\left(\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)\right)$ and consider the component $\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)$. Then denoting by $\mathcal{S O}(M)$ the $S O(2 n)$ bundle of positively oriented orthonormal frames on $M$, we have

$$
\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)=\mathcal{S O}(M) / \mathbb{U}_{0}\left(J_{0}^{\alpha}\right)
$$

(see section 4.3 for more precisions about this equality). We want to ask the following question: does $\mathcal{S O}(M)$ admit $\mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$-reduction for $1 \leq j \leq r$. We know (according to 333) that $\mathcal{S O}(M)$ admits an $\mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$-reduction if and only if the associated bundle $\mathcal{S O}(M) / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$
$\left(=\mathcal{S O}(M) \times_{S O(2 n)} S O(2 n) / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)\right)$ admits a global section $J_{j}: M \rightarrow \mathcal{S O}(M) / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$. Besides $\mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)=\mathbb{U}_{0}\left(\left(J_{0}^{\alpha}\right)^{j}\right)$ and according to (46),

$$
\mathcal{S O}(M) / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)=\left(\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)\right)^{j}=\mathcal{U}_{p}^{j \cdot \alpha}(M)
$$

with $p=\frac{2 k}{(2 k, j)}$. Hence $J_{j}$ (when it exists) is a global section of $\left(\mathcal{Z}_{2 k}^{\alpha}(M)\right)^{j}$ and then the $\mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$-reduction is given in terms of $J_{j}$ by:

$$
\mathfrak{U}_{j-1}^{\alpha}(M):=\left\{e=\left(e_{1}, \ldots, e_{2 n}\right) \in \mathcal{S O}(M) \mid \mathcal{M a t}_{e}\left(J_{j}\right)=\left(J_{0}^{\alpha}\right)^{j}\right\} .
$$

Then we have

$$
\mathfrak{U}_{j-1}^{\alpha}(M) / \mathbb{U}_{0}\left(J_{0}^{\alpha}\right)=\mathcal{Z}_{2 k, j}^{\alpha}\left(M, J_{j}\right)
$$

In particular, since $\left(J_{0}^{\alpha}\right)^{r}= \pm \mathrm{Id}$, we have $\mathbb{U}_{r-1}\left(J_{0}^{\alpha}\right)=S O(2 n)$ and $\mathcal{S O}(M)$ has always an (unique and trivial) $S O(2 n)$-reduction for which $J_{r}= \pm \operatorname{Id}_{T M}$ and thus $\mathfrak{U}_{r-1}^{\alpha}(M)=\mathfrak{U}_{0}^{\alpha}(M)=\mathcal{S O}(M)$ and $\mathcal{Z}_{2 k, r}^{\alpha}\left(M, J_{r}\right)=\mathcal{Z}_{2 k}^{\alpha}(M)$.

Example 3.4 For $k=2$, and thus $r=2, J=-$ Id defines the trivial reduction; and $J_{1}$ (when it exists) defines on $M$ an (almost) complex structure and $\mathfrak{U}_{0}^{\alpha}(M)$ is then the subbundle of hermitian frames on $M$ (with respect to this complex structure).

### 3.5 Return to an order $2 k$ automorphism $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$.

We give ourself the same ingredients as in section 2.1 and we use the same notations. In particular, we suppose that the subgroup $H$ is chosen such that $\left(G^{\sigma}\right)^{0} \subset H \subset G^{\sigma}$. In addition to that we suppose $G / H$ Riemannian.

### 3.5.1 Case $r=k$

Suppose that we have $\tau_{\mid \mathfrak{m}}^{k}=-$ Id i.e. $\tau_{\mid \mathfrak{m}} \in \mathcal{Z}_{2 k}^{0}(\mathfrak{m})$. Then $\mathfrak{g}_{2 j}=0$ for all $2 j \in \mathbb{Z} /(2 k) \mathbb{Z} \backslash\{0, k\}$. Hence we have

$$
\left[\mathfrak{g}_{p}, \mathfrak{g}_{l}\right]=\{0\} \quad \text { if } p+l \neq 0, k
$$

Indeed, if $p$ or $l$ is even then the corresponding eigenspace vanishes. If $p$ and $l$ are odd then $\left[\mathfrak{g}_{p}, \mathfrak{g}_{l}\right] \subset \mathfrak{g}_{p+l}$ and $p+l$ is even, thus $\mathfrak{g}_{p+l}=\{0\}$ except if $p+l=0$ or $k$. Consequently, we have $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$ and thus $G / H$ is a (locally) symmetric space. Let us distinguish the following two cases.
$k$ is odd. Then $\left[\mathfrak{g}_{k}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{k+j}=\{0\}$ for all $j$ odd $\neq 0, k$. Hence $\left[\mathfrak{g}_{k}, \mathfrak{m}\right]=\{0\}$ i.e. $\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{k}=0$ so that $\mathfrak{g}_{k}=0$ and thus this case is trivial because $H=G_{0}$ up to covering and thus the fibre $H / G_{0}$ is trivial (i.e. a discret set). Moreover we have $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}=\mathfrak{g}_{0}$ and $G / H=G / G_{0}$ (up to covering) is the (locally) symmetric space associated to the involution $\tau^{k}$.
$k$ is even. Then the symmetric decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ is the eigenspace decomposition of $\tau^{k}$, and $G / H$ is the (locally) symmetic space corresponding to this involution $\tau^{k}$.

In conclusion, if $r=k$, then $G / H$ is the (locally) symmetic space corresponding to $\tau^{k}$.
Example 3.5 For $2 k=4$, we always have $r=k=2$ (since $\tau_{\mid \mathfrak{m}}^{2}=-\mathrm{Id}$ ) and $G / H$ is the symmetric space corresponding to $\sigma=\tau^{2}$.

### 3.5.2 Action of $A d \tau_{\mid \mathfrak{m}}$ on adg $\mathfrak{g}_{j}$

We have $\tau \circ \operatorname{ad} X \circ \tau^{-1}=\operatorname{ad} \tau(X), \forall X \in \mathfrak{g}$. In particular,

$$
\forall X_{j} \in \mathfrak{g}_{j}, \tau \circ \operatorname{ad} X_{j} \circ \tau^{-1}=\omega_{2 k}^{j} \operatorname{ad} X_{j} \quad(j \in \mathbb{Z} /(2 k) \mathbb{Z})
$$

Hence by taking the restriction to $\mathfrak{m}$ and projecting on $\mathfrak{m}$ :

$$
\tau_{\mid \mathfrak{m}} \circ\left[\operatorname{ad}_{\mathfrak{m}} X_{j}\right]_{\mathfrak{m}} \circ \tau_{\mid \mathfrak{m}}^{-1}=\omega_{2 k}^{j}\left[\operatorname{ad}_{\mathfrak{m}} X_{j}\right]_{\mathfrak{m}}
$$

so that

$$
\left.\left[\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{j}\right]_{\mathfrak{m}} \subset \mathcal{A}_{j}\left(\tau_{\mid \mathfrak{m}}\right)\right)^{16} \quad \forall j \in \mathbb{Z} /(2 k) \mathbb{Z}
$$

If $r=k$ then $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$, hence $\left[\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{j}\right]_{\mathfrak{m}}=0$, for all $j \in \mathbb{Z} /(2 k) \mathbb{Z} \backslash\{0, k\}$.
Let us recall that we always have ( $r=2 k$ or $k$ )

$$
\begin{aligned}
& {\left[\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{0}\right]_{\mathfrak{m}}=\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{0} \subset \mathfrak{s o _ { 0 }}\left(\tau_{\mid \mathfrak{m}}\right)=\operatorname{Com}\left(\tau_{\mid \mathfrak{m}}\right) \cap \mathfrak{s o ( \mathfrak { m } )}} \\
& {\left[\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{k}\right]_{\mathfrak{m}}=\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{k} \subset \begin{cases}\mathfrak{s o} \frac{r}{2}\left(\tau_{\mid \mathfrak{m}}\right)=\operatorname{Ant}\left(\tau_{\mid \mathfrak{m}}\right) \cap \mathfrak{s o}(\mathfrak{m}) & \text { if } r=k \text { is even } \\
0 & \text { if } r=k \text { is odd (trivial case) }\end{cases} }
\end{aligned}
$$

where $\operatorname{Ant}\left(\tau_{\mid \mathfrak{m}}\right)=\left\{A \in \operatorname{End}(\mathfrak{m}) \mid A \tau_{\mid \mathfrak{m}}+\tau_{\mid \mathfrak{m}} A=0\right\}$.
Remark 3.7 There is no raison to have $\left[\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{j}\right]_{\mathfrak{m}} \subset \mathfrak{s o}_{j}\left(\tau_{\mid \mathfrak{m}}\right)$ (if the metric is not naturally reductive) and no raison also to have $\left[\operatorname{ad}_{\mathfrak{m}} \mathfrak{g}_{j}\right]_{\mathfrak{m}} \subset \mathcal{B}_{j}\left(\tau_{\mid \mathfrak{m}}\right)$.

### 3.6 The canonical section in $\left(\mathcal{Z}_{2 k}(G / H)\right)^{2}$, the canonical embedding, and the Twistor lifts

Once more, we give ourself the same ingredients and notations as in section 2.1. We suppose that $\left(G^{\sigma}\right)^{0} \subset H \subset G^{\sigma}$ and that $G / H$ is Riemannian. We denote by $p_{0}:=1 . H$ the reference point in $G / H$. According to the definition of $H$, we have

Lemma 3.1 Let $J_{0}$ be the element in $\mathcal{Z}_{2 k}^{\alpha_{0}}\left(T_{p_{0}} M\right)$ corresponding ${ }^{17}$ to $\tau_{\mid \mathfrak{m}}^{-1}$ (or more generally to $\tau_{\mid \mathfrak{m}}^{j}$ with $\left.(j, 2 k)=1\right)$ under the identification $T_{p_{0}} M=\mathfrak{m}$. Then we have $\forall g \in H, g J_{0}^{2} g^{-1}=J_{0}^{2}$. Hence there exists a unique section

$$
J_{2}: G / H \mapsto\left(\mathcal{Z}_{2 k}^{\alpha_{0}}\right)^{2}=\mathcal{U}_{k}^{\alpha_{0}^{2}}(G / H)
$$

defined by

$$
g . p_{0} \in G / H \mapsto g J_{0}^{2} g^{-1} \in\left(\mathcal{Z}_{2 k}^{\alpha_{0}}\right)^{2} .
$$

Proceeding as in 30], Theorem 3, we obtain:
Theorem 3.2 Let $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be an order $2 k$ automorphism and $M=G / H$ a (locally) Riemannian $k$-symmetric space corresponding to $\sigma=\tau^{2}$. Let us make $G$ acting on $\mathcal{Z}_{2 k}(M)$ : $g \cdot J=g J g^{-1}$. Let $J_{0} \in \mathcal{Z}_{2 k}^{\alpha_{0}}\left(T_{p_{0}} M\right)$ be the finite order isometry corresponding to $\tau_{\mid \mathfrak{m}}^{-1}$ under the identification $T_{p_{0}} M=\mathfrak{m}$. Then the orbit of $J_{0}$ under the action of $G$ is an immersed

[^11]submanifold in $\mathcal{Z}_{2 k}^{\alpha_{0}}(M)$. Denoting by $G_{0}$ the stabilizer of $J_{0}$, then $G_{0}=G^{\tau} \cap H$ and thus $N=G / G_{0}$ is a locally $2 k$-symmetric bundle over $M$ and the natural map:
\[

$$
\begin{aligned}
\mathfrak{I}_{J_{0}}: \quad G / G_{0} & \longrightarrow \mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(G / H, J_{2}\right) \\
g \cdot G_{0} & \longmapsto g J_{0} g^{-1}
\end{aligned}
$$
\]

is an injective immersion and a morphism of bundle. Moreover, if the image of $G$ in $\operatorname{Is}(M)$ (the group of isometry of $M$ ) is closed, then $\mathfrak{I}_{J_{0}}$ is an embedding.

Remark 3.8 Say something about the choice $J_{0}=\tau_{\mid \mathfrak{m}}^{j}$ with $(j, 2 k)=1$ etc...
Notation For a geometric map $f: L \rightarrow G / G_{0}$, we will denote by $J$ the corresponding map $\Im_{J_{0}} \circ f: L \rightarrow Z_{2 k, 2}\left(G / H, J_{2}\right)$ under the previous inclusion $G / G_{0} \hookrightarrow Z_{2 k, 2}\left(G / H, J_{2}\right)$.

### 3.6.1 The Twistor lifts

Definition 3.2 An isometry $A \in S O\left(\mathbb{R}^{2 n}\right)$ will be called an $e^{i \theta}$-structure if $\operatorname{Spect}(A)=\left\{e^{i \theta}, e^{-i \theta}\right\}$. An isometry $A \in S O\left(\mathbb{R}^{2 n}\right)$ will be called a $2 k$-structure if $A \in \mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)$.

Definition 3.3 Let ( $L, i$ ) be a complex manifold (of dimension $d \geq 1$ ), $M$ an oriented Riemannian manifold and $u: L \rightarrow M$ a immersion. Then an element $J: L \rightarrow u^{*}\left(\mathcal{Z}_{2 k}(M)\right)$ is an admissible twistor lift of $u$ if one of the following equivalent statements holds:
(i) Let $E_{j}$ be the orthogonal projection of the tangent subbundle $u_{*}(T L)$ on the subbundle $\mathfrak{m}_{j}(J)$ (with obvious notations). Then for all $j \in\{1, \ldots, k-1\}$, $J$ stabilizes $E_{j}$ and $J_{\mid E_{j}}$ is a $\omega_{2 k}^{j}$-structure and $\operatorname{pr}_{E_{j}} \circ i=J \circ \operatorname{pr}_{E_{j}}$.
(ii) $J$ stabilizes $E_{j}$ and induces on it an $\omega_{2 k}^{j}$-structure, $i$ induces on $E_{j}$ a well defined map which is nothing but the $\omega_{2 k}^{j}$-structure $J_{\mid E_{j}}$.
(iii) $[\partial u]_{\mathfrak{m}_{j}(J)^{\mathrm{c}}} \in \mathfrak{g}_{j}(J)$ for $1 \leq j \leq k-1$ (still with obvious notations).
(iv) Let $\underline{\mathrm{J}}$ be the complex structure defined on $u^{*}(T M)$ by the decomposition

$$
u^{*}(T M)^{\mathbb{C}}=\underset{(1,0)}{\left[\oplus_{j=1}^{k-1} \mathfrak{g}_{j}(J)\right]} \underset{(0,1)}{\left[\oplus_{j=1}^{k-1} \mathfrak{g}_{-j}(J)\right]}
$$

then $u$ is $\underline{\mathrm{J}}$-holomorphic: $* d u:=d u \circ i=\underline{\mathrm{J}} \circ d X$
In particular, if $(L, i)$ is a Riemann surface, then we can add that the existence of an admissible twistor lift $J$ of $u$ implies in particular that $u$ is a conformal immersion.

Theorem 3.3 In the situation described in theorem 3.2, let $\alpha$ be a $\mathfrak{g}$-valued Maurer-Cartan 1form on a Riemann surface $L$ and $f: L \rightarrow G / G_{0}$ its geometric map and $J=\mathfrak{I}_{J_{0}} \circ f$. The the following statements are equivalent:
(i) $\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1$
(ii) $J: L \rightarrow \mathcal{Z}_{2 k, 2}\left(G / H, J_{2}\right)$ is an admisible twistor lift.

## 4 Vertically Harmonic maps and Harmonic sections of submersions

We will recall here some definitions and properties about vertical harmonicity and refer to 41, 42] for details and proofs (section 4.1 and 4.2). Then we will apply these latter to the study of the examples we are interested in (and that we have already introduced and begun to study in 4.1): homogeneous spaces and Twistor spaces (section 4.3). Finally, we will conclude with a geometric interpretation of the even determined elliptic integrable system in terms of vertically harmonic twistor lifts (section 4.4).

### 4.1 Definitions, general properties and examples

### 4.1.1 The vertical energy fonctional

Let $(M, g),(N, h)$ be Riemannian manifolds and $\pi: N \rightarrow M$ a submersion. We can do the splitting $T N=\mathcal{V} \oplus \mathcal{H}$, where the vertical and horizontal subbundles are defined by $\mathcal{V}=\operatorname{ker} d \pi$ and $\mathcal{H}=(\operatorname{ker} d \pi)^{\perp}=\mathcal{V}^{\perp}$.
For any map $u: M \rightarrow N$, we denote by $d^{v} u=(d u)^{v}$ the vertical component of $d u$. Following [41], this allows us to define the vertical energy density of $u, e^{v}(u)=\frac{1}{2}\left|d^{v} u\right|^{2}$, and the associated vertical energy fonctional:

$$
E^{v}(u)=\frac{1}{2} \int_{M}\left|d^{v} u\right|^{2} d \operatorname{vol}_{g} .
$$

Let us define the vertical tension field of $u: M \rightarrow N$ by

$$
\tau^{v}(u)=\operatorname{Tr}\left(\nabla^{v} d^{v} u\right)
$$

where $\nabla^{v}$ denotes the vertical component of the Levi-Civita connection (of $N$ ) in $T N$, and $\operatorname{Tr}_{g}$ the trace with respect to $g$. Then we have

Theorem 4.1 41] The map $u: M \rightarrow N$ is a critical point of $E^{v}$ with respect to vertical variations if and only if $\tau^{v}(u)=0$. In particular, if $u$ is a section, i.e. $\pi \circ u=\operatorname{Id}_{M}$, then it is a critical point of $E^{v}$ with respect to variations through sections if and only if $\tau^{v}(u)=0$.

We define a map $u: M \rightarrow N$ to be vertically harmonic if $\tau^{v}(u)=0$, and if $u$ is a section we will say that it is a harmonic section.

### 4.1.2 Examples

Example 4.1 Let $\pi: N \rightarrow M$ be like above. Let $(L, b)$ be a Riemannian manifold and $f: L \rightarrow N$ a map. Then we can consider the projection $u=\pi \circ f: L \rightarrow M$ and the manifold

$$
u^{*} N=\left\{(z, n) \in L \times N, n \in \pi^{-1}(\{u(z)\})\right\} .
$$

Then we have the submersion $u^{*} \pi:(z, n) \in u^{*} N \mapsto z \in L$. Furthermore, $u^{*} N$ can be endowed canonically with a Riemannian metric: take the metric induced by the product metric

$$
|(d z, d n)|^{2}=|d z|^{2}+|d n|^{2}
$$

in $L \times N \supset u^{*} N$. Then we will say that $f: L \rightarrow N$ is vertically harmonic if and only if

$$
\operatorname{Tr}_{b}\left(\nabla^{v} d^{v} f\right)=0
$$

When $u$ is an isometry and $\pi$ a Riemannian submersion this is equivalent to say that the corresponding section $\tilde{f}: L \rightarrow u^{*} N$ is a harmonic section (see the Appendix, theorem 7.1).

Example 4.2 Let p: $(E, \nabla,\langle\cdot, \cdot\rangle) \mapsto(M, g)$ be a Riemannian vector bundle of rank $2 n$ (in particular $\langle\cdot, \cdot\rangle$ is $\nabla$-parallel). Then we consider the bundle of orhogonal almost complex structure: $N_{\Sigma}=\Sigma(E)=\left\{\left(x, J_{x}\right), J_{x} \in \Sigma\left(E_{x}\right)\right\}$, where $\Sigma\left(E_{x}\right)=\left\{J \in \mathfrak{s o}\left(E_{x}\right) \mid J^{2}=-\mathrm{Id}\right\}$. We have a fibration $\pi_{\Sigma}: N_{\Sigma} \rightarrow M$. The vertical space is given by: $\forall J \in N_{\Sigma}$,

$$
\mathcal{V}_{J}:=T_{J} \Sigma\left(E_{x}\right)=\left\{A \in \operatorname{so}\left(E_{x}\right) \mid A J+J A=0\right\}
$$

where $x=\pi_{\Sigma}(J)$.
The metric connection $\nabla$ gives us a splitting : $T \Sigma(E)=\mathcal{V}^{\Sigma} \oplus \mathcal{H}^{\Sigma}$. Indeed we have the following splitting (coming from $\nabla$ )

$$
\begin{equation*}
T \mathfrak{s o}(E)=\mathrm{p}^{*} \mathfrak{s o}(E) \oplus \mathcal{H} \tag{47}
\end{equation*}
$$

where $\mathrm{p}: \mathfrak{s o}(E) \rightarrow M$ is the natural fibration ${ }^{18}$. Then for any (local) section $J: U \subset M \rightarrow \Sigma(E)$, we have

$$
0=\nabla J^{2}=(\nabla J) J+J(\nabla J)
$$

so that $\nabla J \in \mathcal{V}^{\Sigma}$ and thus in the decomposition (47): $[d J]_{s o(E)}=\nabla J \in \mathcal{V}^{\Sigma}$ and thus $[d J]_{\mathcal{H}}=$ $d J-\nabla J \in T N_{\Sigma}$ which allows us to conclude that

$$
T \Sigma(E)=\mathcal{V}^{\Sigma} \oplus \mathcal{H}_{\mid \Sigma(E)}
$$

Then we can endow $N_{\Sigma}$ with the metric

$$
\begin{equation*}
h=\pi^{*} g+\langle,\rangle_{\mathcal{V}^{\Sigma}} \tag{48}
\end{equation*}
$$

where $\langle,\rangle_{\mathcal{V}^{\Sigma}}$ is the fibre metric in $\mathcal{V}^{\Sigma}$ induced by the metric in $\mathfrak{s o}(E)$ :

$$
\begin{equation*}
\langle A, B\rangle=\operatorname{Tr}\left(A^{t} . B\right) \tag{49}
\end{equation*}
$$

With this metric we have obviously $\mathcal{H}^{\Sigma}=\mathcal{V}^{\Sigma}$.
Furthermore, let us remark that $T \Sigma(E)$ is a subbundle of $T \mathfrak{s o}(E)_{\mid \Sigma(E)}$ and that we have

$$
\begin{align*}
T \mathfrak{s o}(E)_{\mid \Sigma(E)}=\pi_{\Sigma}^{*} \mathfrak{s o}(E) \oplus \mathcal{H}_{\mid \Sigma(E)} & =\mathfrak{s o}_{-}\left(\pi_{\Sigma}^{*} E\right) \oplus \mathfrak{s o}_{+}\left(\pi_{\Sigma}^{*} E\right) \oplus \mathcal{H}_{\mid \Sigma(E)}  \tag{50}\\
& =T \Sigma(E) \oplus \mathfrak{s o}_{+}\left(\pi_{\Sigma}^{*} E\right) \tag{51}
\end{align*}
$$

with ${ }^{[9]}$

$$
\begin{aligned}
\mathfrak{s o}_{+}\left(\pi_{\Sigma}^{*} E\right)_{J} & =\mathfrak{s o}_{+}\left(E_{x}, J\right):=\left\{A \in \mathfrak{s o}\left(E_{x}\right) \mid[A, J]=0\right\} \\
\mathfrak{s o}_{-}\left(\pi_{\Sigma}^{*} E\right)_{J} & =\mathfrak{s o}_{-}\left(E_{x}, J\right):=\left\{A \in \mathfrak{s o}\left(E_{x}\right) \mid A J+J A=0\right\}=\mathcal{V}_{J}^{\Sigma}
\end{aligned}
$$

for all $J \in \Sigma(E)$ (and where $x=\pi_{\Sigma}(J)$ ). In other words, $\pi_{\Sigma}^{*} E$ is canonically endowed with a complex structure: $\mathcal{I}_{J}=J, \forall J \in N_{\Sigma}$, and this complex structure defines the two spaces $\mathfrak{s o}_{ \pm}\left(\pi_{\Sigma}^{*} E\right)$ by

$$
\mathfrak{s o}_{ \pm}\left(\pi_{\Sigma}^{*} E\right)=\mathfrak{s o}_{ \pm}\left(\pi_{\Sigma}^{*} E, \mathcal{I}\right)
$$

Now given a section $J \in \mathcal{C}\left(\pi_{\Sigma}\right)$, then we consider the vertical part of the rough Laplacian $\nabla^{*} \nabla J$, in the decomposition (50): $\left(\nabla^{*} \nabla J\right)^{\mathcal{V}^{\Sigma}}=\frac{1}{2} J\left[J, \nabla^{*} \nabla J\right]$. We will see in section 4.3 .2 that this is in fact exactly the vertical tension field of $J$ in $N_{\Sigma}$ :

$$
\tau^{v}(J)=\frac{1}{2} J\left[J, \nabla^{*} \nabla J\right]
$$

In particular, we recover the definition of vertical harmonicity used in 30] and [7].

[^12]Example 4.3 Let p: $(E, \nabla,\langle\cdot, \cdot\rangle) \mapsto(M, g)$ be a Riemannian vector bundle of rank $2 n$. Then we consider more generally the bundle of order $2 k$ isometries $\mathcal{U}_{2 k}(E)$ as well as its subbundles $\mathcal{U}_{2 k}^{*}(E)$ and $\mathcal{Z}_{2 k}(E)$. Let us fix $\alpha \in \pi_{0}\left(\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)\right)$ and consider the component $\mathcal{Z}_{2 k}^{\alpha}(E):=N_{\mathcal{Z}}$. We have a natural fibration $\pi_{\mathcal{Z}}: \mathcal{Z}_{2 k}^{\alpha}(E) \rightarrow M$. The vertical space is given by

$$
\begin{equation*}
\forall J \in N_{\mathcal{Z}}, \quad \mathcal{V}_{J}^{\mathcal{Z}}=T \mathcal{Z}_{2 k}^{\alpha}\left(E_{x}\right)=\left(\bigoplus_{j \in \mathbb{Z} / r \mathbb{Z} \backslash\{0\}} \mathcal{B}_{j}\left(E_{x}, J\right)\right) \bigcap \operatorname{End}\left(E_{x}\right)=J . \mathfrak{s o}_{*}\left(E_{x}, J\right) \tag{52}
\end{equation*}
$$

according to section 3.1 .2 (more particulary equation (41)) and where

$$
\mathfrak{s o}_{*}\left(E_{x}, J\right):=\left(\bigoplus_{j \in \mathbb{Z} / r \mathbb{Z} \backslash\{0\}} \mathfrak{s o}_{j}\left(E_{x}, J\right)\right) \bigcap \mathfrak{s o}\left(E_{x}\right) .
$$

The metric connection $\nabla$ gives us a splitting: $T \mathcal{Z}_{2 k}^{\alpha}(E)=\mathcal{V}^{\mathcal{Z}} \oplus \mathcal{H}^{\mathcal{Z}}$. Indeed we have the following splitting (coming from $\nabla$ )

$$
\begin{equation*}
T S O(E)=\mathcal{V}^{S O(E)} \oplus \mathcal{H} \tag{53}
\end{equation*}
$$

where $\mathcal{V}_{J}^{S O(E)}=T_{J} S O\left(E_{x}\right)=J \cdot \mathfrak{s o}\left(E_{x}\right)$ (since $0=\nabla\left(J^{t} J\right)=(\nabla J)^{t} J+J^{t}(\nabla J) \Longrightarrow \nabla J \in$ $\left.T_{J} S O\left(E_{x}\right)\right)$. Then for all (local) section $J: U \subset M \rightarrow N_{\mathcal{Z}}$, we have

$$
0=\nabla J^{2 k}=\sum_{p+l=2 k-1} J^{p}(\nabla J) J^{l}
$$

so that according to (39), $\nabla J \in \mathcal{V}^{\mathcal{Z}}$ and thus in the decomposition (53), we have $[d J]_{\mathcal{V}^{s o(E)}} \in \mathcal{V}^{\mathcal{Z}}$ and hence $[d J]_{\mathcal{H}}=d J-[d J]_{\mathcal{V}^{s}(E)} \in T N_{\mathcal{Z}}$ which leads to

$$
\begin{equation*}
T \mathcal{Z}_{2 k}^{\alpha}(E)=\mathcal{V}^{\mathcal{Z}} \oplus \mathcal{H}_{\mid \mathcal{Z}_{2 k}^{\alpha}(E)} \tag{54}
\end{equation*}
$$

Then we can endow $N_{\mathcal{Z}}$ with the metric defined as in (48) and where the fibre $\langle,\rangle_{\mathcal{V} \mathcal{Z}}$ is induced by the trace metric (49), for which we have $\mathcal{H}^{\mathcal{Z}}=\mathcal{V}^{\mathcal{Z} \perp}$.
Furthermore let us remark that $T \mathcal{Z}_{2 k}^{\alpha}(E)$ is a subbundle of $T S O(E)_{\mid \mathcal{Z}_{2 k}^{\alpha}(E)}$ and that we have

$$
\begin{aligned}
T S O(E)_{\mid \mathcal{Z}_{2 k}^{\alpha}(E)} & =\mathcal{B}_{0}\left(\pi_{\mathcal{Z}}^{*} E\right) \oplus \mathcal{B}_{*}\left(\pi_{\mathcal{Z}}^{*} E\right) \oplus \mathcal{H}_{\mid \mathcal{Z}_{2 k}^{\alpha}(E)} \\
& =\mathcal{B}_{0}\left(\pi_{\mathcal{Z}}^{*} E\right) \oplus T \mathcal{Z}_{2 k}^{\alpha}(E)
\end{aligned}
$$

where 20

$$
\begin{aligned}
\mathcal{B}_{0}\left(\pi_{\mathcal{Z}}^{*} E\right)_{J} & =\mathcal{B}_{0}\left(E_{x}, J\right) \text { and } \\
\mathcal{B}_{*}\left(\pi_{\mathcal{Z}}^{*} E\right)_{J} & =\mathcal{B}_{*}\left(E_{x}, J\right):=\left(\bigoplus_{j \in \mathbb{Z} / r \mathbb{Z} \backslash\{0\}} \mathcal{B}_{j}\left(E_{x}, J\right)\right) \bigcap \operatorname{End}\left(E_{x}\right)=\mathcal{V}_{J}^{\mathcal{Z}}
\end{aligned}
$$

for all $J \in \mathcal{Z}_{2 k}^{\alpha}(E)$. In other words, $\pi_{\mathcal{Z}}^{*} E$ is canonically endowed with a $2 k$-structure: $\mathcal{I}_{J}=J$, $\forall J \in N_{\mathcal{Z}}$, and this $2 k$-structure defines the spaces $\mathcal{B}_{j}\left(\pi_{\mathcal{Z}}^{*} E\right):=\mathcal{B}_{j}\left(\pi_{\mathcal{Z}}^{*} E, \mathcal{I}\right)$.
Now let us precise the relation between $S O(E)$ and $\mathfrak{s o}(E)$ and in particular the relation $T_{J} S O\left(E_{x}\right)=$ $J . \mathfrak{s o}\left(E_{x}\right)$. For $J \in S O(E)$, let

$$
L_{J}: A \in \operatorname{End}\left(E_{x}\right) \longmapsto J . A \in \operatorname{End}\left(E_{x}\right)
$$

[^13]be the left multiplication by $J$ in $\operatorname{End}\left(E_{x}\right)$, with $x=\mathrm{p}(J)$. Let us still denote by $\mathcal{I}$, the tautological section of $\mathrm{p}^{*} S O(E)$ defined by $\mathcal{I}_{J}=J, \forall J \in S O(E)$, and whose restriction to $N_{\mathcal{Z}}$ is our canonical $2 k$-structure $\mathcal{I}$ on $\pi_{\mathcal{Z}}^{*} E$. Then let $L_{\mathcal{I}}: S O(E) \longrightarrow \operatorname{Aut}\left(\operatorname{End}\left(\mathrm{p}^{*} E\right)\right)$ be the section of the bundle of linear automorphism of the vector bundle $\operatorname{End}\left(\mathrm{p}^{*} E\right)$ defined by
$$
L_{\mathcal{I}}: J \in S O(E) \longmapsto L_{J} \in \operatorname{Aut}\left(\operatorname{End}\left(E_{\mathrm{p}(J)}\right)\right)
$$
or more concretely
$$
L_{\mathcal{I}}:(J, A) \in \operatorname{End}\left(\mathrm{p}^{*} E\right) \longmapsto(J, J . A) \in \operatorname{End}\left(\mathrm{p}^{*} E\right)
$$

Then we have

$$
\mathcal{V}^{S O(E)}=L_{\mathcal{I}}\left(\mathfrak{s o}\left(\mathrm{p}^{*} E\right)\right) \quad \text { and } \quad \mathcal{B}_{j}\left(\pi_{\mathcal{Z}}^{*} E\right)=L_{\mathcal{I}}\left(\mathfrak{s o}_{j}\left(\pi_{\mathcal{Z}}^{*} E\right)\right)
$$

which we will denote more simply by

$$
\mathcal{V}^{S O(E)}=\mathcal{I} \cdot \mathfrak{s o}\left(\mathrm{p}^{*} E\right) \quad \text { and } \quad \mathcal{B}_{j}\left(\pi_{\mathcal{Z}}^{*} E\right)=\mathcal{I} \cdot \mathfrak{s o}_{j}\left(\pi_{\mathcal{Z}}^{*} E\right) .
$$

Example 4.4 Let us consider the previous example and let us suppose that there exists a (global) section $J_{j}$ of $\left(\mathcal{Z}_{2 k}(E)\right)^{j}=\mathcal{U}_{p^{\prime}}^{j \cdot \alpha}(E)$ for some $j \in \mathbb{Z}$ and $p^{\prime}=\frac{2 k}{(2 k, j)}$. Let us consider the subbundle

$$
N_{\mathcal{Z}}^{j}:=\mathcal{Z}_{2 k, j}^{\alpha}\left(E, J_{j}\right)=\left\{J \in \mathcal{Z}_{2 k}^{\alpha}(E) \mid J^{j}=J_{j}\right\}
$$

for which we have the natural fibration $\pi_{\mathcal{Z}}^{j}: \mathcal{Z}_{2 k, j}^{\alpha}\left(E, J_{j}\right) \rightarrow M$. The vertical space is given by

$$
\forall J \in N_{\mathcal{Z}}^{j}, \quad \mathcal{V}_{J}^{\mathcal{Z}, j}=T_{J} \mathcal{Z}_{2 k, j}^{\alpha}\left(E_{x}, J_{j}\right)=\oplus_{q=1}^{(r, j)-1} \mathcal{B}_{q p}\left(E_{x}, J\right)=J \cdot u_{j-1}^{*}\left(E_{x}, J\right)
$$

according to (44), where

$$
\mathfrak{u}_{j-1}^{*}\left(E_{x}, J\right)=\oplus_{q=1}^{(r, j)-1} \mathfrak{s o}_{p q}\left(E_{x}, J\right)=\mathfrak{u}_{j-1}\left(E_{x}, J\right) / \mathfrak{u}_{0}\left(E_{x}, J\right)=\mathfrak{s o}_{0}\left(E_{x}, J\right) / \mathfrak{s o}_{0}\left(E_{x}, J\right) .
$$

Furthermore, differentiating the definition equation of $\mathcal{Z}_{2 k, j}\left(E, J_{j}\right): J^{j}=J_{j}$, we obtain: for all (local) section $J$ of $\pi_{\mathcal{Z}}^{j}$,

$$
\begin{equation*}
\nabla J^{j}=\sum_{l+q=j-1} J^{l} \nabla J J^{q}=\nabla J_{j} \tag{55}
\end{equation*}
$$

so that

$$
\nabla J \in \mathcal{V}^{\mathcal{Z}, j} \Longleftrightarrow \nabla J_{j}=0
$$

therefore in general, we have $\nabla J \notin \mathcal{V}^{\mathcal{Z}, j}$. We will simply set

$$
\mathcal{H}^{\mathcal{Z}, j}=\mathcal{V}^{\mathcal{Z}, j^{\perp}} \cap T \mathcal{Z}_{2 k, j}^{\alpha}\left(E, J_{j}\right) .
$$

Then the splitting

$$
T \mathcal{Z}_{2 k, j}^{\alpha}\left(E, J_{j}\right)=\mathcal{V}^{\mathcal{Z}, j} \oplus \mathcal{H}^{\mathcal{Z}, j}
$$

do not correspond to the splitting (53) or equivalently to (54), in general. In other words, the connection in $\pi_{\mathcal{Z}}$ defined by the horizontal distribution $\mathcal{H}_{\mid N_{\mathcal{Z}}}$ is not reducible to a connection in $\pi_{\mathcal{Z}}^{j}$ (which could only be $\mathcal{H}^{\mathcal{Z}, j}$ ): it happens if and only if $\mathcal{H}$ is tangent to $N_{\mathcal{Z}}^{j}$. Besides we

[^14]have two different ways to decompose the orthogonal of $\mathcal{V}^{\mathcal{Z}, j}$ in $T N_{\mathcal{Z}}$, using the decompositions $T N_{\mathcal{Z}}=\mathcal{V}^{\mathcal{Z}} \oplus \mathcal{H}^{\mathcal{Z}}$ or $T N_{\mathcal{Z}_{\mid N_{\mathcal{Z}}^{j}}}=T N_{\mathcal{Z}}^{j} \oplus T N_{\mathcal{Z}}^{j}{ }^{\perp}:$
\[

$$
\begin{aligned}
T N_{\mathcal{Z}}^{\mid N_{\mathcal{Z}}^{j}} & =\mathcal{V}^{\mathcal{Z}, j} \oplus \mathcal{V}^{\mathcal{Z}, j^{\perp}} \\
& =\mathcal{V}^{\mathcal{Z}, j} \oplus \mathcal{V}^{\mathcal{Z}, j} \cap \mathcal{V}^{\mathcal{Z}} \oplus \mathcal{H}_{\mid N_{\mathcal{Z}}^{j}} \\
& =\underbrace{\mathcal{V}^{\mathcal{Z}, j} \oplus \mathcal{H}_{\mathcal{Z}}^{j}}_{T N_{\mathcal{Z}}^{j}} \oplus T N_{\mathcal{Z}}^{j \perp}
\end{aligned}
$$
\]

In particular, we have for any (local) section $J: U \subset M \rightarrow N_{\mathcal{Z}}^{j}$

$$
[d J]_{\mathcal{V}^{\mathcal{Z}, j}}=[\nabla J]_{\mathcal{V}^{Z, j}}=\operatorname{pr}_{\mathcal{V}^{\mathcal{Z}, j}}^{\mathcal{V}}(\nabla J)
$$

where [ $]_{\mathcal{V}^{\mathcal{Z}, j}}: T N_{\mathcal{Z}} \rightarrow \mathcal{V}^{\mathcal{Z}, j}$ and $\operatorname{pr}_{\mathcal{V}^{\mathcal{Z}, j}}^{\mathcal{Z}}: \mathcal{V}_{\mathcal{Z}} \rightarrow \mathcal{V}^{\mathcal{Z}, j}$ are resp. the orthogonal projections. Moreover, let us decompose $T \mathcal{S O}(E)_{\mid \mathcal{Z}_{2 k, j}^{\alpha}(E)}$ into an orthogonal sum making appear the vertical subbundle $\mathcal{V}^{\mathcal{Z}, j}$ of $N_{\mathcal{Z}}^{j}$ :

$$
\begin{aligned}
& T \mathcal{S O}(E)_{\mid N_{\mathcal{Z}}^{j}}=\mathcal{B}_{0}\left(\pi_{\mathcal{Z}}^{j}{ }^{*} E, \mathcal{I}\right) \oplus \quad \mathcal{B}_{*}\left(\pi_{\mathcal{Z}}^{j}{ }^{*} E, \mathcal{I}\right) \quad \oplus \mathcal{H}_{\mid N_{\mathcal{Z}}^{j}} \\
& =\underbrace{\mathcal{B}_{0}\left(\pi_{\mathcal{Z}}^{j}{ }^{*} E, \mathcal{I}\right) \oplus \mathcal{V}^{\mathcal{Z}, j}}_{\mathcal{I} \cdot \mathfrak{s o}_{*}\left(\pi_{\mathcal{Z}}{ }^{*} E, \mathcal{I}^{j}\right)} \oplus \underbrace{\mathcal{I}^{\mathcal{Z}}}_{\mathcal{V}^{\mathcal{Z}, j^{\perp} \cap \mathcal{V}^{\mathcal{Z}}}} \mathfrak{s o}_{*}\left(\pi_{\mathcal{Z}}^{j}{ }^{*} E, \mathcal{I}^{j}\right), \mathcal{H}_{\mid N_{\mathcal{Z}}^{j}} .
\end{aligned}
$$

Now let us see how we can determine $\mathcal{H}^{\mathcal{Z}, j}$ from the section $J_{j}$. First we remark that $\mathcal{H}^{\mathcal{Z}, j} \cap \mathcal{V}^{\mathcal{Z}}=$ $\{0\}$ (indeed $\operatorname{ker} d \pi_{\mathcal{Z}} \cap \mathcal{H}^{\mathcal{Z}, j} \subset \operatorname{ker} d \pi_{\mathcal{Z}} \cap T N_{\mathcal{Z}}^{j}=\mathcal{V}^{\mathcal{Z}, j}$ and of course $\mathcal{V}^{\mathcal{Z}, j} \cap \mathcal{H}^{\mathcal{Z}, j}=\{0\}$ ). Therefore $\mathcal{H}^{\mathcal{Z}, j}$ is a vector subbundle of $\left(\mathcal{V}^{\mathcal{Z}, j^{\perp}} \cap \mathcal{V}^{\mathcal{Z}}\right) \oplus \mathcal{H}$ which satisfies $\left(\mathcal{V}^{\mathcal{Z}, j^{\perp}} \cap \mathcal{V}^{\mathcal{Z}}\right) \cap \mathcal{H}^{\mathcal{Z}, j}=\{0\}$. Thus $\mathcal{H}^{\mathcal{Z}, j}$ is the graph of some linear map ${ }^{22} \Gamma: \mathcal{H} \rightarrow \mathcal{V}^{\mathcal{Z}, j^{\perp}} \cap \mathcal{V}^{\mathcal{Z}},{ }^{23}$

$$
\operatorname{Id}+\Gamma: W \in \mathcal{H} \mapsto W+\Gamma(W) \in \mathcal{H} \oplus\left(\mathcal{V}^{\mathcal{Z}, j^{\perp}} \cap \mathcal{V}^{\mathcal{Z}}\right)
$$

has $\mathcal{H}^{\mathcal{Z}, j}$ as image.
Let us concentrate ourself on (55). $\nabla J$ is in $\mathcal{V}^{\mathcal{Z}}$ so that we can write it $\nabla J=\sum_{i=1}^{r-1} J A_{i}$ with $A_{i} \in \mathfrak{5 o}_{i}(E, J)$, according to (52). Then we have $\forall i \in\{1, \ldots, r-1\}$,

$$
\sum_{l+q=j-1} J^{q}\left(J A_{i}\right) J^{l}=\sum_{l=0}^{j-1} J^{j-1} \omega_{r}^{l} J A_{i}=\frac{1-\left(\omega_{r}^{i}\right)^{j}}{1-\omega_{r}^{i}} J^{j} A_{i}
$$

so that

$$
\sum_{l+q=j-1} J^{q}(\nabla J) J^{l}=J^{j}\left(\sum_{\substack{i=1 \\ i \notin p . Z}}^{r-1} \frac{1-\left(\omega_{r}^{i}\right)^{j}}{1-\omega_{r}^{i}} A_{i}\right)
$$

where as usual $p=\frac{r}{(r, j)}$ is the order of $\omega_{r}^{j}$. In particular, we remark that (with obvious notation) ${ }^{24}$

$$
\begin{equation*}
\sum_{l+q=j-1} L\left(J^{l}\right) \circ R\left(J^{q}\right)^{-1}: \mathcal{B}_{*}(E, J) \longmapsto \mathcal{B}_{*}\left(E, J_{j}\right) \tag{56}
\end{equation*}
$$

[^15]is a surjective map with kerne
$$
\bigoplus_{i \in p . \mathbb{Z}_{r} \backslash\{0\}} \mathcal{B}_{i}(E, J)=J^{*} \mathcal{V}^{\mathcal{Z}, j}
$$
so that it induces an isomorphism from
$$
J . \mathfrak{s o}_{*}\left(E, J_{j}\right)=J^{*}\left(\mathcal{V}^{\mathcal{Z}, j^{\perp}} \cap \mathcal{V}^{\mathcal{Z}}\right)
$$
onto $\mathcal{B}_{*}\left(E, J_{j}\right)$. Let us denote by $P^{j}(J)$ the surjective map (56) and by $P^{j}(J)^{-1}$ the inverse map of the isomorphism induced on $J . \mathfrak{s o}_{*}\left(E, J_{j}\right)$. Then we have
$$
P^{j}(J)(\nabla J)=\nabla J_{j}
$$
so that $[\nabla J]^{\mathcal{V}^{\mathcal{Z}, j \perp} \cap \mathcal{V}^{\mathcal{Z}}}=P^{j}(J)^{-1}\left(\nabla J_{j}\right)$, but we have $\nabla J=[d J]^{\mathcal{V}^{z}}$, and therefore
\[

$$
\begin{equation*}
[d J]^{\mathcal{V}^{\mathcal{Z}, j} \perp} \cap \mathcal{V}^{\mathcal{Z}}=P^{j}(J)^{-1}\left(\nabla J_{j}\right) \tag{57}
\end{equation*}
$$

\]

On the other hand, $d \pi^{\mathcal{Z}} \circ d J=\mathrm{Id}_{T M}$ so that $d \pi^{\mathcal{Z}} \circ[d J]^{\mathcal{H}}=\mathrm{Id}_{T M}$, which with (57) allows to conclude that

$$
\Gamma=P^{j}(J)^{-1} \circ\left(\nabla J_{j}\right) \circ d \pi_{\mid \mathcal{H}}^{\mathcal{Z}}
$$

that is to say, for all $W \in \mathcal{H}_{\mid N_{\mathcal{Z}}^{j}}$

$$
\Gamma(W)=P^{j}\left(J_{0}\right)^{-1} \cdot \nabla_{(\pi z)_{*} W} J_{j}
$$

where $W=\left(J_{0}, W_{J_{0}}\right), J_{0} \in N_{\mathcal{Z}}^{j}, W_{J_{0}} \in \mathcal{H}_{J_{0}}$.

### 4.1.3 $\Psi$-torsion, $\Psi$-difference tensor, and curvature of a Pfaffian system

$\Psi$-torsion, $\Psi$-difference. Let us consider a vector bundle morphism

$\nabla$ being a connections on the vector bundle $E$. Then the $\Psi$-torsion of $\nabla$ is the $\psi^{*} E$-valued 2-form on $M$,

$$
T^{\Psi}(X, Y)=\nabla_{X}(\Psi Y)-\nabla_{Y}(\Psi X)-\Psi[X, Y]=d^{\nabla} \Psi(X, Y) \quad \forall X, Y \in \mathcal{C}(T M)
$$

Let us give now some examples.
Example 4.5 Let $N$ be a manifold and suppose that we have a splitting $T N=\mathcal{V} \oplus \mathcal{H}$ and suppose also that the vertical bundle $\mathcal{V}$ is endowed with a covariant derivative $\nabla^{c}$ and let $\phi: T N \rightarrow \mathcal{V}$ be the projection (morphism) on $\mathcal{V}$ along $\mathcal{H}$, then we can speak about the $\phi$-torsion of $\nabla^{c}$, $T^{\phi}=d^{\nabla^{c}} \phi$.


[^16]Example 4.6 Let $s: M \rightarrow(N, \nabla)$ be a map from a manifold $M$ into an affine manifold $(N, \nabla)$ and suppose that we have a splitting $T N=\mathcal{V} \oplus \mathcal{H}$, then let us consider the morphism of bundle

where $\nabla^{v}$ is the vertical part
of the affine connection $\nabla$.

Then the vertical s-torsion of $N$ is $T^{s}:=T^{d^{v} s}=d^{\nabla^{v}} d^{v} s$.
Example 4.7 In particular let us take $s=\operatorname{Id}_{N}$ (in the previous example) and thus $d^{v} s=\phi$ the projection on $\mathcal{V}$ and then the $\phi$-torsion of $\nabla^{v}$ (or $\operatorname{Id}_{N}$-torsion of $N$ ) is the vertical torsion in $\mathcal{V}$ : $T^{v}=d^{\nabla^{v}} \phi$.
Now for any map $s: M \rightarrow N$ we have

$$
T^{s}=s^{*} T^{v}
$$

We will say that $s$ is vertically torsion free if $T^{s}=0$.
Now, we define the $\psi$-difference and the $\psi$-equivalence.
Definition 4.1 Let $E \rightarrow N$ be a vector bundle and let us suppose that we have a morphism of bundle $\psi: T N \rightarrow E$ (over $\operatorname{Id}_{N}$ ). Let us consider the $\psi$-torsion of a given connection $\nabla$ in $E$ (if $\psi$ is an isomorphism then $T^{\psi}=\psi \circ T$, where $T$ is the torsion of the linear connection $\psi^{-1} \circ \nabla \circ \psi$ on $N$ ). Given another connection $\nabla^{\prime}$ in $E$, the $\psi$-difference tensor $S^{\psi}$ for the pair $\left(\nabla, \nabla^{\prime}\right)$ is defined by

$$
S^{\psi}(X, Y)=\nabla_{X}(\psi Y)-\nabla_{X}^{\prime}(\psi Y)=\left(\nabla-\nabla^{\prime}\right)_{X}(\psi Y)
$$

Then $S^{\psi}$ is symmetric precisely when $\nabla$ and $\nabla^{\prime}$ have the same $\psi$-torsion. On the other hand, if $S^{\psi}$ is skew-symmetric we will way (following [42]) that $\nabla$ and $\nabla^{\prime}$ are $\psi$-equivalent: it means that these have the same $\psi$-geodesics, a $\psi$-geodesic of $\nabla$ being a path $y(t)$ in $N$ solution of the equation

$$
\nabla_{y^{\prime}(t)}\left(\psi y^{\prime}(t)\right)=0
$$

(if $\psi$ is an isomorphism then $\psi$-geodesics are precisely the geodesics of $\psi^{-1} \circ \nabla \circ \psi$ ).

## Curvature of a Pfaffian system

Definition 4.2 Let $\mathcal{P}$ be a Pfaffian system on the manifold $N$. Then for any local sections of $\mathcal{P}, X, Y:(N, a) \rightarrow \mathcal{P}$, defined in the neighbourhood of $a \in N$, the image $\left([X, Y]_{a}\right)_{\mathcal{V}}$ of $[X, Y]_{a}$ by the canonical projection $T_{a} N \rightarrow \mathcal{V}_{a}=T_{a} N / \mathcal{P}_{a}$, depends only on the values $X_{a}, Y_{a}$ at $a \in N$, of the vector fields $X, Y$. We define the curvature of $\mathcal{P}$ as the tensor $\mathrm{R} \in \Lambda^{2} \mathcal{P}^{*} \otimes \mathcal{V}$,

$$
\mathrm{R}_{a}\left(X_{a}, Y_{a}\right):=-\left([X, Y]_{a}\right) \mathcal{V}
$$

Definition 4.3 Let $N$ be a manifold endowed with a Pfaffian system $\mathcal{V}$ ("vertical subbundle") and let us suppose that $\mathcal{V}$ admits a connection i.e. a complement $\mathcal{H}$ ("horizontal subbundle"): $T N=\mathcal{V} \oplus \mathcal{H}$. Then $\mathcal{V}$ is identified to $T N / \mathcal{P}$ so that the curvature of the connection $\mathcal{H}$ becomes the tensor $\mathrm{R} \in \Lambda^{2} \mathcal{H}^{*} \otimes \mathcal{V}$ defined by

$$
\mathrm{R}(X, Y)=-[X, Y]_{\mathcal{V}} \quad \forall X, Y \in \mathcal{C}(\mathcal{H})
$$

the subscripts " $\mathcal{V}$ " designing the $\mathcal{V}$-component along $\mathcal{H}$.

Convention We will often extend $R$ to the corresponding horizontal 2-form on $N$, still denoted by $R: \mathrm{R} \in \Lambda^{2} T^{*} N \otimes \mathcal{V}$ such that $\mathrm{R}(X, Y)=0$ if $X$ or $Y \in \mathcal{V}$.

Proposition 4.1 Let $N$ be a manifold and suppose that we have a splitting $T N=\mathcal{V} \oplus \mathcal{H}$ and suppose also that the vertical bundle $\mathcal{V}$ is endowed with a covariant derivative $\nabla^{c}$, then we have

$$
T_{\mid \mathcal{H} \times \mathcal{H}}^{c}=\mathrm{R}_{\mathcal{H}},
$$

$\mathrm{R}_{\mathcal{H}}$ being the curvature of $\mathcal{H}$.
Theorem 4.2 Let $\pi: Q \rightarrow Q / H=M$ be a $H$-principal bundle endowed with a connection 1form $\omega: T Q \rightarrow \mathfrak{h}$. Let $\mathcal{H}=\operatorname{ker} \omega \subset T Q$ be the corresponding horizontal subbundle. Let be $\Omega=d \omega+\frac{1}{2}[\omega \wedge \omega]$ the curvature 2-form. Then we have

$$
\left(\mathrm{R}_{\mathcal{H}}\right)_{q}(X, Y)=q \cdot \Omega_{q}(X, Y) \quad \forall q \in Q, \forall X, Y \in \mathcal{H}_{q}
$$

$\mathrm{R}_{\mathcal{H}}$ being the curvature of the connection $\mathcal{H}$. In other words, we have

$$
\mathrm{R}_{\mathcal{H}}=\Omega^{*}
$$

where $\Omega_{q}^{*}=q . \Omega_{q}$.

### 4.2 Harmonic sections of homogeneous fibre bundles

In this section, we study fibre bundles $\pi: N \rightarrow M$ for which the fibre is a homogeneous space $H / K$. To do that, we follow the exposition of (42) (subsection 4.2.1 and 4.2.2) and then we add a generalisation of the results (of 42) to non section maps in the end of 4.2.2, and finally we study the homogeneous fibre bundle reductions in 4.2.3.

### 4.2.1 Definitions and Geometric properties

Let $\pi_{M}: Q \rightarrow M$ be a principal $H$-bundle, with $H$ a Lie group. Let $K$ be a Lie subgroup of $H$ and $N=Q / K$. Then the map $\pi_{N}: Q \rightarrow N$ is a principal $K$-bundle and we have $\pi_{M}=\pi \circ \pi_{N}$ where $\pi: N \rightarrow M$ is a fibre bundle with fibre $H / K$, which is naturally isomorphic to the associated bundle $Q \times_{H} H / K$. We assume the following hypothesis
(i) $H / K$ is reductive: $\mathfrak{h}=\mathfrak{k} \oplus \mathfrak{p}$, and $\operatorname{Ad} K(\mathfrak{p}) \subset \mathfrak{p}$, where $\mathfrak{h}$ and $\mathfrak{k}$ are respectively the Lie algebras of $H$ and $K$.
(ii) $M$ is endowed with a Riemannian metric $g$
(iii) $H / K$ is Riemannian: there exists a $H$-invariant Riemannian metric on $H / K$ (equivalently an $\operatorname{Ad} K$-invariant (positive definite) inner product on $\mathfrak{p}$ ). Equivalently $\operatorname{Ad}_{\mathfrak{p}} K$ is compact.
(iv) The principal $H$-bundle $\pi_{M}: Q \rightarrow M$ is endowed with a connection. We denote by $\omega$ the corresponding $\mathfrak{h}$-valued connection form on $Q$.

Then the splitting $T Q=\mathcal{V}_{0} \oplus \mathcal{H}_{0}$ defined by $\omega\left(\mathcal{V}_{0}=\operatorname{ker} d \pi_{M}, \mathcal{H}_{0}=\operatorname{ker} \omega\right)$ gives rise by $d \pi_{N}$, to the following decomposition $T N=\mathcal{V} \oplus \mathcal{H}$, where $\mathcal{V}=\operatorname{ker} d \pi=d \pi_{N}\left(\mathcal{V}_{0}\right)$ and $\mathcal{H}=d \pi_{N}\left(\mathcal{H}_{0}\right)$. Let $\mathfrak{p}_{Q}:=Q \times_{K} \mathfrak{p} \rightarrow N$ be the vector bundle associated to $\pi_{N}: Q \rightarrow N$ with fibre $\mathfrak{p}$. Let us denote by $[q, a] \in \mathfrak{p}_{Q}$ the element defined by $(q, a) \in Q \times \mathfrak{p}$. Then we have the following vector bundle isomorphism

$$
\begin{aligned}
& I: \\
& \\
& d \pi_{N}(q . a) \\
& \\
& \\
& \longmapsto
\end{aligned} \mathfrak{p}_{Q},[q, a]
$$

where $q \in Q, a \in \mathfrak{p}$ and as usual $q \cdot a=\left.\frac{d}{d t}\right|_{t=0} q \cdot \exp (t a) \in T_{q} Q$. Decomposing $\omega=\omega_{\mathfrak{h}}+\omega_{\mathfrak{p}}$ following $\mathfrak{h}=\mathfrak{k} \oplus \mathfrak{p}$, then since $H / K$ is reductive, $\omega_{\mathfrak{p}}$ is a $K$-equivariant $\left(\omega_{\mathfrak{p}}(X . h)=\operatorname{Ad} h \omega_{\mathfrak{p}}(X)\right)$ and $\pi_{N}$-horizontal $\left(\omega_{\mathfrak{p} \mid \mathcal{V}_{0}}=0\right) \mathfrak{p}$-valued 1-form on $Q$ and hence projects to a $\mathfrak{p}$-valued 1-form $\phi$ on $N$ :

$$
\phi\left(d \pi_{N}(X)\right)=\left[q, \omega_{\mathfrak{p}}(X)\right] .
$$

Then we have

$$
\phi_{\mid \mathcal{V}}=I \quad \text { and } \quad \operatorname{ker} \phi=\mathcal{H}
$$

We can now construct a Riemannian metric $h$ on $N$ :

$$
\begin{equation*}
h=\pi^{*} g+\langle\phi, \phi\rangle \tag{58}
\end{equation*}
$$

where $\langle$,$\rangle is the fibre metric induced on \mathfrak{p}_{Q}$ by the inner product on $\mathfrak{p}$.
In the same way, let $\Phi$ be the $\mathfrak{p}_{Q^{-}}$valued 2 -form on $N$ defined by the component $\Omega_{\mathfrak{p}}$ of the curvature form $\Omega$ of $\omega$. Since $\Omega_{\mathfrak{p}}$ is $\pi_{M}$-horizontal $\left(\Omega(X, Y)=0\right.$ if $X \in \mathcal{V}_{0}$ or $\left.Y \in \mathcal{V}_{0}\right)$, then $\Phi$ is $\pi$-horizontal: $\Phi(X, Y)=0$, if $X \in \mathcal{V}$ or $Y \in \mathcal{V}$.

Remark 4.1 In 42, $\mathfrak{p}_{Q}$ is called the canonical bundle, $I$ the canonical isomorphism, $\phi$ the homogeneous connection form, and $\Phi$ the homogeneous curvature form.

The 1-form $\omega_{\mathfrak{k}}$ (which is a connection form in $\pi_{N}$ because $H / K$ is reductive) defines a connection in $\pi_{N}$ called the canonical connection. This connection induces a covariant derivative $\nabla^{c}$ in the associated bundle $\mathfrak{p}_{Q}$, with respect to which the fibre metric is parallel. $\nabla^{c}$ defines a exterior derivative $d^{c}$ on the space of $\mathfrak{p}_{Q}$-valued differential forms on $N$. This allows us to define the canonical torsion $T^{c}$ which is nothing but the $\phi$-torsion of $\nabla^{c}$ (see section 4.1.3)

$$
\begin{equation*}
T^{c}(A, B)=d^{c} \phi(A, B)=\nabla_{A}^{c}(\phi B)-\nabla_{B}^{c}(\phi A)-\phi[A, B], \quad \forall A, B \in \mathcal{C}(T N) \tag{59}
\end{equation*}
$$

Let $\mathfrak{h}_{Q}:=Q \times_{H} \mathfrak{h} \rightarrow M$ be the vector bundle associated to $\pi_{M}$ with fibre $\mathfrak{h}$, and in the same way $\mathfrak{k}_{Q}:=Q \times_{K} \mathfrak{k} \rightarrow N$ the bundle associated to $\pi_{N}$ with fibre $\mathfrak{h}$. Then we have

$$
\pi^{*} \mathfrak{h}_{Q}=\mathfrak{k}_{Q} \oplus \mathfrak{p}_{Q}
$$

The Lie bracket of $\mathfrak{h}$ induces a bracket on the fibres of $\mathfrak{h}_{Q}$, and those of $\pi^{*} \mathfrak{h}_{Q}$, which we continue to denote by [, ], and we denote also its $\mathfrak{p}_{Q}$-component (when there is no risk of confusion) by $[,]_{\mathfrak{p}}$ (otherwise we denote it by $[,]_{\mathfrak{p}_{Q}}$ ). Taking the $\mathfrak{p}$-component of the structure equation $d \omega=\Omega-\frac{1}{2}[\omega \wedge \omega]$ and then projecting on $N$, we obtain the homogeneous structure equation:

$$
\begin{equation*}
T^{c}=\Phi-\frac{1}{2}[\phi \wedge \phi]_{\mathfrak{p}} \tag{60}
\end{equation*}
$$

and thus

$$
\begin{aligned}
& T_{\mid \mathcal{V} \times \mathcal{V}}^{c}=-[I \cdot, I \cdot]_{\mathfrak{p}}, \quad T_{\mid \mathcal{V} \times \mathcal{H}}^{c}=0 \\
& T_{\mid \mathcal{H} \times \mathcal{H}}^{c}=\Phi_{\mid \mathcal{H} \times \mathcal{H}} .
\end{aligned}
$$

In particular, $T^{c}$ is horizontal if and only if $H / K$ is a (locally) symmetric space, and in this case

$$
\begin{equation*}
T^{c}=\Phi \tag{61}
\end{equation*}
$$

Remark 4.2 According to (60) and (59), for all $X, Y \in \mathcal{H}$, (extended to vector fields in $N$ denoted by the same letters), we have

$$
\Phi(X, Y)=T^{c}(X, Y)=-\phi([X, Y])
$$

so that

$$
\Phi=\mathrm{R}_{\mathcal{H}}
$$

according to definition 4.3. The homogeneous curvature form is nothing but the curvature of the connection $\mathcal{H}$. .

Now, let $U$ be the $\mathfrak{p}_{Q}$-valued symmetric bilinear form defined on $\mathfrak{p}_{Q}$ by:

$$
\begin{equation*}
\langle\mathrm{U}(a, b), c\rangle=\left\langle[c, a]_{\mathfrak{p}}, b\right\rangle+\left\langle a,[c, b]_{\mathfrak{p}}\right\rangle \tag{62}
\end{equation*}
$$

where $\langle$,$\rangle is the fibre metric, and a, b, c \in \mathfrak{p}_{Q}$. Let us set

$$
\mathrm{B}=\mathrm{U}+[,]_{\mathfrak{p}}
$$

which is a $\mathfrak{p}_{Q}$-valued bilinear form on $\mathfrak{p}_{Q}$, whose the symmetric and skew symmetric components are respectively U and $[,]_{\mathfrak{p}}$. U vanishes if and only if $H / K$ is naturally reductive and B if and only if $H / K$ is (locally) symmetric. Then denoting by $\nabla^{N}$ the Levi-Civita connection on $N$, we have:

Theorem 4.3 [42] Let us consider the difference tensor:

$$
S(A, B)=\phi\left(\nabla_{A}^{N} B\right)-\nabla_{A}^{c}(\phi B)
$$

then we have

$$
2 S=\phi^{*} \mathrm{U}-T^{c}=\phi^{*} \mathrm{~B}-\Phi
$$

Consequently, $\forall V \in \mathcal{C}(\mathcal{V})$

$$
\begin{equation*}
I\left(\nabla_{A}^{v} V\right)=\nabla_{A}^{c}(I V)+\frac{1}{2} \mathrm{~B}(\phi A, I V) \tag{63}
\end{equation*}
$$

In particular, if $H / K$ is a (locally) symmetric space, we have

$$
I \nabla_{A}^{v} V=\nabla_{A}^{c}(I V)
$$

Remark 4.3 If $H / K$ is a symmetric space, under the canonical identification $I: \mathcal{V} \xrightarrow{\simeq} \mathfrak{p}_{Q}$, we have $\nabla^{v}=\nabla^{c}$ on $\mathcal{V}$. More generally the difference between $\nabla^{v}$ and $\nabla^{c}$ looks like to the difference between the Levi-Civita and canonical connections of a reductive Riemannian homogeneous space (see section 1.6).
Moreover, $\nabla^{v}$ is $\phi$-equivalent to $\nabla^{c}$ when $H / K$ is naturally reductive, according to (63).
Let $\nabla^{\omega}$ be the covariant derivative in the vector bundle $\mathfrak{h}_{Q}$ (associated to $\pi_{M}$ ), defined by the connection form $\omega$. Let us decompose (the $\pi$-pullback of) $\nabla^{\omega}$ following the decomposition $\pi^{*} \mathfrak{h}_{Q}=\mathfrak{k}_{Q} \oplus \mathfrak{p}_{Q}$, and the $\mathfrak{p}_{Q}$-component gives us a connection $\nabla^{\mathfrak{p}}$ in $\mathfrak{p}_{Q}$.

Theorem 4.4 For all $V \in \mathcal{C}\left(\mathfrak{p}_{Q}\right)$,

$$
\nabla^{\mathfrak{p}} V=\nabla^{\omega} V-[\phi, \alpha]_{\mathfrak{h}}
$$

and

$$
\nabla^{c} V=\nabla^{\mathfrak{p}} V-[\phi, V]_{\mathfrak{p}}=\nabla^{\omega} V-[\phi, V] .
$$

Consequently, $\nabla^{\mathfrak{p}}$ and $\nabla^{c}$ are $\phi$-equivalent (since their $\phi$-difference is $[\phi, \phi]_{\mathfrak{p}}$ ). In particular $\nabla^{c}=\nabla^{\mathfrak{p}}$ if $H / K$ is a (locally) symmetric space.

Example 4.8 Let us consider the situation described by example 4.1 and suppose that $u: L \rightarrow$ $M$ is an isometry. Then if $\pi: N \rightarrow M$ is a homogeneous fibre bundle like above then this is also the case for $u^{*} \pi: u^{*} N \rightarrow L$.
Indeed let us set

$$
u^{*} Q=\left\{(z, q) \in L \times Q, q \in \pi_{M}^{-1}(\{u(z)\})\right\}=\bigsqcup_{z \in L}\{z\} \times f(z) \cdot H
$$

then $u^{*} \pi_{M}:(z, q) \in u^{*} Q \mapsto z \in L$ is a principal $H$-bundle over $L$. Then we have $u^{*} N=u^{*} Q / K$, and $u^{*} \pi: u^{*} N \rightarrow L$ is a fibre bundle with fibre $H / K$.
Finally we have to define a connection on $u^{*} \pi_{M}: u^{*} Q \rightarrow L$. Let us extend the connection $\omega$, to a connection on $\operatorname{Id}_{L} \times \pi_{M}: L \times Q \rightarrow L \times M$ by $\tilde{\omega}_{(z, q)}(d z+d q)=\omega_{q}(d q)$ and then let us set

$$
u^{*} \omega:=\tilde{\omega}_{\mid T\left(u^{*} Q\right)} .
$$

In the same way, the homogeneous connection and curvature forms on $u^{*} N$ are given respectively by

$$
u^{*} \phi:=\tilde{\phi}_{\mid T\left(u^{*} N\right)} \quad \text { and } \quad u^{*} \Phi:=\tilde{\Phi}_{\mid T\left(u^{*} N\right) \oplus T\left(u^{*} N\right)} .
$$

The canonical torsion $T^{c}$ on $u^{*} N$ is also given by $u^{*} T^{c}:=\tilde{T}_{\mid T\left(u^{*} N\right) \oplus T\left(u^{*} N\right)}^{c}$.

### 4.2.2 Vertical harmonicity equation

We know that the structure group $H$ of $\pi_{M}: Q \rightarrow M$ is reducible to $K$ (i.e. there exists an $K$ bundle $\pi_{M}^{\prime}: Q^{\prime} \rightarrow M$ ) if and only if the associated bundle $\pi: N \rightarrow M$ admits a (global) section $s: M \rightarrow N$ (see [33]) so that there is a one to one correspondance between the $K$-reductions of $\pi_{M}$ and the space of sections $\mathcal{C}(\pi)$.
Let $\omega^{\prime}=\omega_{\mathfrak{h} \mid T Q^{\prime}}$. Then $\omega^{\prime}$ a connection in $\pi_{M}^{\prime}$, and $\omega$ is reducible if and only if $\omega_{\mid T Q^{\prime}}=\omega^{\prime}$ (see [33]). The reducibility of $\omega$ can be characterized as follows.

Proposition 4.2 The following statements are equivalent:
(i) $s$ is horizontal;
(ii) $s^{*} \phi=0$;
(iii) $s$ is an isometric immersion;
(iv) $\omega$ is reducible

Now we have the following expression of the tension field for sections $s: M \rightarrow N$.
Theorem 4.5 423] For all $s \in \mathcal{C}(\pi)$,

$$
I\left(\tau^{v}(s)\right)=-d^{*}\left(s^{*} \phi\right)+\frac{1}{2} \operatorname{Tr}\left(s^{*} \phi^{*} \mathrm{U}\right)
$$

where $d^{*}$ is the coderivative for $s^{*} \mathfrak{p}_{Q}$-valued differential forms on $M$ relative to the s-pullback of any connection in $\mathfrak{p}_{Q}$ which is $\phi$-equivalent to $\nabla^{c}$. In particular, if $H / K$ is naturally reductive then $s$ is an harmonic section if and only if $s^{*} \phi$ is coclosed.

Remark 4.4 If $H / K$ is naturally reductive, to compute the vertical tension field $\tau^{v}(s)=$ $\operatorname{Tr}\left(\nabla^{v} d^{v} s\right)$, we can use instead of $\nabla^{v}$ any connection in $\mathcal{V} \cong \mathfrak{p}_{Q}$ which is $\phi$-equivalent to $\nabla^{c}$.

From the homogeneous structure equation (60), we obtain

$$
s^{*} \Phi=d^{c}\left(s^{*} \phi\right)+\frac{1}{2}\left[s^{*} \phi \wedge s^{*} \phi\right]_{\mathfrak{p}}
$$

hence every horizontal section is flat (i.e. $s^{*} \Phi=0$ ).
Let us introduce the following 3-covariant tensor $\left\langle s^{*} \phi \otimes s^{*} \Phi\right\rangle$ on $M$ :

$$
\left\langle s^{*} \phi \otimes s^{*} \Phi\right\rangle(X, Y, Z)=\left\langle s^{*} \phi(X), s^{*} \Phi(Y, Z)\right\rangle
$$

then we have
Theorem 4.6 For all $s \in \mathcal{C}(\pi)$ we have
(i) $\phi(\nabla d s)=\nabla^{c}\left(s^{*} \phi\right)+\frac{1}{2} s^{*} \phi^{*} \mathrm{~B}-\frac{1}{2} s^{*} \Phi$.

In particular, if $s$ is vertically geodesic then $s$ is a harmonic section.
(ii) $2 g\left(\pi_{*} \nabla d s(X, Y), Z\right)=\left\langle s^{*} \phi \otimes s^{*} \Phi\right\rangle(X, Y, Z)+\left\langle s^{*} \phi \otimes s^{*} \Phi\right\rangle(Y, X, Z)$.

Therefore $s$ is horizontally geodesic if and only if $\left\langle s^{*} \phi \otimes s^{*} \Phi\right\rangle$ is a 3-form on $M$. In particular, if $s$ is flat then $s$ is horizontally geodesic.

## Theorem 4.7 49]

(i) The symmetric and skew symmetric components of $\Pi^{v} s:=\nabla^{v} d^{v} s$ are given by:

$$
I\left(\Pi^{v} s\right)=\phi \circ \nabla d s+\frac{1}{2} s^{*} \Phi
$$

(ii) The section $s$ is superflat if and only if $s$ is flat and totally geodesic. In particular, if $s$ is flat then $s$ is totally geodesic if and only if $s$ is super-flat.
(iii) Moreover $\tau^{v}(s)$ is the vertical component of the tension field $\tau(s)$. So if $s$ is an harmonic map, then it is certainly a harmonic section.

Theorem 4.8 [43] An harmonic section $s$ is a harmonic map if and only if $\left\langle s^{*} \phi, s^{*} \Phi\right\rangle=0$ where

$$
\left\langle s^{*} \phi, s^{*} \Phi\right\rangle(X)=\sum_{i}\left\langle s^{*} \phi \otimes s^{*} \Phi\right\rangle\left(E_{i}, E_{i}, X\right)
$$

for any orthonormal tangent frame $\left(E_{i}\right)$ of $M$.
In particular, if $s$ is flat $\left(s^{*} \Phi=0\right)$ then $s$ is a harmonic map if and only if $s$ is a harmonic section.

Remark 4.5 Let us consider the situation described by examples 4.1 and 4.8. Then if $f^{*} \Phi=0$, $f: L \rightarrow N$ is vertically harmonic if and only if $\tilde{f}: L \rightarrow u^{*} N$ is an harmonic section if and only if $\tilde{f}: L \rightarrow u^{*} N$ is an harmonic map. But it does not imply that $f: L \rightarrow N$ is harmonic! (See the Appendix.) Indeed in the previous theorem it is essential that $s$ be a section: $\pi \circ s=\mathrm{Id}$.

In fact the previous theorems can be easily generalized for non section map. The proofs in (42] holds without any change for theorems 4.5, 4.6-(i), 4.7 (i, iii), while for theorems 4.6-(ii), 4.7 (ii), 4.8: follow the proof of 42], just replace the starting equation $\pi \circ s=\operatorname{Id}$ by $\pi \circ s=u$. Then we obtain

Theorem 4.9 For all $s \in C^{\infty}(M, N)$, we have
(i) $I\left(\tau^{v}(s)\right)=-d^{*}\left(s^{*} \phi\right)+\frac{1}{2} \operatorname{Tr}\left(s^{*} \phi^{*} \mathrm{U}\right)$
(ii) $\phi(\nabla d s)=\nabla^{c}\left(s^{*} \phi\right)+\frac{1}{2} s^{*} \phi^{*} \mathrm{~B}-\frac{1}{2} s^{*} \Phi$.

In particular if $s$ is vertically geodesic then $s$ is a harmonic section.
(iii) $I\left(\Pi^{v} s\right)=\phi \circ \nabla d s+\frac{1}{2} s^{*} \Phi$. The map $s$ is superflat if and only if $s$ is flat and vertically geodesic. Moreover $\tau^{v}(s)$ is the vertical component of the tension field $\tau(s)$. So if $s$ is an harmonic map, then it is certainly vertically harmonic.
(iv) $2 g\left(\pi_{*} \nabla d s(X, Y), u_{*} Z\right)=\left\langle s^{*} \phi \otimes s^{*} \Phi\right\rangle(X, Y, Z)+\left\langle s^{*} \phi \otimes s^{*} \Phi\right\rangle(Y, X, Z)+2 g\left(\nabla d u(X, Y), u_{*} Z\right)$. Let us suppose now that $u$ is an immersion, then this equation determines the horizontal part of $\nabla d s$. In particular, if $s$ is flat then $s$ is horizontally geodesic if and only if $u$ is totally geodesic; and $s$ is totally geodesic if and only if $s$ is superflat and $u$ is totally geodesic.
(v) A vertically harmonic map $s$ is a harmonic map if and only if

$$
g(\tau(u), \cdot)+\left\langle s^{*} \phi, s^{*} \Phi\right\rangle=0 .
$$

In particular if $s$ is flat, then $s$ is a harmonic map if and only if $s$ is vertically harmonic and $u=\pi \circ s$ is harmonic.

We could also deduce this generalisation from the previous theorems 4.5 4.8 themself. Indeed we can apply these to the section $\tilde{s} \in \mathcal{C}\left(u^{*} N\right)$ corresponding to $s$ and use theorems 7.1 and 7.2 in the Appendix, but we must suppose in addition that $u$ is an isometry.
Let us go further in the generalisation and consider maps $f \in \mathcal{C}^{\infty}(L, N)$ with $(L, b)$ a Riemannian manifold (see examples 4.1 and 4.8). Then the proofs in 42 holds fo theorems 4.5, 4.6 -(i), 4.7 -(i, iii), whereas theorems 4.6 -(ii), 4.7 -(ii), 4.8 are no longer valid. Indeed the equation in theorem 4.9-(iii) holds, but it gives us only $\left[\pi_{*} \nabla d f\right]_{u_{*} T L}$, the component of $\left[\pi_{*} \nabla d f\right]$ in the tangent bundle $u_{*} T L$. So if we want $\left[\pi_{*} \nabla d f\right]_{\left(u_{*} T L\right)^{\perp}}$ we must introduce the 3 -linear form $\left\langle f^{*} \phi \otimes f^{*} \Phi_{(1, \cdot)}\right\rangle \in \mathcal{C}\left(T^{*} L \otimes T^{*} L \otimes f^{*} \mathcal{H}\right)$ defined by :

$$
\left\langle f^{*} \phi \otimes f^{*} \Phi_{(1, \cdot)}\right\rangle(a, b, Z)=\left\langle f^{*} \phi(a), \Phi\left(f_{*} a, Z\right)\right\rangle .
$$

Then we have
Theorem 4.10 For all $f \in \mathcal{C}^{\infty}(L, N)$, we have
(i) $g\left(\pi_{*} \nabla d f(a, b), \pi^{*} Z\right)=\left\langle f^{*} \phi \odot f^{*} \Phi_{(1, \cdot)}\right\rangle(a, b, Z)+g\left(\nabla d u(a, b), \pi_{*} Z\right)$.

In particular, if $f$ is strongly flat i.e. $\left(f^{*} \Phi_{(1, \cdot)}=\Phi_{f}(d f, \cdot)=0\right)$ then:

- $f$ is horizontaly geodesic if and only if $u$ is totally geodesic.
- $f$ is totally geodesic if and only if $f$ is superflat and $u$ is totally geodesic.
(ii) A vertically harmonic map $f$ is a harmonic map if and only if

$$
g(\tau(u), \cdot)+\left\langle f^{*} \phi, f^{*} \Phi_{(1, \cdot)}\right\rangle=0
$$

where $\left\langle f^{*} \phi, f^{*} \Phi_{(1, \cdot)}\right\rangle(X)=\sum_{i}\left\langle f^{*} \phi \otimes f^{*} \Phi_{(1, \cdot)}\right\rangle\left(e_{i}, e_{i}, X\right)$ for any tangent frame ( $e_{i}$ ) of $L$. In particular if $f$ is strongly flat $\left(f^{*} \Phi_{(1, \cdot)}=0\right)$ then $f$ is a harmonic map if and only if $f$ is vertically harmonic and $u$ is harmonic.

### 4.2.3 Reductions of homogeneous fibre bundles

Let us suppose now that the structure group $H$ of $\pi_{M}: Q \rightarrow M$ is reducible to a (closed) subgroup $H^{\mathrm{v}} \supset K$. That is to say, there exists a principal $H^{\mathrm{v}}$-subbundle $\pi_{M}^{\mathrm{v}}: Q^{\mathrm{v}} \rightarrow M$. Let us suppose in addition to that, that $H^{\mathrm{v}} / K$ is reductive: $\mathfrak{h}^{\mathrm{v}}=\mathfrak{k} \oplus \mathfrak{p}^{\mathrm{v}}$ and $\operatorname{Ad} k\left(\mathfrak{p}^{\mathrm{v}}\right)=\mathfrak{p}^{\mathrm{v}}, \forall k \in K$. The restriction to $\mathfrak{p}^{\mathrm{v}}$ of the $\mathrm{Ad} K$-invariant inner product on $\mathfrak{p}$ defines a $H^{\mathrm{v}}$-invariant metric on $H^{\mathrm{v}} / K$ which is nothing but the metric induced by the $H$-invariant metric on $H / K$, so that the inclusion $H^{\mathrm{v}} / K \rightarrow H / K$ is an isometric embedding. Let $\mathfrak{p}^{\prime}=\left(\mathfrak{p}^{\mathrm{v}}\right)^{\perp}$ in $\mathfrak{p}$ and let us suppose that $\mathfrak{p}^{\prime}$ is $\operatorname{Ad} H^{\mathrm{v}}$-invariant, so that $\mathfrak{h}=\mathfrak{h}^{\mathrm{v}} \oplus \mathfrak{p}^{\prime}$ is a reductive decomposition and $H / H^{\mathrm{v}}$ is reductive. Conversely if $H / H^{\mathrm{v}}$ is reductive: $\mathfrak{h}=\mathfrak{h}^{\mathrm{v}} \oplus \mathfrak{p}^{\prime}$ with $\mathfrak{p}^{\prime} \operatorname{Ad} H^{\mathrm{v}}$-invariant, then we can always complete any $\operatorname{Ad} H^{\mathrm{v}}$-inner product in $\mathfrak{p}^{\prime}$ by an $\operatorname{Ad} K$-invariant inner product $\mathfrak{p}=\mathfrak{p}^{\mathrm{v}} \oplus \mathfrak{p}^{\prime}$ :

$$
\langle,\rangle_{\mathfrak{p}}=\langle,\rangle_{\mathfrak{p}^{v}}+\langle,\rangle_{\mathfrak{p}^{\prime}}
$$

for which $\mathfrak{p}^{\prime}=\left(p^{\mathbf{v}}\right)^{\perp}$ in $\mathfrak{p}$.
In the following we suppose that $H / H^{\mathrm{v}}$ is reductive andthat the inner product in $\mathfrak{p}$ is chosen as described above.
Now let us turn toward the connection 1-form $\omega$. Its restriction $\omega^{\mathrm{v}}:=\omega_{\mathfrak{h}^{\mathrm{v}} \mid T Q^{\mathrm{v}}}$ defines a connection on $\pi_{M}^{\mathrm{v}}: \rightarrow M$. We endow $Q^{\mathrm{v}}$ with $\omega^{\mathrm{v}}$ and $\left(Q^{\mathrm{v}}, H^{\mathrm{v}}, K, \omega^{\mathrm{v}}\right)$ is then a homogeneous fibre bundle as defined in the begining of 4.2 .
Moreover $\omega$ is reducible (to $\omega^{\mathrm{v}}$ ) in $Q^{\mathrm{v}}$ if and only if one of the following equivalent statements holds (33)

- $\forall q \in Q^{\mathrm{v}},\left(\mathcal{H}_{0}\right)_{q}$ is tangent to $Q^{\mathrm{v}}$.
- $\omega_{\mid T Q^{\mathrm{v}}}=\omega^{\mathrm{v}}$ (i.e. $\omega_{\mid T Q^{\mathrm{v}}}$ is $\mathfrak{h}^{\mathrm{v}}$-valued).
- The canonical cross section $s^{\mathrm{v}}$ of the associated bundle $E^{\mathrm{v}}:=Q / H^{\mathrm{v}}=Q \times{ }_{H}\left(H / H^{\mathrm{v}}\right)$, which defines the $H^{\mathrm{v}}$-reduction $Q^{\mathrm{v}}$ is horizontal.
The vertical bundle (in $T Q$ ), $\mathcal{V}_{0}$, splits as follows

$$
\mathcal{V}_{0}=\mathcal{V}_{0}^{\prime} \oplus \mathcal{V}_{0}^{\mathbf{v}}
$$

where $\left(\mathcal{V}_{0}^{\mathrm{v}}\right)_{q}=q \cdot \mathfrak{h}^{\mathrm{v}}=T_{q}\left(q \cdot H^{\mathrm{v}}\right)$ and $\left(\mathcal{V}_{0}^{\prime}\right)_{q}=q \cdot \mathfrak{p}^{\prime}$, and quotienting by $\mathfrak{k}$, i.e. by applying $d \pi_{N}$ we obtain the following decomposition of $\mathcal{V}$ :

$$
\mathcal{V}=\mathcal{V}^{\prime} \oplus \mathcal{V}^{\mathrm{V}}
$$

with $\mathcal{V}^{\prime}=d \pi_{N}\left(\mathcal{V}_{0}^{\prime}\right)$ and $\mathcal{V}^{\mathrm{v}}=d \pi_{N}\left(\mathcal{V}_{0}^{\mathrm{v}}\right)$.
Then the canonical isomorphism $I: \mathcal{V} \rightarrow \mathfrak{p}_{Q}$ sends the previous decomposition onto the following $\mathfrak{p}_{Q}=\mathfrak{p}_{Q}^{\prime} \oplus \mathfrak{p}_{Q}^{\mathrm{v}}$ (i.e. $\mathcal{V}^{\prime}, \mathcal{V}^{\mathbf{v}}$ are sent resp. onto $\mathfrak{p}_{Q}^{\prime}$ and $\mathfrak{p}_{Q}^{\mathrm{v}}$ ).
Then the vertical space in $T N^{\mathrm{v}}$ is $\mathcal{V}_{\|^{\mathrm{v}}}^{\mathrm{v}}$ that we will also denote by $\mathcal{V}^{\mathrm{v}}$ when there is no possibilities of confusion. The splitting of $T N^{\mathrm{v}}$ by $\omega^{\mathrm{v}}$ is then

$$
T N^{\mathrm{v}}=\mathcal{V}_{\mid N^{\mathrm{v}}} \oplus \mathcal{H}_{\mid N^{\mathrm{v}}}^{\mathrm{v}}
$$

where $\mathcal{H}^{\mathrm{v}}=d \pi_{N}\left(\mathcal{H}_{0}^{\mathrm{v}}\right)$ and $\mathcal{H}_{0}^{\mathrm{v}}=\operatorname{ker} \omega_{\mathfrak{h}^{\mathrm{v}}}$. Let us remark that $\omega$ is reducible if and only if $\mathcal{H}_{\mid N^{\mathrm{v}}}^{\mathrm{v}}=\mathcal{H}_{\mid N^{\mathrm{v}}}$.
The canonical bundle on $N^{\mathrm{v}}, \mathfrak{p}_{Q^{\mathrm{v}}}^{\mathrm{v}}=Q^{\mathrm{v}} \times_{K} \mathfrak{p}^{\mathrm{v}} \rightarrow N^{\mathrm{v}}$ is the restriction to $N^{\mathrm{v}}$ of $\mathfrak{p}_{Q}^{\mathrm{v}} \rightarrow N$, and the canonical isomorphism $I^{\mathrm{v}}: \mathcal{V}_{\mid N^{\mathrm{v}}}^{\mathrm{v}} \rightarrow \mathfrak{p}_{Q^{\mathrm{v}}}^{\mathrm{v}}$ is the restriction to $\mathcal{V}_{\mid N^{\mathrm{v}}}^{\mathrm{v}}$ of $I: \mathcal{V} \rightarrow \mathfrak{p}_{Q}$.
Since $\omega=\omega_{\mathfrak{p}^{v}}+\omega_{\mathfrak{p}^{\prime}}$, the homogeneous connection form on $N^{\mathrm{v}}, \phi^{\mathrm{v}}$ (the $\mathfrak{p}_{Q^{\mathrm{v}}}^{\mathrm{v}}$-valued 1-form on $N^{\mathrm{v}}$ defined by $\left.\omega_{\mathfrak{p}^{v}}\right)$ is the restriction to $N^{v}$ of the $\mathfrak{p}_{Q}^{\mathrm{v}}$-component of $\phi$ :

$$
\phi^{\mathrm{v}}=[\phi]_{\mathfrak{p}_{Q}^{\mathrm{v}}} \mid N^{\mathrm{v}}=\left[\phi_{\mid N^{\mathrm{v}}}\right]_{\mathfrak{p}_{Q^{\mathrm{v}}}^{v}} .
$$

The homogeneous curvature form $\Phi^{\mathrm{v}}$ (defined by $\Omega_{\mathfrak{p}^{\mathrm{v}}}^{\mathrm{v}}$, with $\Omega^{\mathrm{v}}=d \omega^{\mathrm{v}}+\frac{1}{2}\left[\omega^{\mathrm{v}} \wedge \omega^{\mathrm{v}}\right]$ ) is given by

$$
\Phi^{\mathrm{v}}=[\Phi]_{\mathfrak{p}_{Q}^{\mathrm{v}} \mid N^{\mathrm{v}}}=\left[\Phi_{\mid N^{\mathrm{v}}}\right]_{\mathfrak{p}_{Q^{v}}^{v}}
$$

Furthermore, $\mathfrak{p}_{Q^{v}}^{v}$ is $\nabla^{c}$-parallel: the covariant derivative on $\mathfrak{p}_{Q^{v}}^{v}$ defined by $\omega_{\mathfrak{k} \mid T Q^{\mathrm{v}}}$ is the restriction of $\nabla^{c}$ to $\mathfrak{p}_{Q^{v}}^{v}$. In other words $\nabla^{c}$ commutes with the projection on $\mathfrak{p}_{Q}^{v}$. The canonical torsion on $N^{\mathrm{v}}$ is given by

$$
\left(T^{c}\right)^{\mathrm{v}}=d^{c} \phi^{\mathrm{v}}=\left[T^{c}\right]_{\mathfrak{p}_{Q}^{\mathrm{v}} \mid N^{\mathrm{v}}}
$$

Let us denote by $\tau^{\mathrm{v}}(s)$ the vertical tension field of $s \in \mathcal{C}^{\infty}\left(M, N^{\mathrm{v}}\right)$. According to theorem 4.7, we have $\tau^{v}(s)=\left[\tau_{N}(s)\right]_{\mathcal{V}}$ for all $s \in \mathcal{C}^{\infty}(M, N)$, and $\tau^{\mathrm{v}}(s)=\left[\tau_{N^{\mathrm{v}}}(s)\right]_{\mathcal{V}^{\mathrm{v}}}$ for all $s \in \mathcal{C}^{\infty}\left(M, N^{\mathrm{v}}\right)$. But if $\omega$ is reducible in $Q^{\mathrm{v}}$, then the inclusion $N^{\mathrm{v}} \rightarrow N$ is an isometry and hence the Levi-Civita connection in $N^{\mathrm{v}}$ is the orthogonal projection in $T N^{\mathrm{v}}$ of the Levi-Civita connection in $N$. Thus we have $\tau_{N^{\mathrm{v}}}(s)=\left[\tau_{N}(s)\right]_{T N^{\mathrm{v}}}$ for all $s \in \mathcal{C}^{\infty}\left(M, N^{\mathrm{v}}\right)$, so that $\tau^{\mathrm{v}}(s)=\left[\left[\tau_{N}(s)\right]_{T N^{\mathrm{v}}}\right]_{\mathcal{V}^{\mathrm{v}}}=\left[\tau_{N}(s)\right]_{\mathcal{V}^{\mathrm{v}}}$. Therefore we obtain

Theorem 4.11 Let us suppose that $\omega$ is reducible in $Q^{\mathrm{v}}$. Let $s \in \mathcal{C}^{\infty}\left(M, N^{\mathrm{v}}\right)$, then $s$ is vertically harmonic in $N\left(\tau^{v}(s)=0\right)$ if and only if it is vertically harmonic in $N^{\mathrm{v}}\left(\tau^{\mathrm{v}}(s)=0\right)$ and $\left[\tau_{N}(s)\right]^{\nu^{\prime}}=0$. In particular if $s$ is vertically harmonic in $N$ then it is also vertically harmonic in $N^{\mathrm{v}}$.

### 4.3 Examples of Homogeneous fibre bundles

In this section, we give examples and applications for the theory developped in the previous sections whose we use here the same notations.

### 4.3.1 Homogeneous spaces fibration

Let us take $Q=G$ a Lie group, and $K \subset H \subset G$ subgroups of $G,(H, K)$ satisfying the hypothesis in the begining of section 4.2.1. Let us suppose that $M=G / H$ is reductive and Riemannian: that is to say if $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ is the reductive decomposition, then $\operatorname{Ad}_{\mathfrak{m}} H$ is compact and we choose an $\operatorname{Ad} H$-invariant inner product $\langle,\rangle_{\mathfrak{m}}$ in $\mathfrak{m}$. For $\omega$, we take the canonical connection on $\pi_{M}: G \rightarrow G / H$ which is given, let us recall it, by $\omega=\theta_{\mathfrak{h}}$ where $\theta$ is the Maurer-Cartan form in $G$ (see section 1.3). Then the corresponding decomposition $T Q=\mathcal{V}_{0} \oplus \mathcal{H}_{0}$ is given by

$$
T_{g} G=g \cdot \mathfrak{g}=\underbrace{g \cdot \mathfrak{h}}_{\mathcal{V}_{0}} \oplus \underbrace{g \cdot \mathfrak{m}}_{\mathcal{H}_{0}} .
$$

Since $\mathfrak{n}:=\mathfrak{p} \oplus \mathfrak{m}$ is $\operatorname{Ad} K$ - invariant, then $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{n}$ is a reductive decomposition and $N=G / K$ is reductive. Let us recall that we have the canonical identification $G \times_{K} \mathfrak{g} \cong N \times \mathfrak{g}$ given by (7), which gives us an identification $\mathfrak{n}_{G}=G \times_{K} \mathfrak{n} \cong[\mathfrak{n}]$. Then under this last identification and under the one given by the Maurer-Cartan form of $G / K, \beta: T N \xrightarrow{\cong}[\mathfrak{n}]$ (see section 1.2), the splitting $T N=\mathcal{V} \oplus \mathcal{H}$ is

$$
T N=[\mathfrak{p}] \oplus[\mathfrak{m}],
$$

the canonical isomorphism $I: \mathcal{V} \rightarrow \mathfrak{p}_{G}$ is then the identity, and $\phi: T N \rightarrow \mathfrak{p}_{G}$ the projection on $[\mathfrak{p}]$ along $[\mathfrak{m}]$. The metric $h$ on $G / K$ is then defined by the $\operatorname{Ad} K$-invariant inner product:

$$
\langle,\rangle_{\mathfrak{n}}=\langle,\rangle_{\mathfrak{p}}+\langle,\rangle_{\mathfrak{m}} .
$$

Furthermore, $\Omega=d \omega+\frac{1}{2}[\omega \wedge \omega]=d \theta_{\mathfrak{h}}+\frac{1}{2}\left[\theta_{\mathfrak{h}} \wedge \theta_{\mathfrak{h}}\right]$ and thus

$$
\Omega_{\mathfrak{p}}=d \theta_{\mathfrak{p}}+\left[\theta_{\mathfrak{k}} \wedge \theta_{\mathfrak{p}}\right]+\frac{1}{2}\left[\theta_{\mathfrak{p}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}}
$$

Since $d \theta+\frac{1}{2}[\theta \wedge \theta]=0$, then (projecting on $\mathfrak{h}$ ) we have

$$
d \theta_{\mathfrak{h}}+\frac{1}{2}\left[\theta_{\mathfrak{h}} \wedge \theta_{\mathfrak{h}}\right]+\frac{1}{2}\left[\theta_{\mathfrak{m}} \wedge \theta_{\mathfrak{m}}\right]_{\mathfrak{h}}=0
$$

thus

$$
\Omega=-\frac{1}{2}\left[\theta_{\mathfrak{m}} \wedge \theta_{\mathfrak{m}}\right]_{\mathfrak{h}}
$$

so that

$$
\begin{equation*}
\Omega_{\mathfrak{p}}=-\frac{1}{2}\left[\theta_{\mathfrak{m}} \wedge \theta_{\mathfrak{m}}\right]_{\mathfrak{p}} \tag{64}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\Phi=-\frac{1}{2}[\psi \wedge \psi]_{\mathfrak{p}} \tag{65}
\end{equation*}
$$

where $\psi: T N \rightarrow \mathcal{H}=[\mathfrak{m}]$ is the projection on $\mathcal{H}$ along $\mathcal{V}=[\mathfrak{p}]$.
The covariant derivative $\nabla^{c}$, which lifts into $d+\theta_{\mathfrak{k}}$ in $G$, is nothing but the canonical affine connection $\nabla^{0}$ in $N=G / K$ restricted to $[\mathfrak{p}] \subset T N$ (see section 1.4 and 1.5).
The canonical torsion $T^{c}$, which lifts in $G$ into

$$
\begin{equation*}
d \theta_{\mathfrak{p}}+\left[\theta_{\mathfrak{k}} \wedge \theta_{\mathfrak{p}}\right]=-\frac{1}{2}\left[\theta_{\mathfrak{m}} \wedge \theta_{\mathfrak{m}}\right]_{\mathfrak{p}}-\frac{1}{2}\left[\theta_{\mathfrak{p}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}} \tag{66}
\end{equation*}
$$

is given by ${ }^{26}$

$$
\begin{aligned}
T^{c} & =-\frac{1}{2}[\psi \wedge \psi]_{\mathfrak{p}}-\frac{1}{2}[\phi \wedge \phi]_{\mathfrak{p}} \\
& =[,]_{\mathfrak{n}}+[\phi \wedge \psi]_{\mathfrak{p}}
\end{aligned}
$$

The associated bundle

$$
\mathfrak{h}_{G}=G \times_{H} \mathfrak{h} \cong[\mathfrak{h}]^{M}:=\left\{\left(g \cdot p_{0}, \operatorname{Ad} g(a)\right), g \in G, a \in \mathfrak{h}\right\} \subset M \times \mathfrak{g}
$$

can be embedded into $\mathfrak{s o}(T M)$ by ${ }^{27}$

$$
\begin{equation*}
\xi=\operatorname{Ad} g(a) \in \operatorname{Ad} g(\mathfrak{h})=[\mathfrak{h}]_{g \cdot p_{0}}^{M} \longmapsto \operatorname{ad} \xi_{\mid \operatorname{Ad} g(\mathfrak{m})}=\operatorname{Ad} g \circ \operatorname{ad}_{\mathfrak{m}} a \circ \operatorname{Ad}^{-1} \in \mathfrak{s o}(\operatorname{Ad} g(\mathfrak{m})) . \tag{67}
\end{equation*}
$$

In the same way, $\mathfrak{k}_{G}=G \times_{K} \mathfrak{k} \cong[\mathfrak{k}]^{N}$ embedds in $\mathfrak{s o}(N)$. Moreover let us remark that we have

$$
\pi^{*} \mathfrak{h}_{G}=G \times_{K} \mathfrak{h}=[\mathfrak{h}]^{N}=\left\{\left(g . n_{0}, \operatorname{Ad} g(a)\right), g \in G, a \in \mathfrak{h}\right\}
$$

and that $\pi^{*} \mathfrak{h}_{G}$ embedds into $\mathfrak{s o}\left(\pi^{*} T M\right)$.
As concerns the covariant derivative $\nabla^{\omega}$, defined in $\mathfrak{h}_{G}$, it lifts into $d+\theta_{\mathfrak{h}}$ in $G$ and under the embedding (67), it is nothing but the restriction to the subbundle $\mathfrak{s o}(T M)$ of the endomorphism connection on $M$ (i.e. the tensor product connection in $T^{*} M \otimes T^{*} M$ ) defined by the canonical

[^17]affine connection in $M, \stackrel{M}{\nabla^{0}}$. Indeed under the embedding (67), $\nabla^{\omega}$ lifts to the derivative $d+\operatorname{ad}_{\mathfrak{m}} \theta_{\mathfrak{h}}$ and equation (18) allows to conclude.
Therefore $\nabla^{\mathfrak{p}}$ is given by its lift ${ }^{28}$
\[

$$
\begin{equation*}
\left[\left(d+\theta_{\mathfrak{h}}\right)_{\mathfrak{p}}\right]_{\mathfrak{p}}=d+\operatorname{ad}_{\mathfrak{p}} \theta_{\mathfrak{k}}+\left[\theta_{\mathfrak{p}}, \cdot \cdot_{\mathfrak{p}}\right]_{\mathfrak{p}} \tag{68}
\end{equation*}
$$

\]

that is to say $\nabla^{\mathfrak{p}}$ is the [p]-component of the affine connection $\nabla^{1}$ in $G / K$ (see section 1.6) restricted to $[\mathfrak{p}] \subset T N$. (Indeed we have $\left[\theta_{\mathfrak{n}}, \cdot_{\mathfrak{p}}\right]_{\mathfrak{p}}=\left[\theta_{\mathfrak{p}}, \cdot_{\mathfrak{p}}\right]_{\mathfrak{p}}+\left[\theta_{\mathfrak{m}}, \cdot_{\mathfrak{p}}\right]_{\mathfrak{p}}$, but $[\mathfrak{m}, \mathfrak{p}] \subset[\mathfrak{m}, \mathfrak{h}] \subset \mathfrak{m}$ by reductivity.)

Moreover the Levi-Civita connection in $N$ is given by (see section 1.6 )

$$
\stackrel{N}{\nabla}=\nabla^{\frac{1}{2}}=\nabla^{0}+\frac{1}{2} \mathrm{~B}^{N}
$$

where $\mathrm{B}^{N}=[,]_{[\mathrm{n}]}+\mathrm{U}^{N}$ and $\mathrm{U}^{N}$ is defined by equation (15). Then we have by taking the projection on the vertical subbundle $[\mathfrak{p}]$ :

$$
\phi\left(\nabla_{A}^{N} V\right)=\nabla_{A}^{0}(\phi V)+\frac{1}{2} \phi \circ \mathrm{~B}^{N}(A, V)
$$

so that we can conclude according to theorem (4.3) that

$$
\phi \circ \mathrm{B}^{N}=\phi^{*} \mathrm{~B}-\Phi
$$

which can be verified directly using the expressions of $\mathrm{B}^{N}, \mathrm{~B}$ and $\Phi$.
If $H / K$ is (locally) symmetric. In this case, we have $T^{c}=\Phi$ (see (60), or (66) and (64)). Moreover, according to (68), $\nabla^{\mathfrak{p}}$ lifts to $d+\theta_{\mathfrak{k}}$, so that we recover that $\nabla^{\mathfrak{p}}=\nabla^{c}$ in this case. Now, let us apply the equality $\nabla^{v}=\nabla^{c}$ in $\mathcal{V}$ (theorem 4.3) ${ }^{29}$.
Let $f:(L, b) \rightarrow N$ be a map then we have

$$
\tau^{v}(f)=\operatorname{Tr}_{b}\left(\nabla^{v} d^{v} f\right)=* d^{\nabla^{v}} * d^{v} u=* \operatorname{Ad} F\left(d\left(* \alpha_{\mathfrak{p}}\right)+\left[\alpha_{\mathfrak{k}} \wedge\left(* \alpha_{\mathfrak{p}}\right)\right]\right) \cdot f
$$

where $F$ lifts $f$ in $G$ and $\alpha=F^{-1} d F$. Then $f$ is vertically harmonic if and only if

$$
d\left(* \alpha_{\mathfrak{p}}\right)+\left[\alpha_{\mathfrak{k}} \wedge\left(* \alpha_{\mathfrak{p}}\right)\right]=0
$$

Moreover $f$ is flat $\left(f^{*} \Phi=0\right)$ if and only if it is vertically torsion free $\left(f^{*} T^{c}=0\right)$ if and only if

$$
\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{p}}=0 \Longleftrightarrow d \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{p}}\right]=0
$$

$G / K$ is a (locally) $2 k$-symmetric space Let us suppose that there exists an order $2 k$ automorphism $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $K=G_{0}$ with $G_{0}$ such that $\left(G^{\tau}\right)^{0} \subset G_{0} \subset G^{\tau}$, and $\left(G^{\sigma}\right)^{0} \subset H \subset G^{\sigma}$ with $\sigma=\tau^{2}$ (see section 2.1). Then $H / K$ is (locally) symmetric (see section 2.1). We have the following identities (with the notation of section 2.1)

$$
\mathfrak{m}=\oplus_{j=1}^{k-1} \mathfrak{m}_{j} \quad \text { and } \quad \mathfrak{k}=\mathfrak{g}_{0}, \mathfrak{p}=\mathfrak{g}_{k}
$$

Then we have

$$
\Omega_{\mathfrak{p}}=\frac{1}{2}\left[\theta_{\mathfrak{m}} \wedge \theta_{\mathfrak{m}}\right]_{\mathfrak{p}}=-\frac{1}{2} \sum_{\substack{i+j=k \\ i, j \in \mathbb{Z}_{2 k} \backslash\{0, k\}}}\left[\theta_{j} \wedge \theta_{i}\right],
$$

so that in particular

[^18]Proposition 4.3 Let $(L, j)$ be a Riemann surface. If $f:(L, j) \rightarrow N$ satisfies the equations $\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1$ then we have $f^{*} \Phi=0$. In other words if $f:(L, j) \rightarrow N$ is horizontally holomorphic then it it is flat, that is to say $f$ is vertically torsion free or equivalently

$$
\begin{equation*}
d \alpha_{k}+\left[\alpha_{0} \wedge \alpha_{k}\right]=0 \tag{69}
\end{equation*}
$$

Theorem 4.12 In the even determined elliptic integrable system $(\operatorname{Syst}(k, \tau))$, the last equation $\left(S_{k}\right)$ is equivalent to

$$
\left\{\begin{aligned}
\left(\operatorname{Re}\left(S_{k}\right)\right) & \equiv d \alpha_{k}+\left[\alpha_{0} \wedge \alpha_{k}\right]=0
\end{aligned} \Longleftrightarrow \Longleftrightarrow f \text { is vertically torsion free i.e. } f \text { is flat, }, ~ \Longleftrightarrow d\left(* \alpha_{k}\right)+\left[\alpha_{0} \wedge\left(* \alpha_{k}\right)\right]=0 \quad \Longleftrightarrow\right. \text { is vertically harmonic. }
$$

In conclusion the even determined elliptic system $(\operatorname{Syst}(k, \tau))$ means that the geometric map $f$ is horizontally holomorphic (which implies that $f$ is flat) and vertically harmonic.

Remark 4.6 The vertical torsion free equation (69) is the projection on $\mathfrak{p}$ of the Maurer-Cartan equation provided that we assume the horizontal holomorphicity $\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1$. In the same way, the equations $\left(S_{j}\right), 0 \leq j \leq k-1$, of the elliptic system ( $\operatorname{Syst}(k, \tau)$ ), are the projections on the different spaces $\mathfrak{g}_{-j}$, of the Maurer-Cartan equation, provided that we assume the horizontal holomorphicity. In section 2, this hyphothesis was (sometimes) implicitely assumed implicitely by definition of $\alpha: \alpha^{\prime}=u$.

Use of the canonical $2 k$-structure $\mathfrak{I}_{J_{0}}$. Furthermore the morphism of bundle (over $M$ ) $\mathfrak{I}_{J_{0}}: N \rightarrow \mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right) \subset \mathcal{Z}_{2 k}^{\alpha_{0}}(M)$ defines a $2 k$-structure on $\pi^{*} T M$ (still denoted by $\mathfrak{I}_{J_{0}}$ ), which according to (23) allows to precise the subbundles $\mathfrak{k}_{G}$ and $\mathfrak{p}_{G}$ (under the embedding $\left.\pi^{*} \mathfrak{h}_{G} \hookrightarrow \mathfrak{s o}\left(\pi^{*} T M\right)\right)$

$$
\begin{align*}
\mathfrak{k}_{G} & =\left\{A \in \pi^{*} \mathfrak{h}_{G} \mid\left[A, \mathfrak{I}_{J_{0}}\right]=0\right\}:=\mathfrak{s o}_{(+1)}\left(\pi^{*} T M, \mathfrak{I}_{J_{0}}\right) \cap \pi^{*} \mathfrak{h}_{G}  \tag{70}\\
\mathfrak{p}_{G} & =\left\{A \in \pi^{*} \mathfrak{h}_{G} \mid A \mathfrak{I}_{J_{0}}+\mathfrak{I}_{J_{0}} A\right\}:=\mathfrak{s o}_{(-1)}\left(\pi^{*} T M, \mathfrak{I}_{J_{0}}\right) \cap \pi^{*} \mathfrak{h}_{G} \tag{71}
\end{align*}
$$

Remark 4.7 The embedding $\mathfrak{h}_{G} \hookrightarrow \mathfrak{s o}(T M)$ is the $H$-equivariant extention of the map $a \in$ $\mathfrak{h} \mapsto \operatorname{ad}_{\mathfrak{m}} a \in \mathfrak{s o}(\mathfrak{m}) \cong \mathfrak{s o}\left(T_{p_{0}} M\right)$, and in the same way $\Im_{J_{0}}$ is the $H$-equivariant extention of the map $h . G_{0} \in H / G_{0} \mapsto h J_{0} h^{-1} \in \mathcal{Z}\left(T_{p_{0}} M, J_{0}\right)$, so that the equations (70) are obtained by $H$-equivariance from (23).
Let us now express the homogeneous fibre bundle tools $\phi, \Phi$, and $\nabla^{c}$ in terms of the embedding $\mathfrak{I}_{J_{0}}$. To do not weigh the notation we will forget the index $J_{0}$ in $\mathfrak{I}_{J_{0}}$, in the following theorem.

Theorem 4.13 If $A, B \in T N, F \in \mathcal{C}\left(\mathfrak{p}_{G}\right)$ then
(i) $\phi A=-\frac{1}{2} \mathfrak{I}^{-1} \nabla_{A}^{M} \mathfrak{I}$
(ii) $\Phi(A, B)=\frac{1}{2} \mathfrak{I}^{-1}\left[\mathfrak{I}, \pi^{*} R^{\nabla^{0}}(A, B)\right]$ where $R^{\nabla^{M}}$ is the curvature of $\nabla^{\nabla^{0}}$.
(iii) $\nabla_{A}^{c} F=\nabla_{A}^{0} F=\frac{1}{2} \mathfrak{I}^{-1}\left[\mathfrak{I}, \nabla_{A}^{M} F\right]$.

Theorem 4.14 Let $s \in \mathcal{C}(\pi)$ and $J=s^{*} \mathfrak{I}_{J_{0}} \in \mathcal{C}\left(\mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right)\right)$ be the corresponding $2 k$ structure. Then
(i) $I\left(d^{v} s\right)=-\frac{1}{2} J^{-1} \nabla^{M} J$. Thus $s$ is horizontal if and only if $J$ is $\nabla^{M}$-parallel.
(ii) $I\left(\Pi^{v}(s)\right)=-\frac{1}{4}\left[J^{-1},\left(\nabla^{0}\right)^{2} J\right]$.

Thus $s$ is superflat if and only if $\left(\nabla^{M}\right)^{2} J$ commutes with $J$.
(iii) $I\left(\tau^{v}(s)\right)=\frac{1}{4}\left[J^{-1},\left(\nabla^{M}\right)^{*} \nabla^{M} J\right]$.

Thus $s$ is a harmonic section if and only if $\left(\nabla^{M}\right)^{*} \nabla^{M} J$ commutes with $J$.
(iv) $s^{*} \Phi=\frac{1}{2} J^{-1}\left[J, R^{\nabla^{\nabla^{0}}}\right]$.

These properties hold also for maps $f \in \mathcal{C}^{\infty}(L, N)$, (L, b) being a Riemannian manifold: (i),(ii),(iii) without any change and (iv) becoming $f^{*} \Phi=\frac{1}{2} J^{-1}\left[J, u^{*} R^{\nabla^{(0}}\right]$, with $u=\pi \circ f$.

Corollary 4.1 Let $(L, j)$ be a Riemann surface, $f: L \rightarrow N$ a map and $J=f^{*} \mathfrak{I}_{J_{0}}$ the corresponding map into $\mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right)$. Then $f$ is a geometric solution of the even determined system (Syst $(k, \tau)$ ) if and only if
(i) $J$ is an admissible twistor lift ( $\Leftrightarrow f$ is horizontally holomorphic).
(ii) $J$ is vertically harmonic ${ }^{30}:\left[\begin{array}{c}M \\ \left(\nabla^{0}\right)^{*} \nabla^{0} J, J\end{array}\right]=0(\Leftrightarrow f$ is vertically harmonic $)$.

Moreover the first condition implies that $\left[u^{*} R^{\nabla^{M}}, J\right]=0$ i.e. that $J$ is a flat section in $\left(\operatorname{End}\left(u^{*} T M\right), u^{*} \nabla^{M}\right)(\Leftrightarrow f$ is flat $)$.
Furthermore $f$ is a primitive geometric solution (i.e. there exists $m \leq k$ such that $f$ is $m$ primitive, which is equivalent to say that $f$ is $k$-primitive) if and only if
(i) $J$ is an admissible twistor lift
(ii) $J$ is parallel: $\nabla^{M} J=0(\Leftrightarrow f$ is horizontal $)$.

### 4.3.2 The twistor bundle of almost complex structures $\Sigma(E)$

We give ourself the same ingredients as in example 4.2. Let us suppose that the vector bundle $E$ is oriented. Then the bundle of positive (resp. negative) orthogonal almost complex structure on $E$ (i.e. the component $\Sigma^{\varepsilon}(E)$ of $\Sigma(E)$ with $\varepsilon= \pm 1$ ), $\pi_{\Sigma}: \Sigma^{\varepsilon}(E) \rightarrow M$ is a homogeneous fibre bundle. Indeed, we take $Q=\mathcal{S O}(E)$ the $S O(2 n)$-bundle of positively oriented orthonormal frames of $E, H=S O(2 n)$ and $K=U(n)$ (embedded in $S O(2 n)$ via $A+i B \mapsto\left(\begin{array}{cc}A & -B \\ B & A\end{array}\right)$ ). K

[^19]is the subgroup of $S O(2 n)$ which commutes with $J_{0}^{\varepsilon}=\varepsilon\left(\begin{array}{cc}0 & -\mathrm{Id} \\ \operatorname{Id} & 0\end{array}\right)$. The involution $T=\operatorname{Int} J_{0}^{\varepsilon}$ in $S O(2 n)$ gives rise to the symmetric space $H / K=\Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right)$, and to the following symmetric decomposition $\mathfrak{h}=\mathfrak{k} \oplus \mathfrak{p}$ with

$$
\begin{aligned}
\mathfrak{k} & =\left\{A \in \mathfrak{s o}(2 n) \mid\left[A, J_{0}^{\varepsilon}\right]=0\right\} \\
\mathfrak{p} & =\left\{A \in \mathfrak{s o}(2 n) \mid A J_{0}^{\varepsilon}+J_{0}^{\varepsilon} A=0\right\} .
\end{aligned}
$$

Concerning $\omega$, we take the $\mathfrak{s o}(2 n)$-valued connection 1-form on $Q$ corresponding to the covariant derivative $\nabla$ in $E$ : if $e=\left(e_{1}, \ldots, e_{2 n}\right)$ is a (local) moving frame of $E$ (i.e. a section of $Q$ ) then

$$
\nabla\left(e_{1}, \ldots, e_{2 n}\right)=\left(e_{1}, \ldots, e_{2 n}\right) \omega(e ; d e)
$$

Now, let us consider the isomorphism of bundle:

$$
\mathcal{J}: e . U(n) \in \mathcal{S O}(E) / U(n) \stackrel{\cong}{\cong} J \in \Sigma^{\varepsilon}(E) \mid \mathcal{M} a t_{e . U(n)}(J)=J_{0}^{\varepsilon} .
$$

The isomorphism $\mathcal{J}$ defines a bijection between the set of section of $\pi: N \rightarrow M$ and the set of complex structure of $E$ (sections of $\pi_{\Sigma}$ ): $s \in \mathcal{C}(N) \rightarrow J=\mathcal{J} \circ s \in \mathcal{C}\left(\Sigma^{+}(E)\right)$.
The existence of a (positive) complex structure $J$ in $E$ - i.e. a section of $\pi_{\Sigma}: \Sigma^{+}(E) \rightarrow M-$ is equivalent to the existence of an $U(n)$-reduction of the principal bundle $\mathcal{S O}(E) \rightarrow M: J$ defines a Hermitian structure on $E$ and then the $U(n)$-subbundle of unitary frames for this Hermitian structure, and vice versa.
The isomorphism of bundle over $M, \mathcal{J}: N \rightarrow \Sigma^{+}(E)$ defines tautologically a canonical complex structure on $\pi^{*} E \rightarrow N$ (which we still denote by $\left.\mathcal{J}\right)^{[22} \mathcal{J}: N \rightarrow \Sigma^{+}\left(\pi^{*} E\right)$. Under this identification, let us precise the subbundles $\mathfrak{p}_{Q}$ and $\mathfrak{k}_{Q}$. First, we have $\mathfrak{h}_{Q}=\mathfrak{s o}(E)$, the bundle of skew-symmetric endomorphism of $E$ and then

$$
\begin{aligned}
& \left(\mathfrak{k}_{Q}\right)_{y}=\left\{F \in \mathfrak{s o}\left(E_{\pi(y)}\right) \mid[F, \mathcal{J}(y)]=0\right\}=: \mathfrak{s o}_{+}\left(E_{\pi(y)}, \mathcal{J}(y)\right)=: \mathfrak{s o}_{+}\left(\pi^{*} E\right)_{y} \\
& \left(\mathfrak{p}_{Q}\right)_{y}=\left\{F \in \mathfrak{s o}\left(E_{\pi(y)}\right) \mid F \mathcal{J}(y)+\mathcal{J}(y) F=0\right\}=: \mathfrak{s o}_{-}\left(E_{\pi(y)}, \mathcal{J}(y)\right)=: \mathfrak{s o}_{-}\left(\pi^{*} E\right)_{y} .
\end{aligned}
$$

Then the decomposition following $\pi^{*} \mathfrak{h}_{Q}=\mathfrak{k}_{Q} \oplus \mathfrak{p}_{Q}$ of any element $F \in \pi^{*} \mathfrak{h}_{Q}=\mathfrak{s o}\left(\pi^{*} E\right)$ is given by

$$
F=\frac{1}{2} \mathcal{J}\{F, \mathcal{J}\}+\frac{1}{2} \mathcal{J}[F, \mathcal{J}]
$$

where $\{$,$\} is the anticommutator.$
Remark 4.8 The canonical complex structure $\mathcal{J}$ is a section of the associated bundle over $N$ : $\Sigma^{+}\left(\pi^{*} E\right)=\pi^{*}\left(Q \times_{H} \Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right)\right)=\pi^{*} Q \times_{H} \Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right)$, so that it can be lifted to a $H$-equivariant $\operatorname{map} \tilde{\mathcal{J}}: \pi^{*} Q \rightarrow \Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right) \subset \mathfrak{h}$, which is given by

$$
\tilde{\mathcal{J}}:\left(e . K, e . h^{-1}\right) \in \pi^{*} Q \longmapsto h J_{0}^{\varepsilon} h^{-1} \in \Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right) .
$$

Remark that the restriction of $\tilde{\mathcal{J}}$ to $Q \subset \pi^{*} Q$ is the constant map $J_{0}^{\varepsilon}$ (the inclusion $Q \subset \pi^{*} Q$ is given by $e \mapsto(e \cdot U(n), e)$ ), and that $\tilde{\mathcal{J}}: \pi^{*} Q \rightarrow \Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right)$ is the $H$-equivariant extension of the $K$-equivariant constant map $J_{0}^{\varepsilon}$ on $Q . \tilde{\mathcal{J}}$ can also be given in term of $\mathcal{J}$ by

$$
\tilde{\mathcal{J}}:(y ; e) \in \pi^{*} Q \longmapsto \operatorname{Mat}_{e}(\mathcal{J}(y)) \in \Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right) \subset \mathfrak{h} .
$$

[^20]Furthermore, we have a canonical identification $N=Q \times_{H} H / K($ via $[e, h . K] \mapsto(e . h) . K)$ and the identification depending on $J_{0}^{\varepsilon}: H / K=\Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right)\left(\right.$ via $\left.h . K \mapsto h J_{0} h^{-1}\right)$ so that $N=Q \times{ }_{H} \Sigma^{\varepsilon}\left(\mathbb{R}^{2 n}\right)$ (via $e . K \mapsto\left[e, J_{0}\right]$ ). Then under this last identification, $\mathcal{J}$ is the restriction to $N$ of the canonical identification

$$
\begin{align*}
\mathfrak{h}_{Q}:=Q \times_{H} \mathfrak{h} & \xrightarrow{\cong} \mathfrak{s o}(E)  \tag{72}\\
{[e, a] } & \longmapsto A \mid \mathcal{M} a t_{e}(A)=a .
\end{align*}
$$

Therefore

$$
\mathfrak{h}_{Q}=\mathcal{J}^{*} \mathfrak{s o}_{+}\left(\pi_{\Sigma}^{*} E\right) \quad \text { and } \quad \mathfrak{p}_{Q}=\mathcal{J}^{*} \mathfrak{s o}_{-}\left(\pi_{\Sigma}^{*} E\right)
$$

with the notations of example 4.2.
Let us now express the homogeneous connection $\phi$, the curvature foms $\Phi$ and the canonical connection $\nabla^{c}$ in terms of $\mathcal{J}$ (following 42]).

Theorem 4.154 If $A, B \in T N, F \in \mathcal{C}\left(\mathfrak{p}_{Q}\right)$ then:
(i) $\phi A=\frac{1}{2} \mathcal{J} \cdot \nabla_{A} \mathcal{J}$
(ii) $\Phi(A, B)=\frac{1}{2} \mathcal{J}\left[\pi^{*} R(A, B), \mathcal{J}\right]$, where $R$ is the curvature operator of the $\nabla$.
(iii) $\nabla^{c} F=\frac{1}{2} \mathcal{J}\left[\nabla_{A} F, \mathcal{J}\right]$

Theorem 4.16 4.7 Let $s \in \mathcal{C}(\pi)$ and $J=s^{*} \mathcal{J}$ be the corresponding complex structure, and $\nabla^{*} \nabla=-\operatorname{Tr} \nabla^{2}$, the rough Laplacian of $E$. Then
(i) $I\left(d^{v} s\right)=\frac{1}{2} J . \nabla J=\frac{1}{4}[J, \nabla J]$. Thus $s$ is horizontal if and only if $J$ is parallel.
(ii) $I\left(\Pi^{v}(s)\right)=\frac{1}{4}\left[J, \nabla^{2} J\right]$. Thus $s$ is superflat if and only if $\nabla^{2} J$ commutes with $J$.
(iii) $I\left(\tau^{v}(s)\right)=-\frac{1}{4}\left[J, \nabla^{*} \nabla J\right]$. Thus $s$ is a harmonic section if and only if $\nabla^{*} \nabla J$ commutes with J.
(iv) $s^{*} \Phi=\frac{1}{2} J[R, J]$.

From theorem 4.15-(i) (or theorem 4.16.(i)) it follows that $d \mathcal{J}$ sends the decomposition $T N=$ $\mathcal{V} \oplus \mathcal{H}$ onto the decomposition $T \Sigma^{\varepsilon}(E)=\mathcal{V}^{\Sigma} \oplus \mathcal{H}^{\Sigma}$ coming from $\nabla$ (see example 4.2) so that we can consider $\pi_{\Sigma}: \Sigma^{\varepsilon}(E) \rightarrow M$ as a homogeneous fibre bundle over $M$ with structure group $H=S O(2 n)$ and $K=U(n)$. Besides, since the vertical and horizontal subbundles corresponds via $\mathcal{J}$, then we can conclude according to (48) and (58) that $\mathcal{J}$ is an isometry.
Moreover, we see that $s$ is vertically harmonic in $N$ if and only if the rough Laplacian $\nabla^{*} \nabla J$ of $J$ in $\mathfrak{s o}(E)$ is vertical (i.e. in $\mathcal{V}_{J}^{\Sigma}$, see example 4.2) so that we recover the definition of vertically harmonic twistor lifts used in [30] and [7]. More precisely, via the isometry $\mathcal{J}$, the vertical tension field of $s$ - which is, let us recall it, defined using the Levi-Civita connection in $N$ which corresponds via the isometry $\mathcal{J}$ to the Levi-Civita connection in $\Sigma^{+}(E)$ - is exactly the vertical part in $\pi_{\Sigma}^{*} \mathfrak{s o}(E)$ of the rough laplacian of $J$ :

$$
d \mathcal{J}\left(\tau^{v}(s)\right)=\nabla_{\tau^{v}(s)} \mathcal{J}=-2 \mathcal{J} \circ \phi\left(\tau^{v}(s)\right)=\frac{1}{2} J\left[J, \nabla^{*} \nabla J\right]
$$

according to theorem 4.15 -(i) and theorem 4.16 -(iii). Concretely, to compute the vertical tension field in $\Sigma^{+}(E)$, instead of using the (abstract) Levi-Civita connection, it is enough to take the vertical part of the rough Laplacian (which uses the concrete metric connection $\nabla)$.

### 4.3.3 The twistor bundle $\mathcal{Z}_{2 k}(E)$ of a Riemannian vector bundle

We give ourself the same ingredients and notations as in example 4.3. Let us suppose that the vector bundle $E$ is oriented. Then the bundle $\pi_{\mathcal{Z}}: \mathcal{Z}_{2 k}^{\alpha}(E) \rightarrow M$ is a homogeneous fibre bundle. Indeed, we take $Q=\mathcal{S O}(E), H=S O(2 n)$ and $K=\mathbb{U}_{0}\left(J_{0}^{\alpha}\right)$. Let us recall that the order $r$ automorphism $T=\operatorname{Int} J_{0}^{\alpha}$ in $S O(2 n)$ gives rise to the $r$-symmetric space $H / K=\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)$, and to the following reductive decompostion $\mathfrak{h}=\mathfrak{k} \oplus \mathfrak{p}$ with

$$
\mathfrak{k}=\mathfrak{s o}_{0}\left(J_{0}^{\alpha}\right) \quad \text { and } \quad \mathfrak{p}=\mathfrak{s o}_{*}\left(J_{0}^{\alpha}\right):=\left(\bigoplus_{j \in \mathbb{Z} / r \mathbb{Z} \backslash\{0\}} \mathfrak{s o}_{j}\left(J_{0}^{\alpha}\right)\right) \bigcap \mathfrak{s o}(2 n) .
$$

Concerning $\omega$, we take the same as in the previous example. Now let us consider the isomorphism of bundle:

$$
\begin{equation*}
\mathcal{J}: e . \mathbb{U}_{0}\left(J_{0}^{\alpha}\right) \in \mathcal{S O}(E) / \mathbb{U}_{0}\left(J_{0}^{\alpha}\right) \stackrel{\cong}{\leftrightarrows} J \in \mathcal{Z}_{2 k}^{\alpha}(E) \mid \operatorname{Mat}_{e}(J)=J_{0}^{\alpha} . \tag{73}
\end{equation*}
$$

The isomorphism $\mathcal{J}$ defines a bijection between the sections of $\pi: N \rightarrow M$ and the set of sections of $\pi_{\mathcal{Z}}: \mathcal{Z}_{2 k}^{\alpha}(E) \rightarrow M, s \in \mathcal{C}(N) \mapsto J=\mathcal{J} \circ s \in \mathcal{C}\left(\mathcal{Z}_{2 k}^{\alpha}(E)\right)$.
The isomorphism of bundle over $M, \mathcal{J}: N \rightarrow \mathcal{Z}_{2 k}^{\alpha}(E)$ defines tautologically a canonical $2 k$ structure ${ }^{\beta 5}$ on $\pi^{*} E \rightarrow N$ (still denoted by $\left.\mathcal{J}\right), \mathcal{J}: N \rightarrow \mathcal{Z}_{2 k}^{\alpha}\left(\pi^{*} E\right)$. Under this consideration, we therefore have $\mathfrak{h}=\mathfrak{s o}(E)$ and for all $y \in N$,

$$
\begin{aligned}
\mathfrak{k}_{Q} & =\mathfrak{s o}_{0}\left(\pi^{*} E, \mathcal{J}\right) \\
\mathfrak{p}_{Q} & =\mathfrak{s o}_{*}\left(\pi^{*} E, \mathcal{J}\right)=\left(\underset{j \in \mathbb{Z} / r \mathbb{Z} \backslash\{0\}}{\bigoplus} \mathfrak{s o}_{j}\left(\pi^{*} E, \mathcal{J}\right)\right) \bigcap \mathfrak{s o}\left(\pi^{*} E\right) .
\end{aligned}
$$

Since $\pi^{*} E$ is canonically endowed with $\mathcal{J}$, we will not precise it and use the notation $\mathfrak{s o}_{j}\left(\pi^{*} E\right):=$ $\mathfrak{s o}_{j}\left(\pi^{*} E, \mathcal{J}\right)$.
Let us consider the surjective morphism of vector bundle

$$
\begin{array}{rlll}
\operatorname{ad} \mathcal{J}: \quad \pi^{*} \mathfrak{h}_{Q}=\mathfrak{s o}\left(\pi^{*} E\right) & \longrightarrow \mathcal{B}_{*}\left(\pi^{*} E\right)=\mathcal{J} \cdot \mathfrak{s o}_{*}\left(\pi^{*} E\right)=\mathcal{J} \cdot \mathfrak{p}_{Q} \\
(J, A) & \longmapsto & \operatorname{ad} J(A)=[J, A]=J \sum_{j=1}^{r}\left(1-\omega_{r}^{j}\right) A_{j}
\end{array}
$$

where $A_{j}=[A]_{\mathfrak{s o}_{j}\left(E_{x}\right)}$ is the $\mathfrak{s o}_{j}\left(E_{x}\right)$-component of $A \in \mathfrak{s o}\left(E_{x}\right)$. The kernel of ad $\mathcal{J}$ is $\mathfrak{k}_{Q}=$ $\mathfrak{s o}_{0}\left(\pi^{*} E\right)$ so that ad $\mathcal{J}$ induces an isomorphism from $\mathfrak{p}_{Q}$ onto $\mathcal{J} \cdot \mathfrak{p}_{Q}$. We will set

$$
(\operatorname{ad} \mathcal{J})^{-1}=\left(\operatorname{ad} \mathcal{J}_{\mid \mathcal{J} \cdot \mathfrak{p}_{Q}}\right)^{-1} \oplus 0_{\mathcal{J} \cdot \mathfrak{k}_{Q}}
$$

so that

$$
\begin{align*}
(\operatorname{ad} \mathcal{J})^{-1} \circ \operatorname{ad} \mathcal{J} & =\operatorname{pr}_{\mathfrak{p}_{Q}}, \text { the projection on } \mathfrak{p}_{Q} \text { along } \mathfrak{k}_{Q}, \text { and }  \tag{74}\\
\operatorname{ad} \mathcal{J} \circ(\operatorname{ad} \mathcal{J})^{-1} & =\operatorname{pr}_{\mathcal{J} \cdot \mathfrak{p}_{Q}}, \text { the projection on } \mathcal{J} \cdot \mathfrak{p}_{Q} \text { along } \mathcal{J} \cdot \mathfrak{k}_{Q} \tag{75}
\end{align*}
$$

Let us remark that $\mathcal{J} \cdot \mathfrak{p}_{Q}=\mathcal{J}^{*} \mathcal{V}^{\mathcal{Z}}$ is the (pullback by $\mathcal{J}$ of the) vertical space of $\pi_{\mathcal{Z}}$ (see example 4.3). More precisely the $\mathcal{J}$-pullback of the decomposition $\mathcal{V}^{S O(E)}{ }_{\mid N_{\mathcal{Z}}}=\mathcal{B}_{0}\left(\pi_{\mathcal{Z}}^{*} E\right) \oplus$ $\mathcal{B}_{*}\left(\pi_{\mathcal{Z}}^{*} E\right)$ (see example 4.3) is the decomposition $\mathcal{J} \cdot \mathfrak{s o}(E)=\mathcal{J} \cdot \mathfrak{k}_{Q} \oplus \mathcal{J} \cdot \mathfrak{p}_{Q}$.
Let us now express the homogeneous fibre bundle tools $\phi, \Phi$ and $\nabla^{\mathfrak{p}}$ in terms of $\mathcal{J}$.

[^21]Theorem 4.17 If $A, B \in T N, F \in \mathcal{C}\left(\mathfrak{p}_{Q}\right)$ then
(i) $\nabla \mathcal{J}=-\operatorname{ad} \mathcal{J} \circ \phi$ thus $\phi A=-(\operatorname{ad} \mathcal{J})^{-1} \nabla_{A} \mathcal{J}$
(ii) $\Phi(A, B)=(\operatorname{ad} \mathcal{J})^{-1}\left[\mathcal{J}, \pi^{*} R(A, B)\right]$
(iii) $\nabla_{A}^{\mathfrak{p}} F=(\operatorname{ad} \mathcal{J})^{-1}\left[\mathcal{J}, \nabla_{A} F\right]$

Theorem 4.18 Let $s \in \mathcal{C}(\pi)$ and $J=s^{*} \mathcal{J}$ be the corresponding $2 k$-structure. Then
(i) $I\left(d^{v} s\right)=-(\operatorname{ad} J)^{-1} \nabla J$. Thus $s$ is horizontal if and only if $J$ is parallel.
(ii) $I\left(\Pi^{v}(s)\right)=-(\operatorname{ad} J)^{-1} \nabla^{2} J+\frac{1}{2}(\operatorname{ad} J)^{-1}\left[\nabla J \odot(\operatorname{ad} J)^{-1} \nabla J\right]$.

Thus $s$ is superflat if and only if $\nabla^{2} J-\frac{1}{2}\left[\nabla J \odot(\operatorname{ad} J)^{-1} \nabla J\right]$ commutes with $J$.
(iii) $I\left(\tau^{v}(s)\right)=+(\operatorname{ad} J)^{-1} \nabla^{*} \nabla J+(\operatorname{ad} J)^{-1} \operatorname{Tr}\left(\left[\nabla J,(\operatorname{ad} J)^{-1} \nabla J\right]\right)$.

Thus $s$ is a harmonic section if and only if $\nabla^{*} \nabla J+\operatorname{Tr}\left(\left[\nabla J,(\operatorname{ad} J)^{-1} \nabla J\right]\right)$ commutes with $J$.
(iv) $s^{*} \Phi=(\operatorname{ad} J)^{-1}[J, R]$.

As above, from theorem 4.17 (i), we conclude that $d \mathcal{J}$ sends the decomposition $T N=\mathcal{V} \oplus \mathcal{H}$ onto the decomposition $T N_{\mathcal{Z}}=\mathcal{V}^{\mathcal{Z}} \oplus \mathcal{H}^{\mathcal{Z}}$ coming from $\nabla$ (see example 4.3) so that we can consider $\pi_{\mathcal{Z}}: \mathcal{Z}_{2 k}^{\alpha}(E) \rightarrow M$ as a homogeneous fibre bundle over $M$ with structure groups $H=S O(2 n)$ and $K=\mathbb{U}_{0}\left(J_{0}^{\alpha}\right)$. We will call this structure the homogeneous fibre bundle structure defined in $N_{\mathcal{Z}}$ by $\nabla$ (or by the Riemannian vector bundle $(E, \nabla)$ ).
Besides, since the vertical and horizontal subbundles corresponds via $\mathcal{J}$, then we can conclude according to (48) and (58) that $\mathcal{J}$ is an isometry.
Moreover, the vertical tension field of $J$ in $N_{\mathcal{Z}}=\mathcal{Z}_{2 k}^{\alpha}$ is given by

$$
\begin{aligned}
& d \mathcal{J}\left(\tau^{v}(s)\right)=\nabla_{\tau^{v}(s)} \mathcal{J}=-(\operatorname{ad} \mathcal{J}) \circ \phi\left(\tau^{v}(s)\right) \\
&=-(\operatorname{ad} \mathcal{J}) \circ(\operatorname{ad} \mathcal{J})^{-1}\left(\nabla^{*} \nabla J+\right.\left.\operatorname{Tr}\left(\left[\nabla J,(\operatorname{ad} J)^{-1} \nabla J\right]\right)\right) \\
&=-\left[\nabla^{*} \nabla J+\operatorname{Tr}\left(\left[\nabla J,(\operatorname{ad} J)^{-1} \nabla J\right]\right)\right]_{\mathcal{V}^{z}}
\end{aligned}
$$

By taking $k=2$ in the two preceding theorems, we recover of course the results of the previous section: just remark that in this case, ad $\mathcal{J}=0_{\mathfrak{k}_{Q}} \oplus 2 L_{\mathcal{J} \mid \mathfrak{p}_{Q}}$, and that $\nabla J$ anticommutes with $J$.

Remark 4.9 Let us consider the canonical identification

$$
\begin{align*}
H_{Q}:=Q \times_{H} H & \cong S O(E)  \tag{76}\\
{[e, h] } & \longmapsto A \mid \mathcal{M a t}_{e}(A)=h .
\end{align*}
$$

then $\mathcal{J}$ is the restriction to $N \cong Q \times_{H} \mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)$ (via $\left.e . K \mapsto\left[e, J_{0}^{\alpha}\right]\right)$ of (76).
More generally, for $j \in \mathbb{Z}$, we can consider $\mathcal{J}_{j}$ the restriction of $(\nabla 6)$ to $Q / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)=Q \times{ }_{S O(2 n)}$ $\left(\mathcal{Z}_{2 k}\left(\mathbb{R}^{2 n}\right)\right)^{j}\left(\right.$ via $\left.e . \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right) \mapsto\left[e,\left(J_{0}^{\alpha}\right)^{j}\right]\right)$ :

$$
\begin{equation*}
\mathcal{J}_{j}: e \cdot \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right) \in \mathcal{S O}(E) / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right) \stackrel{ }{\cong} J \in\left(\mathcal{Z}_{2 k}^{\alpha}(E)\right)^{j} \mid \mathcal{M a t}_{e}(J)=\left(J_{0}^{\alpha}\right)^{j} . \tag{77}
\end{equation*}
$$

Remark 4.10 The previous study could have been done (without any change) for any component $\mathcal{U}_{2 k}^{\alpha}(E)$. In particular, by replacing $J_{0}^{\alpha}$ by $\left(J_{0}^{\alpha}\right)^{j}$ in what precedes, we get the isomorphism (77)

$$
\mathcal{J}_{j}: \mathcal{S O}(E) / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right) \stackrel{\cong}{\curvearrowleft}\left(\mathcal{Z}_{2 k}^{\alpha}(E)\right)^{j}=\mathcal{U}_{p}^{j \cdot \alpha}(E),
$$

where $p=\frac{2 k}{(2 k, j)}$, and by applying theorem 4.18, we see that a cross section $s_{j}: M \rightarrow$ $\mathcal{S O}(E) / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$ is horizontal if and only if the corresponding section $J_{j}=\mathcal{J}_{j} \circ s_{j}: M \rightarrow$ $\left(\mathcal{Z}_{2 k}^{\alpha}(E)\right)^{j}$ is parallel: $\nabla J_{j}=0$.

### 4.3.4 The Twistor subbundle $\mathcal{Z}_{2 k, j}^{\alpha}(E)$

We continue here the study of example 4.4, $\pi_{\mathcal{Z}}^{j}: \mathcal{Z}_{2 k, j}^{\alpha}\left(E, J_{j}\right) \rightarrow M$, and prove that it defines a homogeneous bundle fibre bundle. Let us recall that we have a bijection between the set of (global) sections $J_{j}$ in $\left(\mathcal{Z}_{2 k}^{\alpha}(E)\right)^{j}=\mathcal{U}_{p}^{j \cdot \alpha}(E)$ and the set of $\mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$-reductions $\pi^{j}: Q^{j} \rightarrow M$ of $\mathcal{S O}(E)$, which is given by

$$
\begin{equation*}
Q^{j}=\mathfrak{U}_{j-1}^{\alpha}(E):=\left\{e \in \mathcal{S O}(E) \mid \mathcal{M a t} t_{e}\left(J_{j}\right)=\left(J_{0}^{\alpha}\right)^{j}\right\} . \tag{78}
\end{equation*}
$$

Let us consider such a reduction $Q^{j}$ (defined by some $\left.J_{j}\right)$. Then $\pi^{j}: Q^{j} \rightarrow M$ is a principal bundle with structural group $H^{j}=\mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$ and we take for the second structural group $K=\mathbb{U}_{0}\left(J_{0}^{\alpha}\right)$ as in the previous example. Let us recall that the order $j$ automorphism $T=\operatorname{Int} J_{0}^{\alpha}{ }_{\mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)}$ gives rise to the $j$-symmetric space $H^{j} / K=\mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n},\left(J_{0}^{\alpha}\right)^{j}\right)$, and to the following reductive decomposition $\mathfrak{h}^{j}=\mathfrak{k} \oplus \mathfrak{p}^{j}$ where

$$
\begin{aligned}
& \mathfrak{k}= \mathfrak{s o}_{0}\left(J_{0}^{\alpha}\right) \\
& \mathfrak{p}^{j}=\mathfrak{u}_{j-1}^{*}\left(J_{0}^{\alpha}\right):=\oplus_{q=1}^{(r, j)-1} \mathfrak{s o}_{p q}\left(J_{0}^{\alpha}\right)=\mathfrak{u}_{j-1}\left(J_{0}^{\alpha}\right) / \mathfrak{u}_{0}\left(J_{0}^{\alpha}\right)=\mathfrak{s o}_{0}\left(\left(J_{0}^{\alpha}\right)^{j}\right) / \mathfrak{s o}_{0}\left(J_{0}^{\alpha}\right) \\
& \cong T_{J_{0}^{\alpha}} \mathcal{Z}_{2 k, j}^{\alpha}\left(\mathbb{R}^{2 n},\left(J_{0}^{\alpha}\right)^{j}\right),
\end{aligned}
$$

the last identification is given by

$$
A \in \oplus_{q=1}^{(r, j)-1} \mathfrak{s o}_{p q}\left(J_{0}^{\alpha}\right) \longmapsto A \cdot J_{0}^{\alpha}=\left[A, J_{0}^{\alpha}\right] \in \oplus_{q=1}^{(r, j)-1} \mathcal{B}_{p q}\left(J_{0}^{\alpha}\right)
$$

(see section 3.1.3).
For the connection form on $Q^{j}$ we take

$$
\omega^{j}:=\omega_{\mathfrak{h}_{j} \mid T Q^{j}}
$$

We set as usual $N^{j}=Q^{j} / K$ which is a Homogeneous fibre bundle over $M$. Moreover the isomorphism of bundle (and isometry) $\mathcal{J}: N \rightarrow \mathcal{Z}_{2 k}^{\alpha}(E)$ satisfies

$$
\mathcal{J}\left(N^{j}\right)=\mathcal{Z}_{2 k, j}^{\alpha}\left(E, J_{j}\right)
$$

by definition of $\mathcal{J}$ and $Q^{j}$ (see (73) and (78) , so that it induces an isomorphism of bundle from $N^{j}$ onto $N_{\mathcal{Z}}^{j}$.
Let us denote by $T N^{j}=\mathcal{V}^{j} \oplus \mathcal{H}^{j}$ the splitting in terms of vertical and horizontal subbundles given by $\omega^{j}$. Then denoting by $s_{j}$ the cross section in the associated bundle $Q / H^{j}=\mathcal{S O}(E) / \mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$ defining the $H^{j}$-reduction $Q^{j}$ (i.e. $\left.\mathcal{J}_{j} \circ s_{j}=J_{j}\right)^{36}$, according to section 4.2.3, we have the following

[^22]equivalences
\[

$$
\begin{aligned}
& \nabla J_{j}=0 \stackrel{\text { ex. } 4.4}{\Longleftrightarrow} \mathcal{H}^{\mathcal{Z}, j}=\mathcal{H}^{\mathcal{Z}}{ }_{\mid N_{\mathcal{Z}}^{j}}
\end{aligned}
$$
\]

Example 4.9 Let $M=G / H$ be the $k$-symmetric space correponding to some $2 k$-symmetric space $G / G_{0}$ (see section 2.1.1), and take $(E, \nabla)=\left(T M, \nabla^{0}\right), j=2$ and $J_{2}$ given by lemma 3.1. Then we have

$$
\stackrel{M}{\nabla^{0}} J_{2}=0 .
$$

Indeed $\nabla^{M} J_{2}$ lifts in $G$ into

$$
\left(d+\theta_{\mathfrak{h}}\right) J_{0}^{2}=d J_{0}+\left[\theta_{\mathfrak{h}}, J_{0}^{2}\right]=0
$$

(see lemma 3.1). Therefore we can conclude that in this case $\omega$ is reducible in $Q^{2}$ (to $\omega^{2}$ ).
If $\omega$ is not reducible in $Q^{j}$ (to $\omega^{j}$ ), then according to (48) and (58), $N^{j} \hookrightarrow N$ and $N_{\mathcal{Z}}^{j} \hookrightarrow N_{\mathcal{Z}}$ are not isometries, and thus we can not say directly that $\mathcal{J}$ induces an isometry from $N^{j}$ onto $N_{\mathcal{Z}}^{j}$, even if as we will see below it is effectively the case. As above, the result of (48) and (58), and $d \mathcal{J}\left(\mathcal{V}^{j}\right)=\mathcal{V}^{\mathcal{Z}, j}$, is that: $\mathcal{J}: N^{j} \rightarrow N_{\mathcal{Z}}^{j}$ is an isometry if and only if $d \mathcal{J}\left(\mathcal{H}^{j}\right)=\mathcal{H}^{\mathcal{Z}, j}$.
Now let us come back to the connection form $\omega^{j}: T Q^{j} \rightarrow \mathfrak{h}^{j} \subset \mathfrak{s o}(2 n)$. It defines a metric covariant derivative $\nabla^{[j]}$ in the associated vector bundle $E$. Then we have

$$
\nabla^{[j]} J^{j}=0 .
$$

Indeed $J_{j}$ lifts into the $H^{j}$-equivariant (constant) map $\tilde{\mathcal{J}}_{j}: e \in Q^{j} \rightarrow\left(J_{0}^{\alpha}\right)^{j} \in\left(\mathcal{Z}_{2 k}^{\alpha}\left(\mathbb{R}^{2 n}\right)\right)^{j} \subset$ $\mathfrak{g l}_{2 n}\left(\mathbb{R}^{2 n}\right)$ and $\nabla^{[j]} J_{j}$ lifts into

$$
\bar{D}^{j} \tilde{J}^{j}=d \tilde{J}_{j}+\left[\omega^{j}, \tilde{J}_{j}\right]=0+0=0
$$

since by definition $\mathfrak{h}^{j}=\mathfrak{u}_{j-1}\left(J_{0}^{\alpha}\right)=\mathfrak{s a}_{0}\left(\left(J_{0}^{\alpha}\right)^{j}\right)$ commutes with $\left(J_{0}^{\alpha}\right)^{j}$.
Remark 4.11 We can do the things more concretely by using a (local) moving frame $e$ in $Q^{j}$ : $\nabla^{[j]}$ is then caracterized by

$$
\begin{equation*}
\nabla^{[j]}\left(e_{1}, \ldots, e_{2 n}\right)=\left(e_{1}, \ldots, e_{2 n}\right) \cdot \omega^{j}(e ; d e) \tag{79}
\end{equation*}
$$

Then by definition of $Q^{j}$ we have

$$
\begin{equation*}
J_{j} e=e .\left(J_{0}^{\alpha}\right)^{j} \tag{80}
\end{equation*}
$$

so that

$$
\left(\nabla^{[j]} J_{j}\right) e+J_{j}\left(\nabla^{[j]} e\right)=e \cdot \omega^{j}\left(J_{0}^{\alpha}\right)^{j}
$$

then using (80) and (79), we obtain

$$
\left(\nabla^{[j]} J_{j}\right) e=e . \omega^{j}\left(J_{0}^{\alpha}\right)^{j}-J_{j}\left(e . \omega^{j}\right)=e .\left(\omega^{j}\left(J_{0}^{\alpha}\right)^{j}-\left(J_{0}^{\alpha}\right)^{j} \omega^{j}\right)=0
$$

since $\omega^{j}$ takes values in $\mathfrak{h}_{j}=\mathfrak{s o}_{0}\left(\left(J_{0}^{\alpha}\right)^{j}\right)$.
In fact we can caracterize $\nabla^{[j]}$ in the following more general way, which in particular generalizes a well-known result of Rawnsley [37] about complex structures on vector bundles.

Theorem 4.19 Let $E$ be a Riemannian vector bundle as above. Let $p^{\prime} \in \mathbb{N}^{*}$ and $J \in \mathcal{C}\left(\mathcal{U}_{p^{\prime}}(E)\right)$, then $\operatorname{Ad} J$ defines an automorphism of the linear bundle $\operatorname{End}(E)$ (over $\mathrm{Id}_{M}$ ), i.e. a section of $\operatorname{End}(\operatorname{End}(E))$. Then the metric covariant derivative $\nabla$ in $E$ admits an unique decomposition in the form: ${ }^{37}$

$$
\begin{equation*}
\nabla=\nabla^{0}+\sum_{i=1}^{r_{p^{\prime}}-1} A_{i} \tag{81}
\end{equation*}
$$

where $\stackrel{J}{\nabla^{0}}$ is a metric covariant derivative for which

$$
\stackrel{J}{\nabla^{0}} J=0
$$

and $A_{i} \in \mathcal{C}\left(T^{*} M \otimes \mathfrak{s o}_{i}(E, J)\right)$, i.e. $J A_{i} J^{-1}=\omega_{r}^{i} A_{i}$ and $A_{i} \in \mathfrak{s o}(E)^{\mathbb{C}}$.
$\nabla^{J}$ will be called the $J$-commuting component of $\nabla, A_{*}=\sum_{i=1}^{r_{p^{\prime}}-1} A_{i} \in \mathcal{C}\left(T^{*} M \otimes \mathfrak{s o}_{*}(E, J)\right)$ the $\mathfrak{s o}_{*}(E, J)$-component of $\nabla$, and $A_{i}$ the $\mathfrak{s o}_{i}(E, J)$-component of $\nabla$.

Proof. Unicity. Let us suppose that (81) exists then we have

$$
\nabla J=\sum_{i=1}^{r_{p^{\prime}}-1}\left[A_{i}, J\right]
$$

so that

$$
\sum_{i=1}^{r_{p^{\prime}}-1} A_{i}=-(\operatorname{ad} J)^{-1}(\nabla J)
$$

(see section 4.3.2) which proves the unicity of $\left(A_{i}\right)_{1 \leq i \leq r_{p^{\prime}}-1}$ (these are determined by $\nabla$ and $J$, more precisely these are the components of $\left.-(\operatorname{ad} J)^{-1}(\nabla J)\right)$. Now $\nabla^{J}=\nabla-\sum_{i=1}^{r_{p^{\prime}}-1} A_{i}$ is also unique.
Existence. Let $\nabla^{0}$ be any metric covariant derivative commuting with $J$, that is to say $\nabla^{0}$ corresponds to a connection on the principal bundle of Hermitian frames on $(E,\langle\rangle, J$,$) (such a$ connection always exists, see [33]). Then consider

$$
A=\nabla-\nabla^{0} \in \mathcal{C}\left(T^{*} M \otimes \mathfrak{s o}(E)\right)
$$

and let $A=\sum_{i=0}^{r_{p^{\prime}}-1} A_{i}$ be the decomposition of $A$ following $\mathfrak{s o}(E, J)^{\mathbb{C}}=\oplus_{i=0}^{r_{p^{\prime}}-1} \mathfrak{s o}_{i}(E, J)$. Let us set

$$
\stackrel{J}{\nabla^{0}}=\nabla^{0}+A_{0}
$$

then $\nabla^{J}$ is a $J$-commuting metric covariant derivative in $E$ and we have

$$
\nabla=\nabla^{0}+\sum_{i=1}^{r_{p^{\prime}}-1} A_{i}
$$

which proves the existence.
Applying this theorem to $J_{j}$, we obtain the following.

[^23]Corollary $4.2 \nabla^{[j]}$ is the $J_{j}$-commuting component of $\nabla$.
Proof. The $H$-equivariant lift of $\nabla$ is the covariant derivative on $Q{ }^{38}$

$$
\begin{equation*}
d+\omega=\left(d+\omega_{0}\right)+\sum_{i=1}^{r_{p^{\prime}-1}} \omega_{i} \tag{82}
\end{equation*}
$$

where $\omega_{i}=[\omega]_{\mathfrak{s o}_{i}\left(\left(J_{0}^{\alpha}\right)^{j}\right)}$, and in particular $\omega_{0}=\omega^{j}$. Then restricting (82) to $Q^{j}$, and projecting on $M$, we obtain the decomposition (81) of $\nabla$ :

$$
\nabla=\nabla^{[j]}+\sum_{i=1}^{r_{p^{\prime}}-1} A_{i}
$$

that is to say $d+\omega_{0}$ is the $H^{j}$-equivariant lift of $\nabla^{J_{j}}$, which is thus equal to $\nabla^{[j]}$, and $\omega_{i}$ is the $H^{j}$-equivariant lift of the $\mathfrak{s o}_{i}\left(E, J_{j}\right)$-valued 1-form on $M, A_{i}$. This completes the proof.

Remark 4.12 Moreover $\omega$ is reducible in $Q^{j}\left(\nabla J_{j}=0\right)$ if and only if $\nabla^{[j]}=\nabla$.
Remark 4.13 Under the hypothesis of theorem 4.19 we have

$$
\forall F \in \mathcal{C}\left(\mathcal{A}_{0}(E, J)\right), \quad \stackrel{J}{\nabla^{0}} F=\operatorname{pr}_{\mathcal{A}_{0}(E, J)} \circ \nabla F
$$

where $\operatorname{pr}_{\mathcal{A}_{0}(E, J)}: \operatorname{End}(E) \rightarrow \mathcal{A}_{0}(E, J)$ is the orthogonal projection (i.e. along $\left.\mathcal{A}_{*}(E, J)\right)$ so that in particular

$$
\forall F \in \mathcal{C}\left(\mathfrak{s o}_{0}(E, J)\right), \quad \stackrel{J}{\nabla^{0}} F=\operatorname{pr}_{\mathfrak{s o}_{0}(E, J)} \circ \nabla F
$$

where $\operatorname{pr}_{\mathfrak{s o}_{0}(E, J)}: \mathfrak{s o}(E) \rightarrow \mathfrak{s o}_{0}(E, J)$ is the orthogonal projection. Indeed,

$$
\nabla F=\stackrel{\nabla^{0}}{J} F+\sum_{i=1}^{r_{p^{\prime}}-1}\left[A_{i}, F\right]
$$

and $J$ commutes with $\stackrel{J}{\nabla^{0}}$ and $F$ so with $\stackrel{J}{\nabla^{0}} F:\left(\nabla^{0} F\right) . J=\stackrel{J}{\nabla^{0}}(F . J)-F \stackrel{J}{\nabla^{0}} J=\stackrel{J}{\nabla^{0}}(J . F)=\stackrel{J}{\nabla^{0}} F$. Moreover $\left[A_{i}, F\right] \in\left[\mathcal{A}_{i}(J), \mathcal{A}_{0}(J)\right] \subset \mathcal{A}_{i}(J)$, so that we can conclude. .

The canonical $2 k$-structure in $\pi^{*} E, \mathcal{J}: N \rightarrow \pi^{*} E$ induces by restriction a $2 k$-structure in $\pi^{j^{*}} E$, still denoted by $\mathcal{J}: N^{j} \rightarrow \pi^{j^{*}} E$.
Now, let us precise the subbundles $\mathfrak{p}_{Q^{j}}^{j}$ and $\mathfrak{k}_{Q^{j}}$. First, we have $\mathfrak{h}_{Q^{j}}^{j}=\mathfrak{u}_{0}\left(E, J_{j}\right)$ and then

$$
\begin{aligned}
\mathfrak{k}_{Q^{j}} & =\mathfrak{k}_{Q \mid Q^{j}}=\mathfrak{s o}_{0}\left(\pi^{j^{*}} E, \mathcal{J}\right) \\
\mathfrak{p}_{Q^{j}}^{j} & =\mathfrak{u}_{j-1}^{*}(E, \mathcal{J})=\left(\oplus_{\left.i \in p . \mathbb{Z}_{r} \backslash\{0\}^{\prime} \mathfrak{s o}_{i}\left(\pi^{j^{*}} E, \mathcal{J}\right)\right) \bigcap \mathfrak{s o}\left(\pi^{j^{*}} E\right)} .\right.
\end{aligned}
$$

[^24]The morphism of vector bundle $\operatorname{ad} \mathcal{J}: \mathfrak{s o}\left(\pi^{*} E\right) \rightarrow \mathcal{J} \cdot p_{Q}$ induces a surjective morphism from $\pi^{j^{*}} \mathfrak{h}_{Q^{j}}^{j}=\mathfrak{u}_{j-1}\left(\pi^{j^{*}} E, \mathcal{J}\right)$ onto $\mathcal{J} \cdot \mathfrak{p}_{Q^{j}}^{j}$, with kernel $\mathfrak{k}_{Q^{j}}$ :

$$
\begin{aligned}
\operatorname{ad} \mathcal{J}: \quad \pi^{j^{*}} \mathfrak{h}_{Q^{j}}^{j}=\mathfrak{u}_{j-1}\left(\pi^{j^{*}} E, \mathcal{J}\right) & \longrightarrow \mathcal{J} \cdot \mathfrak{u}_{j-1}^{*}\left(\pi^{j^{*}} E, \mathcal{J}\right)=\mathcal{J} \cdot \mathfrak{p}_{Q^{j}}^{j} \\
(J, A) & \longmapsto \operatorname{ad} J(A)=[J, A]=J \sum_{i=1}^{(r, j)-1}\left(1-\omega_{r}^{i p}\right) A_{i p}
\end{aligned}
$$

where $A_{i}=[A]_{\mathfrak{s o}_{i}\left(E_{x}\right)}$.
As above, now we express the homogeneous fibre bundle tools $\phi^{j}, \Phi^{j}$ and $\nabla^{\mathfrak{p}^{j}}$ in terms of $\mathcal{J}$.
Theorem 4.20 If $A, B \in T N^{j}, F \in \mathcal{C}\left(\mathfrak{p}_{Q^{j}}^{j}\right)$ then
(i) $\nabla^{[j]} \mathcal{J}=-\operatorname{ad} \mathcal{J} \circ \phi^{j}$ thus $\phi^{j} A=-(\operatorname{ad} \mathcal{J})^{-1} \nabla_{A}^{[j]} \mathcal{J}$
(ii) $\Phi^{j}(A, B)=(\operatorname{ad} \mathcal{J})^{-1}\left[\mathcal{J}, \pi^{j^{*}} R^{\nabla^{[j]}}(A, B)\right]$ where $R^{\nabla^{[j]}}$ is the curvature of $\nabla^{[j]}$.
(iii) $\nabla_{A}^{\mathfrak{p}^{j}} F=(\operatorname{ad} \mathcal{J})^{-1}\left[\mathcal{J}, \nabla_{A}^{[j]} F\right]$

In the following theorem, we use the notation of 4.2.3. In particular, we denote by " .v " instead of ".v" the vertical component in $\mathcal{V}^{j} \subset T N^{j}$.

Theorem 4.21 Let $s \in \mathcal{C}\left(\pi^{j}\right)$ and $J=s^{*} \mathcal{J}$ be the corresponding $2 k$-structure. Then
(i) $I\left(d^{\mathrm{v}} s\right)=-(\operatorname{ad} J)^{-1} \nabla^{[j]} J$. Thus $s$ is horizontal if and only if $J$ is $\nabla^{[j]}$-parallel.
(ii) $I\left(\Pi^{\mathrm{v}}(s)\right)=-(\operatorname{ad} J)^{-1}\left(\nabla^{[j]}\right)^{2} J+\frac{1}{2}(\operatorname{ad} J)^{-1}\left[\nabla^{[j]} J \odot(\operatorname{ad} J)^{-1} \nabla^{[j]} J\right]$.

Thus $s$ is superflat if and only if $\left(\nabla^{[j]}\right)^{2} J-\frac{1}{2}\left[\nabla^{[j]} J \odot(\operatorname{ad} J)^{-1} \nabla^{[j]} J\right]$ commutes with $J$.
(iii) $I\left(\tau^{\mathrm{v}}(s)\right)=+(\operatorname{ad} J)^{-1} \nabla^{[j]^{*}} \nabla^{[j]} J+(\operatorname{ad} J)^{-1} \operatorname{Tr}\left(\left[\nabla^{[j]} J,(\operatorname{ad} J)^{-1} \nabla^{[j]} J\right]\right)$.

Thus $s$ is a harmonic section if and only if $\nabla^{[j]^{*}} \nabla^{[j]} J+\operatorname{Tr}\left(\left[\nabla^{[j]} J,(\operatorname{ad} J)^{-1} \nabla^{[j]} J\right]\right)$ commutes with $J$.
(iv) $s^{*} \Phi^{j}=(\operatorname{ad} J)^{-1}\left[J, R^{\left.\nabla^{[j]}\right]}\right.$.

As above, from theorem 4.20 (i), we conclude that $d \mathcal{J}$ sends the decomposition $T N^{j}=\mathcal{V}^{j} \oplus$ $\mathcal{H}^{j}$ onto the decomposition $T N_{\mathcal{Z}}^{j}=\mathcal{V}^{\mathcal{Z}, j} \oplus \mathcal{H}^{\mathcal{Z}, j}$ (see example 4.4) so that we can consider $\pi_{\mathcal{Z}}^{j}: N_{\mathcal{Z}}^{j}(E) \rightarrow M$ as a homogeneous fibre bundle over $M$ with structure groups $H^{j}=\mathbb{U}_{j-1}\left(J_{0}^{\alpha}\right)$ and $K=\mathbb{U}_{0}\left(J_{0}^{\alpha}\right)$. We will call this structure the homogeneous fibre bundle structure defined by (the $J_{j}$-commuting part of) $\nabla$.
Besides, since the vertical and horizontal subbundles corresponds via $\mathcal{J}$, then we can conclude according to (48) and (58) that $\mathcal{J}: N^{j} \rightarrow N_{\mathcal{Z}}^{j}$ is an isometry.
Moreover, the vertical tension field of $J$ in $N_{\mathcal{Z}}^{j}=\mathcal{Z}_{2 k, 2}^{\alpha}\left(E, J_{j}\right)$ is given by

$$
d \mathcal{J}\left(\tau^{\mathrm{\vee}}(s)\right)=-\left[\nabla^{[j]^{*}} \nabla^{[j]} J+\operatorname{Tr}\left(\left[\nabla^{[j]} J,(\operatorname{ad} J)^{-1} \nabla^{[j]} J\right]\right)\right]_{\mathcal{V}^{Z, j}}
$$

Remark 4.14 According to 4.2.3, the canonical connection in $\mathfrak{p}_{Q^{j}}^{j} \rightarrow N^{j}$ is the restriction of the canonical connection in $\mathfrak{p}_{Q} \rightarrow N$, to $\mathfrak{p}_{Q^{j}}^{j}$.

Remark 4.15 If we endow $E$ with $\nabla^{[j]}$ and apply the theorems 4.17 and 4.18 (with the Riemannian vector bundle $\left(E, \nabla^{[j]}\right)$ ), then by restriction to $N^{j}$, we obtain theorems 4.20 and 4.21 , which is not surprising since in this case $\omega$ is reducible in $Q^{j}$ and then everything corresponds in the reduction $N^{j} \hookrightarrow N$.
In particular, superflatness and vertical harmonicity (for sections in $N^{j}$ ) are the same in $N^{j}$ and $N$. This is what happens in particular in example 4.9.

The particular case of $\mathcal{Z}_{2 k, 2}^{\alpha}\left(E, J_{2}\right) \quad$ According to theorem 3.2 , we will be especially interested by this subcase in our interpretation of the elliptic integrable system. In this subcase the fibre $H^{2} / K=\mathcal{Z}_{2 k, 2}\left(\mathbb{R}^{2 n},\left(J_{0}^{\alpha}\right)^{2}\right)$ is symmetric so that we obtain simplifications (coming in particular from the facts that $\nabla^{c}=\nabla^{\mathfrak{p}}$ and that any section $J \in \mathcal{C}\left(\pi_{\mathcal{Z}}^{2}\right)$ anticommutes with $\left.\nabla^{[2]} J\right)$ in theorems 4.20 and 4.21 which then take the same forms as theorems 4.15 and 4.16 about the twistor bundle $\Sigma^{\varepsilon}(E)$, just by doing the change $\nabla \longleftrightarrow \nabla^{[2]}$. Therefore the case $\mathcal{Z}_{2 k, 2}^{\alpha}\left(E, J_{2}\right)$ is very similar to that of $\Sigma^{\varepsilon}(E)$.
Before writing the simplified theorems for $j=2$, let us do some useful observations.
First, we have ${ }^{10}$

$$
\begin{align*}
\mathfrak{k}_{Q^{2}} & =\mathfrak{s o}_{0}\left(\pi^{2^{*}} E, \mathcal{J}\right)=\left\{A \in \mathfrak{s o}\left(\pi^{2^{*}} E\right) \mid[A, \mathcal{J}]=0\right\}=\mathfrak{s o}_{(+1)}\left(\pi^{2^{*}} E, \mathcal{J}\right)  \tag{83}\\
\mathfrak{p}_{Q^{2}}^{2} & =\mathfrak{s o}_{\frac{r}{2}}\left(\pi^{2^{*}} E, \mathcal{J}\right)=\left\{A \in \mathfrak{s o}\left(\pi^{2^{*}} E\right) \mid A \cdot \mathcal{J}+\mathcal{J} \cdot A=0\right\}=\mathfrak{s o}_{(-1)}\left(\pi^{2^{*}} E, \mathcal{J}\right) \tag{84}
\end{align*}
$$

Then $\operatorname{ad} \mathcal{J}$ induces a surjective morphism from $\pi^{2^{*}} \mathfrak{h}_{Q^{2}}^{2}=\mathfrak{u}_{1}\left(\pi^{2^{*}} E, \mathcal{J}\right)$ onto $\mathcal{J} \cdot \mathfrak{p}_{Q^{2}}^{2}=\mathcal{B}_{\frac{r}{2}}\left(\pi^{2^{*}} E, \mathcal{J}\right)$ with kernel $\mathfrak{k}_{Q^{2}}$

$$
\begin{aligned}
\operatorname{ad} \mathcal{J}: \quad \mathfrak{u}_{1}\left(\pi^{2^{*}} E, \mathcal{J}\right)=\mathfrak{s o}_{(+1)}\left(\pi^{2^{*}} E, \mathcal{J}\right) \oplus \mathfrak{s o}_{(-1)}\left(\pi^{2^{*}} E, \mathcal{J}\right) & \longrightarrow \quad \mathcal{B}_{(-1)}\left(\pi^{2^{*}} E, \mathcal{J}\right)=\mathcal{J} \cdot \mathfrak{s o}_{(-1)}\left(\pi^{2^{*}} E, \mathcal{J}\right) \\
\left(J, A_{0}+A_{1}\right) & \longmapsto \operatorname{ad} J(A)=[J, A]=2 J A_{1}
\end{aligned}
$$

where we denote $A_{0}+A_{1}$ the decomposition following $\mathfrak{s o}_{(+1)}\left(\pi^{2^{*}} E, \mathcal{J}\right) \oplus \mathfrak{s o}_{(-1)}\left(\pi^{2^{*}} E, \mathcal{J}\right)$ instead of $A_{0}+A_{\frac{r}{2}}$.

Theorem 4.22 If $A, B \in T N^{2}, F \in \mathcal{C}\left(\mathfrak{p}_{Q^{2}}^{2}\right)$ then
(i) $\phi^{2} A=-\frac{1}{2} \mathcal{J}^{-1} \nabla^{[2]} \mathcal{J}$
(ii) $\Phi^{2}(A, B)=\frac{1}{2} \mathcal{J}^{-1}\left[\mathcal{J}, \pi^{2^{*}} R^{\nabla^{[2]}}(A, B)\right]$ where $R^{\nabla^{[2]}}$ is the curvature of $\nabla^{[2]}$.
(iii) $\nabla_{A}^{c} F=\frac{1}{2} \mathcal{J}^{-1}\left[\mathcal{J}, \nabla_{A}^{[2]} F\right]{ }^{\boxed{1}}$

Theorem 4.23 Let $s \in \mathcal{C}\left(\pi^{2}\right)$ and $J=s^{*} \mathcal{J}$ be the corresponding $2 k$-structure. Then
(i) $I\left(d^{\mathrm{v}} s\right)=-\frac{1}{2} J^{-1} \nabla_{A}^{[2]} J$. Thus $s$ is horizontal if and only if $J$ is $\nabla^{[2]}$-parallel.
(ii) $I\left(\Pi^{\mathrm{v}}(s)\right)=-(\operatorname{ad} J)^{-1}\left(\nabla^{[2]}\right)^{2} J=-\frac{1}{4}\left[J^{-1},\left(\nabla^{[2]}\right)^{2} J\right]$.

Thus $s$ is superflat if and only if $\left(\nabla^{[2]}\right)^{2} J$ commutes with $J$.

[^25](iii)
$I\left(\tau^{\mathrm{v}}(s)\right)=(\operatorname{ad} J)^{-1} \nabla^{[2]^{*}} \nabla^{[2]} J=\frac{1}{4}\left[J^{-1}, \nabla^{[2]^{*}} \nabla^{[2]} J\right]$.
Thus $s$ is a harmonic section if and only if $\nabla^{[2]^{*}} \nabla^{[2]} J$ commutes with $J$.
(iv) $s^{*} \Phi^{2}=\frac{1}{2} J^{-1}\left[J, R^{\nabla^{[2]}}\right]$.

Let us add that the vertical tension field $N_{\mathcal{Z}}^{2}$ is given

$$
\begin{equation*}
d \mathcal{J}\left(\tau^{\mathrm{v}}(s)\right)=-\left[\nabla^{[2]^{*}} \nabla^{[2]} J\right]_{\mathcal{V}^{Z, 2}}=-\frac{1}{2} J\left[J^{-1}, \nabla^{[2]^{*}} \nabla^{[2]} J\right] \tag{85}
\end{equation*}
$$

### 4.4 Geometric interpretation of the even determined system

### 4.4.1 The injective morphism of homogeneous fibre bundle $\mathfrak{I}_{J_{0}}: G / G_{0} \hookrightarrow \mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(G / H, J_{2}\right)$.

Here, we want to ask ourself if the inclusion $\mathfrak{I}_{J_{0}}: G / G_{0} \hookrightarrow \mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(G / H, J_{2}\right)$ given by theorem 3.2 conserves the homogeneous fibre bundle structure, in particular: the vertical harmonicity is it conserved. We use the notations of 4.3.1 and 4.3.4 (with $E=T M, \nabla$ a metric connection on $M$ and $j=2)^{42}$. First, we see that $\Im_{J_{0}}$ is obtained by "passage to the quotient" from the following injective morphism of bundle (which is an embedding if $G$ is closed in $\operatorname{Is}(M)$ ):

$$
\begin{align*}
\mathfrak{I}_{e_{0}}: \quad G & \hookrightarrow Q^{2}=\mathcal{U}_{1}^{\alpha_{0}}\left(G / H, J_{2}\right) \subset \mathcal{S O}(M)  \tag{86}\\
g & \longmapsto g \cdot e_{0}
\end{align*}
$$

where $e_{0} \in \mathcal{S O}\left(T_{p_{0}} M\right)$ is such that $\mathcal{M a t}\left(J_{0}\right)=J_{0}^{\alpha_{0}}$, and $J_{0}=\tau_{\mid \mathfrak{m}}^{-1}$. In other words $G \rightarrow M$ is a reduction of $\mathcal{U}_{1}^{\alpha_{0}}\left(G / H, J_{2}\right) \rightarrow M$ itself a reduction of $\mathcal{S O}(M) \rightarrow M$.
Further quotienting in (86) by $\mathbb{U}_{0}\left(J_{0}^{\alpha}\right)$ the target space and then by $G_{0}$ the domain, we obtain (by definition of $G_{0}=G^{\tau} \cap H$, see theorem 3.2) the injective morphism of bundle

$$
\mathfrak{I}_{\overline{e_{0}}}: g \cdot G_{0} \longmapsto\left(g \cdot e_{0}\right) \mathbb{U}_{0}\left(J_{0}^{\alpha}\right) \in \mathcal{U}_{1}^{\alpha_{0}}\left(M, J_{2}\right) / \mathbb{U}_{0}\left(J_{0}^{\alpha}\right) \subset \mathcal{S O}(M) / \mathbb{U}_{0}\left(J_{0}^{\alpha}\right)
$$

where $\overline{e_{0}}=e_{0} \mathbb{U}_{0}\left(J_{0}^{\alpha}\right) \in N^{2}$, and finally composing with $\mathcal{J}$ (in the target space) we obtain the $\operatorname{map} \mathfrak{I}_{J_{0}}$ :

$$
g \cdot G_{0} \longmapsto g \cdot\left(e_{0} \mathbb{U}_{0}\left(J_{0}^{\alpha}\right)\right) \stackrel{\mathcal{J}}{\longleftrightarrow} J=g J_{0} g^{-1} \in \mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right) .
$$

Since $\mathfrak{I}_{J_{0}}$ (resp. $\Im_{\bar{e}_{0}}$ ) is an injective morphism of bundle (and an immersion) $d \mathfrak{I}_{J_{0}}$ (resp. $d \Im_{\bar{e}_{0}}$ ) induces an injective morphism of bundle from the vertical subbundle $\mathcal{V}^{G / G}=$ [ $\mathfrak{g}_{k}$ ] into the vertical subbundle $\mathcal{V}^{\mathcal{Z}, 2}$ (resp. $\mathcal{V}^{2}$ ).
$\mathfrak{I}_{J_{0}}$ is the restriction to $G / G_{0}$ of the inclusion map $\mathfrak{I}: \operatorname{End}(G / H) \rightarrow M \times \operatorname{End}(\mathfrak{g})$ (see 1.7). Indeed, we have the inclusion depending on $J_{0}: g . G_{0} \in G / G_{0} \mapsto\left[g, J_{0}\right] \in G \times_{H} \operatorname{End}(\mathfrak{m})=\operatorname{End}(G / H)$ which under the inclusion $\mathfrak{I}$ gives $g \cdot G_{0} \in G / G_{0} \mapsto\left(g \cdot x_{0}, \operatorname{Ad} g \circ \tau_{\mid \mathfrak{m}}^{-1} \circ \operatorname{Ad} g^{-1}\right) \in M \times \operatorname{End}(\mathfrak{g})$ which is in nothing but $\mathfrak{I}_{J_{0}}$ (as usual under the identification $T M=[\mathfrak{m}]$ ). Then under the inclusion $\mathfrak{h}_{G} \subset \mathfrak{s o}(T M)$, we have $\mathfrak{h}_{G} \subset \mathfrak{h}_{Q^{2}}^{2}=\mathfrak{u}_{0}\left(T M, J_{2}\right)$. Indeed, under the linear isotropy representation of $H$ in $T_{x_{0}} M$, we have $H \subset \mathbb{U}_{0}\left(T_{x_{0}} M, J_{0}^{2}\right)=\mathbb{U}_{1}\left(T_{x_{0}} M, J_{0}\right)$ so that $\mathfrak{h} \subset \mathfrak{u}_{0}\left(T_{p_{0}} M, J_{0}^{2}\right)$ and thus $\mathfrak{h}_{G}:=G \times_{H} \mathfrak{h} \subset \mathfrak{u}_{0}\left(T M, J_{2}\right)$. Moreover let us remark that $\pi^{2} \circ \mathfrak{I}_{\bar{e}_{0}}=\pi$ so that $\pi^{*} \mathfrak{h}_{G} \subset \pi^{2^{*}} \mathfrak{h}_{Q^{2}}^{2}$ over $\Im_{\bar{e}_{0}}: N \rightarrow N^{2}$ (i.e. the inclusion is a morphism of bundle over $\Im_{\bar{e}_{0}}$ ).
Furthermore, since $\operatorname{Ad} J_{0}$ leaves invariant $\mathfrak{h} \subset \mathfrak{u}_{1}\left(T_{x_{0}} M, J_{0}\right)$, the restriction to $\mathfrak{h}$ of the symmetric decomposition

$$
\mathfrak{u}_{1}\left(T_{x_{0}} M, J_{0}\right)=\mathfrak{s o}_{(+1)}\left(T_{x_{0}} M, J_{0}\right) \oplus \mathfrak{s o}_{(-1)}\left(T_{x_{0}} M, J_{0}\right)
$$

[^26]gives rise to the decomposition $\mathfrak{h}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{k}$ according to (23), so that the symmetric decomposition given by $\operatorname{Ad} \mathcal{J}$ on $\pi^{2^{*}} \mathfrak{h}_{Q^{2}}^{2}=\mathfrak{u}_{1}\left(\pi^{2^{*}} T M, \mathcal{J}\right)$, that is to say
$$
\mathfrak{u}_{1}(T M, \mathcal{J})=\mathfrak{s o}_{(+1)}\left(\pi^{2^{*}} T M, \mathcal{J}\right) \oplus \mathfrak{s o}_{(-1)}\left(\pi^{2^{*}} T M, \mathcal{J}\right)
$$
gives rise in the $\operatorname{Ad} \mathcal{J}$-invariant subspace $\pi^{*} \mathfrak{h}_{G} \subset \pi^{2 *} \mathfrak{h}_{Q^{2}}^{2}$ to the symmetric decomposition of $\operatorname{Ad} \mathfrak{I}_{J_{0}}\left(\right.$ restricted to $\left.\pi^{*} \mathfrak{h}_{G} \subset \mathfrak{s o}\left(\pi^{*} T M\right)\right)$
$$
\pi^{*} \mathfrak{h}_{G}=\mathfrak{k}_{G} \oplus \mathfrak{p}_{G}
$$
according to (70). In other words, the decomposition given by (70) injects into the decomposition given by (83) via the inclusion $\pi^{*} \mathfrak{h}_{G} \subset \pi^{2^{*}} \mathfrak{h}_{Q^{2}}^{2}$.
Now let us interpret theorems 4.13 and 4.14 using the homogeneous fibre bundle structure in $\mathcal{Z}_{2 k}^{\alpha_{0}}\left(M, J_{2}\right)$ defined by the Riemannian vector bundle $(E, \nabla)=\left(T M, \nabla^{M}\right)$ (in the sense of 4.3.4). We continue to use the same conventions for the notations in $N$ and $N^{2}$ (no subscript for $N$ and subscript 2 for $N^{2}$ and $N^{\mathcal{Z}, 2}$. Recall that we have $\mathfrak{I}_{J_{0}}=\mathcal{J} \circ \mathfrak{I}_{\bar{e}_{0}}=\mathfrak{I}_{\bar{e}_{0}}^{*} \mathcal{J}$ and that $\left(\nabla^{M}\right)^{[2]}=\nabla^{M}$. Then according to theorems 4.22 and 4.23 , theorems 4.13 and 4.14 implies

Theorem 4.24 We have the following identities
(i) $\phi=\mathfrak{I}_{\bar{e}_{0}}^{*} \phi^{2}$
(ii) $\Phi=\mathfrak{I}_{\bar{e}_{0}}^{*} \Phi^{2}$
(iii) $\nabla^{c}=\nabla^{0} \mid[\mathfrak{p}]=\mathfrak{I}_{\bar{e}_{0}}^{*} \nabla^{c, 2}$, where $\nabla^{c, 2}$ is the canonical connection in $\mathfrak{p}_{Q^{2}}^{2}$.

Theorem 4.25 Let $s \in \mathcal{C}(\pi)$ and identify it (temporarily) with $s^{*} \mathfrak{I}_{\bar{e}_{0}} \in \mathcal{C}\left(\pi^{2}\right)$. Then under the inclusion $\mathfrak{I}_{\bar{e}_{0}}: N \rightarrow N^{2}$, we have:
(i) $d^{v} s=d^{v, 2} s$
(ii) $\Pi^{v} s=\Pi^{\mathrm{v}, 2}$
(iii) $\tau^{v} s=\tau^{\mathrm{v}, 2} s$
(iv) $s^{*} \Phi=s^{*} \Phi^{2}$

These properties holds also, without any change, for maps $f \in \mathcal{C}(L, N),(L, b)$ being a Riemannian manifold.

Let us remark that since the connection form $\omega$, on $Q=\mathcal{S O}(T M)$ defined by $\nabla^{M}$ is reducible in $Q^{2}$, then in the previous theorems all the "quantities" in $N^{2}$ (right handside) can also be computed in $\mathcal{S O}(T M) / \mathbb{U}_{0}\left(J_{0}^{\alpha_{0}}\right) \cong \mathcal{Z}_{2 k}^{\alpha_{0}}(M)$, since "everything is reducible" in this case (see remark 4.15).
Now, let us compute the vertical tension field of $J: L \rightarrow N_{\mathcal{Z}}^{2}$ for the homogenous fibre bundle structure defined in $N_{\mathcal{Z}}^{2}$ by $\nabla^{M}$ : according to (85) we have

$$
\begin{equation*}
\tau^{\mathrm{v}, 2}(J)=-\frac{1}{2} J\left[J^{-1},\left(\nabla^{M}\right)^{M} \nabla^{M} J\right] . \tag{87}
\end{equation*}
$$

Then suppose that $J \in \mathfrak{I}_{J_{0}}\left(G / G_{0}\right)$ i.e. $J=s^{*} \mathfrak{I}_{J_{0}}$ for a certain $s \in \mathcal{C}^{\infty}(L, N)$, then according to theorem 4.25 (and $\mathfrak{I}_{J_{0}}=\mathcal{J} \circ \mathfrak{I}_{\bar{e}_{0}}$ ) we have

$$
d \Im_{J_{0}}\left(\tau^{v}(s)\right)=d \mathcal{J}\left(\tau^{\mathrm{v}, 2}(\bar{s})\right)=\tau^{\mathrm{v}, 2}(J)
$$

where $\bar{s}=\mathcal{J}^{-1} \circ J$ i.e. $J=\bar{s}^{*} \mathcal{J}$.
The tension fields (and thus vertical harmonicity) correspond via the different inclusions and identifications, in particular via $\mathfrak{I}_{J_{0}}: N \rightarrow N_{\mathcal{Z}}^{2}$.
In fact in what precedes we can replace the canonical connection in $M, \nabla^{M}$, by (the $J_{2}$ commuting part of) the Levi-Civita connection in $M$.

Theorem 4.26 The canonical affine connection on $M$ is the $J_{2}$-commuting component of the Levi-Civita connection $\stackrel{M}{\nabla}$ on $M$ :

$$
\stackrel{M}{\nabla^{0}}=\stackrel{J_{2}}{\nabla^{0}}=\stackrel{M}{\nabla^{[2]}} .
$$

Corollary 4.3 The homogeneous fibre bundle structures in $N_{\mathcal{Z}}^{2}$ defined by the canonical affine coonection $\stackrel{M}{\nabla}^{0}$ and by (the $J_{2}$-commuting part of) the Levi-Civita connection $\stackrel{M}{\nabla}$, in $M$, are the same. Therefore theorems 4.15, 4.14 and corollary 4.1 still hold if we replace $\nabla^{M}$ by $\nabla^{M 2]}$. Moreover theorems 4.24 and 4.25 hold with the homogeneous fibre bundle structure defined in $N^{2}$ by the ( $J_{2}$-commuting part of) the Levi-Civita connection $\stackrel{M}{\nabla}$.

Let us conclude this subsection by some additionnnal equalities.
Theorem 4.27 The canonical affine connection on $M$ is the $J_{2}$-commuting component of the connections $\stackrel{\text { met }}{\nabla^{t}}$ on $M$ :

$$
\nabla^{M}=\left(\nabla^{\mathrm{met}} \nabla^{t}\right)^{[2]}
$$

Theorem 4.28 Let $J_{1} \in \mathcal{C}\left(\mathcal{U}_{2 k}^{*}(N)\right)$ be the section defined by $\tau_{\mid \mathfrak{n}}^{-1}$ with, let us recall it, $\mathfrak{n}=$ $\mathfrak{p} \oplus \mathfrak{m}=\mathfrak{g}_{k} \oplus \mathfrak{m}$, then
(i) The $J_{1}$-commuting component of the ( $\pi$-pullback of the) canonical affine connection in $M$, $\pi^{*} \nabla^{\mathbf{M}}$, is $\stackrel{N}{\nabla^{0}}$ the canonical affine connection in $N$. This latter is also the $J_{1}$-commuting component of the ( $\pi$-pullback of the) Levi-Civita connection, and more generally of the $\stackrel{\text { met,M }}{\nabla^{t}}$ connections $\nabla^{t}$.
(ii) The $J_{1}$-commuting component of the Levi-Civita connection in $N, \stackrel{N}{\nabla}$, is $\stackrel{N}{\nabla}{ }^{0}$.
(iii) More generally, the $J_{1}$-commuting component of $\stackrel{\text { met,N }}{\nabla^{t}}$ is $\stackrel{N}{\nabla^{0}}$.
(iv) Let $s \in \mathcal{C}(\pi)$ and $J=s^{*} \mathfrak{I}_{J_{0}}$ the corresponding $2 k$-structure on $M$, then $s^{*} \nabla^{N}$ is the $J_{1}$ commuting component of $\nabla^{( } \nabla^{0}$, and also the $J_{1}$-commuting component of (the s-pulback of) the Levi-Civita connection on $M, s^{*} \nabla^{M}$; and more generally of (the s-pulback of) the the connections $\stackrel{\text { met, } \mathrm{N}}{\nabla}{ }^{t}$.

We recover in particular from (iv).

### 4.4.2 Conclusion

Now we can conclude:
Theorem 4.29 Let $(L, j)$ be a Riemann surface, $f: L \rightarrow N=G / G_{0}$ be a map and $J=f^{*} \mathfrak{I}_{J_{0}}$ the corresponding map into $\mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right)$. Then $f$ is a geometric solution of the even determined system $(\operatorname{Syst}(k, \tau))$ if and only if
(i) $J$ is an admissible twistor lift ( $\Leftrightarrow f$ is horizontally holomorphic)
(ii) $J$ is vertically harmonic in $\mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right)$ endowed with its homogeneous fibre bundle structure defined by the Levi-Civita connection, $\nabla$, in $M$ :

$$
\left[\nabla^{[2] *} \nabla^{[2]} J, J\right]=0
$$

where $\nabla^{[2]}$ is the $J_{2}$-commuting component of $\nabla$. ( $\Leftrightarrow f$ is vertically harmonic in $G / G_{0}$ ).
Moreover the first condition implies that $J$ is flat in $\mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right)$ :

$$
J^{*} \Phi^{\mathcal{Z}, 2}=\left[u^{*} R^{\nabla^{[2]}}, J\right]=0
$$

where $\Phi^{\mathcal{Z}, 2}$ is the homogeneous curvature form in $\mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right)$, which means also that $J$ is a flat section in $\operatorname{End}\left(u^{*} T M, u^{*} \nabla^{[2]}\right) .(\Leftrightarrow f$ is flat in the homogeneous fibre bundle $N \rightarrow M)$.
Furthermore $f$ is a primitive geometric solution (i.e. there exists $m \leq k$ such that $f$ is $m$ primitive, which is equivalent to say that $f$ is $k$-primitive) if and only if
(i) $J$ is an admissible twistor lift
(ii) $J$ is parallel: $\nabla^{[2]} J=0$ ( $\Leftrightarrow f$ is horizontal).

Besides in these characterizations, in the points (ii) the Levi-Civita connection can be replaced by any $G$-invariant metric connection $\nabla^{\prime}$ whose the $J_{2}$-commuting component $\nabla^{\prime 2]}$ leaves invariant $\mathfrak{h}_{G} \subset \mathfrak{s o}(T M)$. This is the case in particular for the connections

$$
\stackrel{\text { met }}{\nabla^{t}}=\nabla^{M}+t\left([,]_{[\mathfrak{m}]}+\overline{\mathrm{U}}^{M}\right), \quad 0 \leq t \leq 1
$$

for which the $J_{2}$-commuting component is the canonical connection on $M: \nabla^{0}$.

## 5 Generalized harmonic maps

### 5.1 Affine harmonic maps and holomorphically harmonic maps

A map $u: M \rightarrow N$ between two Riemannian manifolds $(M, g)$ and $(N, h)$ is harmonic if it extremizes the energy functional

$$
E(u)=\frac{1}{2} \int_{D}|d u|^{2} d \operatorname{vol}_{g}
$$

for all compact subdomains $D \subset M$, where $|d u|^{2}=\operatorname{Tr}_{g}\left(u^{*} h\right)$. The associated Euler-Lagrange equation is $\tau(u):=\operatorname{Tr}_{g}(\nabla d u)=0$, where $\nabla$ is the connection on $T^{*} M \otimes u^{*} T N$ induced by the Levi-Civita connections of $M$ and $N$.
Now, we generalise this definition for maps from a Riemannian manifold into an affine manifold. We present two different ways to do that. The first one is the natural one (see also 25]) and concerns general affine manifolds whereas the second one concerns maps from Riemann surfaces into affine almost complex manifolds.

### 5.1.1 Affine harmonic maps: general properties

Definition 5.1 Let $s:(M, g) \rightarrow(N, \nabla)$ be a smooth map from a Riemannian manifold $(M, g)$ into an affine manifold $(N, \nabla)$. We set

$$
\tau(s)=\operatorname{Tr}_{g}(\nabla d s)=-\nabla^{*} d s=* d^{\nabla} * d s
$$

and we say that $s$ is affine harmonic with respect to $\nabla$ or $\nabla$-harmonic if $\tau(s)=0$.
Now, let us consider the case where $(M, g)$ is a Riemannian surface surface i.e. a Riemann surface $(L, j)$ with a Hermitian metric $b$. Then the action of the Hodge operator $*$ of $L$, is independent of the metric $b$ on 1 -forms $(* \alpha=\alpha \circ j)$, whereas in 2 -forms (resp. 0 -forms) it is multiplied by the factor $\lambda^{2}\left(\right.$ resp. $\left.\lambda^{-2}>0\right)$ when the metric is multiplied by the factor $\lambda \in C^{\infty}\left(L, \mathbb{R}_{+}^{*}\right)$. Hence the tension field $\tau(f)=* d^{\nabla}(* d f)$ is multiplied by $\lambda^{2}$, under this last transformation. In particular the affine harmonicity for maps $f:(L, j) \rightarrow(N, \nabla)$ does not depend on the hermitian metric $L$ but only on the conformal structure of $(L, j)$. Thus we have:

Theorem 5.1 Let $(L, j)$ be a Riemann surface and $f:(L, j) \rightarrow(N, \nabla)$ a smooth map. Let $T L^{\mathbb{C}}=T^{\prime} L \oplus T^{\prime \prime} L$ be the decomposition of $T L^{\mathbb{C}}$ into the $(1,0)$ and $(0,1)$-parts, and $d=\partial+\bar{\partial}$ and $\nabla^{f^{*}(T N)}=\nabla^{\prime}+\nabla^{\prime \prime}$ the corresponding splittings. Then we have

$$
2 \bar{\partial}^{\nabla} \partial f=d^{\nabla} d f+i d^{\nabla} * d f
$$

moreover $d^{\nabla} d f=f^{*} T$, where $T$ is the torsion of $\nabla$ and $d^{\nabla} * d f=\tau(f) \operatorname{vol}_{b}$ for any hermitian metric $b$ in $M$. Therefore the following statements are equivalent:
(i) $\nabla^{\prime \prime} \partial f=0$
(ii) $\bar{\partial} \nabla \partial f=0$
(iii) $\nabla_{\frac{\partial}{\partial z}}\left(\frac{\partial f}{\partial z}\right)=0$, for any holomorphic local coordinate $z=x+i y$ (i.e. ( $x, y$ ) are conformal coordinates for any hermitian metric in $L$ ).
(iv) $f$ is $\nabla$-harmonic with respect to any hermitian metric in $L$ and torsion free: $f^{*} T=0$ (i.e. $T\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)=0$ for any conformal coordinates $\left.(x, y)\right)$.

We will say in this case that $f$ is strongly $\nabla$-harmonic.
Remark 5.1 We remark that the imaginary part (resp. the real part) of equation (ii) (resp. equation (iii)) is the $\nabla$-harmonic maps equation whereas its real part (resp. imaginary part) is the torsion free equation $f^{*} T=0$.
If $T=0$ or more generally $f^{*} T=0$, then $f$ is strongly $\nabla$-harmonic if and only if it is $\nabla$ harmonic.

### 5.1.2 Holomorphically harmonic maps

In the case the target space $N$ is endowed with an almost complex structure $J$ then we have another way to generalise the definition of harmonicity to maps from a Riemann surface into $N$.

Definition 5.2 Let $(L, j)$ be a Riemann surface and $(N, \nabla)$ be an affine manifold endowed with a complex structure $J$. Let us denote $T N^{\mathbb{C}}=T^{1,0} N \oplus T^{0,1} N$ the corresponding decomposition of $T N^{\mathbb{C}}$. We will say that $f: L \rightarrow N$ is holomorphically harmonic if

$$
\left[\bar{\partial}^{\nabla} \partial f\right]^{1,0}=0
$$

Proposition 5.1 Let $(L, j)$ be a Riemann surface and $(N, \nabla)$ be an affine manifold endowed with a complex structure $J$. Then $f$ is holomorphically harmonic if and only if (for any hermitian metric $b$ in $M$ )

$$
T_{b}(f)+J \tau_{b}(f)=0
$$

where $T_{b}(f)=*\left(f^{*} T\right)=f^{*} T\left(e_{1}, e_{2}\right)$, with $\left(e_{1}, e_{2}\right)$ an orthonormal basis of $T L$, or equivalently

$$
\tau_{b}(f) \operatorname{vol}_{b}=J\left(f^{*} T\right)
$$

Therefore $f$ is strongly harmonic if and only if it is torsion free and holomorphically harmonic. In particular, if $T=0$, or more generally $f^{*} T=0$, then $f$ is holomorphically harmonic if and only if it is harmonic. Hence for torsion free connection $\nabla$ harmonicity and holomorphic harmonicity are the same.

Proof. Let $Z=X+i Y \in T N^{\mathbb{C}}$ with $X, Y \in T N$, then since $T^{1,0} N$ and $T^{0,1} N$ are given respectively by $\{V \mp i J V, V \in T N\}$, we deduce that

$$
[Z]^{1,0}=0 \Leftrightarrow X+J Y=0 \quad \text { and } \quad[Z]^{0,1}=0 \Leftrightarrow X-J Y=0
$$

Now, let us apply that to the $T N^{\mathbb{C}}$-valued 2-form $\bar{\partial}^{\nabla} \partial f$, we obtain

$$
\left[\bar{\partial}^{\nabla} \partial f\right]^{1,0}=0 \Longleftrightarrow d^{\nabla} d f+J d^{\nabla} * d f=0
$$

according to theorem 5.1. This proves the first assertion. Then the assertion concerning strongly harmonicity follows from theorem 5.1(iv). This completes the proof.
Let us remark that
Proposition 5.2 In the same situation as in the previous proposition, let us suppose in addition that $\nabla J=0$. Then if a map $f: L \rightarrow N$ is holomorphic i.e. $d f \circ j_{L}=J d f$, then $f$ is antiholomorphically harmonic (i.e. holomorphically harmonic with respect to $-J$ ).

Proof. $f$ is holomorphic if and only if $d f\left(T^{1,0} L\right) \subset T^{1,0} N$ i.e. $[\partial f]^{0,1}=0$. Then we have

$$
\left[\bar{\partial}^{\nabla} \partial f\right]^{0,1}=\bar{\partial}^{\nabla}[\partial f]^{0,1}=0
$$

since $\nabla$ commutes with $J$. This completes the proof.
It can also be useful to observe the following.
Proposition 5.3 Let $(N, J)$ be an almost complex manifold with an almost complex affine connection that we will denote by $\nabla^{0}$. Then let us define a family of connection

$$
\nabla^{t}=\nabla^{0}-t T^{0}, \quad 0 \leq t \leq 1
$$

Then a map $f:\left(L, j_{L}\right) \rightarrow(N, J)$ from a Riemann surface $L$ into the almost complex manifold $N$ is holomorphically harmonic w.r.t. $\nabla^{1}$ and $J$ if and only if $f$ is holomorphically harmonic w.r.t. $\nabla^{0}$ and $-J$. We will say more simply that $f$ is $\nabla^{1}$-holomorphically harmonic if and only if it is $\nabla^{0}$-anti-holomorphicallly harmonic.

Holomorphic sections of complex vector bundles Now, we need to do some recalls about complex vector bundles that we will apply in the next paragraph to obtain an interpretation of the holomorphic harmonicity in terms of holomorphic 1-forms.
Let $E \rightarrow M$ be a real vector bundle (over a manifold $M$ ) endowed with a complex structure $J \in \operatorname{End}(E)$. Then any frame in the form $\left(e_{x}^{1}, \ldots, e_{x}^{r}, J e_{x}^{1}, \ldots, J e_{x}^{r}\right)$ at some point $x \in M$ can be extended to a local frame $\left(e^{1}, \ldots, e^{r}, J e^{1}, \ldots, J e^{r}\right)$ in the neighbourhood of $x$. Then there exists an open covering $\left(U_{\alpha}\right)_{\alpha \in I}$ of $M$ and local trivialisations $\Phi_{\alpha}:\left(E_{\mid U_{\alpha}}, J\right) \rightarrow U_{\alpha} \times\left(\mathbb{C}^{r}, i \mathrm{Id}\right)$ which are $\mathbb{C}$-linear isomorphisms $\left(\Phi_{\alpha} \circ J=i \Phi_{\alpha}\right)$, or equivalently of which transition maps take values in the endomorphisms of $\mathbb{C}^{r}: \phi_{\alpha \beta}=\Phi_{\beta} \circ \Phi_{\alpha}^{-1}: U_{\alpha} \cap U_{\beta} \rightarrow G L\left(\mathbb{C}^{r}\right)$. Therefore $E$ is a complex vector bundle.

Remark 5.2 Let us set $\hat{\mathbb{C}}=\mathbb{R}[J]$, then $\hat{\mathbb{C}}=\mathbb{R}[J]$ is a vector bundle over $M$ whose fibres are fields isomorphic to $\mathbb{C}=\mathbb{R}[i]$ and each fibre $E_{x}$ of $E$ is a $\hat{\mathbb{C}}_{x}$-vector space. Then $E^{\mathbb{C}}$ is endowed with two different structures of vector bundle: one over the field $\mathbb{C}$ (the tautological one defined by the complexification of $E$ ) and another one "over the distribution of field $\hat{\mathbb{C}}$ " (i.e. the one defined by $J$ ). Therefore we have two different complex conjugaisons in $E^{\mathbb{C}}$, that we will call respectively the $\mathbb{C}$-conjugaison and the $\hat{\mathbb{C}}$-conjugaison.

Now, let us suppose that $E$ is endowed with a complex connection $\nabla$, i.e. a connection which commutes with $J: \nabla J=0$. Then for all $X \in T M, \nabla_{X}: \mathcal{C}(E) \rightarrow \mathcal{C}(E)$ is $\mathbb{C}$-linear with respect to the complex vector space structure defined on $\mathcal{C}(E)$ by the complex vector bundle structure on $E$. Then we have two different ways to extend $\nabla$ to $T M^{\mathbb{C}}$.

1. The canonical one: for any section $s \in \mathcal{C}\left(E^{\mathbb{C}}\right)$, we extend $\nabla s$ by $\mathbb{C}$-linearity to a linear morphism from $T M^{\mathbb{C}}$ to $E^{\mathbb{C}}$,

$$
\nabla_{i X} s=i \nabla_{X} s, \quad \forall X \in T M, s \in \mathcal{C}\left(E^{\mathbb{C}}\right)
$$

after, of course, having extended $\nabla$ to a connection on $E^{\mathbb{C}}$ by setting $\nabla i s=i \nabla s, \forall s \in \mathcal{C}(E)$. In conclusion, $\forall s \in \mathcal{C}\left(E^{\mathbb{C}}\right), \nabla s \in \mathcal{C}\left(T^{*} M^{\mathbb{C}} \otimes E^{\mathbb{C}}\right)$.
2. By using the complex vector bundle structure of $E$ defined by $J$ : for any $s \in \mathcal{C}(E)$, we extend $\nabla s$ by $\mathbb{C}$-linearity to a linear morphism from $T M^{\mathbb{C}}$ to $E$ :

$$
\widehat{\nabla}_{i X} s=J \widehat{\nabla}_{X} s, \quad \forall X \in T M, s \in \mathcal{C}(E)
$$

Let us remark that $\hat{\nabla}$ depends on $J$, and since we use the complex vector space structure defined by $J$, one needs that $\nabla$ and $J$ commute. One the other side the simple canonical complex extention defined in 1 (that we still denote by $\nabla$ ) is independant of $J$ and one needs not to do any additionnal hypothesis. Remark that the extention 1 is nothing but the extention $\widehat{\nabla}$ defined by the complex structure $i \operatorname{Id}_{E^{\mathbb{C}}}$ on $E$ (which commutes obviously with $\nabla$ ).
Now let us suppose that $M$ is an (almost) complex manifold with (almost) complex structure $j_{M}$. Then we have the splitting $T M^{\mathbb{C}}=T^{1,0} M \oplus T^{0,1} M$ defined by $j_{M}$ which gives rise respectively to the following decompositions of $\nabla$ and $\widehat{\nabla}$ :

$$
\begin{aligned}
\hat{\nabla} & =\nabla^{(1,0)}+\nabla^{(0,1)} \\
\nabla & =\nabla^{\prime}+\nabla^{\prime \prime}
\end{aligned}
$$

More generally, let $\eta \in \mathcal{C}\left(T^{*} M \otimes E\right)$ be a 1-form on $M$ with values in $E$. Then we can extend it in two different ways by $\mathbb{C}$-linearity in $T M^{\mathbb{C}}$ by setting:

$$
\begin{aligned}
\eta^{\mathbb{C}}(X+i Y) & =\eta(X)+i \eta(Y), \quad \forall X, Y \in T M \\
\hat{\eta}(X+i Y) & =\eta(X)+J \eta(Y), \quad \forall X, Y \in T M
\end{aligned}
$$

Remark that $\eta^{\mathbb{C}} \in \mathcal{C}\left(T^{*} M^{\mathbb{C}} \otimes E^{\mathbb{C}}\right)$ whereas $\hat{\eta} \in \mathcal{C}\left(T^{*} M^{\mathbb{C}} \otimes E\right)$. As above we can decompose $\eta^{\mathbb{C}}$ and $\hat{\eta}$ according to the decomposition $T M^{\mathbb{C}}=T^{1,0} M \oplus T^{0,1} M$ :

$$
\begin{align*}
\eta^{\mathbb{C}} & =\eta^{\prime}+\eta^{\prime \prime}  \tag{88}\\
\hat{\eta} & =\eta^{(1,0)}+\eta^{(0,1)} \tag{89}
\end{align*}
$$

Then we have the following relations

## Lemma 5.1

$$
\begin{array}{ll}
{\left[\eta^{\prime}\right]^{1,0}=\eta^{(1,0)}-i J \eta^{(1,0)}} & {\left[\eta^{\prime \prime}\right]^{0,1}=\eta^{(1,0)}+i J \eta^{(1,0)}}  \tag{90}\\
{\left[\eta^{\prime}\right]^{0,1}=\eta^{(0,1)}+i J \eta^{(0,1)}} & {\left[\eta^{\prime \prime}\right]^{1,0}=\eta^{(0,1)}-i J \eta^{(0,1)}}
\end{array}
$$

Proof. Let $Z=X-i j_{M} X \in T^{1,0} M$ with $X \in T M$. Then

$$
\begin{aligned}
{[\eta(Z)]^{1,0}=\left[\eta(X)-i \eta\left(j_{M} X\right)\right]^{1,0} } & =\eta(X)-i J \eta(X)-i\left(\eta\left(j_{M} X\right)-i J \eta\left(j_{M} X\right)\right) \\
& =\eta(X)-J \eta\left(j_{M} X\right)-i J\left(\eta(X)-J \eta\left(j_{M} X\right)\right) \\
& =\eta^{(1,0)}(Z)-i J \eta^{(1,0)}(Z)
\end{aligned}
$$

This gives us $\left[\eta^{\prime}\right]^{1,0}$. Then by taking the $\hat{\mathbb{C}}$-conjugate, we obtain $\left[\eta^{\prime}\right]^{0,1}$. Finally, the second column of $(90)$ is obtained by $\mathbb{C}$-conjugaison from the first column. This completes the proof. $\square$ We can apply what precedes to the flat differentiation $d$. Let $(N, J)$ be an almost complex manifold and $s: M \rightarrow N$ a map. Then we consider the complex vector bundle $E=s^{*} T N$ over $M$. Then applying what precedes to the 1-form $\eta=d s$, we can consider the extensions $\widehat{d s}$ and $(d s)^{\mathbb{C}}$, which then allows us to define the following extension of $d$ to $T M^{\mathbb{C}}$ :

$$
\hat{d} s=\widehat{d s} \quad \text { and } \quad d^{\mathbb{C}} s=(d s)^{\mathbb{C}}
$$

and by abuse of notation ${ }^{[3]} d^{\mathbb{C}}$ will be still denoted by $d$. Then we can write the following decompositions

$$
\hat{d}=\hat{\partial}+\overline{\hat{\partial}} \quad \text { and } \quad d=\partial+\bar{\partial}
$$

[^27]according to the decomposition $T M^{\mathbb{C}}=T^{1,0} M \oplus T^{0,1} M$.
Now let us come back to the general situation of a complex vector bundle $E$ over an almost complex manifold $\left(M, j_{M}\right)$, endowed with a complex connection $\nabla$. Let us set
$$
\mathrm{H}(M, E)=\left\{\eta \in T^{*} M \otimes E \mid \eta j_{M}=J \eta\right\} .
$$

Then $\mathrm{H}(M, E)$ is a vector subbundle of the vector bundle $T^{*} M \otimes E$ and is naturally endowed with the complex structure defined by

$$
\begin{equation*}
I(\eta)=\eta j_{M}=J \eta, \quad \forall \eta \in T^{*} M \otimes E \tag{91}
\end{equation*}
$$

which makes $\mathrm{H}(M, E)$ being a complex vector bundle whose the set of sections is

$$
\operatorname{Hom}\left(\left(T M, j_{M}\right),(E, J)\right)=\left\{\eta \in \mathcal{C}\left(T^{*} M \otimes E\right) \mid \eta \circ j_{M}=J \circ \eta\right\}
$$

The sections of $\mathrm{H}(M, E)$ can also be caracterized by using the splittings (88 89):
Lemma 5.2 We have the following equivalences for 1-forms $\eta \in \mathcal{C}\left(T^{*} M \otimes E\right)$ :

$$
\eta \circ j_{M}=J \circ \eta \Longleftrightarrow \eta^{\prime} \in T^{*} M \otimes E^{1,0} \Longleftrightarrow \eta^{(0,1)}=0
$$

Then we deduce in particular
Lemma 5.3 Let $s \in \mathcal{C}(E)$, then we have the following equivalences:

$$
\nabla s \circ j_{M}=J \circ \nabla s \Longleftrightarrow \nabla^{(0,1)} s=0 \Longleftrightarrow\left[\nabla^{\prime} s\right]^{0,1}=0 \Longleftrightarrow \nabla^{\prime}(s-i J s)=0
$$

We will say that $s$ is a vertically holomorphic section.
In fact we can say more

Lemma 5.4 Let us consider the splitting $T E=\mathcal{H} \oplus \mathcal{V}$ given by $\nabla$, where $\mathcal{V}=\operatorname{ker} \pi=\pi^{*} E$ is the vertical subbundle and $\mathcal{H}$ the horizontal one. Then let us define an almost complex structure $\check{J}$ on the manifold $E$ by setting

$$
\check{J}=\left((d \pi)^{*} j_{M}\right)_{\mid \mathcal{H}} \oplus \pi^{*} J .
$$

Then a section $s \in \mathcal{C}(E)$ is $\check{J}$-holomorphic if and only if it vertically holomorphic.
Proof. It suffices to prove that any section $s \in \mathcal{C}(E)$ is horizontally holomorphic, i.e. satisfies the horizontal part of the equation $d s \circ j_{M}=J \circ d s$. We have $d \pi \circ\left(d s \circ j_{M}\right)=j_{M}$ since $s$ is a section. In the other side we have $d \pi \circ(\check{J} \circ d s)=j_{M} \circ d \pi \circ d s=j_{M}$, by definition of $\check{J}$ and using the fact $s$ is a section. In conclusion $d \pi \circ\left(d s \circ j_{M}\right)=d \pi \circ(J \circ d s)$. This completes the proof. $\square$ In the following, we will say that a section of a complex vector bundle $(E, J, \nabla)$ is holomorphic if it is $\breve{J}$-holomorphic.
Now, let us apply the two previous lemmas to the vector bundle $\mathrm{H}(M, E)$. First, let us endow $M$ with an almost complex connection $\nabla^{M}$ (it means $\nabla^{M} J=0$; such a connection always exists, see [33]). Then $T^{*} M \otimes E$ is naturally endowed with the connection $\stackrel{\otimes}{\nabla}$ defined by $\nabla^{M}$ and $\nabla$. Further, we denote by $\bar{\nabla}$ the restriction to $\mathrm{H}(M, E)$ of $\stackrel{\otimes}{\nabla}$. Then we remark that $\bar{\nabla}$ commutes with the complex structure $I$ (defined by (91)). Therefore, we can now apply the two previous lemmas to the complex vector bundle $(\mathrm{H}(M, E), I, \bar{\nabla})$ :

Proposition 5.4 A section of $\mathrm{H}(M, E), \eta \in \operatorname{Hom}\left(\left(T M, j_{M}\right),(E, J)\right)$, is holomorphic if and only if it satisfies one of the following equivalent statements
(i) $\bar{\nabla}^{(0,1)} \eta=0$
(ii) $\bar{\nabla}^{\prime \prime} \eta^{\prime}=0$
(iii) $\left[\bar{\nabla}^{\prime \prime} \eta\right]^{1,0}$.

Moreover if $M$ is a Riemann surfact 4 , then it also equivalent to
(iv) $\overline{\hat{\partial}}^{\hat{\nabla}} \hat{\eta}=\overline{\hat{\partial}}^{\hat{\nabla}} \eta^{(1,0)}=0$, or
(v) $\bar{\partial}^{\nabla} \eta^{\prime}=0$

Moreover, if $M$ is a complex manifold (i.e. $j_{M}$ is integrable) then we choose for $\nabla^{M}$ the unique torsion free complex connection on $M$. Then we obtain the following result:

Proposition 5.5 Let $l \in T M$ be a complex line in the tangent bundle of the complex manifold $M$. Then for any section $\eta \in \operatorname{Hom}\left(\left(T M, j_{M}\right),(E, J)\right)$ we have the following equality

$$
\bar{\nabla}^{(0,1)} \eta_{\mid l \times l}=d^{\nabla} \eta_{\mid l \times l}
$$

Moreover if $\eta$ is holomorphic then $d^{\nabla} \eta=0$. More particulary, if $M$ is a Riemann surface then we have the following equivalence

$$
\eta \text { is holomorphic } \Longleftrightarrow d^{\nabla} \eta=0
$$

Remark 5.3 One could directly deduces the case of a Riemann surface by using proposition 5.4. Indeed, the first way to do that is to write $d^{\nabla} \eta=d^{\nabla} \eta^{\prime}+d^{\nabla} \eta^{\prime \prime}$. Then remark that $\eta^{\prime}$ and $\eta^{\prime \prime}$ takes values in $E^{1,0}$ and $E^{0,1}$ respectively, according to lemma 5.3. Therefore since $E^{1,0}$ and $E^{0,1}$ are $\nabla$-parallel, we can say that $d^{\nabla} \eta^{\prime}$ and $d^{\nabla} \eta^{\prime \prime}$ take values resp. in $E^{1,0}$ and $E^{0,1}$ resp., so that $d^{\nabla} \eta=0 \Leftrightarrow d^{\nabla} \eta^{\prime}=0 \Leftrightarrow d^{\nabla} \eta^{\prime \prime}=0$. Then if $M$ is a Riemann surface $d^{\nabla} \eta^{\prime}=\bar{\partial}^{\nabla} \eta^{\prime}$, and we conclude by using proposition 5.4.
The second way to do that is to use the $\hat{\mathbb{C}}$-linearity. Indeed, the extension to $T M^{\mathbb{C}}$ by $\hat{\mathbb{C}}$-linearity of $d^{\nabla} \eta$ is $\widehat{d^{\nabla} \eta}=d^{\widehat{\nabla}} \hat{\eta}=d^{\widehat{\nabla}} \eta^{(1,0)}=0$, since $\eta^{(0,1)}=0$ (see lemma 5.3). Then if $M$ is a Riemann surface $d^{\widehat{\nabla}} \eta^{(1,0)}=\overline{\hat{\partial}}^{\widehat{\nabla}} \eta^{(1,0)}$, and we conclude by using proposition 5.4 (iv).

Remark 5.4 Let us consider a 1-form $\beta \in \mathcal{C}\left(T^{*} M \otimes E\right)$, then we can associate to it

$$
\eta=\beta-J \beta \circ j_{M}=\hat{\beta} \circ\left(\operatorname{Id}-i j_{M}\right)=\beta^{(1,0)} \circ\left(\operatorname{Id}-i j_{M}\right) .
$$

By definition $\eta \in \mathcal{C}(\mathrm{H}(M, E))$, i.e. $\eta \circ j_{M}=J \circ \eta$. Moreover, still suppposing that $M$ is complex and that $\nabla^{M}$ is the unique torsion free complex connection on $M$, we have

$$
\begin{equation*}
\widehat{\bar{\nabla}} \hat{\eta}=\widehat{\bar{\nabla}} \beta^{(1,0)} \circ\left(\mathrm{Id}-i j_{M}\right) \tag{92}
\end{equation*}
$$

because ( $\left.\operatorname{Id}-i j_{M}\right)$ is $\nabla^{M}$-parallel.
Let us remark that since $j_{M}$ and the multiplication by $i$ coincide in $T^{1,0} M$, they define the same

[^28]complex structure, which we will suppose $T^{1,0} M$ to be canonically endowed with. Then, since $\hat{\beta}$ is by definition a complex linear morphism from $T M^{\mathbb{C}}$ to $E, \beta^{(1,0)}$ is also a complex linear morphism from $T^{1,0} M$ to $E$. Hence $\beta^{(1,0)}$ is a section of the complex vector bundle $T_{1,0}^{*} M \otimes_{\mathbb{C}} E$. Therefore, from equation (92), we deduce that $\eta$ is a holomorphic section of $\mathrm{H}(M, E)$ if and only if $\beta^{1,0}$ is a holomorphic section of $T_{1,0}^{*} M \otimes_{\mathbb{C}} E$. In particular if $M$ is a Riemann surface, we deduce from (92), that
$$
\overline{\hat{\partial}} \hat{\nabla} \hat{\eta}=\overline{\hat{\partial}}^{\hat{\nabla}} \beta^{(1,0)} \circ\left(\mathrm{Id}-i j_{M}\right)
$$

Now, we come back to our complex vector bundle $(E, J, \nabla)$ and we recall a theorem ( $\sqrt[32 \|]{ })$ which caracterizes when $\breve{J}$ is integrable.

Theorem 5.2 Let $(E, J, \nabla) \rightarrow\left(M, j_{M}\right)$ be a complex vector over a complex manifold, with a complex connection $\nabla$. Then we will say that a holomorphic structure $\mathcal{E}$ is compatible with $\nabla$ (or that $\nabla$ is adapted to $\mathcal{E}$ ) if it is induced by the almost complex structure $\check{J}$ (defined by lemma 5.4). In other words, a section $s \in \mathcal{C}(E)$ is holomorphic with respect to $\mathcal{E}$ if and only if

$$
\forall Z \in T^{1,0} M, \widehat{\nabla}_{\bar{Z}} s=0
$$

An holomorphic structure $\mathcal{E}$ exists on $E$ if and only if $\check{J}$ is integrable, and in this case $\mathcal{E}$ is unique. Moreover $\check{J}$ is integrable if and only if the ( 0,2 )-component of the curvature operator ${ }^{[55} R$ of $\nabla$ vanishes.

When $M$ is of dimension 2 , then the ( 0,2 -component of the curvature operator always vanishes so that $E$ always admits a holomorphic structure compatible with $\nabla$, that we will call, following [10], the Koszul-Malgrange holomorphic structure induced by $\nabla$. In the following, we suppose that a complex vector bundle $(E, J, \nabla)$ over a Riemann surface is always endowed with its Koszul-Malgrange holomorphic structure.

Interpretation of the holomorphic harmonicity in terms of holomorphic 1-forms. Now we come back to the situation in the begining of 5.1.2. More precisely, we consider $(N, J)$ an almost complex manifold, with $\nabla$ an almost complex connection, $\left(L, j_{L}\right)$ a Riemann surface and $f: L \rightarrow N$ a map. Then we apply what precedes to the complex vector bundle $E=$ $\left(f^{*} T N, f^{*} \nabla, f^{*} J\right)$ over $L$ (i.e. $L$ plays the role of $M$ and $f$ the one of $s$ with respect to the notation of the previous paragraphs). We obtain a first theorem:

Proposition 5.6 Let $f:\left(L, j_{L}\right) \rightarrow(N, J)$ be a map from a Riemann surface into an almost complex manifold. Let us set

$$
\eta=d f-J d f \circ j_{M}
$$

Then $\eta$ is a section of $\mathrm{H}\left(L, f^{*} T N\right)$, i.e. $\eta \circ j_{M}=J \circ \eta$. Moreover $f$ is holomorphically harmonic if and only if $\eta$ is a holomorphic section of the complex vector bundle $\mathrm{H}\left(L, f^{*} T N\right)$, i.e.

$$
\bar{\partial}^{\nabla} \eta^{\prime}=0 .
$$

Proof. We write

$$
\left.d^{\nabla} \eta=d^{\nabla}\left(d f-J d f \circ j_{M}\right)\right)=d^{\nabla}(d f+* J d f)=d^{\nabla} d f+J d^{\nabla} * d f
$$

so that we can conclude according to proposition 5.5 and proposition 5.1. This completes the proof.

[^29]We can give a caracterisation which looks like very closely to the one which holds for harmonic $\operatorname{maps}(10])$ :

Theorem 5.3 $A$ map $f:\left(L, j_{L}\right) \rightarrow(N, J)$ from a Riemann surface into an almost complex manifold, is holomorphically harmonic if and only if

$$
\begin{equation*}
\overline{\hat{\partial}}^{\hat{\nabla}} \hat{\partial} f=0, \tag{93}
\end{equation*}
$$

i.e. $\hat{\partial} f$ is a holomorphic section of $T_{1,0}^{*} L \otimes_{\mathbb{C}} f^{*} T N$.

Proof. Apply remark 5.4 to $\beta=d f$ and then use proposition 5.6 to prove that $\hat{\partial} f$ is a holomorphic section and proposition 5.4 (iv) to prove the equation (93).

### 5.2 The sigma model with a Wess-Zumino term in Nearly Kähler manifolds

Here we present an interpretation of the holomorphic harmonicity in terms of a sigma model with a Wess-Zumino term.

### 5.2.1 Totally skew-symmetric torsion

First, let us recall some useful properties about connections.
Proposition 5.7 Let $\nabla$ be a connection on a manifold $N$ and $A \in \mathcal{C}\left(T^{*} N \otimes \operatorname{End}(T N)\right)$. Then the connection

$$
\nabla^{\prime}=\nabla+A
$$

has the same geodesic as $\nabla$ if and only if $A(\cdot, \cdot)$ is skew-symmetric (as a bilinear map). In this case for any map $f:(M, g) \rightarrow N$, from a Riemannian manifold in to $N$, we have $\tau_{g}^{\prime}(f)=\tau_{g}(f)$, where $\tau_{g}^{\prime}(f)$ and $\tau_{g}(f)$ are the tension fields w.r.t. $\nabla$ and $\nabla^{\prime}$ respectively. Moreover (still in this case), we have

$$
T^{\nabla^{\prime}}=T^{\nabla}+2 A
$$

Now, let us suppose that $\nabla$ is metric w.r.t. some metric $h$ in $N$. Then $\nabla^{\prime}$ is metric if and only if $A$ takes values (as a 1-form) in the skew-symmetric endomorphisms of $T N: A \in \mathcal{C}\left(T^{*} N \otimes \mathfrak{s o}(T N)\right)$. Therefore $\nabla^{\prime}$ is metric and geodesic-preserving if and only if $A$ is totally skew-symmetric which means that the associated 3-linear map defined by $A^{*}(X, Y, Z)=\langle A(X, Y), Z\rangle$ is a 3-form on $N$.

Now let us see how we can introduce the Levi-Civita connection starting from a given metric connection.

Proposition 5.8 Let $N$ be a manifold endowed with some connection that we denote by $\nabla^{0}$ (for some reason that will appear clearly below). Let us set

$$
\nabla^{t}=\nabla^{0}-t T^{0}, \quad 0 \leq t \leq 1
$$

where $T^{0}=T^{\nabla^{0}}$ is the torsion of $\nabla^{0}$. Then we have

$$
T^{t}:=T^{\nabla^{t}}=-(2 t-1) T^{0}
$$

In particular, $\nabla^{\frac{1}{2}}$ is torsion free. Moreover all the connections $\nabla^{t}, \quad 0 \leq t \leq 1$, are geodesically equivalent.

Now, let $h$ be a metric on $N$ which is $\nabla^{0}$-parallel. Then $\nabla^{t}, t \neq 0$, is metric if and only if $T^{0}$ is totally skew-symmetric that is to say the 3-linear map defined by

$$
\left(T^{0}\right)^{*}(X, Y, Z):=\left\langle T^{0}(X, Y), Z\right\rangle
$$

is a 3-form. In this case, $\nabla^{\frac{1}{2}}$ coincides with the Levi-Civita connection $\nabla^{h}$ of $h$.
Remark 5.5 We see that for a map $f:(M, g) \rightarrow N$, the strongly $\nabla^{t}$-harmonicities are all equivalent for $t \neq \frac{1}{2}$.
Conversely,
Proposition 5.9 Let $(N, h)$ be a Riemannian manifold, and let us denote by $\nabla^{h}$ its Levi-Civita connection. Then a metric connection $\nabla$ on $N$ is entirely determined by its torsion $T$. Moreover a metric connection $\nabla$ on $N$ is geodesically preserving if and only if its torsion $T$ is totally skew-symmetric. Then in this case we have

$$
\nabla=\nabla^{h}+\frac{1}{2} T
$$

Proof. For any metric connection $\nabla=\nabla^{h}+A$, we have

$$
\begin{align*}
T(X, Y) & =A(X, Y)-A(Y, X)  \tag{94}\\
2 A^{*}(X, Y, Z) & =T^{*}(X, Y, Z)+T^{*}(Z, X, Y)+T^{*}(Z, Y, X) \tag{95}
\end{align*}
$$

which proves the first assertion. Concerning the second assertion, we see (according to (94 95)) that $A$ is totally skew-symmetric if and only if $T$ is so, i.e., according to proposition $5.7, \nabla$ is geodesic preserving if and only if $T$ is totally skew-symmetric. Then in this case $T=2 A$ i.e. $\nabla=\nabla^{h}+\frac{1}{2} T$. This completes the proof.

Remark 5.6 The second equation (95) can be derived directly from the first one (94) (compute the right hand side of the second equation using the first equation which gives $2 A^{*}(X, Y, Z)$ ). But there is another way (which will be useful in the following) to interpret this second equation. Indeed, first let us identify (via the metric $h$ ) in the following of this remark, each $T N$-valued bilinear form $B$ on $N$ with the corresponding trilinear form $B^{*}$. Then let us set $A:=\frac{1}{2}(T+U)=$ $\frac{1}{2}(T(X, Y, Z)+T(Z, X, Y)+T(Z, Y, X))$, where $U(X, Y, Z)=\langle U(X, Y), Z\rangle=T(Z, X, Y)+$ $T(Z, Y, X)$. We remark that $U$ is symmetric w.r.t. to the variables $X, Y$, so that the connection $\nabla-A=\nabla-\frac{1}{2}(T+U)$ is torsion free. Moreover we see that $A(X, Y, Z)=\frac{1}{2}(T(X, Y, Z)+$ $T(Z, X, Y)+T(Z, Y, X))$ is skew symmetric w.r.t. the two last variables $Y, Z$. Therefore $\nabla-A$ is metric and thus this is the Levi-Civita connection $\nabla^{h}$ :

$$
\nabla^{h}=\nabla-\frac{1}{2}(T+U)
$$

Moreover, $T$ is totally skew-symmetric if and only if the "natural reductivity term" $U=0$.
Furthermore, let us remark that the bijective correspondence between $T$ and $A$ comes simply from the isomorphism of vector bundle $T \in \Lambda^{2} T^{*} N \otimes T N \longmapsto T+U T^{*} N \otimes \mathfrak{s o}(T N)$.

### 5.2.2 The general case of an almost Hermitian manifold

Let $(E, J)$ be a complex vector space and let us set

$$
\operatorname{Bil}(E)=E^{*} \otimes E^{*} \otimes E \quad \text { and } \mathcal{T}(E)=\left(\Lambda^{2} E^{*}\right) \otimes E \subset \operatorname{Bil}(E)
$$

and for $\varepsilon, \varepsilon^{\prime} \in \mathbb{Z}_{2}$ we set

$$
\operatorname{Bil}^{\varepsilon, \varepsilon^{\prime}}(E, J)=\left\{A \in \operatorname{Bil}(E) \mid A(J \cdot, \cdot)=\varepsilon J A, A(\cdot, J \cdot)=\varepsilon^{\prime} J A\right\}
$$

so that we have the decomposition

$$
\begin{equation*}
\operatorname{Bil}(E)=\oplus_{\left(\varepsilon, \varepsilon^{\prime}\right) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}} \operatorname{Bil}^{\varepsilon, \varepsilon^{\prime}}(E, J) \tag{96}
\end{equation*}
$$

Let us remark that for any $A \in \operatorname{Bil}(E)$, its component $A^{\varepsilon, \varepsilon^{\prime}} \in \operatorname{Bil}^{\varepsilon, \varepsilon^{\prime}}(E, J)$ is given by

$$
\begin{equation*}
A^{\varepsilon, \varepsilon^{\prime}}(X, Y)=-\frac{1}{4}\left(\varepsilon \varepsilon^{\prime} A(J X, J Y)+\varepsilon J A(J X, Y)+\varepsilon^{\prime} J A(X, J Y)-A(X, Y)\right) \tag{97}
\end{equation*}
$$

Moreover we also have the decomposition

$$
\mathcal{T}(E)=\mathcal{T}^{2,0} \oplus \mathcal{T}^{0,2} \oplus \mathcal{T}^{1,1}
$$

where $\mathcal{T}^{2,0}=\left(\Lambda^{2,0} E^{* \mathbb{C}}\right) \otimes_{\mathbb{C}} E=\operatorname{Bil}^{++}(E, J) \cap \mathcal{T}, \mathcal{T}^{2,0}=\left(\Lambda^{0,2} E^{* \mathbb{C}}\right) \otimes_{\mathbb{C}} E=\operatorname{Bil}^{--}(E, J) \cap \mathcal{T}$ and $\mathcal{T}^{1,1}=\left(\Lambda^{1,1} E^{* \mathbb{C}}\right) \otimes_{\mathbb{C}} E=\left(\mathrm{Bil}^{+-}+\mathrm{Bil}^{-+}\right)(E, J) \cap \mathcal{T}$.
Of course, these notation can be extented to the case $(E, J)$ is a complex vector bundle. In particular, we will use these for the tangent bundle $(T N, J)$ of an almost complex manifold, and will forget in this case the precision of the bundle in the notation and write for example simply $\mathcal{T}$ and Bil.

Given an almost complex manifold $(N, J)$ with a connection $\nabla$ (that we do not suppose to be almost complex) then its torsion $T$ satisfies $T \in \mathcal{T}$ and ${ }^{46}$ we can decompose it following (96): $T=T^{++}+T^{--}+T^{-+}+T^{+-}$. Then since $T$ is skew-symmetric, then so is $T^{++}, T^{--}$and $T^{+-}+T^{-+}$. In other words, we have $T^{++}=T^{2,0}, T^{--}=T^{0,2}$ and $T^{+-}+T^{-+}=T^{1,1}$. In particular we have $T^{+-}(X, Y)=-T^{-+}(Y, X)$. Now, let us see how this decomposition can have a geometric meaning.

Lemma 5.5 Let $(N, J, \nabla)$ be an almost complex manifold with an almost complex connection $\nabla$. Then we have

$$
N_{J}=4 T^{--}
$$

where $N_{J}$ denotes the torsion of $J$ i.e its Nijenhuis tensor.
Proof. According to [33], Chap. IX, Prop. 3.6, the torsion $N_{J}$ of $J$ can be expressed in terms of the torsion $T$ of the almost complex connection $\nabla$ :

$$
-N_{J}(X, Y)=T(J X, J Y)-J T(J X, Y)-J T(X, J Y)-T(X, Y)
$$

which gives us $N_{J}=4 T^{--}$. This completes the proof.

Proposition 5.10 Let $(N, J, \nabla)$ be an almost complex manifold with an almost complex connection $\nabla$. Then the following statements are equivalent.

[^30](i) $J$ anticommutes with the torsion $T$ of $\nabla: T(X, J Y)=-J T(X, Y)$.
(ii) $T=T^{--}$i.e. $T \in \mathcal{T}^{2,0}$.
(iii) $T=\frac{1}{4} N_{J}$.

Proof. (ii) $\Leftrightarrow$ (iii) follows from the previous lemma. Now, we have obviously (ii) $\Rightarrow$ (i). Conversely (i) implies that $T=T^{--}+T^{+-}$but since $T$ is skew-symmetric this implies $T^{+-}=0$ and $T=T^{--}$. This completes the proof.

From now until the end of this section 5.2.2, we consider $(N, J)$ an almost complex manifold with an almost complex affine connection $\nabla$ and a $\nabla$-parallel Hermitian metric $h$. Therefore ( $N, J, h$ ) is an almost Hermitian manifold with a Hermitian connection $\nabla$.

Proposition 5.11 Let $(N, J, h)$ be an almost Hermitian manifold with a Hermitian connection $\nabla$. Let us suppose that $J$ anticommutes with the torsion $T$ of $\nabla$. Let us suppose also that the torsion of $\nabla$ is totally skew-symmetric i.e.

$$
T^{*}(X, Y, Z)=\langle T(X, Y), Z\rangle
$$

is a 3-form. Lastly, we suppose that the torsion is $\nabla$-parallel, i.e. $\nabla T^{*}=0$ which is equivalent to $\nabla T=0$. Then the trilinear map

$$
H(X, Y, Z)=-T^{*}(X, Y, J Z)=\langle J T(X, Y), Z\rangle
$$

is 3-form and is closed $d H=0$.
Proof. Firstly, according to proposition 5.10, we have $T^{*}(J X, Y, Z)=T^{*}(X, J Y, Z)=T^{*}(X, Y, J Z)$, which prove that $H$ is a 3 -form.
Let us compute the exterior differential of $H$ in terms of the connection (with torsion) $\nabla$ :

$$
\begin{aligned}
d H\left(X_{0}, X_{1}, X_{2}, X_{3}\right)= & \sum_{i=0}^{3}(-1)^{i} \nabla_{X_{i}}^{0} H\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{3}\right) \\
& \left.-\sum_{0 \leq i<j \leq 3}(-1)^{i+j} H\left(T\left(X_{i}, X_{j}\right), X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{3}\right)\right) \\
= & \underset{i, j, k}{\mathcal{S}} H\left(T\left(X_{0}, X_{i}\right), X_{j}, X_{k}\right)+H\left(T\left(X_{i}, X_{j}\right), X_{0}, X_{k}\right)
\end{aligned}
$$

where the last sum is on all the circular permutations of $1,2,3$. Moreover, we have

$$
\begin{aligned}
H\left(T\left(X_{0}, X_{i}\right), X_{j}, X_{k}\right) & =-H\left(X_{k}, X_{j}, T\left(X_{0}, X_{i}\right)\right) \\
& \left.=\left\langle T\left(X_{k}, X_{j}\right), J T\left(X_{0}, X_{i}\right)\right)\right\rangle \\
& =\left\langle T\left(X_{0}, X_{i}\right), J T\left(X_{j}, X_{k}\right)\right\rangle \\
& =-H\left(X_{0}, X_{i}, T\left(X_{j}, X_{k}\right)\right) \\
& =-H\left(T\left(X_{j}, X_{k}\right), X_{0}, X_{i}\right)
\end{aligned}
$$

so that we can conclude that $d H=0$. This completes the proof.

Theorem 5.4 Let $(N, J, h)$ be an almost Hermitian manifold with a Hermitian connection $\nabla$. Then, under the 3 hyphothesis of the previous proposition ( $T$ anticommutes with $J$, is totally skew-symmetric and $\nabla$-parallel), the equation for holomorphically harmonic maps $f: L \rightarrow N$ is
the equation of motion (i.e. the Euler-Lagrange equation) for the sigma model in $N$ with the Wess-Zumino term defined by the closed 3-form $H$. The action functional is given by

$$
S(f)=E(f)+S^{W Z}(f)=\frac{1}{2} \int_{L}|d f|^{2} d \operatorname{vol}_{g}+\int_{B} H
$$

where $B$ is 3-submanifold (or indeed a 3-chain) in $N$ whose boundary is $f(L)$.
Proof. Since $d H=0$ we have

$$
\delta S^{W Z}=\int_{B} L_{\delta f} H=\int_{B} d \imath_{\delta f} H=\int_{f(L)} \imath_{\delta f} H
$$

therefore the Euler-Lagrange equation is

$$
-\tau_{g}(f)+J T_{g}(f)=0
$$

which is the equation for holomorphically harmonic maps ( $g$ being as always a Hermitian metric on $L$ ). This completes the proof.

### 5.2.3 The example of a 3 -symmetric space

Let us suppose now that $N=G / G_{0}$ is a (locally) 3 -symmetric space. We use the notations of subsection 2.1.2. In particular, $N$ is endowed with its canonical almost complex structure $\underline{J}$ defined by (26).

Proposition 5.12 The canonical connection $\nabla^{0}$ in $N$ commutes with the canonical almost complex structure $\underline{\mathrm{J}}$

$$
\nabla^{0} \underline{\mathrm{~J}}=0
$$

Moreover, $\underline{J}$ anticommutes with the torsion $T^{0}$ of $\nabla^{0}$. Lastly, if $N$ is Riemannian, then $\nabla^{0}$ is metric and $(N, J, h)$ is almost Hermitian for any $G$-invariant metric $h .{ }^{.77}$
Furthermore, the torsion of $\nabla^{0}$ is totally skew-symmetric if and only if $h$ is naturally reductive.
Now, we can conclude
Theorem 5.5 Let us suppose that the (locally) 3-symmetric space $N=G / G_{0}$ is Riemannian and naturally reductive. Let $h$ be a $G$-invariant naturally reductive metric on $N$. Then the equation for holomorphically harmonic maps $f: L \rightarrow N$ is the equation of motion (i.e. EulerLagrange equation) for the sigma model in $N$ with the Wess-Zumino term defined by the closed 3-form H, corresponding to the anticanonical almost complex structure - $\underline{\mathrm{J}}$ and the canonical connection $\nabla^{0}$.

Remark 5.7 The hypothesis of natural reductivity is always satisfied if we allow us to use pseudo-Riemannian metrics and if $\mathfrak{g}$ is semi-simple: the metric defined by the Killing form is then naturally reductive. Moreover, let us remark that w.r.t. Riemannian metrics the natural reductivity is in fact an hypothesis of compactness: the Lie subgroup of $G L(\mathfrak{m})$ generated by $\left\{\left[\operatorname{ad}_{\mathfrak{m}}(X)\right]_{\mathfrak{m}}, X \in \mathfrak{m}\right\}$ must be compact.

[^31]
### 5.2.4 The good geometric context/setting

In the previous variational interpretation given by theorem 5.4, we need to make 3 hypothesis on the torsion of the almost Hermitian connection: $T$ anticommutes with $J$, is totally skew-symmetric and $\nabla$-parallel. Here, we want to understand what do these hypothesis mean geometrically and what is the good geometric context in which these take place. It will turn out that the good geometric context is the one of Nearly Kähler manifold.

Definition 5.3 An almost Hermitian manifold $(N, h, J)$ is called nearly Kähler if

$$
\left(\nabla_{X}^{h} J\right) X=0
$$

where $\nabla^{h}$ is the Levi-Civita connection of $h$.
We can deduce immediately the following properties.
Proposition 5.13 Let $(N, h, J)$ be an almost Hermitian manifold. Let us consider its canonical Hermitian connection

$$
\nabla^{0}:=\nabla^{h}-\frac{1}{2} J \nabla^{h} J,
$$

the torsion of which is denoted by $T^{0}$. Then the following statements are equivalent:
(i) $T^{0}(\cdot, J \cdot)=-J T^{0}(\cdot, \cdot)$ and $T^{0}$ is totally skew-symmetric.
(ii) $T^{0}=-J \nabla^{h} J$.
(iii) $\frac{1}{2} J \nabla^{h} J(\cdot, \cdot)$ is skew-symmetric.
(iv) $(N, h, J)$ is nearly Kähler.
(v) $\nabla_{J X}^{h} J=-J \nabla_{X} J$ and $T^{0}$ is totally skew-symmetric.

Proof. First, we see that the implications (ii) $\Rightarrow$ (i) and (ii) $\Rightarrow$ (iii) $\Leftrightarrow$ (iv) are obvious. Then by definition of $\nabla^{0}$ we have

$$
\begin{equation*}
T^{0}(X, Y)=-\frac{1}{2}\left(J\left(\nabla_{X}^{h} J\right) Y-J\left(\nabla_{Y}^{h} J\right) X\right) \tag{98}
\end{equation*}
$$

which gives us the implication (iii) $\Rightarrow$ (ii). Furtermore, according to proposition 5.8, if $T^{0}$ is totally skew-symmetric then we have $\nabla^{h}=\nabla^{0}-\frac{1}{2} T^{0}$ which provides the implication (i) $\Rightarrow$ (ii). Finally the equivalence (i) $\Leftrightarrow$ (v) follows directly from (98). This completes the proof.
In particular, a nearly Kähler manifold endowed with its canonical Hermitian connection satisfies 2 of our 3 hypothesis on the torsion ( $T^{0}$ anticommutes with $J$ and is totally skew-symmetric). Conversely, we have

Theorem 5.6 Let $\left(N, h, J, \nabla^{0}\right)$ be an almost Hermitian manifold with an almost Hermitian connection $\nabla$. If the torsion $T^{0}$ of $\nabla^{0}$ anticommutes with $J$ and is totally skew-symmetric then $(N, J, h)$ is nearly Kähler. Moreover, in this case, $\nabla^{0}$ is the canonical Hermitian connection. Therefore the injective map

$$
(h, J) \longmapsto\left(h, J, \nabla^{h}-\frac{1}{2} J \nabla^{h} J\right)
$$

is in fact a bijection from the set of nearly Kähler structures on $N$ into the set of almost Hermitian structures, $\left(h, J, \nabla^{0}\right)$, with an almost Hermitian connection whose the torsion is totally skewsymmetric and anticommutes with $J$.

Remark 5.8 In other words, in an almost Hermitian manifold there exists at most only one Hermitian connection with totally skew-symmetric and $J$-anticommuting torsion, and if this connection exists then it coincides with the canonical Hermitian connection and the almost Hermitian manifold is nearly Kähler.

Moreover, the third hypothesis (the torsion is parallel) is implied by the first two.
Proposition 5.14 [Kirichenko], 31, 2] If $(N, h, J)$ is nearly Kähler then the canonical Hermitian connection has a parallel torsion: $\nabla^{0} T^{0}=0$.

Now, we can reformulate our theorem 5.4 by using the right geometric context:
Theorem 5.7 Let $(N, h, J)$ be a nearly Kähler manifold then the equation of holomorphic harmonicity for maps $f: L \rightarrow N$ is exactly the Euler-Lagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the 3-form:

$$
H=\frac{1}{3} d \Omega_{J}
$$

where $\Omega_{J}=\langle J \cdot, \cdot\rangle$ is the Kähler form.
Proof of theorem 5.6. If the torsion of $\nabla^{0}$ is totally skew-symmetric then we have $\nabla^{h}=$ $\nabla^{0}-\frac{1}{2} T^{0}$, so that if moreover $T^{0}$ anticommutes with $J$ then $-\frac{1}{2} T^{0}$ is the $J$-anticommuting part ${ }^{18}$ of $\nabla^{h}$ i.e. $-\frac{1}{2} T^{0}=\frac{1}{2} J \nabla^{h} J$ and $\nabla^{0}$ is the canonical Hermitian connection. Therefore, we can apply proposition 5.13 which allows us to conclude. This completes the proof.
Proof of theorem 5.7 With the notation of proposition 5.11 we have $H(X, Y, Z)=\left\langle J T^{0}(X, Y), Z\right\rangle=$ $\left\langle\left(\nabla^{h} J\right)(X, Y), Z\right\rangle=\nabla^{h} \Omega_{J}(X, Y, Z)$ according to proposition 5.13 , and since $\nabla^{h} \Omega_{J}$ is a 3 -form ( $(N, J, h)$ is nearly Kähler), we have $d \Omega_{J}=3 \nabla^{h} \Omega_{J}$. This completes the proof.

Remark 5.9 With this new setting, the closeness of $H=\frac{1}{3} d \Omega_{J}$ is obvious.
Return to the example of a 3 -symmetric space According to proposition 5.12, a Riemannian (locally) 3 -symmetric space $N=G / G_{0}$ is nearly Kähler if and only if it is naturally reductive. Then, we can reformulate the theorem 5.5 as follows:

Theorem 5.8 Let us suppose that the (locally) 3-symmetric space $N=G / G_{0}$ is Riemannian and naturally reductive. Let $h$ be a $G$-invariant naturally reductive metric on $N$. Then the equation for holomorphically harmonic maps $f: L \rightarrow N$ is the equation of motion (i.e. EulerLagrange equation) for the sigma model in $N$ with the Wess-Zumino term defined by the closed 3-form $H=-\frac{1}{3} d \Omega_{\underline{\mathbf{J}}}$, where $\underline{\mathbf{J}}$ denotes the canonical almost complex structure.

### 5.2.5 J-twisted harmonic maps

Definition 5.4 Let $f:(M, g) \rightarrow N$ be a map from a Riemannian manifold $(M, g)$ to a manifold $N$. Let us suppose that the vector bundle $f^{*} T N$ is naturally endowed with some connection $\bar{\nabla}$. Then we will say that $f$ is roughly harmonic w.r.t. $\bar{\nabla}$ (or $\bar{\nabla}$-roughly harmonic) if

$$
\operatorname{Tr}_{g}(\bar{\nabla} d f)=0
$$

[^32]This definition is useful in the case there exists a natural mapping which associates to each map $f:(M, g) \rightarrow N$ a connection in the vector bundle $f^{*} T N$. For example, we have the following.

Theorem 5.9 A map $f:\left(L, j_{L}\right) \rightarrow(N, J, \nabla)$ from a Riemann surface into an almost complex manifold with a connection $\nabla$ is holomorphically harmonic if and only if it is roughly harmonic w.r.t.

$$
\bar{\nabla}=f^{*} \nabla+\frac{1}{2} J T\left(d f \circ j_{L}, .\right)
$$

Definition 5.5 Let $(N, J)$ be an almost complex manifold with an arbitray connection $\nabla$. Then let us decompose it (in an unique way) as the sum of a $J$-commuting and respectively $J$-anticommuting part: $\nabla=\nabla^{0}+A$, where $\nabla^{0} J=0$, and $A \in \mathcal{C}\left(T^{*} N \otimes \operatorname{End}(T N)\right)$, $A J=-J A$, i.e. $A=\frac{1}{2} J \nabla J$. Then to any map $f: L \rightarrow N$ let us associate the connection

$$
\bar{\nabla}=f^{*} \nabla^{0}-J A \circ j_{L}
$$

We will say that $f: L \rightarrow N$ is J-twisted harmonic w.r.t. $\nabla$ if $f$ is roughly harmonic w.r.t. $\bar{\nabla}$.
Now, we can conlude by the following geometric interpretation of holomorphic harmonicity.
Theorem 5.10 Let $(N, J, h)$ be a Nearly Kähler manifold. Then a map $f: L \rightarrow N$ is holomorphically harmonic w.r.t. the canonical Hermitian connnection $\nabla^{0}$ if and only if it is J-twisted harmonic w.r.t. $\nabla^{h}$.

### 5.3 The sigma model with a Wess-Zumino term in $\mathcal{G}_{1}$-manifolds

### 5.3.1 $T N$-valued 2-forms

Let $(N, J, h)$ be an almost Hermitian manifold. In all the section 5.3, each $T N$-valued 2 -form on $N, B \in \mathcal{C}(\mathcal{T})$, will be identified (via the metric $h$ ) with the corresponding trilinear form, skew-symmetric w.r.t. to the 2 first arguments:

$$
B(X, Y, Z):=\langle B(X, Y), Z\rangle
$$

In particular, the left multiplication by $J$ on $\mathcal{C}(\mathcal{T})$ defined a multiplication on the set of corresponding trilinear forms $(J B)(X, Y, Z)=\langle J B(X, Y), Z\rangle$. Moreover, under this identification, the space $\Omega^{3}(N):=\mathcal{C}\left(\Lambda^{3} T^{*} N\right)$ of 3 -forms will be considered as a subspace of $\mathcal{C}(\mathcal{T})$. We denote by Skew the following surjective linear map from $\mathcal{C}(\mathcal{T})$ onto $\Omega^{3}(N)$ :

$$
\text { Skew }(B)(X, Y, Z)=B(X, Y, Z)+B(Y, Z, X)+B(Z, X, Y)
$$

Let us remark that $\frac{1}{3}$ Skew $(B)$ is the skew-symmetric part of the trilinear form $B$ and $\frac{1}{3}$ Skew: $\mathcal{C}(\mathcal{T}) \rightarrow$ $\Omega^{3}(N)$ is a projector (called the Bianci projector in 14). To any trilinear form $\alpha \in \mathcal{C}\left(\otimes^{3} T^{*} N\right)$ will be associated its $J$-twisted trilinear form

$$
\alpha^{c}=-\alpha(J \cdot, J \cdot, J \cdot) .
$$

In particular, if $\alpha=d \beta$, with $\beta \in \Omega^{2}(N):=\mathcal{C}\left(\Lambda^{2} T^{*} N\right)$ then we set $d^{c} \beta:=\alpha^{c}$.
We will also use the following action of the complex structure $J$ on $C(\mathcal{T})$ : for any $B \in \mathcal{C}(\mathcal{T})$

$$
\begin{equation*}
J \cdot B:=-J B(J \cdot, J \cdot)=J\left(B^{++}+B^{--}\right)-J\left(B^{+-}+B^{-+}\right) \tag{99}
\end{equation*}
$$

i.e. in term of trilinear forms

$$
J \cdot B=B(J \cdot, J \cdot, J \cdot)=-B^{c}
$$

Let us remark that $J \cdot(J \cdot B)=-B$.
Furthermore, let $\left(L, j_{L}\right)$ be a Riemann surface and $B \in \mathcal{C}(\mathcal{T})$, then for any map $f: L \rightarrow N$ and any Hermitian metric $g$ on $\left(L, j_{L}\right)$, we set

$$
\begin{equation*}
B_{g}(f)=* f^{*} B=B\left(f_{*} T L\right) \tag{100}
\end{equation*}
$$

We will use a second natural action of $J$ on $\mathcal{C}(\mathcal{T})$ defined by: for any $B \in \mathcal{C}(\mathcal{T})$,

$$
J \odot B=B(J \cdot, \cdot, \cdot)+B(\cdot, J \cdot, \cdot)+B(\cdot, \cdot, J \cdot)
$$

and in terms of the components $B^{\varepsilon, \varepsilon^{\prime}}$ :

$$
J \circledast B=J B^{++}-3 J B^{--}-J\left(B^{+-}+B^{-+}\right)
$$

Moreover, by the aid of the two previous natural action, we can define a third action that will turn out to be the relevant one in the interpretation of the maximal odd determined system: for any $B \in \mathcal{C}(\mathcal{T})$,

$$
J \star B=\frac{1}{2}(B(J \cdot, J \cdot, J \cdot)+B(J \cdot, \cdot, \cdot)+B(\cdot, J \cdot, \cdot)+B(\cdot, \cdot, J \cdot))=\frac{1}{2}(J \cdot B+J \odot B),
$$

and in terms of the components $B^{\varepsilon, \varepsilon^{\prime}}$ :

$$
J \star B=J B^{++}-J B^{--}-J\left(B^{+-}+B^{-+}\right)
$$

Remark 5.10 Let us remark that all the three previous actions are independent of the metric $h$, as we can see it from the expressions in terms of the components $B^{\varepsilon, \varepsilon^{\prime}}$, or more simply by writing their definitions using $T N$-valued 2-forms like in (99): $J \odot B=B(J \cdot, \cdot)+B(\cdot, J \cdot)-J B(\cdot, \cdot)$ and

$$
J \star B=-\frac{1}{2} J(B(J \cdot, J \cdot)+J B(J \cdot, \cdot)+J B(\cdot, J \cdot)+B(\cdot, \cdot)) .
$$

We remark that this last formula - up to the factor $-\frac{1}{2} J$ and to the signs - makes $J \star B$ look like to some kind of torsion tensor of $J$ w.r.t. $B$ (cf. the definition of $N_{J}$ ).
In particular, these three actions are defined in a general almost complex manifold $(N, J)$.
Remark 5.11 The equations (97) can be rewritten using the metric $h$ as follows

$$
\begin{equation*}
B^{\varepsilon, \varepsilon^{\prime}}=-\frac{1}{4}\left(\varepsilon \varepsilon^{\prime} B(J \cdot, J \cdot, \cdot)-\varepsilon B(J \cdot, \cdot, J \cdot)-\varepsilon^{\prime} B(\cdot, J \cdot, J \cdot)-B(\cdot, \cdot, \cdot)\right) . \tag{101}
\end{equation*}
$$

This leads us to define the following action

$$
J \circlearrowleft_{2} B=B(J \cdot, J \cdot, \cdot)+B(J \cdot, \cdot, J \cdot)+B(\cdot, J \cdot, J \cdot)=B-4 B^{--}
$$

It is also important to remark that $J \cdot B-J \odot B=4 J B^{--}$and $J \cdot B-J \star B=2 J B^{--}$, so that
Proposition 5.15 Let $T$ be the torsion of some Hermitian connection $\nabla$ on $(N, J, h)$, then we have

$$
J \cdot T-J \circlearrowleft T=J N_{J} \quad \text { and } \quad J \cdot T-J \star T=\frac{1}{2} J N_{J}
$$

### 5.3.2 Stringy Harmonic maps

We have seen two different ways to generalise the harmonicity to the case of affine target manifold. The first one is very natural and consist simply to write the harmonic map equation $\operatorname{Tr}_{g}(\nabla d f)=0$ for an affine connection $\nabla$. The second one concerns holomorphicaly harmonic maps (from a Riemann surface into an almost complex manifold) and was dicted to us by the geometric equation of the second elliptic integrable system associated to a 3 -symmetric space (section 2.3.2, paragraph: The model case). Furthermore, the preliminary study of the maximal determined system done in section 2.4, leads us to introduce the following generalisation of harmonic maps (which will turn out to be a generalisation of holomorphically harmonic maps for particular target spaces like nearly Kähler manifolds).

Definition 5.6 Let $(N, J)$ be an almost complex manifold with $\nabla$ an affine connection then we will say that a map $f: L \rightarrow N$ from a Riemann surface into $N$ is stringy harmonic if it is solution of the harmonic map equation with a $J T$-term:

$$
-\tau_{g}(f)+(J \cdot T)_{g}(f)=0
$$

We remark that if $T$ anticommutes with $J$ then stringy harmoniciy coincides with holomorphic harmonicity (since in this case $J \cdot T=J T$ ). However, even though stringy harmonicty seems to be the more natural generalisation of (holomorphically) harmonic maps - in particular because of the property $J \cdot(J \cdot B)=-B$ which makes the first action look like very closely to the simple multiplication by $J$, which is not the case for the two other actions- it will turn out that the interpretation of the maximal odd determined system (see section 2.4) will use the action $J \star T$ of $J$ on $T$. This leads us to the following modified definition.

Definition 5.7 Let $(N, J)$ be an almost complex manifold with $\nabla$ an affine connection then we will say that a map $f: L \rightarrow N$ from a Riemann surface into $N$ is $\star$-stringy harmonic if it is solution of the modified stringy harmonic maps equation:

$$
-\tau_{g}(f)+(J \star T)_{g}(f)=0
$$

We remark that if $T$ anticommutes with $J$ then $\star$-stringy harmoniciy coincides with antiholomorphic harmonicity (since in this case $J \star T=-J T$ ).

Now, we will see that, under some hypothesis, the two previous definitions are in fact equivalent in the sense that there exists a new almost complex $J^{\star}$ such that $J \star T=J^{\star} \cdot T$.

Proposition 5.16 Let $(N, J)$ be an almost complex manifold. Let us suppose that there exists a J-invariant decomposition $T N=E^{+} \oplus E^{-}$such that for some $B \in \mathcal{C}(\mathcal{T})$, we have

$$
\begin{equation*}
\forall \alpha, \alpha^{\prime} \in \mathbb{Z}_{2}, \quad B^{* *}\left(E^{\alpha}, E^{\alpha^{\prime}}\right) \subset E^{\alpha \alpha^{\prime}} \quad \text { and } \quad B^{--}\left(E^{\alpha}, E^{\alpha^{\prime}}\right) \subset E^{-\alpha \alpha^{\prime}} \tag{102}
\end{equation*}
$$

where $B^{* *}:=B^{++}+B^{+-}+B^{-+}=B-B^{--}$. Let us define $J^{\star}=J_{\mid E^{+}} \oplus-J_{\mid E^{-}}$, then we have

$$
J \star B=J^{\star} \cdot B
$$

Corollary 5.1 Let $(N, J)$ be an almost complex manifold with $\nabla$ an affine connection. Let us suppose that there exists a J-invariant decomposition $T N=E^{+} \oplus E^{-}$such that the torsion $T$ of $\nabla$ satisfies the conditions (102). Let $J^{\star}=J_{\mid E^{+}} \oplus-J_{\mid E^{-}}$. Then the $\star$-stringy harmonicity with respect to $J$ is exactly the stringy harmonicity with respect to $J^{\star}$.

### 5.3.3 Almost Hermitian $\mathcal{G}_{1}$-manifolds

In all this subsection, we consider $(N, J, h)$ an almost Hermitian manifold with a Hermitian connection $\nabla$, whose the torsion is denoted by $T$.

Proposition 5.17 The components $B^{\varepsilon \varepsilon^{\prime}}$ of an element $B \in \mathcal{C}(\mathcal{T})$, considered as trilinear forms, satisfy the following properties:

$$
\begin{aligned}
& B^{++} \in \mathcal{C}\left(\left(\Lambda^{2,0} \otimes \Lambda^{0,1}\right) \oplus\left(\Lambda^{0,2} \otimes \Lambda^{1,0}\right)\right) \\
& B^{+-} \in \mathcal{C}\left(\left(\Lambda^{1,0} \otimes \Lambda^{0,1} \otimes \Lambda^{0,1}\right) \oplus\left(\Lambda^{0,1} \otimes \Lambda^{1,0} \otimes \Lambda^{1,0}\right)\right) \\
& B^{-+} \in \mathcal{C}\left(\left(\Lambda^{1,0} \otimes \Lambda^{1,0} \otimes \Lambda^{0,1}\right) \oplus\left(\Lambda^{0,1} \otimes \Lambda^{0,1} \otimes \Lambda^{1,0}\right)\right) \\
& B^{--} \in \mathcal{C}\left(\left(\Lambda^{2,0} \otimes \Lambda^{1,0}\right) \oplus\left(\Lambda^{0,2} \otimes \Lambda^{0,1}\right)\right)
\end{aligned}
$$

where $\Lambda^{p, q}=\Lambda^{p, q} T^{*} N$.
Corollary 5.2 Let $B \in \Omega^{3}(N) \subset \mathcal{C}(\mathcal{T})$ be a 3-form on $N$, then $B^{--}$is also a 3-form and is of type $(3,0)+(0,3)$. Moreover $B^{++}+B^{+-}+B^{-+}$is a 3-form of type $(2,1)+(1,2)$ and we have the following relations:

$$
\begin{aligned}
& B^{++}(X, Y, Z)=B^{+-}(Z, X, Y) \\
& B^{-+}(X, Y, Z)=B^{+-}(Y, Z, X)
\end{aligned}
$$

in other words $B^{* *}:=B^{++}+B^{+-}+B^{-+}=\operatorname{Skew}\left(B^{\varepsilon \varepsilon^{\prime}}\right), \forall\left(\varepsilon, \varepsilon^{\prime}\right) \in \mathbb{Z}_{2} \backslash\{(-,-)\}$.
In particular, let us suppose that the torsion $T$ of the Hermitian connection $\nabla$ is totally skewsymmetric, then $T^{--}$is also a 3-form and is of type $(3,0)+(0,3)$, and $T^{* *}$ is a 3-form of type $(2,1)+(1,2)$. More particulary, the Nijenhuis tensor $N_{J}$ is totally skew-symmetric.

Corollary 5.3 Let us suppose that the torsion $T$ of the Hermitian connection $\nabla$ is totally skewsymmetric, then

$$
d \Omega_{J}=3 J T^{--}+J\left(T^{+-}+T^{-+}-T^{++}\right)=-J \circlearrowleft T
$$

i.e.

$$
d \Omega_{J}=J N_{J}-J \cdot T
$$

Proof. Since $T$ is skew-symmetric, we have $\nabla=\nabla^{h}+\frac{1}{2} T$, so that $\nabla J=0$ implies

$$
\nabla^{h} \Omega_{J}=-\frac{1}{2}(T(\cdot, J \cdot, \cdot)+T(\cdot, \cdot, J \cdot))
$$

and therefore applying the operator Skew to that and using the fact that $T$ is skew-symmetric we obtain

$$
d \Omega_{J}=-J \circlearrowleft T
$$

Then the last assertion follows from proposition 5.15. This completes the proof.
Now, we can conclude that
Theorem 5.11 An almost complex Hermitian manifold ( $N, J, h$ ) admits a Hermitian connection with totally skew-symmetric torsion if and only if the Nijenhuis tensor $N_{J}$ is itself totally skewsymmetric. In this case, the connection is unique and determined by its torsion which is given by

$$
T=-d^{c} \Omega_{J}+N_{J}
$$

Proof. If such a Hermitian connection with skew-symmetric torsion exists, then according to corollary $5.2, N_{J}$ is itself skew-symmetric and moreover, according to corollary 5.3 , we have $d \Omega_{J}=J N_{J}-J \cdot T=J \cdot\left(N_{J}-T\right)$ therefore $T=J \cdot d \Omega_{J}+N_{J}$. This proves the unicity.
Conversely, let us suppose that $N_{J}$ is skew-symmetric and let $\nabla$ be the metric connection defined by the torsion $T=J \cdot d \Omega_{J}+N_{J}$, i.e. $\nabla=\nabla^{h}-\frac{1}{2} T$. We have to check that $\nabla J=0$. Let us recall ([33, proposition 4.2) that we have

$$
\begin{equation*}
2\left(\nabla_{X}^{h} \Omega_{J}\right)(Y, Z)=d \Omega_{J}(X, Y, Z)-d \Omega_{J}(X, J Y, J Z)+N_{J}(Y, Z, J X) \tag{103}
\end{equation*}
$$

Applying Skew to that, we obtain

$$
\begin{aligned}
2 d \Omega_{J}(X, Y, Z)=3 d \Omega_{J}(X, Y, Z)-d \Omega_{J}(X, & J Y, J Z)-d \Omega_{J}(J X, Y, J Z)-d \Omega_{J}(J X, J Y, Z) \\
& +N_{J}(Y, Z, J X)+N_{J}(X, Y, J Z)+N_{J}(Z, X, J Y)
\end{aligned}
$$

therefore

$$
\begin{align*}
-4\left(d \Omega_{J}\right)^{0,2}(X, Y, Z) & =N_{J}(Y, Z, J X)+N_{J}(X, Y, J Z)+N_{J}(Z, X, J Y)  \tag{104}\\
& \left.=3 N_{J}(X, Y, J Z) \text { (since } N_{J} \text { is skew-symmetric (and of type }(0,2)\right) .
\end{align*}
$$

Now, we can compute

$$
\begin{aligned}
\nabla \Omega_{J}= & \left(\nabla^{h}+\frac{1}{2}\left(J \cdot d \Omega_{J}+N_{J}\right)\right) \Omega_{J} \\
= & \nabla^{h} \Omega_{J}+\frac{1}{2}\left(N_{J}(X, J Y, Z)+N_{J}(X, Y, J Z)-d \Omega_{J}(J X, Y, J Z)-d \Omega_{J}(J X, J Y, Z)\right) \\
= & \frac{1}{2}\left(d \Omega_{J}(X, Y, Z)-d \Omega_{J}(X, Y, J Z)-d \Omega_{J}(J X, Y, J Z)-d \Omega_{J}(J X, J Y, Z)\right. \\
& \left.+N_{J}(Y, Z, J X)+N_{J}(X, J Y, Z)+N_{J}(X, Y, J Z)\right) \\
= & \frac{1}{2}\left(3 N_{J}(X, Y, J Z)+N_{J}(Y, Z, J X)+N_{J}(X, J Y, Z)+N_{J}(X, Y, J Z)\right)=0
\end{aligned}
$$

This completes the proof.
Remark 5.12 This theorem can be deduced from a more general result of Gauduchon 14, Proposition 2 (see also section 5.3 .4 below). In fact, it has been stated first by Friedrich-Ivanov [13) (but without writting completely the proof).

Definition 5.8 The unique Hermitian connection with skew-symmetric torsion is called the characteristic connection. According to the Gray-Hervella classification 15 of almost Hermitian manifolds, $(N, J, h)$ admits a skew-symmetric Nijenhuis tensor if and only if if is of class $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}=: \mathcal{G}_{1}$ (see 15 ). These manifolds are called $\mathcal{G}_{1}$-manifolds and according to the previous theorem they are exactly the almost Hermitian manifolds which admit a characteristic connection.

Proposition 5.18 Let us suppose that the almost Hermitian manifold $(N, J, h)$ is a $\mathcal{G}_{1}$-manifold. Let us suppose that its characteristic connection $\nabla$ has a parallel torsion $\nabla T=0$. Then the 3form

$$
H(X, Y, Z)=T(J X, J Y, J Z)=\langle(J \cdot T)(X, Y), Z\rangle
$$

is closed $d H=0$.

Proof. Since, according to corollary 5.3, we have $H=-d \Omega_{J}+J N_{J}$, we only have to prove that the 3 -form $J N_{J}=4 J T^{--}$is closed. Moreover, since $J$ is $\nabla$-parallel, so is the decomposition
 the $\nabla$-parallel 3-forms, $H, d \Omega_{J}$ and $J T^{--}$satisfies the following formula for $\nabla$-parallel 3-forms $\alpha$ :

$$
\begin{aligned}
d \alpha\left(X_{0}, X_{1}, X_{2}, X_{3}\right)= & \sum_{i=0}^{3}(-1)^{i} \nabla_{X_{i}} \alpha\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{3}\right) \\
& \left.-\sum_{0 \leq i<j \leq 3}(-1)^{i+j} \alpha\left(T\left(X_{i}, X_{j}\right), X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{3}\right)\right) \\
= & \underset{i, j, k}{S_{j}} \alpha\left(T\left(X_{0}, X_{i}\right), X_{j}, X_{k}\right)+\alpha\left(T\left(X_{i}, X_{j}\right), X_{0}, X_{k}\right) \\
= & X_{X, Y, Z} \alpha(T(V, Z), X, Y)+\alpha(T(X, Y), V, Z)
\end{aligned}
$$

where we have set $(X, Y, V, Z)=\left(X_{j}, X_{k}, X_{0}, X_{i}\right)$. Then applying this formula to $d \Omega_{J}$, we obtain

$$
\begin{aligned}
0=-d\left(d \Omega_{J}\right) & =-d\left(3 J T^{--}+J\left(T^{+-}+T^{-+}-T^{++}\right)\right) \\
& =\sum_{X, Y, Z}^{\mathfrak{S}} \sum_{(X, Y) \rightleftarrows(V, Z)}\left\langle\left(3 T^{--}-T^{++}+T^{1,1}\right)(X, Y), J\left(T^{--}+T^{++}+T^{1,1}\right)(V, Z)\right\rangle
\end{aligned}
$$

where $(X, Y) \rightleftarrows(V, Z)$ means that we sum on the set $\{(X, Y, V, Z),(V, Z, X, Y)\}$. After a straightforward computation, we find

$$
\begin{align*}
0=-d\left(d \Omega_{J}\right)= & \underset{X, Y, Z}{\mathfrak{S}} \sum_{(X, Y) \rightleftarrows(V, Z)}\left\{4\left\langle T^{--}(X, Y), J T^{++}(V, Z)\right\rangle\right.  \tag{105}\\
& +2\left\langle T^{--}(X, Y), J T^{1,1}(V, Z)\right\rangle \\
& \left.-2\left\langle T^{++}(X, Y), J T^{1,1}(V, Z)\right\rangle .\right\}
\end{align*}
$$

Now, let us consider 4-linear forms on the variable $(X, Y, V, Z) \in T N^{4}$ and the associated decomposition $\otimes^{4} T^{*} N^{\mathbb{C}}=\oplus_{\varepsilon \in\left(\mathbb{Z}_{2}\right)^{4}} \Lambda^{\varepsilon_{1}} \otimes \Lambda^{\varepsilon_{2}} \otimes \Lambda^{\varepsilon_{3}} \otimes \Lambda^{\varepsilon_{4}}$, where $\Lambda^{+}=\Lambda^{1,0} T^{*} N$ and $\Lambda^{-}=\Lambda^{0,1} T^{*} N$. Then the term in the first line of (105) is in $\left(\otimes^{4} \Lambda^{+}\right) \oplus\left(\otimes^{4} \Lambda^{-}\right)$whereas the terms in the second and third lines are in $\left(\otimes^{+++-}\right) \oplus\left(\otimes^{---+}\right) \oplus\left(\otimes^{++-+}\right) \oplus\left(\otimes^{--+-}\right)$, where $\otimes^{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}}=$ $\Lambda^{\varepsilon_{1}} \otimes \Lambda^{\varepsilon_{2}} \otimes \Lambda^{\varepsilon_{3}} \otimes \Lambda^{\varepsilon_{4}}, \forall \varepsilon \in\left(\mathbb{Z}_{2}\right)^{4}$. Hence the sums ${ }_{X, Y, Z}^{\mathfrak{S}} \sum_{(X, Y) \rightleftarrows(V, Z)}$ of these terms are respectively in $\Lambda^{4,0} \oplus \Lambda^{0,4}$ (first line) and in $\Lambda^{3,1} \oplus \Lambda^{1,3}$ (second and third lines). Therefore we obtain (in particular) that the first line vanishes

Let us apply this to the computation of $d\left(J N_{J}\right)$ :

$$
\begin{aligned}
d\left(J N_{J}\right) & =\sum_{X, Y, Z}^{\mathfrak{S}} \sum_{(X, Y) \rightleftarrows(V, Z)} 4\left\langle J T^{--}(X, Y), T^{* *}(V, Z)\right\rangle \\
& =\sum_{X, Y, Z}^{\mathfrak{S}} \sum_{(X, Y) \rightleftarrows(V, Z)} 4\left\langle J T^{--}(X, Y), T^{1,1}(V, Z)\right\rangle .
\end{aligned}
$$

We see that $\left\langle J T^{--}(X, Y), T^{+-}(V, Z)\right\rangle$ is in $\left(\otimes^{+++-}\right) \oplus\left(\otimes^{---+}\right)$. But since $J T^{--}$is a 3-form, we have

$$
\left\langle J T^{--}(X, Y), T^{+-}(V, Z)\right\rangle=-\left\langle J T^{--}\left(X, T^{+-}(V, Z)\right), Y\right\rangle
$$

and this second 4 -linear form (in the variable $(X, Y, V, Z)$ ) is in $\left(\otimes^{++-+}\right) \oplus\left(\otimes^{--+-}\right)$, which imposes that $\left\langle J T^{--}(X, Y), T^{+-}(V, Z)\right\rangle=0, \forall(X, Y, V, Z) \in T N^{4}$. We can prove the same result if we replace $T^{+-}$by $T^{-+}$. Therefore $d\left(J N_{J}\right)=0$. This completes the proof.

Moreover, according to proposition 5.15, we deduce
Proposition 5.19 Let us suppose that the almost Hermitian manifold ( $N, J, h$ ) is a $\mathcal{G}_{1}$-manifold. Let us suppose that its characteristic connection $\nabla$ has a parallel torsion $\nabla T=0$. Then the 3form

$$
H^{\star}(X, Y, Z)=\langle(J \star T)(X, Y), Z\rangle
$$

is closed $d H^{\star}=0$.
Now, we can conclude with the following variational interpretation of the stringy harmonicity.
Theorem 5.12 Let us suppose that the almost Hermitian manifold $(N, J, h)$ is a $\mathcal{G}_{1}$-manifold. Let us suppose that its characteristic connection $\nabla$ has a parallel torsion $\nabla T=0$.

- Then the equation for stringy harmonic maps $f: L \rightarrow N$ is exactly the Euler-Lagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the closed 3-form

$$
H=-d \Omega_{J}+J N_{J}
$$

- Moreover the equation for $\star$-stringy harmonic maps $f: L \rightarrow N$ is exactly the Euler-Lagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the closed 3-form

$$
H^{\star}=-d \Omega_{J}+\frac{1}{2} J N_{J}
$$

Remark 5.13 We remark that the two previous sigma model differ by the Wess-Zumino term defined by the 3 -form $\frac{1}{2} J N_{J}$.

### 5.3.4 Characterisation of Hermitian connections in terms of their torsion

In this subsection, we will give a result of Gauduchon (14] characterizing the Hermitian connections in terms of their torsion. We need to write with our notations and inside our setting and to write one proof in such a way that it will appear clearly that this reuslt holds as well for Riemannian $f$-structure (see section 5.4) so that we will not have to reprove it (at least not entirely) in this more general context.

Theorem 5.13 Let $(N, J, h)$ be a Hermitian manifold. Then a metric connection $\nabla$ is almost complex ifandonlyif the following statements hold

$$
N_{J}=4 T^{0,2} \quad \text { and } \quad \mathcal{S}\left(T^{2,0}-T^{1,1}\right)=\left(d^{c} \Omega_{J}\right)^{(+)} .
$$

Proof. The metric connection $\nabla$ can be written in the form $\nabla=\nabla^{h}-\frac{1}{2}(T+U)$, where $U(X, Y, Z)=T(Z, X, Y)+T(Z, Y, X)$. Then $\nabla \Omega_{J}=0$ if and only if

$$
\begin{equation*}
\nabla^{h} J=-\frac{1}{2}[(T+U), J]=-\left((T+U)^{--} J+(T+U)^{+-} J\right) \tag{106}
\end{equation*}
$$

but ${ }^{19}$

$$
U^{--}(X, Y, Z)=U\left(T^{--}\right) \quad \text { and } \quad U^{+-}(X, Y, Z)=T^{-+}(Z, X, Y)+T^{++}(Z, Y, X)
$$

[^33]so that, according to (103)
\[

$$
\begin{aligned}
\left(d \Omega_{J}\right)^{+-}=\left(\nabla^{h} \Omega_{J}\right)^{+-} & =-T^{+-}(X, J Y, Z)-T^{-+}(Z, X, J Y)-T^{++}(Z, J Y, X) \\
& =-\left(\operatorname{Skew}(T)^{+-}(X, J Y, Z)-2 T^{++}(J Y, Z, X)\right) \\
& =-J \cdot\left(\operatorname{Skew}(T)^{+-}(X, Y, Z)-2 T^{++}(Y, Z, X)\right) .
\end{aligned}
$$
\]

Therefore applying Skew,

$$
\begin{aligned}
J \cdot\left(d \Omega_{J}\right)^{(+)}=\left(J \cdot d \Omega_{J}\right)^{(+)} & =\operatorname{Skew}(T)^{* *}-2 \operatorname{Skew}\left(T^{++}(Y, Z, X)\right) \\
& =\operatorname{Skew}\left(T^{* *}-2 T^{++}\right) \\
& =\operatorname{Skew}\left(-T^{2,0}+T^{1,1}\right)
\end{aligned}
$$

Besides, taking the $\left(\varepsilon, \varepsilon^{\prime}\right)$-component of equation (106) for $\left(\varepsilon, \varepsilon^{\prime}\right)=(++),(-+)$ instead of $(+-)$ would give the same result. Now, it remains to see what gives us the $(-,-)$-component of this equation. Equations (103) and then (104) yield

$$
\begin{aligned}
2\left(\nabla^{h} \Omega_{J}\right)^{0,2} & =2\left(d \Omega_{J}\right)^{0,2}+N_{J}(Y, Z, J X)=-\frac{1}{2}\left(N_{J}(Y, Z, J X)+N_{J}(J X, Y, Z)+N_{J}(Z, J X, Y)\right)+N_{J}(Y, Z, J X) \\
& =-\frac{1}{2}\left(N_{J}(J X, Y, Z)+N_{J}(Z, J X, Y)+N_{J}(Z, Y, J X)\right)
\end{aligned}
$$

so that the $(0,2)$-component of equation (106) is written
$-\frac{1}{4}\left(N_{J}(X, J Y, Z)+N_{J}(Z, X, J Y)+N_{J}(Z, J Y, X)\right)=-\left(T^{--}(X, J Y, Z)+T^{--}(Z, X, J Y)+T^{--}(Z, J Y, X)\right)$.
Using the fact that the map $B \in \mathcal{T} \mapsto B+U(B) \in T^{*} N \otimes \mathfrak{s o}(T N)$ is bijective ${ }^{0}$, we obtain

$$
T^{--}=\frac{1}{4} N_{J}
$$

This completes the proof.

### 5.3.5 The example of a naturally reductive homogeneous space

In this subsection we consider $G / K$ a reductive homogneous space and we denote by $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$ a reductive decomposition of the Lie algebra $\mathfrak{g}$.

Theorem 5.14 Let $N=G / K$ be a Riemannian naturally reductive homogeneous space. Then the canonical connection is a metric connection with skew-symmetric torsion (w.r.t. any naturally reductive $G$-invariant metric $h$ ). Let us suppose also that $N=G / K$ is endowed with some $G$ invariant complex structure $J$ (i.e. $\mathfrak{m}$ is endowed with some $\operatorname{Ad} K$-invariant complex structure $\left.J_{0}\right)$. If moreover one can choose a naturally reductive $G$-invariant metric $h$ for which $J$ is orthogona $\sqrt{11}$, then $(N, h, J)$ is an almost Hermitian $\mathcal{G}_{1}$-manifold and its characteristic connection coincides with the canonical connection.

Proof. The naturally reductivity means exactly that the torsion of the canonical connection is skew-symmetric. Then according to theorem 5.11, we deduce that $(N, h, J)$ is $\mathcal{G}_{1}$-manifold. This completes the proof.

[^34]Remark 5.14 In particular, we see that the Nijenhuis tensor is skew-symmetric. We can recover that by saying that since the $G$-invariant complex structure is parallel with respect to the canonical connection, then $N_{J}=4 T^{--}$and moreover since $T$ is a 3 -form so is its component $T^{--}$.

Proposition 5.20 Let $N=G / K$ be a Riemannian homogeneous manifold endowed with a $G$ invariant complex structure $J$. Let $f: L \rightarrow N$ be a smooth map, $F: L \rightarrow G$ be a (local) lift of $f$ and $\alpha=F^{-1} . d F$ the corresponding Maurer-Cartan form. Then in term of $\alpha$, the equation of stringy harmonicity is written

$$
d * \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{m}}\right]-\frac{1}{2} J_{0}\left[J_{0} \alpha_{\mathfrak{m}} \wedge J_{0} \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}=0
$$

whereas the equation of $\star$-stringy harmonicity is written:

$$
d * \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{m}}\right]+\frac{1}{2}\left[J_{0} \alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}+\frac{1}{4} J_{0}\left(\left[J_{0} \alpha_{\mathfrak{m}} \wedge J_{0} \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}+\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)=0
$$

where $J_{0}$ is the complex structure on $\mathfrak{m}$ corresponding to $J$.

### 5.3.6 Geometric interpretation of the maximal determined odd case.

In this subsection, we suppose that $N=G / K$ is a (locally) $(2 k+1)$-symmetric space, and we use the notations and the conventions of 2.1.

Theorem 5.15 Let us suppose that $N=G / K$ is a (locally) $(2 k+1)$-symmetric space endowed with its canonical almost complex structure $\underline{\mathrm{J}}$ and its canonical connection $\nabla^{0}$. Then the associated maximal determined system, $\operatorname{Syst}(2 k, \tau)$ is the equation of $\star$-stringy harmonicity for the geometric map $f: L \rightarrow N:\left(\nabla^{0}\right)^{*} d f+\left(\underline{\mathrm{J}} \star T^{0}\right)(f)=0$.
Moreover, if we consider now that $N=G / K$ is endowed with the almost complex structure $\underline{\mathrm{J}}^{\star}:=\oplus_{j=1}^{k}(-1)^{j} \underline{\mathrm{~J}}_{\left[\mathfrak{m}_{j}\right]}$, then this system is the equation of stringy harmonicity for the geometric $\operatorname{map} f: L \rightarrow N:\left(\nabla^{0}\right)^{*} d f+\left(\underline{\mathrm{J}}^{\star} \cdot T^{0}\right)(f)=0$.
Now, Suppose also that $N=G / K$ is naturally reductiv ${ }^{53}$. Therefore, the previous system is exactly the Euler-Lagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the closed 3-form

$$
H^{\star}=-d \Omega_{\underline{\mathrm{J}}}+\frac{1}{2} \underline{\mathrm{~J}} N_{\underline{\mathrm{J}}}
$$

Moreover, if $N=G / K$ is endowed with the almost complex structure $\underline{J}^{\star}$, the previous system is exactly the Euler-Lagrange equation for the sigma model in $N$ with a $\bar{W}$ ess-Zumino term defined by the closed 3-form

$$
H=-d \Omega_{\underline{\mathrm{J}}^{\star}}+\underline{\mathrm{J}}^{\star} N_{\underline{\mathrm{J}}^{\star}}
$$

## $5.4 f$-structures on homogeneous fibre bundles

### 5.4.1 Connections preserving a $f$-structure

Let us consider $(N, F)$ a $f$-manifold, i.e. a manifold endowed with a $f$-stucture (see definition 0.1). Let us set $\mathcal{H}=\operatorname{Im} F$ and $\mathcal{V}=\operatorname{ker} F$, then we have $T N=\mathcal{H} \oplus \mathcal{V}$. If we put $P=-F^{2}$,

[^35]then $P$ is the projector on $\mathcal{H}$ along $\mathcal{V}$. Moreover $P F=F P=F$ and $F^{2} P=-P$. In particular, $J^{\mathcal{H}}:=F_{\mid \mathcal{H}}$ is a complex structure in the vector bundle $\mathcal{H}$.
Let us denote also by $q:=\mathrm{Id}-P$ the projector on $\mathcal{V}$ along $\mathcal{H}$. We denote by $X=X^{\mathcal{V}}+X^{\mathcal{H}}$, or sometimes simply by $X=X^{v}+X^{h}$, the decomposition of any element $X \in T N$.
In all the section 5.4, we will consider the bundles $\mathcal{H}^{*}$ and $\mathcal{V}^{*}$ as well as all their tensor products respectively, as subbundles of $T^{*} N$ and $\otimes^{k} T^{*} N, k \in \mathbb{N}^{*}$, respectively. For example, for any trilinear form $B \in \mathcal{C}\left(\otimes^{3} T^{*} N\right)$, we will consider $B_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{H}}$ as an element of $\mathcal{C}\left(T^{*} N^{3}\right)$ by identifying it to $B(P \cdot, q \cdot, P \cdot)$.
Moreover, we will often identify a $k$-linear map with its expression in terms of the vectors $\left(X_{1}, \ldots, X_{k}\right) \in T N^{k}$. For example, given $B \in \mathcal{C}\left(\otimes^{3} T^{*} N\right)$, we will write " let $\beta \in \mathcal{H}^{*} \times \mathcal{H}^{*} \times \mathcal{V}^{*}$ be defined by $\beta=B\left(Z^{v}, X^{h}, Y^{h}\right)$ " instead of " let $\beta \in \mathcal{H}^{*} \times \mathcal{H}^{*} \times \mathcal{V}^{*}$ be defined by $\beta\left(X^{h}, Y^{h}, Z^{v}\right)=$ $B\left(Z^{v}, X^{h}, Y^{h}\right)$, for all $X, Y, Z \in T N "$.

Definition 5.9 The Nijenhuis tensor $N_{F}$ of $F$ is defined by

$$
N_{F}(X, Y)=[F X, F Y]-F[F X, Y]-F[X, F Y]-P[X, Y]
$$

where $X, Y \in \mathcal{C}(T N)$.
Then we obtain immediately (27])
Proposition 5.21 We have the following identities.

$$
\begin{array}{rlcll}
N_{F}(q X, q Y) & = & -P[q X, q Y] & =P N_{F}(q X, q Y) \\
q N_{F}(X, Y) & = & q[F X, F Y] & =N_{F}(p X, p Y) \\
N_{F}(q X, P Y) & = & -F[q X, F Y]-P[q X, P Y] & &
\end{array}
$$

so that

$$
N_{\mid \mathcal{V} \times \mathcal{V}}=\mathrm{R}_{\mathcal{V}} \quad \text { and } \quad N^{\mathcal{V}}=-\mathrm{R}_{\mathcal{H}}(F \cdot, F \cdot)
$$

where $\mathrm{R}_{\mathcal{V}}$ and $\mathrm{R}_{\mathcal{H}}$ are the curvature of $\mathcal{V}$ and $\mathcal{H}$ respectively (in the sense of definition 4.2). In particular, $N^{\mathcal{V}}(\mathcal{V}, \mathcal{V})=N^{\mathcal{V}}(\mathcal{H}, \mathcal{V})=\{0\}$ i.e

$$
N(\mathcal{H}, \mathcal{V}) \subset \mathcal{H} \quad \text { and } \quad N(\mathcal{V}, \mathcal{V}) \subset \mathcal{H}
$$

Moreover $N_{F \mid \mathcal{V} \times \mathcal{H}}=N_{F \mid \mathcal{V} \times \mathcal{H}}^{\mathcal{H}}$ satisfies the following property

$$
N_{F}\left(X^{v}, J^{\mathcal{H}} Y^{h}\right)=-J^{\mathcal{H}} N_{F}\left(X^{v}, Y^{h}\right)
$$

i.e. $N_{F}\left(X^{v}, \cdot\right)_{\mid \mathcal{H}}$ anticommutes with $J^{\mathcal{H}}$.

Definition 5.10 Let $(N, F)$ be a $f$-manifold. Then for any $B \in \mathcal{T}$, we set

$$
B^{\varepsilon, \varepsilon^{\prime}}(X, Y)=-\frac{1}{4}\left(\varepsilon \varepsilon^{\prime} B(F X, F Y)+\varepsilon F B(F X, Y)+\varepsilon^{\prime} F B(X, F Y)-B(X, Y)\right)
$$

Then we have $P B^{\varepsilon, \varepsilon^{\prime}}=\left(B_{\mid \mathcal{H}^{2}}^{\mathcal{H}}\right)_{J_{\mathcal{H}}}^{\varepsilon, \varepsilon^{\prime}}$ or in other words $B^{\varepsilon, \varepsilon^{\prime}}=\left(B_{\mid \mathcal{H}^{2}}^{\mathcal{H}}\right)_{J^{\mathcal{H}}}^{\varepsilon, \varepsilon^{\prime}}-\frac{1}{4}\left(B^{\mathcal{V}}(F \cdot F \cdot)-B^{\mathcal{V}}\right)$.
As for the case of an almost complex structure (section 5.3.1), we can define natural actions of $F$ on elements $B \in \mathcal{T}$ :

$$
\begin{aligned}
F \cdot B & :=B(F \cdot, F \cdot, F \cdot):=-B^{c} \\
F \odot B & :=B(F \cdot, \cdot)+B(\cdot, F \cdot)-F B(\cdot, \cdot) \\
F \bullet B & =F \cdot B+F \lessdot\left(B-B_{\mathcal{H}^{2}}^{\mathcal{H}}\right) \\
F \star B & =\frac{1}{2}(F \bullet B+F \odot B) .
\end{aligned}
$$

It is then important to remark that $F \bullet B-F \circlearrowleft B=4 \bar{J} \cdot \bar{B}^{--}$, where $\bar{J}=J^{\mathcal{H}}$ and $\bar{B}=B_{\mathcal{H}^{2}}^{\mathcal{H}}$; and hence that $F \bullet B-F \star B=2 \bar{J} \cdot \bar{B}^{--}$.

Notations We extend the notations and definitions of section 5.3 concerning there the complex bundle $(T N, J)$ (defined by a complex manifold $(N, J, h)$ ) to the complex bundle $\left(\mathcal{H}, J^{\mathcal{H}}\right)$, defined in the present section by the $f$-manifold $(N, F)$. Then all the algebraic results -like corollary 5.2 - of section 5.3 can be extended to the complex bundle $\left(\mathcal{H}, J^{\mathcal{H}}\right) \sqrt[54]{54}$

Introducing an affine connection. Now, we introduce an affine connection and want to compare the vertical component of the torsion with the vertical torsion.

Proposition 5.22 Let $(N, F, \nabla)$ be an affine manifold endowed with a parallel $f$-structure $(\nabla F=$ $0)$. Then the subbundles $\mathcal{H}=\operatorname{Im} F$ and $\mathcal{V}=\operatorname{ker} F$ are $\nabla$-parallel.

Proposition 5.23 Let $(N, \nabla)$ be an affine manifold. Let us suppose that we have $a \nabla$-parallel splitting $T N=\mathcal{H} \oplus \mathcal{V}$, where $\mathcal{H}, \mathcal{V}$ inherit the names of horizontal and vertical subbundles respectively. Then the vertical torsion coincides with the vertical component of the torsion:

$$
T^{v}=T^{\mathcal{V}}
$$

where we use notations of section 4.1.3 for $T^{v}$, and the notations defined above (just before definition 5.9) for $T^{\mathcal{V}}$.

In a more general context we can relate $T^{v}$ and $T^{\mathcal{V}}$ as follows.
Proposition 5.24 Let $(N, \nabla)$ be an affine manifold. Let us suppose that we have some splitting $T N=\mathcal{V} \oplus \mathcal{H}$, where $\mathcal{H}, \mathcal{V}$ inherit the names of horizontal and vertical subbundles respectively. Then the vertical torsion and the vertical part of the torsion satisfy the following relations

$$
T_{\mid \mathcal{V} \times \mathcal{V}}^{v}=T_{\mid \mathcal{V} \times \mathcal{V}}^{\mathcal{V}} \quad \text { and } \quad T_{\mid \mathcal{H} \wedge \mathcal{V}}^{v}=T_{\mid \mathcal{H} \wedge \mathcal{V}}^{\mathcal{V}}+\sigma^{v}
$$

where $\sigma^{v}$ is the restriction to $\mathcal{H} \wedge \mathcal{V}$ of the $\mathcal{V}$-valued 2-form $\nabla^{v} q(X, Y)-\nabla^{v} q(Y, X)$.
Definition 5.11 The term $\mathcal{R}=T_{\mid \mathcal{H} \wedge \mathcal{V}}^{v}$ will be called the reductivity term.
Proposition 5.25 Furthermore, in the situation off proposition 5.24, we have the following equality:

$$
T^{v}=\Phi \oplus \mathcal{R} \oplus T^{\mathcal{V}}(q \cdot, q \cdot)
$$

where $\Phi=R \mathcal{H}$ is the curvature of $\mathcal{H}$.
Let $X^{h}, Y^{h} \in \mathcal{C}(\mathcal{H})$. Then for any $f \in \mathcal{C}^{\infty}(N)$, we have $\nabla_{X^{h}}^{v}\left(f Y^{h}\right)=f \nabla_{X^{h}}^{v} Y^{h}+\left(X^{h} \cdot f\right)\left(Y^{h}\right)^{v}=$ $f \nabla_{X^{h}}^{v} Y^{h}$ so that $\nabla_{X^{h}}^{v} Y^{h}$ defines a bilinear map from $\mathcal{H} \times \mathcal{H}$ into $\mathcal{V}$. Let $\Psi$ be its skew-symmetric part: $\Psi\left(H_{1}, H_{2}\right)=\nabla_{H_{1}}^{v} H_{2}-\nabla_{H_{2}}^{v} H_{1}$. Then we have $T^{\mathcal{V}}\left(H_{1}, H_{2}\right)=\nabla_{H_{1}}^{v} H_{2}-\nabla_{H_{2}}^{v} H_{1}-\left[H_{1}, H_{2}\right]^{v}$ i.e.

$$
T_{\mid \mathcal{H} \times \mathcal{H}}^{\mathcal{V}}=\Psi+\Phi .
$$

[^36]Proposition 5.26 The following relation holds

$$
T^{\mathcal{V}}=(\Psi+\Phi) \oplus\left(\mathcal{R}-\sigma^{v}\right) \oplus T^{\mathcal{V}}(q \cdot, q \cdot)
$$

Therefore $T^{\mathcal{V}}=T^{v}$ if and only if $\Psi=0$ and $\sigma^{v}=0$, which happens in particular if $\mathcal{H}$ is $\nabla$-parallel.

The $f$-connections and their torsion. Let us come back to the case of a $f$-manifold $(N, F)$.

Definition 5.12 An affine connection $\nabla$, on a $f$-manifold $(N, F)$, which preserves the $f$-structure, i.e $\nabla F=0$, is called a $f$-connection.

Proposition 5.27 Let $(N, F, \nabla)$ be a $f$-manifold endowed with an affine $f$-connection. Then the torsion $T$ satisfies the following identity

$$
T(F X, F Y)-F T(F X, Y)-F T(X, F Y)-P T(X, Y)=-N_{F}(X, Y)
$$

Corollary 5.4 Setting $N_{J^{\mathcal{H}}}=N_{F \mid \mathcal{H} \times \mathcal{H}}^{\mathcal{H}}$, the torsion $T$ (of a $f$-connection $\nabla$ on a $f$-manifolds $(N, F))$ satisfies the following identities:

$$
\begin{aligned}
N_{J^{\mathcal{H}}} & =4\left(T_{\mathcal{H} \times \mathcal{H}}^{\mathcal{H}}\right)_{J^{\mathcal{H}}}^{0,2} \\
T^{\mathcal{H}}\left(J^{\mathcal{H}} X^{h}, Y^{v}\right)-J^{\mathcal{H}} T^{\mathcal{H}}\left(X^{h}, Y^{v}\right) & =-J^{\mathcal{H}} N_{F}^{\mathcal{H}}\left(X^{h}, Y^{v}\right)=-\left(\left[J^{\mathcal{H}} X^{h}, Y^{v}\right]^{\mathcal{H}}-J^{\mathcal{H}}\left[X^{h}, Y^{v}\right]^{\mathcal{H}}\right) \\
T^{\mathcal{H}}\left(X^{v}, J^{\mathcal{H}} Y^{h}\right)-J^{\mathcal{H}} T^{\mathcal{H}}\left(X^{v}, Y^{h}\right) & =-J^{\mathcal{H}} N_{F}^{\mathcal{H}}\left(X^{v}, Y^{h}\right)=-\left(\left[X^{v}, J^{\mathcal{H}} Y^{h}\right]^{\mathcal{H}}-J^{\mathcal{H}}\left[X^{v}, Y^{h}\right]^{\mathcal{H}}\right) \\
T^{\mathcal{V}}\left(X^{h}, Y^{h}\right) & =-N_{F}^{\mathcal{V}}\left(F X^{h}, F Y^{h}\right)=\Phi(X, Y) \\
T^{\mathcal{H}}\left(X^{v}, Y^{v}\right) & =N_{F}^{\mathcal{H}}\left(X^{v}, Y^{v}\right)=\mathrm{R}_{\mathcal{V}}\left(X^{v}, Y^{v}\right)
\end{aligned}
$$

where $X, Y \in \mathcal{C}(T N)$. Consequently, the following component of the torsion $T_{\mid \mathcal{H} \times \mathcal{H}}^{\mathcal{H}}, T_{\mid \mathcal{V} \times \mathcal{V}}^{\mathcal{H}}$, $\left(T_{\mid \mathcal{H} \times \mathcal{H}}^{\mathcal{H}}\right)^{0,2}$ and $\left[T_{\mid \mathcal{V} \times \mathcal{H}}^{\mathcal{H}}, J^{\mathcal{H}}\right]$ are independent of $\nabla$.
Now, we want to find a necessary and sufficient condition on the torsion $T$ for $\nabla$ to be a $f$ connection. To do that we need to introduce $h$ on $N$. Moreover, we will first begin by caracterize the connections which preserve the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$, then in a second time we will introduce the additionnal condition that the induced connection on $\mathcal{H}$ preserves the complex structure $J^{\mathcal{H}}$.
Let us define some notations. In the following, since a metric is given we use the convention defined in section 5.3.1: each $T N$-valued bilinear form on $N, B \in \mathcal{C}\left(T^{*} N \otimes T^{*} N \otimes T N\right)$, will be identified (via the metric $h$ ) with the corresponding trilinear form. Moreover, we denote by $\Omega_{A}$ the bilinear form associated (via the metric $h$ ) to an endomorphism $A \in \mathcal{C}(\operatorname{End}(T N)$ :

$$
\Omega_{A}(X, Y)=\langle A(X), Y\rangle, \quad \forall X, Y \in T N
$$

Then, under our convention, for any endomorphism $A \in \mathcal{C}(T N), \nabla^{h} A$ is identified to $\nabla^{h} \Omega_{A}$. Moreover, we set

$$
\operatorname{Sym}(B)(X, Y)=B(X, Y)+B(Y, X), \quad \forall X, Y \in T N
$$

for all $B \in \mathcal{C}\left(T^{*} N \otimes T^{*} N \otimes T N\right)$.
Furthermore, let $E_{1}, E_{2}, E_{3}$ be vector bundles over $N$, then we set also $\mathcal{S}\left(E_{1} \times E_{2} \times E_{3}\right)=$
$\underset{i, j, k}{\mathcal{S}} E_{i} \otimes E_{j} \otimes E_{k}$, where we do a direct sum on the circular permutation of $1,2,3$.
Finally, to avoid any risk of confusion of the index " $h$ " denoting the metric in the notation of the Levi-Civita connection $\nabla^{h}$, with the same index in the notation for the horizontal component $X^{h}$ of a vector $X \in T N$, we will denote momentaneously the Levi-Civita connection by $D$ :

$$
D:=\nabla^{h} .
$$

Theorem 5.16 Let $(N, h)$ be a Riemannian manifold with an orthogonal decomposition $T N=$ $\mathcal{H} \oplus \mathcal{V}$. Then a metric connection $\nabla$ leaves invariant this decomposition (i.e. $\mathcal{H}$ and $\mathcal{V}$ are $\nabla$-parallel) if and only if its torsion $T$ satisfies

$$
T_{\mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}=\Phi, \quad T_{\mid \mathcal{V} \times \mathcal{V} \times \mathcal{H}}=\mathrm{R}_{\mathcal{V}}
$$

and

$$
\begin{aligned}
\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(T_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}\right) & =\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(D \Omega_{q \mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}\right) \\
\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}\right) & =\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(D \Omega_{q \mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}\right)
\end{aligned}
$$

In particular, the components $\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(T_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}\right)$ and $\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}\right)$ are independent of $\nabla$ 。

Proof. According to remark 5.6, we have $D=\nabla-A=\nabla-\frac{1}{2}(T+U)$. Therefore $\nabla q=0$ if and only if

$$
\begin{equation*}
D q=-[A, q] \tag{107}
\end{equation*}
$$

$\operatorname{But}\langle[A, q](X, Y), Z\rangle=A\left(X, Y^{v}, Z\right)-A\left(X, Y, Z^{v}\right)=A\left(X^{h}, Y^{v}, Z^{h}\right)+A\left(X^{v}, Y^{v}, Z^{h}\right)-A\left(X^{h}, Y^{h}, Z^{v}\right)-$ $A\left(X^{v}, Y^{h}, Z^{v}\right)$, and according to the characterization of the Levi-Civita connection:

$$
\begin{aligned}
-2\left\langle\left(D_{X^{h}} q\right) Y^{h}, Z^{v}\right\rangle & =2\left\langle D_{X^{h}} Y^{h}, Z^{v}\right\rangle=-Z^{v} \cdot\left\langle X^{h}, Y^{h}\right\rangle+\left\langle\left[X^{h}, Y^{h}\right], Z^{v}\right\rangle+\left\langle\left[Z^{v}, X^{h}\right], Y^{h}\right\rangle+\left\langle X^{h},\left[Z^{v}, Y^{h}\right]\right\rangle \\
& =-\Phi\left(X^{h}, Y^{h}, Z^{v}\right)+\left\langle-D_{Z^{v}} X^{h}+\left[Z^{v}, X^{h}\right], Y^{h}\right\rangle+\left\langle-D_{Z^{v}} Y^{h}+\left[Z^{v}, Y^{h}\right], X^{h}\right\rangle \\
& =-\Phi\left(X^{h}, Y^{h}, Z^{v}\right)-\left\langle D_{X^{h}} Z^{v}, Y^{h}\right\rangle-\left\langle D_{Y^{h}} Z^{v}, X^{h}\right\rangle \\
& =-\Phi\left(X^{h}, Y^{h}, Z^{v}\right)-D \Omega_{q}\left(X^{h}, Z^{v}, Y^{h}\right)-D \Omega_{q}\left(Y^{h}, Z^{v}, X^{h}\right) \\
& =-\Phi\left(X^{h}, Y^{h}, Z^{v}\right)-\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(D \Omega_{q}\left(X^{h}, Y^{h}, Z^{v}\right) .\right.
\end{aligned}
$$

In the last line we have used the fact that $D \Omega_{q}$ is symmetric w.r.t. the two last variables (since $q$ is a symmetric projector). Therefore the condition (107) restricted to $\mathcal{H} \times \mathcal{H} \times \mathcal{V}$ is written $(T+U)_{\mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}=\Phi+\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(D \Omega_{q \mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}\right)$, that is to say by identifiying respectively the symmetric and skew-symmetric part (w.r.t. the two first variables) of the two hand sides of this equality respectively, we obtain

$$
\begin{equation*}
T_{\mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}=\Phi \quad \text { and } \quad \operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(T_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}\right)=: U_{\mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}=\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(D \Omega_{q_{\mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}}\right) \tag{108}
\end{equation*}
$$

Moreover, since $D \Omega_{q}$ is symmetric w.r.t. the two last variables and $A$ is skew-symmetric w.r.t. these two last variables, we see that the restriction to $\mathcal{H} \times \mathcal{H} \times \mathcal{V}$ and to $\mathcal{H} \times \mathcal{V} \times \mathcal{H}$ of the condition (107) are in fact equivalent. Furthermore, we have $\left\langle\left(D_{X^{v}} q\right) Y^{h}, Z^{h}\right\rangle=0$ and $\left\langle[A, q]\left(X^{v}, Y^{h}\right), Z^{h}\right\rangle=0$. Therefore, the restriction to $\mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})$ of the condition (107) is equivalent to (108).

Proceeding in the same way as above, we obtain that the restriction to $\mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})$ of (107) is equivalent to

$$
T_{\mid \mathcal{V} \times \mathcal{V} \times \mathcal{H}}=\mathrm{R}_{\mathcal{V}} \quad \text { and } \quad \operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}\right)=\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(D \Omega_{q_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}}\right)
$$

Finally, we have $\left\langle\left(D_{X^{h}} q\right) Y^{h}, Z^{h}\right\rangle=0=\left\langle[A, q]\left(X^{h}, Y^{h}\right), Z^{h}\right\rangle$ and $\left\langle\left(D_{X^{v}} q\right) Y^{v}, Z^{v}\right\rangle=0=$ $\left\langle[A, q]\left(X^{v}, Y^{v}\right), Z^{v}\right\rangle$. This completes the proof.
Now, let us see under which condition on the Riemannian manifold, there exists a connection preserving the splitting and with skew-symmetric torsion. It will turn out that the existence of a connection preserving the splitting and of which the horizontal component of the torsion $T_{\mid \mathcal{H}^{3}}$ is skew-symmetric does not imposes any condition on the Riemannian manifold ( $N, h$ ), but the skew-symmetry of the other components $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ and $T_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}$ imposes constraints on the Riemannian manifold.

Corollary 5.5 Let $(N, h)$ be a Riemannian manifold with an orthogonal decomposition $T N=$ $\mathcal{H} \oplus \mathcal{V}$. Then, the following statements are equivalent
(i) There exists a metric connection $\nabla$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$, such that the following component of the torsion $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric, i.e. $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=$ $\operatorname{Skew}(\Phi)$.
(ii) For any metric connection $\nabla$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$, the component of the torsion $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric.
(iii) $D \Omega_{q \mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}$ is skew-symmetric w.r.t. the two first variables, i.e. $D q_{\mid \mathcal{H} \times \mathcal{H}} \in \mathcal{C}\left(\left(\Lambda^{2} \mathcal{H}^{*}\right) \otimes \mathcal{V}\right)$, or equivalently $D \Omega_{q}(P \cdot, P \cdot, q \cdot)=\frac{1}{2} \Phi$.
(iv) $D \Omega_{q_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{H}}}$ is skew-symmetric w.r.t. the first and third variables, i.e. $D \Omega_{q}(P X, q Y, P Z)=$ $-\frac{1}{2} \Phi(Z, X, Y)$.
(v) Skew $\left(D \Omega_{\left.q_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}\right)}\right)=0$.

We will then say that $(N, q, h)$ is of type $\mathcal{H}^{2} \mathcal{V}$.
Corollary 5.6 Let $(N, h)$ be a Riemannian manifold with an orthogonal decomposition $T N=$ $\mathcal{H} \oplus \mathcal{V}$. Then, the following statements are equivalent.
(i) There exists a metric connection $\nabla$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$, such that the following component of the torsion $T_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}$ is skew-symmetric, i.e. $T_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}=$ Skew ( $\mathrm{R}_{\mathcal{V}}$ ).
(ii) For any metric connection $\nabla$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$, the component of the torsion $T_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}$ is skew-symmetric.
(iii) $D \Omega_{q \mid \mathcal{V} \times \mathcal{V} \times \mathcal{H}}$ is skew-symmetric w.r.t. the two first variables, i.e. $D q_{\mid \mathcal{V} \times \mathcal{V}} \in \mathcal{C}\left(\left(\Lambda^{2} \mathcal{V}^{*}\right) \otimes \mathcal{H}\right)$, or equivalently $D \Omega_{q}(q \cdot, q \cdot, P \cdot)=-\frac{1}{2} R \mathcal{V}$.
(iv) $D \Omega_{q_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{V}}}$ is skew-symmetric w.r.t. the first and third variables, i.e. $D \Omega_{q}(q X, P Y, q Z)=$ $\frac{1}{2} \mathrm{R}_{\mathcal{V}}(Z, X, Y)$.
(v) Skew $\left(D \Omega_{q_{\mid \mathcal{S}}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}\right)=0$.

We will then say that $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$.
Proof of corollary 5.5 and 5.6. We have seen in the proof of theorem 5.16 that for any metric connection $\nabla$, we have $\nabla \Omega_{q \mid \mathcal{H}^{3}}=0$ and $\nabla \Omega_{q \mid \mathcal{V}^{3}}=0$, so that we have $\nabla q=0$ if and only if $\nabla q_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0$ and $\nabla q_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}=0$, which is equivalent respectively to the conditions on $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0$ and $T_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}=0$ respectively, described by theorem 5.16. In particular, we see that there always exists metric connection $\nabla$ leaving invariant the decomposition of $T N$, which provides us the implication (ii) $\Rightarrow$ (i). Moreover, a necessary condition for (i) is $\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(D \Omega_{q_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}}\right)=0$, and respectively $\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(D \Omega_{q_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}}\right)=0$. Conversely if this condition is satisfied, then according to theorem 5.16, (ii) is also satisfied (since $T \in \mathcal{T}$, then the skew-symmetry of $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ (resp. $\left.T_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}\right)$ is equivalent to $\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(T_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}\right)=0$, resp. $\left.\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}\right)=0\right)$. Therefore we have proved the sequence of implications (ii) $\Rightarrow$ (i) $\Rightarrow$ (iii) $\Rightarrow$ (ii), i.e. (i), (ii) and (iii) are equivalent. Concerning the equivalent reformulation of (i) and (iii), the former follows from theorem 5.16 and the latter from the fact that according to the proof of theorem 5.16, the skew-symmetric part (w.r.t. the two first variables $X, Y$ ) of $D \Omega_{q_{\mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}}$ (resp. $D \Omega_{q_{\mid \mathcal{V} \times \mathcal{V} \times \mathcal{H}}}$ ) is $\frac{1}{2} \Phi$ (resp. $-\frac{1}{2} R \mathcal{V}$ ). The equivalence between (iii) and (iv) follows from the symmetry of $D \Omega_{q}$ w.r.t. the two last variables. Finally, using the computation done in the proof of compute theorem 5.16, we can compute

$$
\begin{aligned}
\operatorname{Skew}\left(D \Omega_{q \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}\right) & =\frac{1}{2}(\operatorname{Skew}(\Phi)+\operatorname{Skew}(U(P \cdot, P \cdot, q \cdot)))-\frac{1}{2}(\operatorname{Skew}(\Phi)-\operatorname{Skew}(U(P \cdot, P \cdot, q \cdot))) \\
& =\operatorname{Skew}(U(P \cdot, P \cdot, q \cdot))
\end{aligned}
$$

and idem for $\mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})$. This completes the proof.
Remark 5.15 According to the previous proof, we see that if ( $N, q, h$ ) is of type $\mathcal{H}^{2} \mathcal{V}$, then for any extension $T \in \mathcal{C}(\mathcal{T})$ of the skew-symmetric trilinear form Skew $(\Phi) \in \mathcal{C}\left(\mathcal{S}\left(\mathcal{H}^{*} \times \mathcal{H}^{*} \times \mathcal{V}^{*}\right)\right)$, the corresponding metric connection $\nabla$ satisfies $\nabla q_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0$. In the same way, if $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$, then for any extension $T \in \mathcal{C}(\mathcal{T})$ of the skew-symmetric trilinear form Skew $(R \mathcal{V}) \in$ $\mathcal{C}\left(\mathcal{S}\left(\mathcal{V}^{*} \times \mathcal{V}^{*} \times \mathcal{H}^{*}\right)\right)$, the corresponding metric connection $\nabla$ satisfies $\nabla q_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}=0$.

Definition 5.13 We will say that the (orthogonal) decomposition on the Riemannian manifold $(N, h)$ is reductive (w.r.t. the metric $h$ ) or that $(N, q, h)$ is reductive if $(N, q, h)$ is of type $\mathcal{H}^{2} \mathcal{V}$ and of type $\mathcal{V}^{2} \mathcal{H}$. This is equivalent to say that there exists a metric connection $\nabla$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$, and with skew-symmetric torsion.

Proposition $5.28(N, q, h)$ is reductive if and only if the trilinear map

$$
\operatorname{Skew}\left(D \Omega_{q \mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}\right) \oplus \operatorname{Skew}\left(D \Omega_{q \mid \mathcal{V} \times \mathcal{V} \times \mathcal{H}}\right)
$$

is skew-symmetric.
Proof. An element $\alpha \in \mathcal{C}\left(\mathcal{H}^{*} \otimes \mathcal{H}^{*} \otimes \mathcal{V}^{*}\right)$ satisfies $\left.\operatorname{Skew}(\alpha) \in \mathcal{C}\left(\Lambda^{2} \mathcal{H}^{*}\right) \wedge \mathcal{V}^{*}\right)$ if and only if $\alpha\left(X^{h}, Y^{h}, Z^{v}\right)$ is skew-symmetric w.r.t. $\left(X^{h}, Y^{h}\right)$.

Proposition 5.29 Let $(N, q, h)$ be a reductive Riemannian manifold. Let us suppose that is given some metric connection $\nabla^{c}$ on $\mathcal{V}$. Then there exists a metric connection $\nabla$ on $N$ preserving the decomposition $T N=\mathcal{V} \oplus \mathcal{H}$, with skew-symmetric torsion, and which coincides with $\nabla^{c}$ on $\mathcal{V}$ if and only if

$$
\left(D^{v}-\nabla^{c}\right)\left(X^{h}, Y^{v}, Z^{v}\right)=-\frac{1}{2} \mathrm{R}_{\mathcal{V}}\left(Y^{v}, Z^{v}, X^{h}\right) \quad \text { and } \quad\left(D^{v}-\nabla^{c}\right)_{\mid \mathcal{V}^{3}} \in \mathcal{C}\left(\Lambda^{3} \mathcal{V}^{*}\right)
$$

Proof. Let us suppose that such a metric connection $\nabla$ exists. Then we have $D=\nabla-$ $\frac{1}{2} T$ and thus $\left(D^{v}-\nabla^{c}\right)_{\mid \mathcal{V}^{3}} \in \mathcal{C}\left(\Lambda^{3} \mathcal{V}^{*}\right)$ and $\left(D^{v}-\nabla^{c}\right)\left(X^{h}, Y^{v}, Z^{v}\right)=-\frac{1}{2} T\left(X^{h}, Y^{v}, Z^{v}\right)=$ $-\frac{1}{2} T\left(Y^{v}, Z^{v}, X^{h}\right)=-\frac{1}{2} \mathrm{R}_{\mathcal{V}}\left(Y^{v}, Z^{v}, X^{h}\right)$, since $T$ is skew-symmetric and $\nabla$ leaves invariant the decomposition of $T N$.
Conversely, if $\nabla^{c}$ satisfies the above conditions, then let $\beta \in \mathcal{C}\left(\Lambda^{3} \mathcal{H}^{*}\right)$ and $\alpha=\left(D^{v}-\nabla^{c}\right)_{\mid \mathcal{V}^{3}} \in$ $\mathcal{C}\left(\Lambda^{3} \mathcal{V}^{*}\right)$. Let us consider the 3 -form

$$
T=\beta \oplus \operatorname{Skew}(\Phi) \oplus \operatorname{Skew}\left(\mathrm{R}_{\mathcal{V}}\right) \oplus \alpha
$$

as well the corresponding metric connection $\nabla=D+\frac{1}{2} T$. Then, since $(N, q, h)$ is reductive, according to theorem 5.16, $\nabla$ preserves the decomposition of $T N$. Moreover, by definition of $\nabla$, we have $\left(\nabla-\nabla^{c}\right)_{T N \times \mathcal{V} \times \mathcal{V}}=0$. This completes the proof.
Let us add the following characterization of the type $\mathcal{V}^{2} \mathcal{H}$ in term of the vertical torsion of the Levi-Civita connection.

Proposition 5.30 Let $(N, h)$ be a Riemannian manifold with an orthogonal decomposition $T N=$ $\mathcal{H} \oplus \mathcal{V}$. Let $T^{v}$ be the vertical torsion of the Levi-Civita connection. Then, $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$ if and only if

$$
\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}\right)=0
$$

Proof Let $H \in \mathcal{H}, V_{1}, V_{2} \in \mathcal{V}$. Then

$$
\begin{aligned}
T^{v}\left(H, V_{1}, V_{2}\right)+T^{v}\left(H, V_{2}, V_{1}\right) & =\left\langle D_{H}^{v} V_{1}-\left[H, V_{1}\right]^{v}, V_{2}\right\rangle+\left\langle D_{H}^{v} V_{2}-\left[H, V_{2}\right]^{v}, V_{1}\right\rangle \\
& =\left\langle D_{H} V_{1}-\left[H, V_{1}\right], V_{2}\right\rangle+\left\langle D_{H} V_{2}-\left[H, V_{2}\right], V_{1}\right\rangle \\
& =\left\langle D_{V_{1}} H, V_{2}\right\rangle+\left\langle D_{V_{2}} H, V_{1}\right\rangle \\
& =\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}(D P)\left(V_{1}, H, V_{2}\right)=\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}(D P)\left(V_{1}, V_{2}, H\right) \\
& =-\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}(D q)\left(V_{1}, V_{2}, H\right)
\end{aligned}
$$

Then we completes the proof by applying corollary 5.6.
Now, let us come back to the case of a $f$-manifolds. Then the condition $\nabla F=0$ is equivalent ot the fact that $\nabla$ leaves invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$ and moreover $\nabla^{\mathcal{H}} J^{\mathcal{H}}=0$, where $\nabla^{\mathcal{H}}$ is the connection induced by $\nabla$ on $\mathcal{H}$. In some sense, we have to add to the conditions of theorem 5.16 those of theorem as well as the condition $\nabla \mathcal{V}^{\mathcal{H}} J^{\mathcal{H}}=0$.

Definition 5.14 We will say that a $f$-structure $F$ and a metric $h$ on a manifold $N$ are compatible if $\mathcal{H} \perp \mathcal{V}$ and if $J^{\mathcal{H}}$ is an orthogonal complex structure on $\mathcal{H}$ endowed with the metric induced by $h$. This is equivalent to say that $I=J^{\mathcal{H}} \oplus \mathrm{Id}_{\mathcal{V}}$ is orthogonal: $I^{*} h=h$. We will then say that $(N, F, h)$ is a Riemannian $f$-manifold.

Theorem 5.17 Let $(N, F, h)$ be a Riemannian $f$-manifold. Then a metric connection $\nabla$ preserves the $f$-structure $F$ if and only if all the following statements hold:

$$
\begin{array}{ll}
\nabla \Omega_{F \mid \mathcal{H}^{3}}=0 & \Longleftrightarrow \\
N_{J \mathcal{H}}=4\left(T_{\mid \mathcal{H}^{3}}\right)^{0,2} \text { and } \mathcal{S}\left(\left(T_{\left.\left.\mid \mathcal{H}^{3}\right)^{2,0}-\left(T_{\mid \mathcal{H}^{3}}\right)^{1,1}\right)=\left(d^{c} \Omega_{F \mid \mathcal{H}^{3}}\right)^{(+)}}\right.\right. \\
\nabla \Omega_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0 & \Longleftrightarrow\left\{\begin{array} { l } 
{ \begin{array} { | c } 
{ \nabla \Omega _ { F | \mathcal { H } \times \mathcal { H } \times \mathcal { V } } = 0 } \\
{ \nabla \Omega _ { F | \mathcal { H } \times \mathcal { V } \times \mathcal { H } } = 0 }
\end{array} } \\
{ \nabla \Omega _ { F | \mathcal { S } ( \mathcal { V } \times \mathcal { V } \times \mathcal { H } ) } = 0 }
\end{array} \Longleftrightarrow \Longleftrightarrow \left\{\begin{array}{c}
\nabla \Omega_{q \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0 \\
\nabla\left(X_{F \mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}^{v}, F Y^{h}, Z^{h}\right)+T\left(X^{v}, Y^{h}, F Z^{h}\right)= \\
N\left(X^{v}, Y^{h}, F Z^{h}\right)
\end{array} \Longleftrightarrow \nabla \Omega_{q \mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})=0}\right.\right.
\end{array}
$$

Proof. We first notice that $\nabla \Omega_{F}\left(X^{h}, Y^{h}, Z^{v}\right)=\left\langle\left(\nabla_{X^{h}} F\right) Y^{h}, Z^{v}\right\rangle=\left\langle\nabla_{X^{h}}\left(F Y^{h}\right), Z^{v}\right\rangle=$ $-\nabla \Omega_{q}\left(X^{h}, F Y^{h}, Z^{v}\right)$. Therefore $\nabla \Omega_{F \mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}=0 \Leftrightarrow \nabla \Omega_{q \mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}=0$. In the same way, $\nabla \Omega_{F \mid \mathcal{H} \times \mathcal{V} \times \mathcal{H}}=0 \Leftrightarrow \nabla \Omega_{q \mid \mathcal{H} \times \mathcal{V} \times \mathcal{H}}=0$. Therefore, according to the proof of corollary 5.5, we have proved the equivalence between the two boxes.
Now, let us compute

$$
\begin{aligned}
& T\left(X^{v}, F Y^{h}, Z^{h}\right)+T\left(X^{v}, Y^{h}, F Z^{h}\right)=\left\langle\nabla_{X^{v}}\left(F Y^{h}\right)-\nabla_{F Y^{h}} X^{v}, Z^{h}\right\rangle+\left\langle\nabla_{X^{v}} Y^{h}+\nabla_{Y^{h}} X^{v}-\left[X^{v}, Y^{h}\right], F Z^{h}\right\rangle \\
& \quad=\nabla \Omega_{F}\left(X^{v}, Y^{h}, Z^{h}\right)-\nabla \Omega_{q}\left(F Y^{h}, X^{v}, Z^{h}\right)-\nabla \Omega_{q}\left(Y^{h}, X^{v}, F Z^{h}\right)+N_{F}\left(X^{v}, Y^{h}, F Z^{h}\right)
\end{aligned}
$$

so that if $\nabla \Omega_{q \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0$ then we obtain the equivalence $\left(\nabla \Omega_{F \mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}=0\right) \Leftrightarrow\left(T\left(X^{v}, F Y^{h}, Z^{h}\right)+\right.$ $T\left(X^{v}, Y^{h}, F Z^{h}\right)=N\left(X^{v}, Y^{h}, F Z^{h}\right)$.
We have also to compute that $\nabla \Omega_{F}\left(X^{v}, Y^{v}, Z^{h}\right)=\left\langle\left(\nabla_{X^{v}} F\right) Y^{v}, Z^{h}\right\rangle=-\left\langle F \nabla_{X^{v}} Y^{v}, Z^{h}\right\rangle=$
$\nabla q\left(X^{v}, Y^{v}, F Z^{h}\right)$, also that $\nabla \Omega_{F}\left(X^{v}, Y^{h}, Z^{v}\right)=-\nabla q\left(X^{v}, F Y^{h}, Z^{v}\right)$, and that $\nabla \Omega_{F}\left(X^{h}, Y^{v}, Z^{v}\right)=$
0 . Therefore, according to the proof of corollary 5.6, we have proved the equivalence $\left(\nabla \Omega_{F \mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}=\right.$ $0) \Leftrightarrow\left(\nabla \Omega_{q \mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}=0\right)$.
Furthermore, we can prove the following formula (see section 7.2) generalizing equation (103):

$$
\begin{align*}
2 D \Omega_{F}(X, Y, Z)= & d \Omega_{F}(X, Y, Z)-d \Omega_{F}(X, F Y, F Z)+N(Y, Z, F X) \\
+ & \Phi(Y, F Z, X)+\Phi(F Y, Z, X)-\Phi(X, F Y, Z)-\Phi(F Z, X, Y) \\
& +\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(\nabla \Omega_{F \mid \mathcal{V} \times \mathcal{H} \times \mathcal{V}}\right)+\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(\nabla \Omega_{F \mid \mathcal{V} \times \mathcal{V} \times \mathcal{H}}\right) \tag{109}
\end{align*}
$$

We deduce from this, that

$$
2 D \Omega_{F}\left(X^{h}, Y^{h}, Z^{h}\right)=d \Omega_{F}\left(X^{h}, Y^{h}, Z^{h}\right)-d \Omega_{F}\left(X^{h}, F Y^{h}, F Z^{h}\right)+N\left(Y^{h}, Z^{h}, F X^{h}\right)
$$

Moreover, $\nabla \Omega_{\mid \mathcal{H}^{3}}=0$ if and only if

$$
D \Omega_{F \mid \mathcal{H}^{3}}=-\frac{1}{2}(T+U)_{\mid \mathcal{H}^{3}} .
$$

Therefore, we can proceed as in the proof of theorem 5.13 to prove the equivalence concerning the restriction to $\mathcal{H}^{3}$. This completes the proof.
Further, we are interested by metric $f$-connections with skew-symmetric torsion. As we have done above we have to study first the condition of skew-symmetry on each component of the torsion and then to group all the obtained conditions to obtain a global condition on the Riemannian $f$-manifold for the existence of metric $f$-connection with skew-symmetric torsion.

Definition 5.15 Let $(N, F, h)$ be a Riemannian f-manifold. We define the extended Nijenhuis tensor $\tilde{N}_{F}$ as the TN-valued 2-form on $N$ (whose corresponding trilinear map is) defined by

$$
\tilde{N}_{F}:=N_{F}+\Phi+\mathrm{R}_{\mathcal{V}}\left(Z^{v}, X^{v}, Y^{h}\right)+\mathrm{R}_{\mathcal{V}}\left(Y^{v}, Z^{v}, X^{h}\right)
$$

We remark that $\tilde{N}_{F \mid \mathcal{S}(\mathcal{V} \times \mathcal{V} \times \mathcal{H})}=\operatorname{Skew}\left(\mathrm{R}_{\mathcal{V}}\right)$ is always skew-symmetric.
Proposition 5.31 Let $(N, F, h)$ be a Riemannian $f$-manifold. Then the following statements are equivalent.
(i) There exists a metric $f$-connection $\nabla$ (satisfying then $\nabla F=0$ ) with a torsion $T$ such that $T^{0,2}{ }_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric.
(ii) There exists a metric connection $\nabla$, satisfying $\nabla F_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0$, with a torsion $T$ such that $T^{0,2}{ }_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric.
(iii) $N_{F}\left(F Y^{h}, Z^{h}, X^{v}\right)+N_{F}\left(Y^{h}, F Z^{h}, X^{v}\right)=N_{F}\left(X^{v}, Y^{h}, F Z^{h}\right)$.
(iv) The extented Nijenhuis tensor $\tilde{N}_{F}$ satisfies: $\tilde{N}_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric.

Proof. Since the condition " $T^{0,2} \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})$ is skew-symmetric" concerns only the subspace $\mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})$, then (i) and (ii) are equivalent. Moreover, we have

$$
\tilde{N}_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=N_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}-N_{F}(F \cdot, F \cdot, q \cdot)
$$

(according to the definition of $\tilde{N}_{F}$ and proposition 5.21), and this equality gives easily the equivalence between (iii) and (iv). Now, it remanis to prove the equivalence between (i) and (iv). Let us first recall that

$$
-4\left(T^{0,2}\right):=T(F \cdot, F \cdot, q \cdot)+T(F \cdot, q \cdot, F \cdot)+T(q \cdot, F \cdot, F \cdot)-T
$$

Let us suppose (i). Then we have according to proposition5.27, that $T(F \cdot, F \cdot, q \cdot)+T(F \cdot, q \cdot, F \cdot)+$ $T(q \cdot, F \cdot, F \cdot)-T(\cdot, \cdot, P \cdot)=-N_{F}$ and thus

$$
-4 T^{0,2}=-N_{F}-T(\cdot, \cdot, q \cdot)=-N_{F}-\Phi-T_{\mid \mathcal{V}^{3}}-T_{\mid(\mathcal{V} \wedge \mathcal{H}) \otimes \mathcal{V}}
$$

and hence $-4 T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}^{0,2}=-\tilde{N}_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$, which implies (iv).
Conversely, let us suppose (iv). Then we have to construct a 3 -form $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$, on $\mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})$, which satisfies $-4 T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}^{0,2}=-\tilde{N}_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ and the following conditions of theorem 5.16

$$
T_{\mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}=\Phi \quad \operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(T_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}\right)=\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(D \Omega_{q_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}}\right)
$$

To do that, let us set $T_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}=S+A$, where $S, A$ are resp. symmetric and skew-symmetric w.r.t. the two last variables. Then we have to find $S, A$, such that

$$
\begin{gathered}
S=\operatorname{Sym}_{\mathcal{H} \times \mathcal{H}}\left(D \Omega_{q \mid \mathcal{V} \times \mathcal{H} \times \mathcal{H}}\right) \\
-A\left(Y^{v}, F X^{h}, F Z^{h}\right)+A\left(X^{v}, F Y^{h}, F Z^{h}\right)+A\left(Y^{v}, X^{h}, Z^{h}\right)-A\left(X^{v}, Y^{h}, Z^{h}\right)= \\
-\Phi\left(F X^{h}, F Y^{h}, Z^{v}\right)-\tilde{N}_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}(X, Y, Z)+S\left(Y^{v}, F X^{h}, F Z^{h}\right)-S\left(X^{v}, F Y^{h}, F Z^{h}\right)-S\left(Y^{v}, X^{h}, Z^{h}\right) \\
+S\left(X^{v}, X^{h}, Z^{h}\right)+S\left(X^{v}, Y^{h}, Z^{h}\right) .
\end{gathered}
$$

We then see that there always exist such maps $S$ and $A$ satisfying these equations. This completes the proof.

Proposition 5.32 Let $(N, F, h)$ be a Riemannian $f$-manifold. Then the following statements are equivalent.
(i) There exists a metric f-connection $\nabla$ (satisfying then $\nabla F=0$ ) with a torsion $T$ such that $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric.
(ii) There exists a metric connection $\nabla$, satisfying $\nabla F_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0$, with a torsion $T$ such that $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric.
(iii) $(N, q, h)$ is of type $\mathcal{H}^{2} \mathcal{V}$, and $\tilde{N}_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric.

Furthermore, under these statements, for any such connection satisfying (i) or (ii), then $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is unique (i.e. uniquely determined by the Riemannian $f$-manifold ( $N, F, h$ ) and equal to Skew $(\Phi)$. Conversely, any extension $T \in \mathcal{C}(\mathcal{T})$ of this unique skew-symmetric trilinear form Skew $(\Phi)$ defines a metric connection $\nabla$, satisfying $\nabla F_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=0$.

Proof. (i) and (ii) are equivalent for the same reason as in the proof of the previous proposition. Moreover, (i) and (iii) are equivalent according to theorem 5.17 and corollary 5.5. Moreover, by skew-symmetry and theorem 5.16, we have $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=\operatorname{Skew}(\Phi)$. This completes the proof. $\square$ We are led to the following definition.

Definition 5.16 We will say that a Riemannian $f$-manifold ( $N, F, h$ ) is reductive if $(N, q, h)$ is reductive, where $q$ is defined by $F$.
We will say that a Riemannian $f$-manifold $(N, F, h)$ is of reductive type $\mathcal{G}_{1}$ if $\tilde{N}_{F \mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}$ is skew-symmetric.

Now, let us turn ourself on the horizontal component $\mathcal{H}^{3}$ of $T N^{3}$.
Definition 5.17 We will say that a Riemannian $f$-manifold is horizontally of type $\mathcal{G}_{1}$ or that it is of horizontal type $\mathcal{G}_{1}$ if one the following equivalent statements holds.
(i) The horizontal Nijenhuis tensor $N_{J^{\mathcal{H}}}$ is skew-symmetric.
(ii) There exists a metric $f$-connection $\nabla$, such that $\left(T_{\left.\mid \mathcal{H}^{3}\right)^{0,2}}\right.$ is skew-symmetric.
(iii) There exists a metric connection $\nabla$, satisfying $\nabla F_{\mid \mathcal{H}^{3}}=0$, such that $\left(T_{\mid \mathcal{H}^{3}}\right)^{0,2}$ is skewsymmetric.

Proposition 5.33 Let $(N, F, h)$ be a Riemannian $f$-manifold. Then the following statements are equivalent.
(i) $(N, F, h)$ is horizontally of type $\mathcal{G}_{1}$.
(ii) There exists a metric $f$-connection $\nabla$, such that $T_{\mid \mathcal{H}^{3}}$ is skew-symmetric.
(iii) There exists a metric connection $\nabla$, satisfying $\nabla F_{\mid \mathcal{H}^{3}}=0$, such that $T_{\mid \mathcal{H}^{3}}$ is skew-symmetric.

In this case, for any such connection satisfying (i) or (ii), then $T_{\mid \mathcal{H}^{3}}$ is unique (i.e. uniquely determined by the Riemannian $f$-manifold $(N, F, h)$ ). Conversely any extension $T \in \mathcal{C}(\mathcal{T})$ of this unique skew-symmetric trilinear form $T_{\mid \mathcal{H}^{3}}$ defines a metric connection $\nabla$, satisfying $\nabla F_{\mid \mathcal{H}^{3}}=0$.

Proof. (ii) and (iii) are equivalent for the same reason as above. Furthermore, according to theorem 5.17, if $\nabla F_{\mid \mathcal{H}^{3}}=0$ and $T_{\mid \mathcal{H}^{3}}$ is skew-symmetric, then $N_{J^{\mathcal{H}}}=4\left(T_{\mid \mathcal{H}^{3}}\right)^{0,2}$ is also skewsymmetric (according to corollary 5.2 applied to the Hermitian bundle ( $\left.\mathcal{H}, J^{\mathcal{H}}, h_{\mathcal{H}}\right)$ ) and moreover $-\left(T_{\mid \mathcal{H}^{3}}\right)^{* *}=\left(d^{c} \Omega_{F \mid \mathcal{H}^{3}}\right)^{(+)}$, which proves the unicity of $T_{\mid \mathcal{H}^{3}}$.
Conversely, if (i) is satisfied, then let $T \in \mathcal{C}(\mathcal{T})$ such that $\left(T_{\mid \mathcal{H}^{3}}\right)^{0,2}=\frac{1}{4} N_{J^{\mathcal{H}}},\left(T_{\mid \mathcal{H}^{3}}\right)^{* *}=$ $-\left(d^{c} \Omega_{F \mid \mathcal{H}^{3}}\right)^{(+)}$, and the other components being arbitrary. Then $T_{\mid \mathcal{H}^{3}}$ is skew-symmetric, and the corresponding metric connection $\nabla$ satisfies $\nabla \Omega_{F \mid \mathcal{H}^{3}}=0$, according to theorem 5.17. This completes the proof.

Now, let us regroup the previous results to conclude.
Definition 5.18 A Riemannian f-manifold ( $N, F, h$ ) with skew-symmetric extended Nijenhuis tensor $\tilde{N}_{F}$ will be sayed of global type $\mathcal{G}_{1}$ or globally of type $\mathcal{G}_{1}$.

Theorem 5.18 A Riemannian $f$-manifold $(N, F, h)$ admits a metric $f$-connection $\nabla$ with skewsymmetric torsion if and only if it is reductive and of global type $\mathcal{G}_{1}$. Moreover, in this case, for any $\alpha \in \mathcal{C}\left(\Lambda^{3} \mathcal{V}^{*}\right)$, there exists a unique metric connection $\nabla$ with skew-symmetric torsion such that $T_{\mid \Lambda^{3} \mathcal{V}}=\alpha$. This unique connection is given by

$$
T=\left(-d^{c} \Omega_{F}+N_{F \mid \mathcal{H}^{3}}\right)+\operatorname{Skew}(\Phi)+\operatorname{Skew}\left(\mathrm{R}_{\mathcal{V}}\right)+\alpha
$$

Proof. The first assertion follows from propositions 5.33 , 5.32, theorem 5.17, corollary 5.6 and remark 5.15. Then in this case, $T_{\mid \mathcal{H}^{3}}$ is entirely determined, according to proposition 5.33. Moreover, by skew-symmetry and theorem 5.16, we have $T_{\mid \mathcal{S}(\mathcal{H} \times \mathcal{H} \times \mathcal{V})}=\operatorname{Skew}(\Phi)$ and $T_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{H} \times \mathcal{H})}=$ Skew $\left(\mathrm{R}_{\mathcal{V}}\right)$. Now, let us determine $T_{\mid \mathcal{H}^{3}}$. Since, $\nabla=D+\frac{1}{2} T$, the equation $\nabla F=0$ can be written

$$
D \Omega_{F}+\frac{1}{2}(T(\cdot, F \cdot, \cdot)+T(\cdot, \cdot, F \cdot))
$$

so that

$$
d \Omega_{F}=-F \odot T
$$

and thus $d \Omega_{F \mid \mathcal{H}^{3}}=-J^{\mathcal{H}} \circlearrowleft T_{\mid \mathcal{H}^{3}}=4 J^{\mathcal{H}} \cdot\left(T_{\mid \mathcal{H}^{3}}\right)^{--}-J^{\mathcal{H}} \cdot T_{\mid \mathcal{H}^{3}}=J^{\mathcal{H}} \cdot N_{J^{\mathcal{H}}}-J^{\mathcal{H}} \cdot T_{\mid \mathcal{H}^{3}}$. This completes the proof.

Definition 5.19 On a Riemannian $f$-manifold ( $N, F, h$ ), a metric $f$-connection $\nabla$ with skewsymmetric torsion will be called characteristic connection.

Corollary 5.7 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let us suppose that is given some metric connection $\nabla^{c}$ on the vertical subbundle $\mathcal{V}$. There exists a metric $f$-connection $\nabla$ on $N$ with skew symmetric torsion, which coincides with $\nabla^{c}$ on $\mathcal{V}$ if and only if

$$
\left(D^{v}-\nabla^{c}\right)\left(X^{h}, Y^{v}, Z^{v}\right)=-\frac{1}{2} \mathrm{R}_{\mathcal{V}}\left(Y^{v}, Z^{v}, X^{h}\right) \quad \text { and } \quad\left(D^{v}-\nabla^{c}\right)_{\mathcal{V}^{3}} \in \mathcal{C}\left(\Lambda^{3} \mathcal{V}^{*}\right)
$$

In this case this connection $\nabla$ is unique and will be called the characteristic connection extending or defined by $\nabla^{c}$.

Remark 5.16 In other words, in a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$, the set of metric connection $\nabla^{c}$ on the vertical subbundle $\mathcal{V}$ which can be extended to a characteristic connection, is the affine space

$$
D^{v}-\frac{1}{2} \mathrm{R}_{\mathcal{V}}\left(Y^{v}, Z^{v}, X^{h}\right)+\mathcal{C}\left(\Lambda^{3} \mathcal{V}^{*}\right)
$$

Proof of corollary 5.7. This follows immediately from the theorem 5.18, the proposition 5.29 and the theorem 5.17.

Proposition 5.34 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let $\nabla$ be some characteristic connection on $N$. Then the we have

$$
d \Omega_{F}=-F \odot T=F \cdot N_{F}-F \cdot T-F \odot\left(T_{\mid \mathcal{H} \wedge \mathcal{H} \wedge \mathcal{V}}+T_{\mid \mathcal{V} \wedge \mathcal{V} \wedge \mathcal{H}}\right)=F \cdot N_{F}-F \bullet T .
$$

Proof. We have seen (in the proof of theorem 5.18) that $d \Omega_{F}=-F \odot T$, and that $(-F \odot T)_{\mid \mathcal{H}^{3}}=$ $F \cdot N_{F}-F \cdot T$, moreover we have $(-F \odot T)_{\mid \mathcal{V}^{3}}=0$, by defintion of the action $F \odot$. This completes the proof.

### 5.4.2 f-connections on fibre bundles

Here, we consider the case where the vertical subbundle is the tangent space of the fibres of a fibration (or more generally a submersion) $\pi: N \rightarrow M$, i.e. $\mathcal{V}=\operatorname{ker} d \pi$. Let us first remark that in this case $\mathrm{R}_{\mathcal{V}}=0$, which leads to immediate simplifications in the preceding results.

Proposition 5.35 Let $\pi$ : $(N, h) \mapsto(M, g)$ be a Riemannian submersion, over which we consider the natural orthogonal decomposition: $T N=\mathcal{V} \oplus \mathcal{H}$, where $\mathcal{V}=\operatorname{ker} d \pi$ and $\mathcal{H}=\mathcal{V}^{\perp}$. Denote by $D$ and $D^{g}$ respectively the Levi-Civita connections of $(N, h)$ and $(M, g)$, respectively. Let $\widetilde{D^{g}}$ be the connection on $\mathcal{H}$ defined by the lift of $D^{g}: \widetilde{D_{A}^{g}} B=\left(d \pi_{\mid \mathcal{H}}\right)^{-1}\left(D_{A}^{g} \pi_{*}(B)\right) \in \mathcal{H}$ for all $A, B \in \mathcal{C}(T N)$.
Let us suppose that $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$. Then the horizontal component of the Levi-Civita connection in $N$ is related to $\widetilde{D^{g}}$ by the following formula:

$$
\left.\left\langle D_{A} B, H\right\rangle=\widetilde{\left\langle D_{A}^{g}\right.} B, H\right\rangle+\frac{1}{2}\left(\Phi\left(A, H, B^{v}\right)+\Phi\left(B, H, A^{v}\right)\right)
$$

forall $A, B \in \mathcal{C}(T N)$ and $H \in \mathcal{C}(\mathcal{H})$.
Proof. Let us set

$$
S^{M}(A, B)=\pi_{*}\left(D_{A}^{h} B\right)-D_{A}^{g}\left(\pi_{*} B\right), \quad \forall A, B \in \mathcal{C}(T N)
$$

Then it is easy to see that $S^{M}$ is in fact a tensor, i.e. $S^{M} \in \mathcal{C}\left(T^{*} N \otimes T^{*} N \otimes \pi^{*} T M\right)$. Let $A, B \in T N$ and $H \in \mathcal{H}$, and let us extend these to vector fields, denoted by the same notations, such that the horizontal components of these extension are projectible: there exist vector fields $\bar{A}, \bar{B}, \bar{H}$ on $M$ such that

$$
\pi_{*} A=\bar{A} \circ \pi, \pi_{*} B=\bar{B} \circ \pi, \pi_{*} H=\bar{H} \circ \pi .
$$

Using the fact that $h_{\mid \mathcal{H} \times \mathcal{H}}=\pi^{*}$, the characterization of Levi-Civita yields:

$$
\begin{aligned}
2\left\langle S^{M}(A, B), \pi_{*} H\right\rangle= & 2 h\left(D_{A}^{h} B, H\right)-2 g\left(D_{\bar{A}}^{g}(\bar{B}), \bar{H}\right) \circ \pi \\
= & A \cdot h\left(B^{\mathcal{H}}, H\right)+B \cdot h\left(A^{\mathcal{H}}, H\right)-H \cdot h(A, B)+h([A, B], H)+h([H, A], B)+h([H, B], A) \\
& -(\bar{A} \cdot g(\bar{B}, \bar{H})+\bar{B} \cdot g(\bar{A}, \bar{H})-\bar{H} \cdot g(\bar{A}, \bar{B})+g([\bar{A}, \bar{B}], H)+g([\bar{H}, \bar{A}], \bar{B})+g([\bar{H}, \bar{B}], \bar{A})) \circ \pi \\
= & -H \cdot\langle q A, q B\rangle+\langle q[H, A], q B\rangle+\langle q[H, B], q A\rangle \\
= & -\left\langle\nabla_{H}^{v}(q A), q B\right\rangle-\left\langle q A, \nabla_{H}^{v}(q B)\right\rangle+\langle q[H, A], q B\rangle+\langle q[H, B], q A\rangle \\
= & \left\langle T^{v}(A, H), B^{v}\right\rangle+\left\langle T^{v}(B, H), A^{v}\right\rangle \\
= & -\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}^{v}\right)\left(H, A^{v}, B^{v}\right)+\Phi\left(A^{h}, H, B^{v}\right)+\Phi\left(B^{h}, H, A^{v}\right)
\end{aligned}
$$

where we have used in the last line $T_{\mid \mathcal{H} \times \mathcal{H}}^{v}=\Phi$ (see proposition 5.25). We conclude by using proposition 5.30. This completes the proof.

Proposition 5.36 Let $\pi:(N, h) \mapsto(M, g)$ be a Riemannian submersion, with the same notations and definitions as in the previous proposition. Let us suppose that some metric connection $\nabla^{c}$ on $\mathcal{V}$ is given, and denote by $T^{c}$ its vertical connection.
Then the vertical component of the Levi-Civita connection on $N$ is given by

$$
\left\langle D_{A} B, V\right\rangle=\left\langle\nabla_{A}^{c} B^{v}, V\right\rangle+\frac{1}{2}\left(\mathrm{~B}\left(A^{v}, B^{v}, V\right)-\Phi\left(A^{h}, B^{h}, V\right)-\mathrm{R}_{a}^{c}\left(A^{h}, B^{v}, V\right)-\mathrm{R}_{s}^{c}\left(B^{h}, V, A^{v}\right)\right)
$$

where

$$
\begin{gathered}
\mathrm{B}\left(V_{1}, V_{2}, V_{3}\right)=-T^{c}\left(V_{1}, V_{2}, V_{3}\right)+\mathrm{U}\left(V_{1}, V_{2}, V_{3}\right)=-T^{c}\left(V_{1}, V_{2}, V_{3}\right)+T^{c}\left(V_{1}, V_{3}, V_{2}\right)+T^{c}\left(V_{2}, V_{3}, V_{1}\right) \\
\mathrm{R}_{a}^{c}=\operatorname{Skw}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}^{c}\right) \text { and } \mathrm{R}_{s}^{c}=\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}^{c}\right) .
\end{gathered}
$$

Proof. Let us set $S^{\mathcal{V}}(A, B)=q\left(D_{A} B\right)-\nabla_{A}^{c}(q B)$ for all $A, B \in \mathcal{C}(T N)$, this defines a element $S^{\mathcal{V}} \in \mathcal{C}\left(T^{*} N \otimes T^{*} N \otimes \mathcal{V}\right.$. Then let $A, B \in T N$ and $V \in \mathcal{V}$, and let us extend these to vector fields, denoted by the same notations, such that the horizontal components of these extension are projectible: there exist vector fields $\bar{A}, \bar{B}$ on $M$ such that

$$
\pi_{*} A=\bar{A} \circ \pi, \pi_{*} B=\bar{B} \circ \pi, \pi_{*} V=0 .
$$

Then using the characterisation of the Levi-Civita connection, we have

$$
\begin{aligned}
2\left\langle S^{\mathcal{V}}(A, B), V\right\rangle= & 2\left\langle D_{A} B, V\right\rangle-2\left\langle\nabla_{A}^{c} B^{v}, V\right\rangle \\
= & A \cdot\left\langle B^{v}, V\right\rangle+B \cdot\left\langle A^{v}, V\right\rangle-V \cdot\left\langle A^{v}, B^{v}\right\rangle \\
- & \left\langle A^{v},\left[B^{v}, V\right]^{v}\right\rangle+\left\langle B^{v},[V, A]^{v}\right\rangle+\left\langle V,[A, B]^{v}\right\rangle-2\left\langle\nabla_{A}^{c} B^{v}, V\right\rangle \\
- & V \cdot g\left(\pi_{*} A, \pi_{*} B\right)-g\left(\pi_{*} A, \pi_{*}[B, V]\right)+g\left(\pi_{*} B, \pi_{*}[V, A]\right) \\
= & \left\langle\nabla_{A}^{c} B^{v}+\nabla_{B}^{c} A^{v}-2 \nabla_{A}^{c} B^{v}+[A, B]^{v}, V\right\rangle+\left\langle B^{v}, \nabla_{A}^{c} V-\nabla_{V}^{c} A^{v}+[V, A]^{v}\right\rangle \\
& +\left\langle\nabla_{B}^{c} V-\nabla_{V}^{c} B^{v}-[B, V]^{v}, A^{v}\right\rangle \\
= & \left\langle T^{c}(B, A), V\right\rangle+\left\langle T^{c}(A, V), B^{v}\right\rangle+\left\langle T^{c}(B, V), A^{v}\right\rangle .
\end{aligned}
$$

Then we complete the proof by using proposition 4.1.
Remark 5.17 The results of that is that

$$
\begin{aligned}
2\left(D-\nabla^{c}\right)_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}} & =\mathrm{R}_{a}^{c} \\
2\left(D-\nabla^{c}\right)_{\mid \mathcal{V} \times \mathcal{H} \times \mathcal{V}} & =\mathrm{R}_{s}^{c}\left(B^{h}, V, A^{v}\right)
\end{aligned}
$$

so that $\left(D-\nabla^{c}\right)_{\mid \mathcal{S}(\mathcal{V} \times \mathcal{H})}=0$ if and only if the reductivity term $T_{\mathcal{V} \times \mathcal{H}}^{c}$ vanishes, and in this case the vertical component of the Levi-Civita connection $D$ is given by

$$
\left\langle D_{A} B, V\right\rangle=\left\langle\nabla_{A}^{c} B^{v}, V\right\rangle+\frac{1}{2}\left(\mathrm{~B}\left(A^{v}, B^{v}, V\right)-\Phi\left(A^{h}, B^{h}, V\right)\right)
$$

and we recover the corresponding relation in homogeneous fibre bundles of theorem 4.3, since in a homogeneous fibre bundle we have $T_{\mathcal{V} \times \mathcal{H}}^{c}=0$. Moreover, we deduce the following.

Corollary 5.8 The symmetric component of the reductivity term, $\operatorname{Sym}_{\mathcal{V} \times \mathcal{V}}\left(T_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}^{c}\right)$, is independent of $\nabla^{c}$ and vanishes if and only if $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$. Moreover, the reductivity term $T_{\mid \mathcal{V} \times \mathcal{H}}^{c}$ vanishes if and only if $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$ and $\left(D-\nabla^{c}\right)_{\mid \mathcal{H} \times \mathcal{V} \times \mathcal{V}}=0$. We will then say that $(N, q)$ is $\nabla^{c}$-reductive. In particular, if we take $\nabla^{c}=D^{v}$, the restriction to $\mathcal{V}$ of the vertical component of Levi-Civita, then the $D^{v}$-reductivity means that ( $N, q, h$ ) is of type $\mathcal{V}^{2} \mathcal{H}$.

Proposition 5.37 Let $\pi:(N, h) \mapsto(M, g)$ be a Riemannian submersion. Let us suppose that there exists some metric connection $\nabla^{c}$ on $\mathcal{V}$ for which $(N, q)$ is $\nabla^{c}$-reductive. Then, w.r.t. the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$, the Levi-Civita connection in $N$ admits the following decomposition:

$$
D_{A}=\left(\begin{array}{cc}
\nabla_{A}^{c} & 0 \\
0 & \widetilde{D_{A}^{g}}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}
\mathrm{B}\left(A^{v}, \cdot\right) & -\Phi\left(A^{h}, \cdot\right) \\
\Phi\left(A^{h}\right)^{t}(\cdot) & \Phi(\cdot)^{t}\left(A^{v}\right)
\end{array}\right) .
$$

where $\left\langle\Phi(A)^{t}\left(B^{v}\right), H\right\rangle=\left\langle B^{v}, \Phi(A, H)\right\rangle$. In particular, this decomposition holds for homogeneous fibre bundles.

Remark 5.18 We see that according to this decomposition of Levi-Civita, we have $D q_{\mid \mathcal{H} \times \mathcal{H} \times \mathcal{V}}=$ $\frac{1}{2} \Phi$, so that the $\nabla^{c}$-reductivity implies that $(N, q, h)$ is of type $\mathcal{H}^{2} \mathcal{V}$. In particular let us take $\nabla^{c}=D^{v}$ restricted to $\mathcal{V}$, then the $D^{v}$-reductivity means that to $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$, and thus we see that the type $\mathcal{V}^{2} \mathcal{H}$ implies the type $\mathcal{H}^{2} \mathcal{V}$.

Corollary 5.9 Let $\pi$ : $(N, h) \mapsto(M, g)$ be a Riemannian submersion, endowed with its canonical orthogonal splitting $T N=\mathcal{V} \oplus \mathcal{H}$. Then if $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$ then it is also of type $\mathcal{H}^{2} \mathcal{V}$ and thus it is reductive. In particular, if $\mathcal{V}$ can be endowed with a metric connection $\nabla^{c}$ with a vanishing reductivity term $T_{\mathcal{V} \times \mathcal{H}}^{c}$, then $(N, q, h)$ is reductive. In particular, a homogeneous fibre bundle is reductive.

Corollary 5.10 Let $\pi:(N, h) \mapsto(M, g)$ be a Riemannian submersion, endowed with its canonical orthogonal splitting $T N=\mathcal{V} \oplus \mathcal{H}$. Let us suppose that $\mathcal{H}$ is endowed with an orthogonal complex structure, that is to say $N$ is endowed with a Riemannian $f$-structure compatibl 5 with the previous splitting.
Let us suppose that there exists some metric connection $\nabla^{c}$ on $\mathcal{V}$ for which $(N, q)$ is $\nabla^{c}$-reductive, and that $T_{\mid \mathcal{V}^{3}}^{c}$ is skew-symmetric. Then the following statements are equivalent
(i) There exists a characteristic connection on ( $N, F, h$ ).
(ii) $(N, F, h)$ is of global type $\mathcal{G}_{1}$.
(iii) The canonical connection $\nabla^{c}$ can be extended to a characteristic connection.
(iv) There exists a Hermitian connection $\nabla^{\mathcal{H}}$ on $\mathcal{H}$ such that $\nabla:=\nabla^{c} \oplus \nabla^{\mathcal{H}}$ has a skewsymmetric torsion.

In particular, these equivalences hold when $\pi:(N, h) \mapsto(M, g)$ is a homogeneous fibre bundle with a naturally reductive fibre $H / K$.

Remark 5.19 In other words, if $(N, q, h)$ is of type $\mathcal{V}^{2} \mathcal{H}$, then the existence of a charateristic connection is equivalent to the global type $\mathcal{G}_{1}$, and in this case, the set of metric connections $\nabla^{c}$ on the vertical subbundle $\mathcal{V}$ which can be extended to a characteristic connection, is the affine space

$$
D^{v}+\mathcal{C}\left(\Lambda^{3} \mathcal{V}^{*}\right)
$$

Proof of corollary 5.10. Since, according to corollary 5.9 , the $\nabla^{c}$-reductivity implies the reductivity, then (i) $\Leftrightarrow$ (ii) according to theorem 5.18. Moreover the equivalence (ii) $\Leftrightarrow$ (iii) follows from corollary 5.7 and remark 5.17. Finally, the equivalence (iii) $\Leftrightarrow$ (iv) is obvious. This completes the proof.

### 5.5 Stringy Harmonic maps in $f$-manifolds.

### 5.5.1 Definitions

We have defined the notion of stringy harmonic maps in the context of almost Hermitian manifolds (endowed with an affine connection) and we have seen that it corresponds to a generalisation of harmonic maps. Now, we will extend this notion of stringy harmonicity to $f$-manifolds endowed with an affine connection. Indeed, the preliminary study of the maximal determined system done in section 2.4, leads us to introduce the following generalisation of (stringy) harmonic maps.

[^37]Definition 5.20 Let $(N, F)$ be a f-manifold with $\nabla$ an affine connection. Then we will say that a map $f: L \rightarrow N$ from a Riemann surface into $N$ is stringy harmonic if it is solution of the stringy harmonic maps equation:

$$
-\tau_{g}(f)+(F \bullet T)_{g}(f)=0
$$

Definition 5.21 Let $(N, F)$ be a $f$-manifold with $\nabla$ an affine connection. Then we will say that a map $f: L \rightarrow N$ from a Riemann surface into $N$ is $\star$-stringy harmonic if it is solution of the modified stringy harmonic maps equation:

$$
-\tau_{g}(f)+(F \star T)_{g}(f)=0
$$

The Linear representations of the curavtures. Using the metric $h$, we have canonical isomorphisms $\Lambda^{2} \mathcal{H}^{*} \cong \mathfrak{s o}(\mathcal{H})$ and $\Lambda^{2} \mathcal{V}^{*} \cong \mathfrak{s o}(\mathcal{V})$. Let us denote by $\rho \in \mathfrak{s o}(\mathcal{H}) \otimes \mathcal{V}^{*}$ and $\sigma \in \mathfrak{s o}(\mathcal{V}) \otimes$ $\mathcal{H}^{*}$ respectively, the elements corresponding to $\Phi$ and $\mathrm{R}_{\mathcal{V}}$ respectively under these isomorphisms:

$$
\left\langle\rho(V) H_{1}, H_{2}\right\rangle=\left\langle\Phi\left(H_{1}, H_{2}\right), V\right\rangle, \quad H_{1}, H_{2} \in \mathcal{H}, V \in \mathcal{V}
$$

and

$$
\left\langle\sigma(H) V_{1}, V_{2}\right\rangle=\left\langle\mathrm{R}_{\mathcal{V}}\left(V_{1}, V_{2}\right), H\right\rangle, \quad V_{1}, V_{2} \in \mathcal{V}, H \in \mathcal{H}
$$

To do not weigh down the notation, we denote $\bar{J}=J^{\mathcal{H}}$. Let us introduce the horizontal curvature operator:

$$
\bar{R}(X, Y) Z=\rho(\Phi(X, Y)) Z
$$

as well as its derivation term

$$
\overline{\mathrm{A}}(X, Y)=\bar{R}(\bar{J} X, Y)+\bar{R}(X, \bar{J} Y)-[\bar{J}, \bar{R}(X, Y)] .
$$

(which vanishes if and only if $\bar{J}$ is a derivation of $\bar{R}$ hence its name). We denote by $\Phi=\Phi^{(+)}+\Phi^{(-)}$ the splitting of $\Phi$ according to the eigenspace decomposition of the endomorphism of $\Lambda^{2} \mathcal{H}^{*} \otimes \mathcal{V}$ defined by $B \mapsto B(\bar{J} \cdot, \bar{J} \cdot)$, i.e.

$$
\Phi^{(\varepsilon)}(\bar{J} \cdot, \bar{J} \cdot)=\varepsilon \Phi^{(\varepsilon)}
$$

In other words, $\Phi^{(+)}$is the (1,1)-type part of $\Phi$ whereas $\Phi^{(-)}$is the part of $\Phi$ of type $(2,0)+$ $(0,2)$. Under the isomorphism $\Lambda^{2} \mathcal{H}^{*} \cong \mathfrak{s o}(\mathcal{H})$, to this, corresponds the decomposition $\rho=$ $\rho^{+}+\rho^{-}$, where $\bar{J} \rho^{\varepsilon} \bar{J}^{-1}=\varepsilon \rho^{\varepsilon}$, according to the splitting $\mathfrak{s o}(\mathcal{H})=\mathfrak{s o}_{+}(\mathcal{H}) \oplus \mathfrak{s o}_{-}(\mathcal{H})$ of $\mathfrak{s o}(\mathcal{H})$ following its $\bar{J}$-commuting and $\bar{J}$-anticommuting parts. Then, this beeing done, we can define the corresponding curvature operator and antiderivation terms:

$$
\bar{R}^{(\varepsilon)}=\rho^{\varepsilon}\left(\Phi^{(\varepsilon)}\right) \quad \text { and } \quad \overline{\mathrm{A}}^{(\varepsilon)}(X, Y)=\bar{R}^{(\varepsilon)}(\bar{J} X, Y)+\bar{R}^{(\varepsilon)}(X, \bar{J} Y)-\left[\bar{J}, \bar{R}^{(\varepsilon)}(X, Y)\right]
$$

We remark that $\overline{\mathrm{A}}^{(+)}=0$ and $\overline{\mathrm{A}}^{(-)}(X, Y)=2 \bar{R}^{(-)}(X, \bar{J} Y)-2 \bar{J} \circ \bar{R}^{-}(X, Y)$.

### 5.5.2 The closeness of the 3 -forms $F \bullet T$ and $F \star T$.

Let us see under which conditions on a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$, the 3 -forms $F \bullet T$ and $F \star T$ defined by one characteristic connection are closed.

Lemma 5.6 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let $\nabla$ be some characteristic connection on $N$. Then the following statements are equivalent:
(i) The 3-forms $H=F \bullet T$ is closed.
(ii) The 3-forms $H^{\star}=F \star T$ is closed.
(iii) The horizontal 3-form $F \cdot N_{F}$ is closed.

Proposition 5.38 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let us suppose that one of its characteristic connections, $\nabla$, has a parallel torsion $\nabla T=0$. Then the following statements are equivalent
(i) $d H_{\mid \mathcal{H}^{4}}=0$.
(ii) $d\left(F \cdot N_{F}\right)_{\mid \mathcal{H}^{4}}=0$.
(iii) $\mathfrak{S}_{X, Y, Z} \overline{\mathrm{~A}}(X, Y) Z=0$.
(iv) $\mathfrak{S}_{X, Y, Z} \overline{\mathrm{~A}}^{(-)}(X, Y) Z=0$.

We will then say that $\bar{J}$ is cyclic derivation of the horizontal curvature. .
Given $B \in \mathcal{C}\left(\Lambda^{2} T^{*} N \otimes \mathcal{H}\right)$, we denote simply $\operatorname{Im} B=\{B(X, Y) \in \mathcal{H}, X, Y \in T N\} \subset \mathcal{H}$. In particular, we have $\operatorname{Im} N_{\bar{J}}=N_{\bar{J}}(\mathcal{H}, \mathcal{H}) \subset \mathcal{H}$ and $\operatorname{Im} \mathrm{R}_{\mathcal{V}}=\mathrm{R}_{\mathcal{V}}(\mathcal{V}, \mathcal{V}) \subset \mathcal{H}$.
Moreover, we will also use the notations $\operatorname{ker} C=\{X \in \mathcal{H} \mid C(X, \cdot)=0\}$ and $\operatorname{Supp}(C)=(\operatorname{ker} C)^{\perp}$, for any $C \in \mathcal{C}\left(\Lambda^{2} \mathcal{H}^{*} \otimes T N\right)$.

Proposition 5.39 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let us suppose that one of its characteristic connections, $\nabla$, has a parallel torsion $\nabla T=0$. Then the following statements are equivalent
(i) $d H_{\mid \mathcal{H}^{2} \times \mathcal{V}^{2}}=0$.
(ii) $d\left(F \cdot N_{F}\right)_{\mid \mathcal{H}^{2} \times \mathcal{V}^{2}}=0$.
(iii) $\operatorname{Im} N_{\bar{J}} \perp \operatorname{Im} \mathrm{R}_{\mathcal{V}}$.
(iv) $\operatorname{Im} N_{\bar{J}} \subset \operatorname{ker} \sigma$, or equivalently $\operatorname{Im} \mathrm{R}_{\mathcal{V}} \subset \operatorname{ker} N_{\bar{J}}$.
(v) The following sum vanishes for all $\left(V_{0}, V_{1}, H_{1}, H_{2}\right) \in \mathcal{V}^{2} \times \mathcal{H}^{2}$ :

$$
\begin{aligned}
& \left(d \Omega_{F}\right)^{2,0}\left(H_{2}, H_{3}, \mathrm{R}_{\mathcal{V}}\left(V_{0}, V_{1}\right)\right)+\left\langle\bar{J} \odot \Phi\left(H_{1}, H_{2}\right), T^{\mathcal{V}}\left(V_{0}, V_{1}\right)\right\rangle \\
& +2\left\langle\left(\bar{J}\left[\rho^{+}\left(V_{0}\right), \rho^{-}\left(V_{1}\right)\right]+\bar{J}\left[\rho^{-}\left(V_{0}\right), \rho^{+}\left(V_{1}\right)\right]\right) H_{2}, H_{3}\right\rangle \\
& \quad+\left\langle\left(\left[\sigma\left(H_{3}\right), \sigma\left(\bar{J} H_{2}\right)\right]+\left[\sigma\left(\bar{J} H_{3}\right), \sigma\left(H_{2}\right)\right]\right) V_{0}, V_{1}\right\rangle=0
\end{aligned}
$$

We will then say that the vertical curvature $\mathrm{R}_{\mathcal{V}}$ is in the Kernel of the Horizontal Nijenhuis tensor $N_{\bar{J}}$.

Remark 5.20 Let us remark that if $\mathrm{R}_{\mathcal{V}}=0$, in particular if we are in presence with a fibre bundle, then (iii) holds.

Proposition 5.40 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let us suppose that one of its characteristic connections, $\nabla$, has a parallel torsion $\nabla T=0$. Then the following statements are equivalent
(i) $d H_{\mid \mathcal{V} \times \mathcal{H}^{3}}=0$.
(ii) $d\left(F \cdot N_{F}\right)_{\mathcal{V} \times \mathcal{H}^{3}}=0$.
(iii) $\mathfrak{S}_{X, Y, Z} \bar{J} N_{\bar{J}}(\rho(V) X, Y, Z)=0$.
(iv) $N_{\bar{J}}(X, Y, \rho(V) Z)=0$.
(v) $N_{\bar{J}}(\mathcal{H}, \mathcal{H}) \perp \rho(\mathcal{V})(\mathcal{H})$, or equivalently $\operatorname{ker} N_{\bar{J}} \perp \operatorname{ker} \Phi$, i.e. $\operatorname{Supp}\left(N_{\bar{J}}\right) \perp \operatorname{Supp}(\Phi)$.

We will then say that the 2-forms $N_{\bar{J}}$ and $\Phi$ have orthogonal supports.
Let us summarize:
Theorem 5.19 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let us suppose that one of its characteristic connections, $\nabla$, has a parallel torsion $\nabla T=0$. Then the horizontal 3-form $F \cdot N_{F}$ is closed if and only if the horizontal complex structure $\bar{J}$ is a cyclic permutation of the horizontal curvature, the vertical curvature $\mathrm{R}_{\mathcal{V}}$ is in the Kernel of the horizontal Nijenhuis 2-form $N_{\bar{J}}$, and the 2-forms $N_{\bar{J}}$ and $\Phi$ have orthogonal supports.

### 5.5.3 The sigma model with a Wess-Zumino term in reductive Riemannian $f$ manifold of global type $\mathcal{G}_{1}$.

Now, we can conclude with the following variational interpretation of the stringy harmonicity.
Theorem 5.20 Let $(N, F, h)$ be a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Let us suppose that the horizontal 3-form $F \cdot N_{F}$ is closed. Let $\nabla$ be one characteristic connection.

- Then the equation for stringy harmonic maps (w.r.t. $\nabla$ ) $f: L \rightarrow N$ is exactly the EulerLagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the closed 3-form

$$
H=-d \Omega_{F}+F \cdot N_{F}
$$

- Moreover the equation for $\star$-stringy harmonic maps $f: L \rightarrow N$ is exactly the Euler-Lagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the closed 3-form

$$
H^{\star}=-d \Omega_{F}+\frac{1}{2} F \cdot N_{F}
$$

### 5.5.4 The example of a naturally reductive homogeneous space

Proposition 5.41 Let $N=G / K$ be a Riemannian homogeneous space and $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{n}$ a reductive decomposition of $\mathfrak{g}$. Let us suppose that $\mathfrak{n}$ admits an AdK-invariant decomposition $\mathfrak{n}=\mathfrak{m} \oplus \mathfrak{p}$, defining then a splitting $T N=\mathcal{H} \oplus \mathcal{V}$, where $\mathcal{H}=[\mathfrak{m}]$ and $\mathcal{V}=[\mathfrak{p}]$. Let us suppose that there exists on $\mathfrak{m}$ an $\operatorname{Ad} K$-invariant complex structure $\bar{J}_{0}$, defining then a $f$-structure $F$ on $N$. Then for any $G$-invariant metric $h$ for which $\bar{J}_{0}$ and the decomposition $\mathfrak{n}=\mathfrak{m} \oplus \mathfrak{p}$ are orthogonal (such a metric always exists), $(N, F, h)$ is a Riemannian $f$-manifold.
Furthermore, let us suppose that $N=G / K$ is naturally reductive, and that one can choose a naturally reductive metric $h$ as above $\sqrt{56}$, then $(N, F, h)$ is reductive and of global type $\mathcal{G}_{1}$. Moreover, the canonical connection $\nabla^{0}$ is a characteristic connection.

Proposition 5.42 Let $N=G / K$ be a Riemannian homogeneous manifold endowed with $a G$ invariant complex structure $F$. Let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{n}$ be a reductive decomposition of $\mathfrak{g}$, and $\mathfrak{n}=\mathfrak{m} \oplus \mathfrak{p}$ the AdK-invariant decomposition defined by $F$. Let $f: L \rightarrow N$ be a smooth map, $U: L \rightarrow G$ be

[^38]a (local) lift of $f$ and $\alpha=U^{-1} . d U$ the corresponding Maurer-Cartan form. Then in term of $\alpha$, the equation of stringy harmonicity is written
\[

\left\{$$
\begin{array}{l}
d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]+\frac{1}{2}\left[\bar{J}_{0} \alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{p}}=0 \\
d * \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{m}}\right]-\frac{1}{2} \bar{J}_{0}\left[\bar{J}_{0} \alpha_{\mathfrak{m}} \wedge \bar{J}_{0} \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}+\frac{1}{2}\left(\left[\alpha_{\mathfrak{p}} \wedge \bar{J}_{0} \alpha_{\mathfrak{m}}\right]-\bar{J}_{0}\left[\alpha_{\mathfrak{p}} \wedge \alpha_{\mathfrak{m}}\right]\right)=0
\end{array}
$$\right.
\]

whereas the equation of $\star$-stringy harmonicity is written:

$$
\left\{\begin{aligned}
d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]+\frac{1}{2}\left[\bar{J}_{0} \alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{p}}= & 0 \\
d * \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{m}}\right]+\frac{1}{2}\left[\bar{J}_{0} \alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}+ & \frac{1}{4} J_{0}\left(\left[\bar{J}_{0} \alpha_{\mathfrak{m}} \wedge \bar{J}_{0} \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}+\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}\right) \\
& +\frac{1}{2}\left(\left[\alpha_{\mathfrak{p}} \wedge \bar{J}_{0} \alpha_{\mathfrak{m}}\right]-\bar{J}_{0}\left[\alpha_{\mathfrak{p}} \wedge \alpha_{\mathfrak{m}}\right]\right)=0 .
\end{aligned}\right.
$$

where $\bar{J}_{0}$ is the complex structure on $\mathfrak{m}$ corresponding to $F$.

### 5.5.5 Geometric interpretation of the maximal determined even case.

Theorem 5.21 Let us suppose that $N=G / K$ is a (locally) $2 k$-symmetric space endowed with its canonical $f$-structure $F$ and its canonical connection $\nabla^{0}$. Then the associated maximal determined system, $\operatorname{Syst}(2 k-1, \tau)$ is the equation of $\star$-stringy harmonicity for the geometric map $f: L \rightarrow N:\left(\nabla^{0}\right)^{*} d f+\left(F \star T^{0}\right)(f)=0 .{ }^{7}$
Moreover, if we consider now that $N=G / K$ is endowed with the $f$-structure $F^{\star}:=\oplus_{j=1}^{k}(-1)^{j} F_{\left[\mathfrak{m}_{j}\right]} \oplus$ $0_{\left[\mathfrak{g}_{k}\right]}$, then this system is the equation of stringy harmonicity for the geometric map $f: L \rightarrow N$ : $\left(\nabla^{0}\right)^{*} d f+\left(F^{\star} \cdot T^{0}\right)(f)=0$.

Theorem 5.22 Let us suppose that $N=G / K$ is a (locally) $2 k$-symmetric space endowed with its canonical $f$-structure $F$ and its canonical connection $\nabla^{0}$. Let us suppose that $N=G / K$ is naturally reductive and we choose a naturally reductive $G$-invariant metric $h$ for which $\tau_{\mid \mathfrak{n}}$ is orthogona ${ }^{58}$ and thus which is compatible with $F$. Then $(N, F, h)$ is a reductive Riemannian $f$-manifold of global type $\mathcal{G}_{1}$. Moreover, the horizontal 3-form $F \cdot N_{F}$ is closed.
Therefore, the associated maximal determined system, $\operatorname{Syst}(2 k-1, \tau)$, is exactly the EulerLagrange equation for the sigma model in $N$ with a Wess-Zumino term defined by the closed 3-form

$$
H^{\star}=-d \Omega_{F}+\frac{1}{2} F \cdot N_{F} .
$$

Moreover, if we consider now that $N=G / K$ is endowed with the $f$-structure $F^{\star}$, then the previous system is exactly the Euler-Lagrange equation for the sigma model in $N$ with a WessZumino term defined by the closed 3-form

$$
H=-d \Omega_{F^{\star}}+F^{\star} \cdot N_{F^{\star}}
$$

[^39]
## 6 Generalized harmonic maps into reductive homogeneous spaces

### 6.1 Affine harmonic maps into reductive homogeneous spaces.

Let $N=G / K$ be a reductive homogeneous space and $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$ a reductive decomposition of the Lie algebra $\mathfrak{g}$. We use the notations of section 1 (applied to $N=G / K$ instead of $M=G / H$ ).

Theorem 6.1 Let $(L, j)$ be a Riemann surface and $f:(L, j) \rightarrow N$ be a smooth map, let $F: L \rightarrow$ $G$ be a (local) lift of $u$ and $\alpha=F^{-1} . d F$. Then the following statements are equivalent:
(i) $f$ is $\nabla^{t}$-harmonic for one $t \in[0,1]$.
(ii) $f$ is $\nabla^{t}$-harmonic for every $t \in[0,1]$.
(iii) $d * \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{m}}\right]=0$.
(iv) $\operatorname{Im}\left(\bar{\partial} \alpha_{\mathfrak{m}}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]+t\left[\alpha_{\mathfrak{m}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]_{\mathfrak{m}}\right)=0, \forall t \in[0,1]$.

In fact, the tension field $\tau^{t}(f)$ of $f$ with respect to $\nabla^{t}$ is independent of $t \in[0,1]$.
Theorem 6.2 In the same situation as above, the following statements are equivalent:
(i) $f$ is strongly $\nabla^{t}$-harmonic for one $t \in[0,1] \backslash\left\{\frac{1}{2}\right\}$.
(ii) $f$ is strongly $\nabla^{t}$-harmonic for every $t \in[0,1] \backslash\left\{\frac{1}{2}\right\}$.
(iii) $\bar{\partial} \alpha_{\mathfrak{m}}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime \prime}\right]+t\left[\alpha_{\mathfrak{m}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]_{\mathfrak{m}}=0, \forall t \in[0,1] \backslash\left\{\frac{1}{2}\right\}$.
(iv) $f$ is $\nabla^{t}$-harmonic for one $t \in[0,1]$ and $\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}=0$.
(iv) $d \alpha_{\lambda}+\frac{1}{2}\left[\alpha_{\lambda} \wedge \alpha_{\lambda}\right]=0, \forall \lambda \in S^{1}$, with $\alpha_{\lambda}=\lambda^{-1} \alpha_{\mathfrak{m}}^{\prime}+\alpha_{\mathfrak{k}}+\lambda \alpha_{\mathfrak{m}}^{\prime \prime}$.

Furthermore $f$ is strongly $\nabla^{\frac{1}{2}}$-harmonic if and only if it is $\nabla^{\frac{1}{2}}$-harmonic: indeed $\nabla^{\frac{1}{2}}$ is torsion free.

Proof of theorem 6.1 The tension field $\tau^{t}(f)$ of $f$ with respect to $\nabla^{t}$ is given by

$$
\begin{aligned}
\tau^{t}(f)=* d^{\nabla^{t}} * d f & =* \operatorname{Ad} F\left(d * \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{e}} \wedge * \alpha_{\mathfrak{m}}\right]+t\left[\alpha_{\mathfrak{m}} \wedge * \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}\right) \\
& =* \operatorname{Ad} F\left(d * \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{m}}\right]\right)
\end{aligned}
$$

(see section 1.4 (especially equation (9)) and section 1.6). This proves the equivalence between (i), (ii) and (iii). Then we conclude by remarking that $2 \operatorname{Im}\left(\bar{\partial} \alpha_{\mathfrak{m}}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]\right)=d * \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{m}}\right]$ and that $\left[\alpha_{\mathfrak{m}}^{\prime} \wedge \alpha_{\mathfrak{m}}^{\prime \prime}\right]_{\mathfrak{m}}=\frac{1}{2}\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}$ is real. This completes the proof.
Proof of theorem 6.2 We have for all $t \in[0,1]$

$$
\begin{equation*}
\bar{\partial}^{\nabla^{t}} \partial f=\operatorname{Ad} F\left(\bar{\partial} \alpha_{\mathfrak{m}}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime \prime}\right]+t\left[\alpha_{\mathfrak{m}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]_{\mathfrak{m}}\right) \tag{110}
\end{equation*}
$$

so that the $\nabla^{t}$-strongly harmonicity of $f$ is written:

$$
\bar{\partial} \alpha_{\mathfrak{m}}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime \prime}\right]+t\left[\alpha_{\mathfrak{m}}^{\prime \prime} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]_{\mathfrak{m}}=0
$$

Then the imaginary part of $\bar{\partial}^{\nabla^{t}} \partial f=0$ gives us the $\nabla^{t}$-harmonicity whereas the real part gives us

$$
d \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{m}}\right]+t\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}=0 \quad(\operatorname{Re}(t))
$$

which is nothing but the lift of the torsion free equation: $f^{*} T^{t}=0$, where $T^{t}=T^{\nabla^{t}}$. Moreover the projection on $\mathfrak{m}$ of the Maurer-Cartan equation (on $\alpha$ ) gives us the structure equation

$$
d \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{m}}\right]+\frac{1}{2}\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}=0 \quad[\mathrm{MC}]_{\mathfrak{m}}
$$

which is nothing but $\left(\operatorname{Re}\left(\frac{1}{2}\right)\right.$ ) (so that we recover that $T^{\frac{1}{2}}=0$ ) but (since it can be written $\left((\operatorname{Re}(0))+\frac{1}{2}\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}=0\right)$ it is also the lift of (the $f$-pullback of) the equation expressing the canonical torsion $T^{0}$ in term of the Lie bracket (see theorem 1.4 or equation (14)) :

$$
\begin{equation*}
T^{0}+[,]_{[\mathfrak{m}]}=0 \tag{111}
\end{equation*}
$$

which combining with the fact that the left hand side of $(\operatorname{Re}(t))$ is the lift of $f^{*} T^{t}$, gives us back $T^{t}=(2 t-1)[,]_{[\mathfrak{m}]}($ see $(14))$.
Hence according to (110) and $[\mathrm{MC}]_{\mathfrak{m}}$ the strongly harmonicity for one $t \neq \frac{1}{2}$ is equivalent to the harmonicity (imaginary part) and $\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}=0$ (real part $(\operatorname{Re}(t))$ combining with $\left.[\mathrm{MC}]_{\mathfrak{m}}\right)$. We can also simply say that $f$ is strongly harmonic if and only if $f$ is harmonic and torsion free i.e. $\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}=0$ according to (14). This proves the equivalence between (i), (ii), and (iii). Now, let us decompose the curvature of $\alpha_{\lambda}$, with respect to powers of $\lambda$ :

$$
\begin{aligned}
d \alpha_{\lambda}+\frac{1}{2}\left[\alpha_{\lambda} \wedge \alpha_{\lambda}\right]= & \lambda^{-1}\left(d \alpha_{\mathfrak{m}}^{\prime}+\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{m}}^{\prime}\right]\right) \\
+ & \left(d \alpha_{\mathfrak{k}}+\frac{1}{2}\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{k}}\right]+\frac{1}{2}\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{k}}\right)+\frac{1}{2}\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}} \\
& \lambda\left(d \alpha_{\mathfrak{m}}^{\prime \prime}+\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{m}}^{\prime \prime}\right]\right)
\end{aligned}
$$

hence using the fact that $\alpha_{\lambda}$ is real (i.e. $\mathfrak{g}$-valued)

$$
d \alpha_{\lambda}+\frac{1}{2}\left[\alpha_{\lambda} \wedge \alpha_{\lambda}\right]=0 \Leftrightarrow\left\{\begin{array} { l } 
{ d \alpha _ { \mathfrak { m } } ^ { \prime } + [ \alpha _ { \mathfrak { k } } \wedge \alpha _ { \mathfrak { m } } ^ { \prime } ] = 0 \quad ( S _ { \mathfrak { m } } ^ { 0 } ) } \\
{ [ \mathrm { MC } ] _ { \mathfrak { k } } } \\
{ [ \alpha _ { \mathfrak { m } } \wedge \alpha _ { \mathfrak { m } } ] _ { \mathfrak { m } } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\left(S_{\mathfrak{m}}^{0}\right) \\
{[\mathrm{MC}]}
\end{array}\right.\right.
$$

In the last equivalence, we use the fact that $\left(S_{\mathfrak{m}}^{0}\right)+\overline{\left(S_{\mathfrak{m}}^{0}\right)}$ is the equation $d \alpha_{\mathfrak{m}}+\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{m}}\right]=0$ which combined with $[\mathrm{MC}]_{\mathfrak{m}}$ (above) gives us $\left[\alpha_{\mathfrak{m}} \wedge \alpha_{\mathfrak{m}}\right]_{\mathfrak{m}}=0$. Thus the zero curvature equation on $\alpha_{\lambda}$ is equivalent to the strongly $\nabla^{0}$-harmonicity, i.e. the strongly $\nabla^{t}$-harmonicity for all $t \in[0,1] \backslash\left\{\frac{1}{2}\right\}$. Finally the last assertion is obvious. This completes the proof.
We are led naturally to the following definitions.
Definition 6.1 We will say that $f: L \rightarrow G / K$ is torsion free if $f^{*} T^{t}=0$ for $t \in[0,1] \backslash\left\{\frac{1}{2}\right\}$ (this equation does not depend on $t$ ).

Definition 6.2 In the situation described by theorem 6.D-(iv), we will say that the $\mathfrak{g}$-valued 1form on $L, \alpha$, is solution of the the first elliptic system associated to the reductive homogeneous space $G / K$, and that the corresponding geometric map $f$ is a geometric solution of this system.

## Affine harmonic maps into symmetric spaces

Now, if we suppose in particular that $N$ is (locally) symmetric, i.e. $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k}$, then all the connections $\nabla^{t}, 0 \leq t \leq 1$, coincide. Moreover, if $N$ is also Riemannian then these are equal to the Levi-Civita connection. Therefore we obtain:

Corollary 6.1 The first elliptic integrable system associated to a (locally) symmetric space $N=$ $G / K$ is the equation for $\nabla^{0}$-harmonic maps $f: L \rightarrow N$. If $N$ is Riemannian this means that it is the equation for harmonic maps $f: L \rightarrow N$ (with respect to Levi-Civita in $N$ ).

### 6.2 Affine (holomorphically) harmonic maps into 3 -symmetric spaces

Let us suppose now that $N=G / G_{0}$ is a (locally) 3 -symmetric space. We use the notations of section $2 . N$ is endowed with its canonical almost complex structure $\underline{J}$ defined by (26). We continue here the study begun in 2.3 .2 concerning the lowest order determined odd system.

Theorem 6.3 Let $(L, j)$ be a Riemann surface and $f: L \rightarrow N$ a smooth map. Let $F: L \rightarrow G$ be a (local) lift of $f$ and $\alpha=F^{-1} . d F$. Then the following statement are equivalent
(i) $\bar{\partial} \alpha_{-1}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{-1}^{\prime}\right]+\left[\alpha_{1}^{\prime \prime} \wedge \alpha_{1}^{\prime}\right]=0$
(ii) $\bar{\partial} \alpha_{1}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{1}^{\prime}\right]=0$
(iii) $f$ is holomorphically $\nabla^{1}$-harmonic: $\left[\bar{\partial}^{\nabla^{1}} \partial f\right]^{(1,0)}=0$.
(iv) $f$ is anti-holomorphically $\nabla^{0}$-harmonic: $\left[\bar{\partial}^{\nabla^{0}} \partial f\right]^{(0,1)}=0$.
(v) $f$ is a geometric solution of the second elliptic integrable system associated to the (locally) 3-symmetric space $G / G_{0}$ :

$$
d \alpha_{\lambda}+\frac{1}{2}\left[\alpha_{\lambda} \wedge \alpha_{\lambda}\right]=0, \quad \forall \lambda \in S^{1}
$$

where $\alpha_{\lambda}=\lambda^{-2} \alpha_{1}^{\prime}+\lambda^{-1} \alpha_{-1}^{\prime}+\alpha_{0}+\lambda \alpha_{1}^{\prime \prime}+\lambda^{2} \alpha_{-1}^{\prime \prime}$.
Proof. The equivalences (i) $\Leftrightarrow$ (ii) $\Leftrightarrow$ (v) have been proved in 2.3.2. To prove (i) $\Leftrightarrow$ (iii): just take the (1,0)-component in $T N^{\mathbb{C}}$ of (110) for $t=1$. Idem for (ii) $\Leftrightarrow$ (iv). This completes the proof.
Now, additionning theorems 6.3, 6.2, 5.1 and proposition 5.1, we obtain
Corollary 6.2 The following statements are equivalent
(i) $f$ is strongly $\nabla^{t}$-harmonic for one $t \in[0,1] \backslash\left\{\frac{1}{2}\right\}$.
(ii) $f$ is $\nabla^{t}$-harmonic for one $t \in[0,1]$ and torsion free.
(iii) $f$ is holomorphically $\nabla^{t}$-harmonic for one $t \in[0,1]$ and torsion free.
(iv) $f$ is a geometric solution of the first elliptic system associated to the reductive homogeneous space $G / G_{0}$.
(v) $f$ is a geometric solution of the second elliptic system associated to the 3-symmetric space $G / G_{0}$, and moreover $\left[\alpha_{1} \wedge \alpha_{1}\right]=0$.
(vi) $f$ is in the same time a geometric solution of the determined odd elliptic systems ( $\operatorname{Syst}(2, \tau)$ ) and $\left(\operatorname{Syst}\left(2, \tau^{-1}\right)\right)$.

Now, let us apply theorem 5.5 to the equivalence (iv) $\Leftrightarrow$ (v) of theorem 6.3.
Theorem 6.4 The second elliptic integrable system associated to the 3-symmetric space $N=$ $G / G_{0}$ is the equation of motion for the sigma model in $N$ with the Wess-Zumino term defined by the closed 3-form H, corresponding to the anticanonical almost complex structure - $\underline{\mathbf{J}}$ and the canonical connection $\nabla^{0}$.

### 6.3 Affine vertically (holomorphically) harmonic maps

### 6.3.1 Affine vertically harmonic maps: general properties

Here we generalise the definition of vertical harmonicity for maps from a Riemannian surface into an affine manifold.

Definition 6.3 Let $(N, \nabla)$ be an affine manifold. Let us suppose that we have a splitting $T N=$ $\mathcal{V} \oplus \mathcal{H}$. In other words $N$ is endowed with a Pfaffian system (the vertical subbundle $\mathcal{V}$ ) and with a connection on this Pfaffian system. Let $f:(L, b) \rightarrow N$ be a smooth map from a Riemannian manifold $(L, b)$ into $N$. Then we set

$$
\tau^{v}(f)=\operatorname{Tr}_{b}\left(\nabla^{v} d^{v} f\right)=* d^{\nabla^{v}} * d^{v} f
$$

where $\nabla^{v} d^{v} f$ is the vertical component of the covariant derivative of $d f$ with respect to the connection on $T^{*} L \otimes f^{*} T N$ induced by the Levi-Civita connection of $L$ and $\nabla$. We will say that $f$ is affine vertically harmonic with respect to $\nabla$ or $\nabla$-vertically harmonic if $\tau^{v}(f)=0$.

Theorem 6.5 Let $(L, j)$ be a Riemann surface and $f:(L, j) \rightarrow(N, \nabla)$ a smooth map. Then we have

$$
2 \bar{\partial}^{\nabla^{v}} \partial^{v} f=d^{\nabla^{v}} d^{v} f+i d^{\nabla^{v}} * d^{v} f
$$

moreover $d^{\nabla^{v}} d^{v} f=f^{*} T^{v}$, where $T^{v}$ is the vertical torsion (see 4.1.3) and $d^{\nabla^{v}} * d^{v} f=\tau^{v}(f) \operatorname{vol}_{b}$ for any hermitian metric $b$ in L. Therefore the following statements are equivalent:
(i) $\left(\nabla^{\prime \prime}\right)^{v} \partial^{v} f=0$.
(ii) $\bar{\partial}^{\nabla^{v}} \partial^{v} f=0$.
(iii) $\nabla_{\frac{\partial}{\partial \bar{z}}}^{v}\left(\frac{\partial^{v} f}{\partial z}\right)=0$, for any holomorphic local coordinate $z=x+i y$ (i.e. ( $x, y$ ) are conformal coordinates for any hermitian metric in $L$ ).
(iv) $f$ is $\nabla^{v}$-vertically harmonic with respect to any hermitian metric in $L$ and vertically torsion free: $f^{*} T^{v}=0$ (i.e. $T^{v}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=0$ for any $x, y$ conformal coordinates).

We will say in this case that $f$ is strongly $\nabla$-vertically harmonic.

### 6.3.2 Affine vertically holomorphically harmonic maps

Here we generalize the notion of holomorphic harmonicity by introducing a new notion of vertical holomorphic harmonicity (in the same way that the vertical harmonicity generalizes the harmonicity).

Definition 6.4 Let $(N, \nabla)$ be an affine manifold with a splitting $T N=\mathcal{V} \oplus \mathcal{H}$ as in definition 6.3. Let us suppose that the subbundle $\mathcal{V}$ admits a complex structure $J^{\mathcal{V}}$, which extended by 0 in $\mathcal{H}$ defines a $f$-structure on $N$, which we denotes by $F^{\mathcal{V}}$. Let us denote by $\mathcal{V}^{\mathbb{C}}=\mathcal{V}^{1,0} \oplus \mathcal{V}^{0,1}$ the splitting induced by the complex structure $J^{\mathcal{V}}$. Then we will say that a map $f:\left(L, j_{L}\right) \rightarrow N$ from a Riemann surface into $N$, is vertically holomorphicaly harmonic with respect to $\nabla$ or $\nabla$-vert. hol. harmonic if

$$
\left[\bar{\partial}^{\nabla^{v}} \partial^{v} f\right]^{1,0}=0
$$

Theorem 6.6 Let $\left(L, j_{L}\right)$ be a Riemann surface and $(N, \nabla)$ be an affine manifold with a splitting $T N=\mathcal{V} \oplus \mathcal{H}$ and a complex structure $J^{\mathcal{V}}$ on $\mathcal{V}$ as in the previous definition. Then $f: L \rightarrow N$ is $\nabla$-vert. hol. harmonic if and only if

$$
f^{*} T^{v}+J^{v} d^{\nabla^{v}} * d^{v} f=0
$$

Proof. The same as this of proposition 5.1.

### 6.4 Affine vertically harmonic maps into reductive homogeneous space

Let $G$ be a Lie group, and $K \subset H \subset G$ subgroups of $G$ such that $M=G / H$ and $H / K$ are reductive. We use the notations of 4.3.1 (but we do not suppose a priori that the reductive homogeneous spaces are Riemannian).

Theorem 6.7 Let $(L, j)$ be a Riemann surface and $f: L \rightarrow N=G / K$ be a smooth map, $F: L \rightarrow G$ a (local) lift of $f$ and $\alpha=F^{-1} . d F$. Then the following statements are equivalent:
(i) $f$ is $\nabla^{t}$-vertically harmonic for one $t \in[0,1]$.
(ii) $f$ is $\nabla^{t}$-vertically harmonic for all $t \in[0,1]$.
(iii) $d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]=0$.
(iv) $\operatorname{Im}\left(\bar{\partial} \alpha_{\mathfrak{p}}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}}^{\prime}\right]+t\left[\alpha_{\mathfrak{p}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}}^{\prime}\right]_{\mathfrak{p}}\right)=0, \forall t \in[0,1]$.

The $\nabla^{t}$-vertical tension field $\tau^{t, v}(f)$, with respect of $\nabla^{t}$, is independent of $t \in[0,1]$.
Proof. Setting $\nabla^{t, v}=\left(\nabla^{t}\right)^{v}$, we have

$$
\begin{aligned}
\tau^{t, v}(f)=* d^{\nabla^{t, v}} * d^{v} f= & * \operatorname{Ad} F\left(d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]+t\left[\alpha_{\mathfrak{n}} \wedge * \alpha_{\mathfrak{p}}\right]_{\mathfrak{p}}\right) \\
= & * \operatorname{Ad} F\left(d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]+t\left[\alpha_{\mathfrak{p}} \wedge * \alpha_{\mathfrak{p}}\right]_{\mathfrak{p}}\right) \\
& \operatorname{since}[\mathfrak{m}, \mathfrak{p}] \subset[\mathfrak{m}, \mathfrak{h}] \subset \mathfrak{m} \\
= & * \operatorname{Ad} F\left(d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]\right) .
\end{aligned}
$$

This gives us the equivalences (i) $\Leftrightarrow$ (ii) $\Leftrightarrow$ (iii) as well as the last assertion of the theorem. Moreover let us compute the complex second derivative:

$$
\bar{\partial}^{\nabla^{t, v}} \partial^{v} f=* \operatorname{Ad} F\left(\bar{\partial} \alpha_{\mathfrak{p}}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}}^{\prime}\right]+\left[\alpha_{\mathfrak{p}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}}^{\prime}\right]_{\mathfrak{p}}\right)
$$

Then the equivalence (ii) $\Leftrightarrow$ (iv) follows from theorem 6.5. For this equivalence, we could also remark that $\left[\alpha_{\mathfrak{p}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}}^{\prime}\right]_{\mathfrak{p}}=\frac{1}{2}\left[\alpha_{\mathfrak{p}} \wedge \alpha_{\mathfrak{p}}\right]_{\mathfrak{p}}$ is in the real subspace $\mathfrak{p}$ and that $2 \operatorname{Im}\left(\bar{\partial} \alpha_{\mathfrak{p}}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}}^{\prime}\right]\right)=$ $d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]$. This completes the proof.

Now, let $f: L \rightarrow N$ be an arbitrary map from a Riemann surface into $N$. Then the ( $f$-pullback of the) vertical torsion with respect ot $\nabla^{t}$ is

$$
\begin{aligned}
f^{*} T^{t, v}=d^{\nabla^{t, v}} d^{v} f & =\operatorname{Ad} F\left(d \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{p}}\right]+t\left[\alpha_{\mathfrak{n}} \wedge \alpha_{\mathfrak{p}}\right]_{\mathfrak{p}}\right) \\
& =\operatorname{Ad} F\left(d \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{p}}\right]+t\left[\alpha_{\mathfrak{p}} \wedge \alpha_{\mathfrak{p}}\right]_{\mathfrak{p}}\right) \\
& =f^{*}\left(T^{0, v}+t[\phi \wedge \phi]_{[\mathfrak{p}]}\right)
\end{aligned}
$$

where $\phi: T N \rightarrow[\mathfrak{p}]$ is the projection on the vertical subbundle along the horizontal subbundle $[\mathfrak{m}]$. Therefore

$$
T^{t, v}=T^{0, v}+t[\phi \wedge \phi]_{[\mathfrak{p}]} .
$$

Moreover, recall that, according to section 4.3.1, the projection on [ $\mathfrak{p}$ ] of the Maurer-Cartan equation gives us the homogeneous structure equation (see equations (66), (65) and footnote 26)

$$
T^{0, v}=\Phi-\frac{1}{2}[\phi \wedge \phi]_{[\mathfrak{p}]}
$$

where $\Phi=-\frac{1}{2}[\psi \wedge \psi]_{[\mathfrak{p}]}$ is the homogeneous curvature form and $\psi: T N \rightarrow[\mathfrak{m}]$ is the projection on $[\mathfrak{m}]$ along $[\mathfrak{p}]$. Then we have

$$
\begin{equation*}
T^{t, v}=\Phi+\left(t-\frac{1}{2}\right)[\phi \wedge \phi]_{[\mathfrak{p}]} \tag{112}
\end{equation*}
$$

Therefore
Theorem 6.8 Let us consider the same situation as in theorem 6.7.

- If $f$ is flat then the strongly $\nabla^{t}$-vertical harmonicity and the freedom from torsion, for $f$, do not depend on $t$, if $t \in[0,1] \backslash\left\{\frac{1}{2}\right\}$.
Moreover $T^{\frac{1}{2}, v}=\Phi$ so that (if $f$ is flat) strongly vertical harmonicity and vertical harmonicity with respect to $\nabla^{\frac{1}{2}}$ are equivalent.
- If $H / K$ is locally symmetric, i.e. $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$, then $\forall t \in[0,1], T^{t, v}=\Phi$.

In particular, the $\nabla^{t}$-vertical torsion does not depend on $t \in[0,1]$, and thus neither strongly harmonicity does.

Corollary 6.3 Let us suppose now that $N=G / K$ is a (locally) $2 k$-symmetric space and that $M=G / H$ is the corresponding (locally) $k$-symmetric space. Then the even minimal determined system $(\operatorname{Syst}(k, \tau))$ associated to $N$ means that the geometric map $f: L \rightarrow N$ is horizontally holomorphic and vertically harmonic with respect to any affine connection $\nabla^{t}, 0 \leq t \leq 1$. Moreover the horizontal holomorphicity implies the flatness of $f$ and thus its freedom from vertical
torsion (with respect to any connection $\nabla^{t}, 0 \leq t \leq 1$ ). More precisely the (last) equation $\left(S_{k}\right)$ of the system means

$$
\bar{\partial}^{\nabla^{t, v}} \partial^{v} f=0
$$

i.e. that $f$ is strongly $\nabla^{t}$-vertically harmonic, so that its real part means that $f$ is vertically torsion free and its imaginary part that $f$ is vertically harmonic.

## The Riemannian case

Now, let us suppose that $M$ is Riemannian, and then so is $N$. In other words, we are in the situation described by 4.3.1. Let us consider the metric connections in $N$ :

$$
\stackrel{m}{\nabla}^{t}=\nabla^{0}+t \mathrm{~B}^{N}, \quad 0 \leq t \leq 1
$$

with $\mathrm{B}^{N}=[,]_{[\mathfrak{n}]}+\mathrm{U}^{N}$ and $\mathrm{U}^{N}$ defined by equation (15).
For any $\operatorname{Ad} K$-invariant subspace $\mathfrak{l} \subset \mathfrak{n}$, we will denote by $U^{\mathfrak{l}}: \mathfrak{l} \times \mathfrak{l} \rightarrow \mathfrak{l}$ the bilinear symmetric map defined by

$$
\left\langle\mathrm{U}^{\mathfrak{l}}(X, Y), Z\right\rangle=\left\langle[Z, X]_{\mathfrak{l}}, Y\right\rangle+\left\langle X,[Z, Y]_{\mathfrak{l}}\right\rangle \quad \forall X, Y \in \mathfrak{l},
$$

and by $\mathrm{U}^{[r]}$ its extension to the subbundle $[l] \subset T N$. Then we have in particular

$$
\mathrm{U}^{N}=\mathrm{U}^{[\mathfrak{n}]} \quad \text { and } \quad \mathrm{U}=\mathrm{U}^{[\mathfrak{p}]}
$$

where, let us recall it, U is defined by (62).
Now, let us project the definition equation of $\nabla^{\text {met }}{ }^{t}$ in the vertical subbundle: we obtain $\forall V \in$ $\mathcal{C}(T N)$,

$$
\phi\left(\stackrel{\mathrm{met}}{ }^{\mathrm{t}} V\right)=\nabla^{0} \phi V+t \phi \circ \mathrm{~B}^{N}
$$

Moreover, according to 4.3.1, we have $\phi \circ \mathrm{B}^{N}=\phi^{*} \mathrm{~B}-\Phi$ so that

$$
\phi\left(\nabla^{\mathrm{met}} V\right)=\nabla^{0} \phi V+t\left(\phi^{*} \mathrm{~B}-\Phi\right)
$$

and in particular $\forall V \in \mathcal{C}(\mathcal{V}), \forall A \in T N$,

$$
\stackrel{\nabla}{\nabla}_{A}^{\mathrm{met}} V=\nabla_{A}^{0} V+t\left([\phi A, V]_{[\mathfrak{p}]}+\mathrm{U}^{[\mathfrak{p}]}(\phi A, V)\right)
$$

Then according to theorem 4.5 and remark 4.4 it follows:
Theorem 6.9 - If $H / K$ is naturally reductive, then the connections defined by the restriction to $\mathcal{V}$ of $\stackrel{\mathrm{met}}{ }^{\mathrm{t}} \mathrm{v}, 0 \leq t \leq 1$, are all $\phi$-equivalent. Therefore the vertical harmonicity, with respect to $\stackrel{\mathrm{met}}{ }^{\mathrm{t}}$, is the same for all $0 \leq t \leq 1$.

- If $H / K$ is locally symmetric, then all the $\nabla^{\text {met }} t, v, 0 \leq t \leq 1$, coincide in $\mathcal{V}$. In particular the strongly harmonicity coincides for all the connections ${\stackrel{\text { met }}{ }{ }^{t}}^{t}, 0 \leq t \leq 1$.

The vertical torsion of $\stackrel{m}{\nabla}^{t} t$. We have seen in 1.6 that the torsion of $\nabla^{\text {met }} t$ is the same as that of $\nabla^{t}$. Now let us see what happens for the vertical torsion. The vertical torsion with respect to $\stackrel{m e t}{t}^{\mathrm{m}, v}$,

$$
\stackrel{\mathrm{met}}{T}^{\mathrm{t}, v}=d^{\mathrm{met} t, v} \phi
$$

lifts into

$$
d \theta_{\mathfrak{p}}+\left[\theta_{\mathfrak{k}} \wedge \theta_{\mathfrak{p}}\right]+t\left[\theta_{\mathfrak{n}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}}+t\left[\mathrm{U}^{\mathfrak{n}}\left(\theta_{\mathfrak{n}} \wedge \theta_{\mathfrak{p}}\right)\right]_{\mathfrak{p}}
$$

where as usual $\theta$ denotes the Maurer-Cartan form in $G$. We will prove that the last term in the right hand side vanishes. Indeed we have $\forall X, Y, Z \in \mathfrak{g}$,

$$
\begin{array}{rlcll}
\left\langle\mathrm{U}^{\mathfrak{n}}\left(X_{\mathfrak{n}}, Y_{\mathfrak{p}}\right), Z_{\mathfrak{p}}\right\rangle & = & \left\langle\left[Z_{\mathfrak{p}}, X_{\mathfrak{n}}\right]_{\mathfrak{n}}, Y_{\mathfrak{p}}\right\rangle & + & \left\langle X_{\mathfrak{n}},\left[Z_{\mathfrak{p}}, Y_{\mathfrak{p}}\right]_{\mathfrak{n}}\right\rangle \\
& = & \left\langle\left[Z_{\mathfrak{p}}, X_{\mathfrak{p}}\right]_{\mathfrak{p}}, Y_{\mathfrak{p}}\right\rangle & + & \left\langle X_{\mathfrak{p}},\left[Z_{\mathfrak{p}}, Y_{\mathfrak{p}}\right]_{\mathfrak{p}}\right\rangle \\
& & \text { since }[\mathfrak{p}, \mathfrak{m}] \subset[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}, & & \text { since }[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{h}  \tag{113}\\
& = & \left\langle\mathrm{U}^{\mathfrak{p}}\left(X_{\mathfrak{p}}, Y_{\mathfrak{p}}\right), Z_{\mathfrak{p}}\right\rangle . & &
\end{array}
$$

Then $\left[\mathbb{U}^{\mathfrak{n}}\left(\theta_{\mathfrak{n}} \wedge \theta_{\mathfrak{p}}\right)\right]_{\mathfrak{p}}=\mathbb{U}^{\mathfrak{p}}\left(\theta_{\mathfrak{p}} \wedge \theta_{\mathfrak{p}}\right)=0$, because $\mathrm{U}^{\mathfrak{p}}$ is symmetric. Therefore

$$
\begin{equation*}
\stackrel{\text { met }}{T}_{t, v}=T^{t, v} . \tag{114}
\end{equation*}
$$

The metric geometric interpretation. Now, according to theorem 6.9, we can conclude by rewriting corollary 6.3 in terms of the metric connection $\nabla^{\text {met }}$ instead of the affine connection $\nabla^{t}$.

Corollary 6.4 Let us suppose now that $N=G / K$ is a (locally) $2 k$-symmetric space and that $M=G / H$ is the corresponding (locally) $k$-symmetric space. Then the even minimal determined system $(\operatorname{Syst}(k, \tau))$ associated to $N$ means that the geometric map $f: L \rightarrow N$ is horizontally holomorphic and vertically harmonic with respect to any metric connection $\nabla^{\text {met }}{ }^{t}, 0 \leq t \leq 1$. Moreover the horizontal holomorphicity implies the flatness of $f$ and thus its freedom from vertical torsion (with respect to any connection ${\stackrel{\text { met }}{ }{ }^{t}, 0 \leq t \leq 1 \text { ). More precisely the (last) equation }\left(S_{k}\right) ~}_{\text {) }}$ of the system means

$$
\bar{\partial}^{\mathrm{mmt}} \nabla_{t, v}^{t} \partial^{v} f=0
$$

i.e. that $f$ is strongly ${ }^{\text {met }} \nabla^{t}$-vertically harmonic, so that its real part means that $f$ is vertically torsion free and its imaginary part that $f$ is vertically harmonic.

Remark 6.1 In particular for $t=\frac{1}{2}$, we recover theorem 4.12.
Moreover, coming back to the general case (no additionnal hypothesis on the homogeneous space $N=G / K)$, we see that the value $t=\frac{1}{2}$, i.e. the Levi-Civita connections, plays a special role according to theorem 6.8 and equation (114). Indeed for the Levi-Civita connection, we always have $T^{\text {met }} \frac{\frac{1}{2}, v}{}=\Phi$, so that if $f$ is flat, the strongly harmonicity and the vertical harmonicity are equivalent.
However, if $H / K$ is (locally) symmetric, then we have $\forall t \in[0,1],{ }_{T}{ }^{\text {met }} t, v=T^{t, v}=\Phi$, and we have even more, since all the connections $\nabla^{\text {met }} t, v$ coincides on $\mathcal{V}$. Therefore the special role played by the Levi-Civita connection is shared, in this case, with all the other connections $\nabla^{\text {met }} t$.

### 6.5 Affine vertically (holomorphically) harmonic maps into reductive homogeneous space with an invariant Pfaffian structure

Let $N=G / K$ be a reductive homogeneous space and $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$ a reductive decomposition of $\mathfrak{g}$. Let us suppose that $\mathfrak{m}$ admits an $\operatorname{Ad} K$-invariant decomposition

$$
\mathfrak{m}=\mathfrak{m}^{\prime} \oplus \mathfrak{p}
$$

Then $\mathfrak{p}$ defines a vertical subbundle $\mathcal{V}=[\mathfrak{p}]$ and $\mathfrak{m}^{\prime}$ an horizontal subundle $\mathcal{H}=\left[\mathfrak{m}^{\prime}\right]$ giving a splitting $T N=\mathcal{H} \oplus \mathcal{V}$.
The curvature of the horizontal distribution $\mathcal{H}$ is given by

$$
R^{\mathcal{H}}=-[\psi, \psi]_{[\mathfrak{p}]}=-\frac{1}{2}[\psi \wedge \psi]_{[\mathfrak{p}]}
$$

where $\psi: T N \rightarrow\left[\mathfrak{m}^{\prime}\right]$ is the projection on $\left[\mathfrak{m}^{\prime}\right]$ along $[\mathfrak{p}]$. We will set

$$
\Phi:=R^{\mathcal{H}} .
$$

The vertical torsion of the affine connection $\nabla^{t}$ is given by $T^{t, v}=d^{\left(\nabla^{t}\right)^{v}} \phi$ and lifts into

$$
\begin{align*}
\widetilde{T^{t, v}} & =d \theta_{\mathfrak{p}}+\left[\theta_{\mathfrak{k}} \wedge \theta_{\mathfrak{p}}\right]+t\left[\theta_{\mathfrak{m}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}}  \tag{115}\\
& =d \theta_{\mathfrak{p}}+\left[\theta_{\mathfrak{k}} \wedge \theta_{\mathfrak{p}}\right]+t\left[\theta_{\mathfrak{m}^{\prime}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}}+t\left[\theta_{\mathfrak{p}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}} \tag{116}
\end{align*}
$$

On the other hand, the projection on $\mathfrak{p}$ of the Maurer-Cartan equation gives

$$
d \theta_{\mathfrak{p}}+\left[\theta_{\mathfrak{k}} \wedge \theta_{\mathfrak{p}}\right]+\frac{1}{2}\left[\theta_{\mathfrak{m}^{\prime}} \wedge \theta_{\mathfrak{m}^{\prime}}\right]_{\mathfrak{p}}+\left[\theta_{\mathfrak{m}^{\prime}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}}+\frac{1}{2}\left[\theta_{\mathfrak{p}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}}=0
$$

so that (116) can be written

$$
\widetilde{T^{t, v}}=-\frac{1}{2}\left[\theta_{\mathfrak{m}^{\prime}} \wedge \theta_{\mathfrak{m}^{\prime}}\right]_{\mathfrak{p}}+(t-1)\left[\theta_{\mathfrak{m}^{\prime}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}}+\left(t-\frac{1}{2}\right)\left[\theta_{\mathfrak{p}} \wedge \theta_{\mathfrak{p}}\right]_{\mathfrak{p}}
$$

which projected in $N$ becomes

$$
T^{t, v}=\Phi+(t-1)[\psi \wedge \phi]_{[\mathfrak{p}]}+\left(t-\frac{1}{2}\right)[\phi \wedge \phi]_{[\mathfrak{p}]}
$$

We remark that the values $t=\frac{1}{2}, 1$ play special roles. In particular:

- If $\left[\mathfrak{m}^{\prime}, \mathfrak{p}\right]_{\mathfrak{p}}=\{0\}$ then we have $T^{\frac{1}{2}, v}=\Phi$. More generally we recover equation (112) and the results of theorem 6.8 (by taking the following values in the notations $\mathfrak{m}:=\mathfrak{n}$ and $\mathfrak{m}^{\prime}:=\mathfrak{m}$ ).
- If $[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=\{0\}$ then we have $T^{1, v}=\Phi$.

Now, if the two conditions are satisfied, $\left[\mathfrak{m}^{\prime}, \mathfrak{p}\right]_{\mathfrak{p}}=[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=\{0\}$, then we have

$$
\forall t \in[0,1], \quad T^{T, v}=\Phi
$$

Now let $f:\left(L, j_{L}\right) \rightarrow N$ be a map from a Riemann surface into $N$. Let us compute the vertical tension field $\tau^{t, v}(f)$ of $f$ with respect to $\nabla^{t}$ (and some Hermitian metric $b$ in $L$ ). In order to do that, let $F: L \rightarrow G$ be a lift of $f$ and $\alpha=F^{-1} . d F$. Then we have

$$
\begin{aligned}
\tau^{t, v}(f)=* d^{\nabla^{t, v}} * d^{v} f & =* \operatorname{Ad} F\left(d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]+t\left[\alpha_{\mathfrak{m}} \wedge * \alpha_{\mathfrak{p}}\right]_{\mathfrak{p}}\right) \\
& =* \operatorname{Ad} F\left(d * \alpha_{\mathfrak{p}}+\left[\alpha_{\mathfrak{k}} \wedge * \alpha_{\mathfrak{p}}\right]+t\left[\alpha_{\mathfrak{m}^{\prime}} \wedge * \alpha_{\mathfrak{p}}\right]_{\mathfrak{p}}+t\left[\alpha_{\mathfrak{p}} \wedge * \alpha_{\mathfrak{p}}\right]_{\mathfrak{p}}\right) \\
& =\tau^{0, v}(f)+t *\left[f^{*} \psi \wedge *\left(f^{*} \phi\right)\right]_{[\mathfrak{p}]} \\
& =\tau^{0, v}(f)+t \operatorname{Tr}_{b}\left(\left[f^{*} \psi, f^{*} \phi\right]_{[\mathfrak{p}]}\right)
\end{aligned}
$$

Now, let us consider the $\operatorname{Ad} K$-invariant vector subspace

$$
\mathfrak{m}_{*}=\left\{X \in \mathfrak{m}^{\prime} \mid[X, \mathfrak{p}]_{\mathfrak{p}}=\{0\}\right\}
$$

and let $\mathfrak{m}_{1}$ be an $\operatorname{Ad} K$-invariant supplement 59 of $\mathfrak{m}_{*}$ in $\mathfrak{m}^{\prime}$

$$
\mathfrak{m}^{\prime}=\mathfrak{m}_{*} \oplus \mathfrak{m}_{1}
$$

Then we can rewrite the $\nabla^{t}$-vertical torsion in the form

$$
T^{t, v}=\Phi+(t-1)\left[\psi_{1} \wedge \phi\right]_{[\mathfrak{p}]}+\left(t-\frac{1}{2}\right)[\phi \wedge \phi]_{[\mathfrak{p}]}
$$

and the $\nabla^{t}$-vertical tension field (of $f$ ) in the form:

$$
\tau^{t, v}(f)=\tau^{0, v}(f)+t *\left[f^{*} \psi_{1} \wedge *\left(f^{*} \phi\right)\right]_{[\mathfrak{p}]}
$$

where $\psi_{1}: T N \rightarrow\left[\mathfrak{m}_{1}\right]$ is the projection on $\left[\mathfrak{m}_{1}\right]$ along $\left[\mathfrak{m}_{*}\right] \oplus[\mathfrak{p}]$ i.e. the $\left[\mathfrak{m}_{1}\right]$-component of $\psi$.
Definition 6.5 Let us suppose that $N=G / K$ admits an almost complex structure $\underline{\mathrm{J}}$ which leaves invariant the decomposition $T N=\mathcal{V} \oplus \mathcal{H}$, that is to say the vector space $\mathfrak{m}$ admits an Ad $K$-invariant almost complex structure $\underline{J}_{0}$ leaving invariant the decomposition $\mathfrak{m}=\mathfrak{m}^{\prime} \oplus \mathfrak{p}$. Then we will say that $\underline{\mathrm{J}}$ anticommutes with the reductivity term $[\psi, \phi]_{[\mathfrak{p}]}$ if

$$
\underline{\mathrm{J}}[\psi, \phi]_{[\mathfrak{p}]}=-[\underline{\mathrm{J}} \psi, \phi]_{[\mathfrak{p}]}=-[\psi, \underline{\mathrm{J}} \phi]_{[\mathfrak{p}]}
$$

If $\underline{J}$ anticommutes with the reductivity term then $\mathfrak{m}_{*}$ is $\underline{J}$-invariant so that it admits a $\underline{J}$-invariant complement $\mathfrak{m}_{1}$ in $\mathfrak{m}^{\prime}$.

Proposition 6.1 Let us that $N=G / K$ is endowed with an almost complex structure $\underline{\mathbb{J}}$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$. For any $\underline{\mathrm{J}}_{0}$-invariant $\operatorname{Ad} K$-invariant subspace $\mathfrak{l} \subset \mathfrak{m}$, let us denote by $\mathfrak{l}^{ \pm}$respectively the $\pm$-eigenspace of $\underline{\mathrm{J}}_{\mathfrak{l}}$. Then $\underline{\mathrm{J}}$ anticommutes with the reducivity term $[\psi, \phi]_{[\mathfrak{p}]}$ if and only if

$$
\left[\mathfrak{m}^{\prime \pm}, \mathfrak{p}^{ \pm}\right]_{\mathfrak{p}} \subset \mathfrak{p}^{\mp} \quad \text { and } \quad\left[\mathfrak{m}^{\prime \pm}, \mathfrak{p}^{\mp}\right]_{\mathfrak{p}} \subset\{0\} .
$$

In particular, if $\mathfrak{m}_{*}=\left\{X \in \mathfrak{m}^{\prime} \mid[X, \mathfrak{p}]_{\mathfrak{p}}=\{0\}\right\}$ admits a $\underline{\mathrm{J}}$-invariant Ad K-invariant complement $\mathfrak{m}_{1}$, then these conditions are equivalent to

$$
\left[\mathfrak{m}_{1}^{ \pm}, \mathfrak{p}^{ \pm}\right]_{\mathfrak{p}} \subset \mathfrak{p}^{\mp} \quad \text { and } \quad\left[\mathfrak{m}_{1}^{ \pm}, \mathfrak{p}^{\mp}\right]_{\mathfrak{p}} \subset\{0\} .
$$

Theorem 6.10 Let us suppose that $N=G / K$ is endowed with an almost complex structure $\underline{\mathrm{J}}$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$ and which anticommutes with the reductivity term $[\psi, \phi]_{[\mathfrak{p}]}$. Let $\mathfrak{m}_{1}$ be a $\underline{\mathrm{J}}$-invariant $\mathrm{Ad} K$-invariant complement in $\mathfrak{m}^{\prime}$ of $\mathfrak{m}_{*}=$ $\left\{X \in \mathfrak{m}^{\prime} \mid[X, \mathfrak{p}]_{\mathfrak{p}}=\{0\}\right\}$. Let $f:\left(L, j_{L}\right) \rightarrow N$ be a map from a Riemann surface into $N, F: L \rightarrow$ $G$ a (local) lift of $f$ and $\alpha=F^{-1} . d F$. Then if $f$ is flat, $f^{*} \Phi=0$, and $\left[\mathfrak{m}_{1}\right]$-holomorphic then the following statements are equivalent:
(i) $f$ is vert. hol. harmonic w.r.t. $\nabla^{1}$ and $\underline{\mathrm{J}}:\left[\bar{\partial}^{\nabla^{1, v}} \partial^{v} f\right]^{1,0}=0$.
(ii) $f$ si vert. hol. harmonic w.r.t. $\nabla^{0}$ and $-\underline{\mathrm{J}}:\left[\bar{\partial}^{\nabla^{0, v}} \partial^{v} f\right]^{0,1}=0$.

[^40]Moreover if $[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=\{0\}$, then these are also equivalent to
(iii) $f$ is vertically harmonic w.r.t. $\nabla^{1}$.

Furthermore (if $[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=\{0\}$ and $f$ is flat) $f$ is $\nabla^{1}$-torsion free so that $\nabla^{1}$-vertical harmonicity is equivalent to strongly $\nabla^{1}$-vertical harmonicity.

Proof. The $\nabla^{1}$-vertical holomorphic harmonicity is written

$$
\begin{equation*}
f^{*} T^{1, v}+\underline{\mathrm{J}} d^{\nabla^{1, v}} * d^{v} f=0 \tag{117}
\end{equation*}
$$

but $f^{*} T^{1, v}=\frac{1}{2} f^{*}[\phi \wedge \phi]_{[\mathfrak{p}]}$ and $f^{*} T^{0, v}=-\left[f^{*} \psi \wedge f^{*} \phi\right]_{[\mathfrak{p}]}-\frac{1}{2} f^{*}[\phi \wedge \phi]_{[\mathfrak{p}]}$ whereas

$$
d^{\nabla^{1, v}} * d^{v} f=d^{\nabla^{0, v}} * d^{v} f+\left[f^{*} \psi \wedge\left(* f^{*} \phi\right)\right]_{[\mathfrak{p}]}
$$

so that

$$
\begin{equation*}
f^{*} T^{1, v}+\underline{\mathrm{J}} d^{\nabla^{1, v}} * d^{v} f=\frac{1}{2}\left[f^{*} \phi \wedge f^{*} \phi\right]_{[\mathfrak{p}]}+\underline{\mathrm{J}} d^{\nabla^{0, v}} * d^{v} f+\underline{\mathrm{J}}\left[f^{*} \psi \wedge\left(* f^{*} \phi\right)\right]_{[\mathfrak{p}]} . \tag{118}
\end{equation*}
$$

Now let us use the fact that $\underline{J}$ anticommutes with $[\psi, \phi]_{[\mathfrak{p}]}$ :

$$
\begin{aligned}
\underline{\mathrm{J}}\left[f^{*} \psi \wedge *\left(f^{*} \phi\right)\right]_{[\mathfrak{p}]} & =-\left[\underline{\mathrm{J}}\left(f^{*} \psi_{1}\right) \wedge *\left(f^{*} \phi\right)\right]_{[\mathfrak{p}]} \\
& \left.=\left[*\left(f^{*} \psi_{1}\right) \wedge *\left(f^{*} \phi\right)\right] \quad \text { because } f \text { is [ } \mathfrak{m}_{1}\right] \text {-holomorphic } \\
& =\left[f^{*} \psi_{1} \wedge f^{*} \phi\right]=\left[f^{*} \psi \wedge f^{*} \phi\right]
\end{aligned}
$$

Therefore, injecting this in (118), we obtain

$$
f^{*} T^{1, v}+\underline{\mathrm{J}} d^{\nabla^{1, v}} * d^{v} f=-\left(f^{*} T^{0, v}-\underline{\mathrm{J}} d^{\nabla^{0, v}} * d^{v} f\right) .
$$

This proves the equivalence (i) $\Leftrightarrow$ (ii). Now, if we suppose that $[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=\{0\}$, then $f^{*} T^{1, v}=$ 0 . Therefore the $\nabla^{1}$-vertical holomorphic harmonicity (117) is equivalent to the $\nabla^{1}$-vertical harmonicity $d^{\nabla^{1, v}} * d^{v} f=0$. This completes the proof.

Now, let us see how the vertical holomorphic harmonicity is written in terms of the MaurerCartan form $\alpha$ of a lift $F$ of $f: L \rightarrow N$.

Proposition 6.2 Let us suppose that $N=G / K$ is endowed with an almost complex structure $\overline{\mathrm{J}}$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$. Then $f: L \rightarrow N$ is vert. hol. harmonic w.r.t. $\nabla^{0}$ and - $\underline{\mathrm{J}}$ if and only if

$$
\bar{\partial} \alpha_{\mathfrak{p}+}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}+}^{\prime}\right]=0
$$

Moreover, if $\underline{\mathrm{J}}$ anticommutes with the reductivity term $[\psi, \phi]_{[\mathfrak{p}]}$ and $\mathfrak{m}_{*}$ admits an $\operatorname{Ad} K$-invariant $\underline{\mathrm{J}}$-invariant complement $\mathfrak{m}_{1}$ in $\mathfrak{m}^{\prime}$, then a $\left[\mathfrak{m}_{1}\right]$-holomorphic map $f: L \rightarrow N$ is vert. hol. harmonic w.r.t. $\nabla^{1}$ and $\underline{\mathrm{J}}$ if and only if

$$
\bar{\partial} \alpha_{\mathfrak{p}+}^{\prime}+\left[\alpha_{\mathfrak{k}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}^{+}}^{\prime}\right]+\left[\alpha_{\mathfrak{m}_{1}^{-}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}^{-}}^{\prime}\right]_{\mathfrak{p}}+\left[\alpha_{\mathfrak{p}}^{\prime \prime} \wedge \alpha_{\mathfrak{p}}^{\prime}\right]_{\mathfrak{p}^{+}}=0
$$

Now, let us suppose that $N=G / K$ is a (locally) $(2 k+1)$-symmetric space, then the $\operatorname{Ad} K$ invariant decomposition $\mathfrak{m}=\mathfrak{m}^{\prime} \oplus \mathfrak{p}$ is given by $\mathfrak{p}=\mathfrak{m}_{k}$ and $\mathfrak{m}^{\prime}=\oplus_{j+1}^{k-1} \mathfrak{m}_{j}$ with the notations of 2.1.2. Moreover according to the commutation relations $\left[\mathfrak{g}_{i}^{\mathbb{C}}, \mathfrak{g}_{j}^{\mathbb{C}}\right] \subset \mathfrak{g}_{i+j}^{\mathbb{C}}$, we have

$$
\mathfrak{m}_{*}=\left\{X \in \mathfrak{m}^{\prime},[X, \mathfrak{p}]_{\mathfrak{p}}=\{0\}\right\}=\oplus_{j=2}^{k-1} \mathfrak{m}_{j}
$$

so that $\mathfrak{m}_{1}$ is an $\operatorname{Ad} G_{0}$-invariant supplement to $\mathfrak{m}_{*}$. Moreover $N$ is endowed naturally with its canonical almost complex structure $\underline{J}$ defined in 2.1.2, which leaves invariant all the $\mathfrak{m}_{j}$ and thus the subspaces $\mathfrak{m}_{1}, \mathfrak{m}_{*}, \mathfrak{p}$. Furthermore, using once again the commutation relations, one can see that $\underline{J}$ anticommutes with the reductivity term $[\psi, \phi]_{[\mathfrak{p}]}$. Finally, let us remark that $[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=\left[\mathfrak{m}_{k}, \mathfrak{m}_{k}\right]_{\mathfrak{p}}=\{0\}$. Now, the theorem 6.10 can be applied.

Corollary 6.5 Let us suppose that $N=G / K$ is a (locally) $(2 k+1)$-symmetric space endowed with its canonical almost complex structure $\underline{\mathrm{J}}$, and with the $\underline{\mathrm{J}}$-invariant splitting $T N=\left[\mathfrak{m}^{\prime}\right] \oplus[\mathfrak{p}]$ and $\left[\mathfrak{m}^{\prime}\right]=\left[\mathfrak{m}_{1}\right] \oplus\left[\mathfrak{m}_{*}\right]$. Let $f: L \rightarrow N$ be a map, $F: L \rightarrow G$ a lift of $f$ and $\alpha=F^{-1}$.dF. Then if $f$ is flat, $f^{*} \Phi=0$, and $\left[\mathfrak{m}_{1}\right]$-holomorphic then $f$ is $\nabla^{1}$-vertically torsion free $f^{*} T^{1, v}=0$, and the following statements are equivalent
(i) $f$ is vert. hol. harmonic w.r.t. $\nabla^{1}$ and $\underline{\mathrm{J}}:\left[\bar{\partial}^{\nabla^{1, v}} \partial^{v} f\right]^{1,0}=0$.
(ii) $f$ si vert. hol. harmonic w.r.t. $\nabla^{0}$ and - $\underline{J}$ : $\left[\bar{\partial}^{\nabla^{0, v}} \partial^{v} f\right]^{0,1}=0$.
(iii) $f$ is vertically harmonic w.r.t. $\nabla^{1}$.
(iv) $f$ is strongly vertically harmonic w.r.t. $\nabla^{1}$.

Now, let us apply proposition 6.2 .
Proposition 6.3 Let us suppose that $N=G / K$ is a (locally) $(2 k+1)$-symmetric space. Then $f: L \rightarrow N$ is vert. hol. harmonic w.r.t. $\nabla^{0}$ and - $\underline{\mathrm{J}}$ if and only if

$$
\bar{\partial} \alpha_{k}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{k}^{\prime}\right]=0
$$

Moreover, if $f: L \rightarrow N$ is flat and $\left[\mathfrak{m}_{1}\right]$-holomorphic, then it is vert. hol. harmonic w.r.t. $\nabla^{1}$ and $\underline{\mathrm{J}}$ if and only if

$$
\bar{\partial} \alpha_{-k}^{\prime}+\left[\alpha_{0}^{\prime \prime} \wedge \alpha_{-k}^{\prime}\right]+\left[\alpha_{1}^{\prime \prime} \wedge \alpha_{k}^{\prime}\right]=0
$$

Furthermore, as in the even case (i.e. $N=G / K$ is (locally) $2 k$-symmetric) the horizontal holomorphicity implies the flatness.

Proposition 6.4 Let us suppose that $N=G / K$ is a (locally) $(2 k+1)$-symmetric space. Then if $f: L \rightarrow N$ is horizontallly holomorphic (i.e. [ $\left.\mathfrak{m}^{\prime}\right]$-holomorphic) then $f$ is flat $f^{*} \Phi=0$.

Now let us conclude with the following geometric interpretation of the odd minimal determined system.

Corollary 6.6 Let us suppose that $N=G / K$ is a (locally) $(2 k+1)$-symmetric space. Then the odd minimal determined system $(\operatorname{Syst}(k+1, \tau))$ associated to $N$ means that the geometric map $f: L \rightarrow N$ is horizontally holomorphic and vertically harmonic w.r.t. the affine connection $\nabla^{1}$. Moreover the horizontal holomorphicity implies the flatness of $f$ and its freedom from $\nabla^{1}$-vertical torsion, $f^{*} T^{1, v}=0$.
More pecisely, the (last) equation $\left(S_{k+1}\right)$ of the system (which lies in $\mathfrak{g}_{k}$ ) means the vert. hol. harmonicity of $f$ w.r.t. $\nabla^{0}$ and - $\underline{\mathbf{J}}$

$$
\left[\bar{\partial}^{\nabla^{0, v}} \partial^{v} f\right]^{0,1}=0
$$

whereas the equation $\left(S_{k}\right)$ (which lies in $\mathfrak{g}_{-k}$ ) means the vert. hol. harmonicity of $f$ w.r.t. $\nabla^{1}$ and $\underline{\mathrm{J}}$

$$
\left[\bar{\partial}^{\nabla^{1, v}} \partial^{v} f\right]^{1,0}=0
$$

Moreover the sums $\left(S_{k}\right)+\left(S_{k+1}\right)$ (which lies in $\mathfrak{m}_{k}$ ) means (taking account of the $\left[\mathfrak{m}_{1}\right]$-holomorphicity $\alpha_{-1}^{\prime \prime}=0$ ) the strongly vertical harmonicity of $f$ w.r.t. $\nabla^{1}$ :

$$
\bar{\partial}^{\nabla^{1, v}} \partial^{v} f=0
$$

so that its real part means that $f$ is $\nabla^{1}$-vertically torsison free and its imaginary part that $f$ is $\nabla^{1}$-vertically harmonic.
All the other equations of the system, $\left(S_{j}\right), 0 \leq j \leq k-1$ are (after having taken account of the horizontal holomorphicity $\alpha_{-j}^{\prime \prime}=0,1 \leq j \leq k-1$ ) nothing but the projections on the subspace $\mathfrak{g}_{-j}, 1 \leq j \leq k-1$ of the Maurer-Cartan equation (which means the existence of the geometric solution $f$ ).

Strongly vertical harmonicity w.r.t. $\nabla^{t}$. Let us see what the strongly harmonicity w.r.t. to $\nabla^{t}$, with $t \in[0,1] \backslash\{1\}$, means.
We have seen that the tension field of a map $f: L \rightarrow N=G / K$, with respect to $\nabla^{t}$, does not depend on $t \in[0,1]$ (see theorem 6.1). Let us set $\tau(f):=\tau^{t}(f)$.

Proposition 6.5 Let $f: L \rightarrow N=G / K$ be a map.

- Then we have

$$
\tau^{0, v}(f)=[\tau(f)]^{v}=2\left[\bar{\partial}^{\nabla^{\frac{1}{2}}} \partial f\right]^{v}
$$

- If $[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=\{0\}$ and $f$ is flat, then $f^{*} T^{1, v}=0$ i.e. $\tau^{1, v}(f)=2 \bar{\partial}^{\nabla^{1, v}} \partial f$.
- Let us suppose in addition to that, that $N=G / K$ is endowed with an almost complex structure $\underline{\mathrm{J}}$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$, and which anticommutes with the reductivity term $[\psi, \phi]_{[\mathfrak{p}]}$, and that $\mathfrak{m}_{*}$ admits an AdK-invariant $\underline{\mathrm{J}}$-invariant complement $\mathfrak{m}_{1}$ in $\mathfrak{m}^{\prime}$.
Then if $f$ is $\left[\mathfrak{m}_{1}\right]$-holomorphic, the following statements are equivalent:
(i) $f^{*} T^{t, v}=0$ for one $t \in[0,1] \backslash\{1\}$,
(ii) $f^{*}\left[\psi_{1} \wedge \phi\right]_{[\mathfrak{p}]}=0$,
(iii) $\tau^{t, v}(f)=\tau^{0, v}(f)$ for one $t \in[0,1] \backslash\{0\}$.

Corollary 6.7 Let us suppose that $N=G / K$ is endowed with an almost complex structure $\underline{J}$ leaving invariant the decomposition $T N=\mathcal{H} \oplus \mathcal{V}$ and which anticommutes with the reductivity term $[\psi, \phi]_{[\mathfrak{p}]}$. We also suppose that there exists a $\underline{\mathrm{J}}$-invariant $\operatorname{Ad} K$-invariant complement $\mathfrak{m}_{1}$ in $\mathfrak{m}^{\prime}$ of $\mathfrak{m}_{*}$. Lastly, we suppose that $[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=\{0\}$.
Let $f: L \rightarrow N=G / K$ be a map which is flat and $\left[\mathfrak{m}_{1}\right]$-holomorphic. Let $F: L \rightarrow N$ be a lift of $f$ and $\alpha=F^{-1} . d F$. Then the following statements are equivalent
(i) $\bar{\partial}^{\nabla^{t, v}} \partial^{v} f=0$ for one $t \in[0,1] \backslash\{1\}$,
(ii) $\left[\bar{\partial}^{t} \partial f\right]^{v}=0$ for one $t \in[0,1] \backslash\left\{\frac{1}{2}\right\}$,
(iii) $\tau^{1, v}(f)=0$ and $f^{*}\left[\psi_{1} \wedge \phi\right]_{[\mathfrak{p}]}=0$,
(iv) $[\tau(f)]^{v}=0$ and $f^{*}\left[\psi_{1} \wedge \phi\right]_{[\mathfrak{p}]}=0$,
(v) $\left[\bar{\partial}^{\nabla^{t, v}} \partial^{v} f\right]^{1,0}=0$ for one $t \in[0,1]$ and $f^{*}\left[\psi_{1} \wedge \phi\right]_{[\mathfrak{p}]}=0$,
(vi) $\left[\bar{\partial}^{\nabla^{1-t, v}} \partial^{v} f\right]^{0,1}=0$ for one $t \in[0,1]$ and $f^{*}\left[\psi_{1} \wedge \phi\right]_{[\mathfrak{p}]}=0$,
(vii) $f$ is a geometric solution of the first elliptic integrable system associated to the adg $\mathfrak{g}^{-}$ invariant decomposition $\mathfrak{g}=\left(\mathfrak{g}_{\mathfrak{k}} \oplus \mathfrak{m}^{\prime}\right) \oplus \mathfrak{p}$, i.e. the 1-form $\beta_{\lambda}=\lambda^{-1} \alpha_{\mathfrak{p}}^{\prime}+\left(\alpha_{\mathfrak{k}}+\alpha_{\mathfrak{m}^{\prime}}\right)+\lambda \alpha_{\mathfrak{p}}^{\prime \prime}$ satisfies the zero curvature equation

$$
d \beta_{\lambda}+\frac{1}{2}\left[\beta_{\lambda} \wedge \beta_{\lambda}\right]=0 \quad \forall \lambda \in \mathbb{C}^{*}
$$

Now, we come back to the case of a (locally) $(2 k+1)$-symmetric space.
Corollary 6.8 Let us suppose that $N=G / K$ is a (locally) $(2 k+1)$-symmetric space. Let $f: L \rightarrow N=G / K$ be a map, $F: L \rightarrow N$ be a lift of $f$ and $\alpha=F^{-1} . d F$. Then the following statements are equivalent:
(i) $f$ is horizontally holomorphic and strongly $\nabla^{t}$-vertically harmonic for one $t \in[0,1] \backslash\{1\}$,
(ii) $f$ is a geometric solution of $(\operatorname{Syst}(k+1, \tau))$ and $\left[\alpha_{1} \wedge \alpha_{k}\right]=0$,
(iii) $f$ is horizontally holomorphic and is a geometric solution of the first elliptic integrable system associated to the ad $\mathfrak{g}_{0}$-invariant decomposition $\mathfrak{g}=\left(\mathfrak{g}_{0} \oplus \mathfrak{m}^{\prime}\right) \oplus \mathfrak{m}_{k}$,
(iv) $f$ is a geometric solution of $(\operatorname{Syst}(k+1, \tau))$ and moreover the 1 -form $\beta_{\lambda}=\sum_{j=-k}^{j=k} \lambda^{j} \alpha_{j}$ satisfies the zero curvature equation

$$
d \beta_{\lambda}+\frac{1}{2}\left[\beta_{\lambda} \wedge \beta_{\lambda}\right]=0 \quad \forall \lambda \in \mathbb{C}^{*}
$$

Remark 6.2 Note that in (iii), the 1-form $\beta_{\lambda}$ is of order $k$ on $\lambda$, whereas the extended 1-form $\alpha_{\lambda}$, solution of $(\operatorname{Syst}(k+1, \tau))$, is of order $k+1$. Moreover the coefficient on $\lambda^{-k}$ (resp. $\lambda^{k}$ ) is not of ( 1,0 )-type (resp. ( 0,1 )-type).

## 7 Appendix

### 7.1 Vertical harmonicity

Theorem 7.1 Let us consider the situation described by example 4.1 and suppose that $\pi: N \rightarrow$ $M$ is a Riemannian submersion and $u: L \rightarrow M$ is an isometry. Then $f: L \rightarrow N$ is vertically harmonic if and only if the corresponding section $\tilde{f}: L \rightarrow u^{*} N$ is a harmonic section. Furthermore $f: L \rightarrow N$ is harmonic if and only if $\tilde{f}: L \rightarrow u^{*} N$ is harmonic and $[\tau(f)]_{u_{*}(T L)^{\perp}}^{\mathcal{H}}=0$ i.e. the component of the tension field in the subspace of $\mathcal{H}$ corresponding by the isometry $d \pi_{\mid \mathcal{H}}$ to the normal bundle $u_{*}(T L)^{\perp}$ in $T M$, vanishes, or equivalently $[d \pi(\tau(f))]_{u_{*}(T L)^{\perp}}=0$.
Proof. The Levi-Civita in $u^{*} N$ is the orthogonal projection ofthe Levi-Civita connection in $L \times N$, on the tangent bundle $T\left(u^{*} N\right)$. Let us determine this orthonormal projection. First let us express clearly what is the tangent subbundle $T\left(u^{*} N\right)$ in $T(L \times N)$.

$$
T_{(l, n)}\left(u^{*} N\right)=\left\{(\xi, \eta) \in T_{(l, n)} L \times N \mid d u(\xi)=d \pi(\eta)\right\}
$$

Let us do some identifications. First an usual one: consider that $T L$ is a subbundle of $T M_{\mid L}$ (and forget the " $u_{*}$ " in $u_{*}(T L)$ ), secondly: we consider that $\pi^{*} T M=\mathcal{H}$, identifying these by the isometry $d \pi_{\mid \mathcal{H}}$, so that we will write $\mathcal{H}_{\mid \pi^{-1}(L)}=\pi^{*} T L \oplus \pi^{*} T L^{\perp}$, where $T L^{\perp}$ is the normal bundle of $L$ in $M$. Moreover, for any $\eta \in T N_{\mid \pi^{-1}(L)}$ let us write its decomposition following $T N_{\pi^{-1}(L)}=\pi^{*} T L \oplus \pi^{*} T L^{\perp} \oplus \mathcal{V}_{\pi^{-1}(L)}$ as

$$
\eta=\eta_{T L}^{\mathcal{H}}+\eta_{T L^{\perp}}^{\mathcal{H}}+\eta^{\mathcal{V}} .
$$

Then under the previous identifications, we have

$$
\begin{aligned}
T_{(l, n)}\left(u^{*} N\right) & =\left\{(\xi, \eta) \in T_{l} L \times T_{n} N \mid \eta_{T L}^{\mathcal{H}}=\xi, \eta_{T L^{\perp}}^{\mathcal{H}}=0\right\} \\
& =\left\{\left(\xi, \xi+\eta^{\mathcal{V}}\right), \xi \in T_{l} L, \eta^{\mathcal{V}} \in \mathcal{V}_{n}\right\} .
\end{aligned}
$$

This gives us a splitting $T\left(u^{*} N\right)=\mathcal{V}^{u^{*} N} \oplus \mathcal{H}^{u^{*} N}$ where $\forall(l, n) \in u^{*} N$,

$$
\mathcal{V}_{(l, n)}^{u^{*} N}=\{0\} \times \mathcal{V}_{n} \quad \text { and } \quad \mathcal{H}_{(l, n)}^{u^{*} N}=T_{l} L \times \mathcal{H}_{n} \cap T_{(l, n)}\left(u^{*} N\right)=\left\{(\xi, \xi) \in T_{l} L \times T_{l} L\right\}
$$

Let us determine the orthogonal of the tangent space $T\left(u^{*} N\right)$ :

$$
\begin{aligned}
& (\alpha, \beta) \in\left(T_{(l, n)}\left(u^{*} N\right)\right)^{\perp} \Longleftrightarrow \\
& \forall(\xi, \eta) \in T_{(l, n)}\left(u^{*} N\right), \quad 0=\langle(\xi, \eta),(\alpha, \beta)\rangle \\
& =\langle\xi, \alpha\rangle+\langle\eta, \beta\rangle \\
& =\langle\xi, \alpha\rangle+\left\langle\xi, \beta_{T L}^{\mathcal{H}}\right\rangle+\left\langle 0, \beta_{T L^{\perp}}^{\mathcal{H}}\right\rangle+\left\langle\eta^{\mathcal{V}}, \beta^{\mathcal{V}}\right\rangle \\
& =\left\langle\xi, \alpha+\beta_{T L}^{\mathcal{H}}\right\rangle+\left\langle\eta^{\mathcal{V}}, \beta^{\mathcal{V}}\right\rangle \\
& \Longleftrightarrow\left(\alpha+\beta_{T L}^{\mathcal{H}}, \beta^{\mathcal{V}}\right)=0 .
\end{aligned}
$$

Therefore

$$
\left(T_{(l, n)}\left(u^{*} N\right)\right)^{\perp}=\left\{\left(-\beta_{T L}^{\mathcal{H}}, \beta\right), \beta \in \mathcal{H}_{n}\right\} .
$$

Decomposing each $(a, b) \in T(L \times N)_{\mid u^{*} N}$ following the decomposition $T(L \times N)_{\mid u^{*} N}=T\left(u^{*} N\right) \oplus$ $T\left(u^{*} N\right)^{\perp}:(a, b)=(\xi, \eta)+(\alpha, \beta)$, then we obtain

$$
\left\{\begin{array}{l}
a=\eta_{T L}^{\mathcal{H}}-\beta_{T L}^{\mathcal{H}} \\
b=\left(\eta_{T L}^{\mathcal{H}}+\beta_{T L}^{\mathcal{H}}\right)+\beta_{T L}^{\mathcal{H}}+\eta^{\mathcal{V}}
\end{array}\right.
$$

so that this decomposition is therefore given by

$$
(a, b)=\left(\frac{a+b_{T L}^{\mathcal{H}}}{2}, a+b_{T L}^{\mathcal{H}}+b^{\mathcal{V}}\right)+\left(-\frac{\left(b_{T L}^{\mathcal{H}}-a\right)}{2}, \frac{\left(b_{T L}^{\mathcal{H}}-a\right)}{2}+b_{T L^{\perp}}^{\mathcal{H}}\right) .
$$

Now, let us come back to our fonction $f: L \rightarrow N$ and the corresponding section $\tilde{f}:(L, b) \rightarrow u^{*} N$. Then let us compute

$$
\begin{aligned}
\left.\stackrel{u}{ }_{\nabla^{*} N}^{v} d^{v} \tilde{f}={\stackrel{u^{*}}{ } \nabla^{v}}^{v}(d l, d f)\right)^{\mathcal{V}^{u^{*} N}} & ={\stackrel{u^{*} N}{\nabla^{v}}\left(0, d^{v} f\right)=\left(\left[\nabla\left(0, d^{v} f\right)\right]_{T\left(u^{*} N\right)}\right)^{\mathcal{V}^{u^{*} N}}}=\left(\left[\left(0, \nabla d^{v} f\right)\right]_{T\left(u^{*} N\right)}\right)^{\mathcal{V}^{u^{*} N}} \\
& =\left(\frac{1}{2}\left(\nabla d^{v} f\right)_{T L}^{\mathcal{H}}, \frac{1}{2}\left(\nabla d^{v} f\right)_{T L}^{\mathcal{H}}+\nabla^{v} d d^{v} f\right)^{\mathcal{V}^{u^{*} N}} \\
& =\left(0, \nabla^{v} d^{v} f\right)
\end{aligned}
$$

Finally, we have proved

$$
\begin{equation*}
\nabla^{u^{*} N} d^{v} \tilde{f}=\nabla^{v} d^{v} f \tag{119}
\end{equation*}
$$

and by taking the trace, we obtain the first assertion of the theorem.
Now, in the same way we obtain

$$
\begin{equation*}
\stackrel{u}{*}_{\nabla}^{*} d \tilde{f}=\left(\frac{1}{2}(\nabla d f)_{T L}^{\mathcal{H}}, \frac{1}{2}(\nabla d f)_{T L}^{\mathcal{H}}+\nabla^{v} d f\right) \tag{120}
\end{equation*}
$$

so that $\tilde{f}: N \rightarrow u^{*} N$ is harmonic if and only if $[\tau(f)]_{T L}^{\mathcal{H}}=0$ and $[\tau(f)]^{\mathcal{V}}=0$. Therefore $f: L \rightarrow N$ is harmonic if and only if $\tilde{f}: N \rightarrow u^{*} N$ is harmonic and $[\tau(f)]_{T L^{\perp}}^{\mathcal{H}}=0$. This completes the proof.
From the proof of theorem 7.1 (more precisely from (119) and (120)), we obtain:
Theorem 7.2 Let us consider the situation described by theorem 7.1. Then $f: L \rightarrow N$ is superflat if and only if the corresponding section $\tilde{f}: L \rightarrow u^{*} N$ is superflat. Furthermore $f: L \rightarrow$ $N$ is totally geodesic if and only if $\tilde{f}: L \rightarrow u^{*} N$ is totally geodesic and $[\nabla d f]_{T L^{\perp}}^{\mathcal{H}}=0$ (i.e. $\left.[d \pi(\nabla d f)]_{T L^{\perp}}=0\right)$.

Remark 7.1 The metric defined in example 4.1 in $u^{*} N$ (and thus in theorems 7.1 and 7.2, i.e. the metric induced by the product metric, is given by

$$
\begin{equation*}
|(\xi, \eta)|^{2}=2|\xi|^{2}+\left|\eta^{\mathcal{V}}\right|^{2} \tag{121}
\end{equation*}
$$

whereas, when $\pi: N \rightarrow M$ is a Homogeneous fibre bundle, the metric in $u^{*} N$, considered as an Homogeneous fibre bundle, is defined in 4.2 by equation (58) and is given by

$$
\begin{equation*}
|(\xi, \eta)|^{2}=|\xi|^{2}+\left|\eta^{\mathcal{V}}\right|^{2} \tag{122}
\end{equation*}
$$

However, theorems 7.1 and 7.2 hold, of course, also with the metric (122). Indeed, first remark that the theorems hold if we multiply the product metric in $L \times N$ by a constant factor. Then just apply these theorems with the same $(M, g)$ (and thus the same $\left(L, u^{*} g\right)$ ), $N$ endowed with the new metric $|\cdot|_{\mathcal{H}}^{2}+2|\cdot|_{\mathcal{V}}^{2}$ (the old one being $|\cdot|_{\mathcal{H}}^{2}+|\cdot|_{\mathcal{V}}^{2}$ ) and endow $L \times N$ with $\frac{1}{2}$ times the product metric, then the induced metric on $u^{*} N$ is (122): $\frac{1}{2}\left(|\xi|^{2}+\left(|\xi|^{2}+2\left|\eta^{\mathcal{V}}\right|^{2}\right)\right)=|\xi|^{2}+\left|\eta^{\mathcal{V}}\right|^{2}$.

### 7.2 Riemannian $f$-structures

## References

[1] I. Agricola, Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory, preprint, 2002.
[2] B. Alexandov, Th. Friedrich, Nils Schoemann, almost Hermitian 6-manifolds revisited, J. Geom. Phys. 53 (2005), 1-30.
[3] J. An, Z. Wang, On the realization of Riemannian symmetric spaces in Lie groups II, preprint arXiv: math/0504120.
[4] A.L. Besse, Einstein Manifolds, Spinger-Verlag, Berlin, Heidelberg, New York, 1987.
[5] C. Bohle, Constrained Willmore tori in the 4-sphere.
[6] F.E. Burstall, Harmonic tori in spheres and complex projective spaces
[7] F.E. Burstall, I. Khemar, Twistors, 4-symmetric spaces and integrable systems, Mathematische Annalen (2009) 344: 451-461, (arXiv:0804.4235).
[8] F.E. Burstall, F. Pedit, Harmonic maps via Adler-Kostant-Symes Theory, Harmonic maps and integrable systems, A.P. Fordy, J.C. Wood (Eds.), Vieweg (1994), 221-272.
[9] F. Burstall, F. Pedit, U. Pinkall, Schwarzian derivatives and flow of surfaces, arxiv:math/011169.
[10] F.E. Burstall and J.H. Rawnsley, Twistor theory for Riemannian Symmetric Spaces with applications to harmonic maps of Riemann Surfaces Lect. Notes in Math., vol. 1424, Springer, Berlin, Heidelberg, New York, 1990.
[11] J. Dieudonné, Éléments d'analyse, Tome 2, Gauthiers-Villars.
[12] J. Dorfmeister, F. Pedit and H.-Y. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. in Analysis and Geometry, 6(4) (1998), p. 633-668.
[13] T. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., Vol. 6, No. 2, pp. 303, June 2002.
[14] Hermitian connections and Dirac operators, Boll. U.MI. (7) 11-B (1997), Suppl. fasc. 2, 257-288.
[15] Gray-Hervella
[16] R. Harvey, Spinors and Calibrations, Acadamic Press Inc., 1990.
[17] R. Harvey and H. B. Lawson, Calibrated geometries, Acta Mathematica, 148 (1982), p. 47-157.
[18] F. Hélein, Applications harmoniques, lois de conservations et repères mobiles, Diderot éditeur, Paris 1996; or Harmonic maps, conservation laws and moving frames, Cambridge University Press 2002.
[19] F. Hélein, Constant mean Curvature Surfaces, Harmonic maps and Integrable Systems, Lecture in Mathematics, ETH Zürich, Birkhäuser 2001.
[20] F. Hélein, Willmore immersions and loop groops, J. Diff. Geometry, 50(2) (1998), p.331338.
[21] F. Hélein and P. Romon, Hamiltonian stationary Lagrangian surfaces in $\mathbb{C}^{2}$, Comm. in Analysis and Geometry Vol. 10, N. 1, 2002, p. 79-126.
[22] F. Hélein and P. Romon, Weierstrass representation of lagrangian surfaces in four dimensional spaces using spinors and quaternions, Comment. Math. Helv., 75 (2000), p. 668-680.
[23] F. Hélein and P. Romon, Hamiltonian stationnary Lagrangian surfaces in Hermitian symmetric spaces, in Differential Geometry and Integrable Systems, Martin Guest, Reiko Miyaoka, and Yoshihiro Ohnita, Editors-AMS, 2002.
[24] S. Helgason, Differential geometry, Lie group and symmetric spaces, Academic Press, Inc., 1978.
[25] M. Higaki, Actions of loop groups on the space of harmonic maps into reductive homogeneous spaces, J. Math. Sci. Univ. Tokyo 5 (1998), 401-421.
[26] J.A. Jimenez, Riemannian 4-symmetric spaces, Transactions of the American Mathematical Society, Vol.306, No.2. (Apr.,1988), pp. 715-734.
[27] S. Ishihara, K. Yano, On Integrability conditions of a structure satisfying $f^{3}+f=0$, Quart. J. math. Oxford (2), 15 (1964), 217-22.
[28] I. Khemar, Surfaces isotropes de $\mathbb{O}$ et systèmes intégrables., Journal of Differential Geometry 79 (2008) 479-516, (arXiv:math.DG/0511258).
[29] I. Khemar, Supersymmetric Harmonic Maps into Symmetric Spaces, Journal of Geometry and Physics 57 (2007) 1601-1630, (arXiv : math.DG/0511703).
[30] I. Khemar, Geometric interpretation of Second Elliptic Integrable Systems, Differential Geometry and its Applications, doi : 10.1016/j.difgeo.2009.03.016, (arXiv:0803.3341).
[31] V.F. Kirichenko, K-spaces of maximal rank, Mat.Zam. 22 (1977), 465-476.
[32] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the mathematical society of Japan, Iwanami Shoten, Publishers and Princeton University Press, 1987.
[33] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vols. 1,2, Wiley, New York, 1963, 1969.
[34] O. Kowalski, Generalized symmetric spaces, Lect. Notes Math. 805. Springer 1980.
[35] P. M. Quan, Intoduction à la géométrie des variétés différentiables, Monographies Universitaires de Mathématiques, Dunod Paris 1969.
[36] A. Pressley and G. Segal, Loop groops, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1986.
[37] J.H. Rawnsley, $f$-structures, $f$-twistor spaces and harmonic maps. In: Geometry seminar L.Bianci, Lect. Notes Math. 1164. Springer 1986.
[38] C.L. Terng, Geometries and Symmetries of Soliton Equations and Integrable Elliptic Equations, preprint arXiv:math.DG/0212372.
[39] K. Uhlenbeck, Harmonic maps into Lie group (classical solutions of the chiral model), J. Differential Geometry, 30 (1989), 1-50.
[40] J.A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphims. I, II, J. Differential Geom. 2 (1968), 77-159.
[41] C.M. Wood, The Gauss Section of a Riemannian Immersion, J. London Math. Soc. (2) 33 (1986) 157-168.
[42] C.M. Wood, Harmonic sections of homogeneous fibre bundles, Differential Geometry and its applications 19 (2003) 193-210.


[^0]:    ${ }^{1}$ Let us point out that in general $T^{*}$ is not closed even if it is $\nabla$-parallel. For example, in a Riemannian naturally reductive homogeneous space $G / H$, endowed with its canonical connection $\nabla^{0}$, we have $\nabla^{0} T=0$ but $d T^{*}(X, Y, Z, V)=-2\left\langle\mathrm{Jac}_{\mathfrak{m}}(X, Y, Z), V\right\rangle$ where $\mathrm{Jac}_{\mathfrak{m}}$ is the $\mathfrak{m}$-component of the Jacobi identity (i.e. the sum of the circular permutations of $\left.\left[X,[Y, Z]_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)$. Of course $\mathfrak{m}$ denotes the $\operatorname{Ad} H$-invariant summand in the reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$.
    ${ }^{2}$ In fact, we need a naturally reductive metric on $N$ to ensure that $T^{*}$ is a 3 -form. But if we allow PseudoRiemannian metrics and if $\mathfrak{g}$ is semisimple then the metric defined by the Killing form is naturally reductive.

[^1]:    In fact, the elliptic integrable system is a priori written in an affine context, i.e. its natural - in the sense of initial- geometric interpretation takes place in the context of affine geometry in terms of the affine connections $\nabla^{t}=\nabla^{0}+t[,]_{[\mathfrak{m}]}$. If we want that this interpretation takes place in the context of Riemannian geometry we need, of course, to add some hypothesis of compactness, like the compactness of $\mathrm{Ad}_{\mathfrak{m}} G_{0}$ and the natural reductivity. But we do not need these hypothesis if we work in the Pseudo-Riemannian context.

[^2]:    ${ }^{3} \mathcal{U}^{M}$ is the $\operatorname{Ad} H$-invariant extension of $\mathcal{U}^{\mathfrak{m}}: \mathfrak{m} \oplus \mathfrak{m} \rightarrow \mathfrak{m}$, its restriction to $\mathfrak{m} \oplus \mathfrak{m}$.

[^3]:    ${ }^{4}$ instead of $\prod_{j=0}^{m} \mathfrak{g}_{-j}^{\mathbb{C}}$.

[^4]:    ${ }^{5}$ Our study, in the present paper, is local so one can suppose (when it is necessary to do) either that $L$ is implicitely simply connected or that all lifts and integrations are done locally. We consider that these considerations are implicit and will not precise these most of the time.
    ${ }^{6}$ Remark that $\alpha_{\bullet}$ determines $\left(\alpha_{\lambda}\right)_{\lambda \in \mathbb{C}^{*}}$, when this latter satisfies (28).

[^5]:    ${ }^{7}$ That is to say the minimal, but non maximal, determined cases.

[^6]:    ${ }^{8}$ See also section 6 , theorem 6.3 .
    ${ }^{9}$ See footnote 8

[^7]:    ${ }^{10}$ see remark 3.1

[^8]:    ${ }^{11}$ see remark 3.2

[^9]:    ${ }^{12} \mathcal{B}_{j}(J)$ is stable by $\operatorname{Ad} J$ and we have $\mathcal{B}_{j}(J)=J . \mathfrak{s o}_{j}(J)=\mathfrak{s o}_{j}(J) . J$. Besides we have more generally $J . \mathcal{A}_{j}(J)=$ $\mathcal{A}_{j}(J) . J=\mathcal{A}_{j}(J)$.
    ${ }^{13}$ The conjugaison by $J$ is denoted by $\operatorname{Int} J: G L_{n}(\mathbb{R}) \rightarrow G L_{n}(\mathbb{R})$ when the domain of defintion is a Lie subgroup and by $\operatorname{Ad} J: \mathfrak{g l}_{n}(\mathbb{R}) \rightarrow \mathfrak{g l}_{n}(\mathbb{R})$ when it is a Lie subalgebra.
    ${ }^{14}$ We confuse $j \in \mathbb{Z}_{r}$ and its representant in $\{0, \ldots, r-1\}$.

[^10]:    ${ }^{15}$ We mean $\mathfrak{u}_{j-1}(J)^{\mathbb{C}}=\oplus_{q=0}^{(r, j)-1} \mathfrak{s o}_{q p}(J)$

[^11]:    ${ }^{16}$ see remark 3.7
    ${ }^{17} \alpha_{0}$ denotes off course the connected component of $J_{0}$ in $\mathcal{Z}_{2 k}\left(T_{p_{0}} M\right)$.

[^12]:    ${ }^{18}$ we denote by the same letter the fibration $\mathrm{p}: E \rightarrow M$ and all its "tensorial extensions" $: \mathrm{p}: \operatorname{End}(E) \rightarrow M$, $\mathrm{p}: \mathfrak{s o}(E) \rightarrow M$, etc..
    ${ }^{19}$ using the notations defined in section 3.1 .2 (i.e. the definition of $\mathfrak{s o}_{j}(J)$ for $j \in \mathbb{Z} / 2 \mathbb{Z}$ ).

[^13]:    ${ }^{20}$ still with the notation defined in section 3.1.2

[^14]:    ${ }^{21}$ and with the notations of section 3.1.3, in particular $p=\frac{r}{(r, j)}$.

[^15]:    ${ }^{22}$ i.e. a morphism of vector bundle
    ${ }^{23}$ In the following reasoning, we will forget the index $" \mid N_{\mathcal{Z}}^{j} "$ in $\mathcal{H}_{\mid N_{\mathcal{Z}}^{j}}$ to do not weigh down the equations. The right notation will reapear in the final equation.
    ${ }^{24}$ remark that $\mathcal{B}_{*}\left(E, J_{j}\right)=J^{j} \cdot \mathfrak{s o}_{*}\left(E, J^{j}\right)=J^{j} .\left(\left(\oplus_{\left.\left.i \in \mathbb{Z}_{r} \backslash p . \mathbb{Z}_{r} \mathfrak{s o}_{i}(E, J)\right) \cap \mathfrak{s o}(E, J)\right), ~(E)}\right.\right.$

[^16]:    ${ }^{25}$ Obviously, since $J$ is a local section, everything is local here and $E$ must be replaced by $E_{U}:=\mathrm{p}{ }^{-1}(U)$, but we do not want to weigh down the notations.

[^17]:    ${ }^{26}$ In particular, according to (65), we recover, for this example, the Homogeneous structure equation (60).
    ${ }^{27}$ Or in other words $[g, a] \in \mathfrak{h}_{G}=G \times_{H} \mathfrak{h} \mapsto\left[g, \operatorname{ad}_{\mathfrak{m}} a\right] \in G \times_{H} \mathfrak{s o}(\mathfrak{m}) \cong \mathfrak{s o}(T M)$.

[^18]:    ${ }^{28}[] \mathfrak{p}$ denotes as usual the $\mathfrak{p}$-component.
    ${ }^{29}$ We can also use directely theorem 4.5 .

[^19]:    ${ }^{30}$ See section 4.3 .4 for the definition of vertical harmonicity in $\mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(M, J_{2}\right)$.

[^20]:    ${ }^{31}$ In all the section 4.3, as it was the case in all the section $4.2 \mathrm{~N}:=Q / K$.
    ${ }^{32}$ and which is in fact nothing but $\mathcal{J}^{*} \mathcal{I}=\mathcal{I} \circ \mathcal{J}$, see example 4.2 .
    ${ }^{33}$ See remark (4.8) (and more precisely equation (72) for the identification map.
    ${ }^{34}$ Since $\pi^{*} E$ is canonically endowed with the complex structure $\mathcal{J}$, we need not to precise this latter in the notation $\mathfrak{s o}_{ \pm}\left(\pi^{*} E\right)$, whereas $E_{x}$, for $x \in M$, could be endowed with any element $J_{x} \in \Sigma^{+}\left(E_{x}\right)$, this is why we must precise it in the notation $\mathfrak{s o}_{ \pm}\left(E_{x}, J_{x}\right)$.

[^21]:    ${ }^{35}$ and which is in fact nothing but $\mathcal{J}^{*} \mathcal{I}=\mathcal{I} \circ \mathcal{J}$, see example 4.3.

[^22]:    ${ }^{36}$ See remark 4.9 and 4.10 .

[^23]:    ${ }^{37}$ As usual $r_{p^{\prime}}$ is the order of $\operatorname{Ad} J$, i.e. $r_{p^{\prime}}=p^{\prime}$ if $p^{\prime}$ is odd, and if $p^{\prime}$ is even then $r=p^{\prime}$ if $J^{\frac{p^{\prime}}{2}} \neq-\operatorname{Id}$ and $r_{p^{\prime}}=\frac{p^{\prime}}{2}$ if $J^{\frac{p^{\prime}}{2}}=-$ Id.

[^24]:    ${ }^{38}$ Remark that here $r_{p^{\prime}}$ is the order of $\operatorname{Ad}\left(J_{0}^{\alpha}\right)^{j}$, so that $r_{p^{\prime}}=\frac{r}{(r, j)}=p$.
    ${ }^{39}$ The restriction of the identification (72), $\mathfrak{h}_{Q} \cong \mathfrak{s o}(E)$ to $\mathfrak{h}_{Q^{j}}^{j}$ gives rises to an identification $\mathfrak{h}_{Q^{j}}^{j}:=Q^{j} \times{ }_{H^{j}} \mathfrak{h}^{j} \cong$ $\mathfrak{s o}_{0}\left(E, J_{j}\right)$.

[^25]:    ${ }^{40}$ with notation defined in remark 3.4
    ${ }^{41}$ see remark 4.14

[^26]:    ${ }^{42}$ That is to say the notations for $\mathcal{Z}_{2 k, 2}^{\alpha_{0}}\left(G / H, J_{2}\right)$ will have the subscript " 2 " and these of $G / G_{0}$ will not have subscript according to 4.3.1 and 4.3.4

[^27]:    ${ }^{43}$ and to be coherent with the notation used until now, in the paper.

[^28]:    ${ }^{44}$ and $\nabla^{M}$ the unique torsion free complex connection in $M$, which coincides also with the Levi-Civita connection of any Hermitian metric on $M$.

[^29]:    ${ }^{45}$ i.e. the $(0,2)$-component of the extension $\hat{R}$ of $R$ to $\Lambda^{2} T^{*} M^{\mathbb{C}}$ by $\hat{\mathbb{C}}$-linearity.

[^30]:    ${ }^{46}$ i.e. $T \in \mathcal{C}(\mathcal{T})$

[^31]:    ${ }^{47}$ chosen according to our convention explained in subsection 2.1.2: that is $\tau_{\mathfrak{m}}$ leaves invariant the inner product defining $h$.

[^32]:    ${ }^{48}$ In the sense of theorem 4.19

[^33]:    ${ }^{49}$ with $U(B)(X, Y, Z)=B(Z, X, Y)+B(Z, Y, X)$, for any $B \in \mathcal{T}$.

[^34]:    ${ }^{50}$ See remark 5.6.
    ${ }^{51}$ which means that denoting by $G(\mathfrak{m})$, the compact subgroup in $G L(\mathfrak{m})$ generated by $\Lambda_{\mathfrak{m}}(\mathfrak{m}):=$ $\left\{\left[\operatorname{ad}_{\mathfrak{m}}(X)\right]_{\mathfrak{m}}, X \in \mathfrak{m}\right\} \subset \mathfrak{g l}(\mathfrak{m})$, and by $\left\langle G(\mathfrak{m}), J_{0}\right\rangle$ the subgroup generated by $G(\mathfrak{m})$ and $J_{0}$, then $\left\langle G(\mathfrak{m}), J_{0}\right\rangle / G(\mathfrak{m})$ is compact.

[^35]:    ${ }^{52}$ Where we have removed the index " $g$ " which precises that the previous terms are computed with respect to some Hermitian metric $g$ on $L$.
    ${ }^{53}$ and we choose a naturally reductive $G$-invariant metric $h$ for which $\tau_{\mathfrak{m}}$ and thus $\underline{J}$ are orthogonal, see the Appendix.

[^36]:    ${ }^{54}$ Or to the Hermitian bundle $\left(\mathcal{H}, J^{\mathcal{H}}, h_{\mid \mathcal{H}}\right)$ if $(N, F)$ is endowed with a (compatible) metric $h$; see defintion 5.14 below for a precise definition of a compatible metric.

[^37]:    ${ }^{55}$ i.e. $\operatorname{ker} F=\mathcal{V}$ and $\operatorname{Im} F=\mathcal{H}$.

[^38]:    ${ }^{56}$ which means that denoting by $G(\mathfrak{n})$, the compact subgroup in $G L(\mathfrak{n})$ generated by $\Lambda_{\mathfrak{n}}(\mathfrak{n}):=\left\{\left[\operatorname{ad}_{\mathfrak{n}}(X)\right]_{\mathfrak{n}}, X \in\right.$ $\mathfrak{n}\} \subset \mathfrak{g l}(\mathfrak{n})$, and by $\left\langle G(\mathfrak{n}), I_{0}\right\rangle$ the subgroup generated by $G(\mathfrak{n})$ and $I_{0}:=\bar{J}_{0} \oplus-\operatorname{Id}_{\mathfrak{p}}$, then $\left\langle G(\mathfrak{n}), I_{0}\right\rangle / G(\mathfrak{n})$ is compact.

[^39]:    ${ }^{57}$ Where we have removed the index " $g$ " which precises that the previous terms are computed with respect to some Hermitian metric $g$ on $L$.
    ${ }^{58}$ See the Appendix.

[^40]:    ${ }^{59}$ Such an Ad $K$-invariant supplement always exists if $\mathfrak{m}$ admits an $\operatorname{Ad} K$-invariant non degenerated inner product, which is always the case for example if $\mathfrak{g}$ is semisimple (take the restriction to $\mathfrak{m}$ of the Kiling form).

