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Introduction

In this paper, we give a geometric interpretation of all them-th elliptic integrable
systems associated to a k′-symmetric space N = G/G0 (in the sense of C.L.
Terng [32]).

This system can be written as a zero curvature equation

dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ C∗,

where αλ =
∑m

j=0 λ
−juj + λj ūj =

∑m
j=−m λ

jα̂j is a 1-form on a Riemann
surface L taking values in the Lie algebra g. The ”coefficient” uj is a (1, 0)-type
1-form on L with values in the eigenspace g−j of the automorphism τ : g→ g of
order k′ (defining the (locally) k′-symmetric space N = G/G0) with respect to
the eigenvalue ω−j

k′ . We denote by ωk′ a k′-th primitive root of unity. Moreover,
we call the integer m the order of the system.
First, we remark that any solution of the system of order m is a solution of
the system of order m′, if m ≤ m′ (and the automorphism τ is fixed). In other
words, the system of orderm is a reduction of the system of orderm′, if m ≤ m′.
Moreover, it turns out that we have to introduce the integer mk′ defined by

mk′ =

[
k′ + 1

2

]
=

{
k if k′ = 2k

k + 1 if k′ = 2k + 1
if k′ > 1, and m1 = 0.

Then the general problem splits into three cases : the primitive case (m < mk′ ),
the determined case (mk′ ≤ m ≤ k′−1) and the underdetermined case (m ≥ k′).

The primitive systems have an interpretation in terms of F -holomorphic
maps, with respect to an f -struture F (F 3 + F = 0). More precisely:

• In the even case (k′ = 2k), we have a fibration G/G0 → G/H over a k-
symmetric space M = G/H (defined by the square of the automorphism τ of
order k′ defining N = G/G0). We also have a G-invariant splitting TN = H⊕V
corresponding to this fibration (i.e. a connection H on this fibration), and
then N is naturally endowed with an f -structure F which defines a complex
structure on the horizontal subbundle H and vanishes on the vertical subbundle
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V . Moreover the eigenspace decomposition of the order k′ automorphism τ gives
us some G-invariant decomposition H = ⊕k−1

j=1 [mj ], where mj ⊂ g is defined
by mj = g−j ⊕ gj , and [mj] ⊂ TN the corresponding G-invariant subbundle.
This allows to define, by multiplying F on the left by the projections on the
subbundles Hm = ⊕mj=1[mj], a family of f -structures F [m], 1 ≤ m ≤ k − 1.
Then the primitive system of order m (m < mk′ = k) associated to G/G0 is
exactly the equation for F [m]-holomorphic maps. In particular any solution of
a primitive system is F -holomorphic.

• In the odd case (k′ = 2k + 1), N = G/G0 is naturally endowed with an
almost complex structure J . Then the solutions of the primitive systems are
exactly the J-holomorphic curves. Moreover, in the same way as for the even
case, the eigenspace decomposition of τ provides a G-invariant decomposition
TN = ⊕kj=1[mj ], which allows to define a family of f -structures J [m], 1 ≤ m ≤ k,
with J [k] = J . Then the primitive system of order m (m < mk′ = k + 1)

associated to G/G0 is exactly the equation for J [m]-holomorphic maps. In other
words, the solutions of the primitive system of order m are exactly the integral
holomorphic curves of the complex Pfaff system ⊕mj=1[mj ] ⊂ TN in the almost
complex manifold (N, J).

The determined case We call ”the minimal determined system” the deter-
mined system of minimal order mk′ , and ”the maximal determined system” the
determined system of maximal order k′ − 1.

• First, the determined system has two model cases:

In the even case, this model is the first elliptic integrable system associated
to a symmetric space (m = 1, k′ = 2) which is - as it is well known - exacly
the equation of harmonic maps from the Riemann surface L into the symmetric
space under consideration. This is the ”smallest” determined system, i.e. with
lowest order of symmetry in the target space N = G/G0. In this case -N is
symmetric- the determined case is reduced to one system, the one of order 1.
All the further determined systems associated to target spaces N with higher
order of symmetry will be modeled on this system i.e. on harmonic maps into
a symmetric space.

In the odd case, this model is the second elliptic integrable system associated
to a 3-symmetric space. This is ”smallest” determined system in the odd case,
i.e. with lowest odd order of symmetry in the Target space N = G/G0. We
prove that this system is exactly the equation for holomorphically harmonic
maps into the almost complex manifold (N, J) with respect to the anticanonical
connection ∇1 = ∇0 + [ , ][m], where ∇0 is the canonical connection. Or
equivalently this is the equation for holomorphically harmonic maps into the
almost complex manifold (N,−J) with respect to the canonical connection ∇0.
First given a general almost complex manifold (N, J) with a connection ∇, we
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define holomorphically harmonic maps f : L→ N as the solution of the equation

[
∂̄∇∂f

]1,0
= 0 (1)

where [ ]1,0 denotes the (1, 0)-component according to the splitting TNC =
T 1,0N ⊕ T 0,1N defined by J . This equation is equivalent to

d∇df + Jd∇ ∗ df = 0

or, equivalently, using any Hermitian metric g on L

Tg(f) + Jτg(f) = 0

where Tg(f) = ∗f∗T = f∗T (e1, e2), with (e1, e2) an orthonormal basis of TL,
and τg(f) = ∗d∇ ∗ df = Trg(∇df) is the tension field of f . Of course Trg
denotes the trace with respect to g, and the expression∇df denotes the covariant
derivative of df with respect to the connection induced in T ∗L ⊗ f∗TN by ∇
and the Levi-Civita connection in L.
In particular, we see that if ∇ is torsion free or more generally if f is torsion
free, i.e. f∗T = 0, then holomorphic harmonicity is equivalent to harmonicity.
Therefore, this new notion is interesting only in the case of a non torsion free
connection ∇.
We prove that we can also interpret the holomorphic harmonicity in terms of
J-twisted harmonic maps. Let us define this notion. Let (E, J) be a complex
vector bundle over an almost complex manifold (M, jM ). Then let ∇ be a
connection on E. Then we can decompose it in an unique way in the form

∇ = ∇0 +A

where ∇0J = 0 and A ∈ C(T ∗M ⊗ End(E)), AJ = −JA. Then we set

∇J = ∇0 + (A ◦ jM )J.

We say that a map f : (L, jL)→ (N, J,∇) is J-twisted harmonic if and only if

Trg((f
∗∇)Jdf) = 0.

Now, let us suppose that ∇ is almost complex, i.e. ∇J = 0. Then, according
to equation (1), we see that any holomorphic curve f : (L, jL)→ (N, J) is anti-
holomorphically harmonic, i.e. holomorphically harmonic with respect to −J .
In particular, this allows to recover that a 1-primitive solution (i.e. of order
m = 1) of the elliptic system associated to a 3-symmetric space is also solution
of the second elliptic system associated to this space.

Moreover, the holomorphically harmonic maps admit a formulation very analo-
gous to that of harmonic maps in term of the vanishing of some ∂̄∂-derivative,
which implies a well kown caracterisation in term of holomorphic 1-forms. In-
deed we prove that f : (L, jL) → (N, J,∇) is holomorphically harmonic if and
only if

∂̂
b∇
∂̂f = 0, (2)
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i.e. ∂̂f is a holomorphic section of T ∗
1,0L ⊗C f

∗TN . Here the hat ” ˆ” means
that we extend a 1-form on TL, like d or ∇, by C-linearity as a linear map from
TLC into the complex bundle (TN, J). In other words instead of extending
these 1-forms as C-linear maps from TLC into TNC as it is usual, we use the
already existing structure of complex vector bundle in (TN, J) and extend these
very naturally as C-linear map from TLC into the complex bundle (TN, J).
Therefore we can conclude that holomorphically harmonic maps have the same
formulation as harmonic maps with the difference that instead of working in the
complex vector bundle TNC, we stay in TN which is already a complex vector
bundle in which we work.

Finally, let us suppose that N is endowed with a ∇-parallel Hermitian metric h.
Therefore (N, J, h) is an almost Hermitian manifold with a Hermitian connection
∇. Suppose also that J anticommutes with the torsion T of ∇ i.e.

T (X, JY ) = −JT (X,Y )

which is equivalent to

T =
1

4
NJ and T (JX, Y ) = T (X, JY )

where NJ denotes the torsion of J i.e its Nijenhuis tensor.
Suppose also that the torsion of ∇ is totally skew-symmetric i.e.

T ∗(X,Y, Z) = 〈T (X,Y ), Z〉

is a 3-form. Lastly, we suppose that the torsion is closed, i.e. ∇T ∗ = 0 which is
equivalent to ∇T = 0. Then we prove that this implies that the 3-form

H(X,Y, Z) = T ∗(X,Y, JZ) = 〈T (X,Y ), JZ〉

is closed dH = 0.1

Then the equation for holomorphically harmonic maps f : L→ N is the equation
of motion (i.e. Euler-Lagrange equation) for the sigma model in N with the
Wess-Zumino term defined by the closed 3-form H. The action functional is
given by

S(f) = E(f) + SWZ(f) =
1

2

∫

L

|df |2dvolg +

∫

B

H,

where B is 3-submanifold (or indeed a 3-chain) in N whose boundary is f(L).
Then since dH = 0, the variation of the Wess-Zumino term is a boundary term

δSWZ =

∫

B

LδfH =

∫

B

dıδfH =

∫

f(L)

ıδfH,

1Let us point out that in general T ∗ is not closed even if it is ∇-parallel. For example,
in a Riemannian naturally reductive homogeneous space G/H, endowed with its canonical
connection ∇0, we have ∇0T = 0 but dT ∗(X, Y, Z, V ) = −2〈Jacm(X, Y, Z), V 〉 where Jacm

is the m-component of the Jacobi identity (i.e. the sum of the circular permutations of
[X, [Y, Z]m ]m). Of course m is the AdH-invariant summand in the reductive decomposition
g = h⊕ m.
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whence its contribution to the Euler-Lagrange equation involves only the origi-
nal map f : L→ N .
In particular, applying this result to the case we are interseted in, i.e. N is
3-symmetric, we obtain:
The second elliptic system associated to 3-symmetric space N = G/G0 is the
equation of motion for the sigma model in N with the Wess-Zumino term de-
fined by the closed 3-form H, corresponding to the canonical almost complex
structure J and the canonical connection ∇0.2

• The minimal determined system has an interpretation in terms of horizon-
tally holomorphic vertically harmonic maps f : L→ N = G/G0. It also has an
equivalent interpretation in terms of vertically harmonic twistor lifts in some
twistor space.

• To the best of our understanding, the maximal determined system does not
have a satisfactory geometric interpretation in terms of the geometric map f into
the homogeneous space N , but only in terms of twistor lifts Jf in some twistor
spaces (which are subbundles of the bundle of endormorphisms in M = G/H
in the even case and in N = G/G0 in the odd case; more precisely these are
subbundles of finite order isometries). In fact, contrary to what happens in the
minimal determined system - where the interpretations are similar in the ho-
mogeneous space N and in the twistor space: in terms of vertical harmonicity
-, in the maximal determined system, the interpretation in the twistor space
is in terms of J̃-twisted harmonic twistor lift Jf but the equation of J-twisted
harmonicity of f : L → N does not give us the maximal determined elliptic
system. So it seems that the general (satisfactory) interpertation of the general
determined system is only in terms of twistor lifts.

• For the intermediate determined systems (mk′ < m < k′ − 1), these are
obtained from the maximal determined case by adding holomorphicity in the
subbundle H2mk′−1−m ⊂ H (defined above). It means that the m-th deter-
mined system has a geometric interpretation in terms of J̃-twisted harmonic

twistor lifts Jf which are H̃2mk′−1−m-holomorphic, i.e. [∇Jf ◦ jL]H̃
2m

k′−1−m

=

J [∇Jf ]H̃2m
k′−1−m

. Let us precise that H̃2mk′−1−m is the lift of H2mk′−1−m as
a subbundle of the horizontal subbundle of the twistor space. Moreover ∇ is a
connection on the twistor space.

2In fact, we need a naturally reductive metric on N to ensure that T ∗, and thus H, is closed.
But if we allow Pseudo-Riemannian metric and if g is semisimple then the metric defined by
the Killing form is naturally reductive. In fact, the elliptic integrable system is an affine
system, i.e. its natural geometric interpretation takes place in the context of affine geometry
in terms of the affine connections ∇t = ∇0 + t[ , ][m]. If we want that this interpretation
takes place in the context of Riemannian geometry we need, of course, to add some hypothesis
of compactness, like the compactness of AdmG0 and the natural reductivity. But we do not
need these hypothesis if we work in the Pseudo-Riemannian context.
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The underdetermined case We prove that the m-th underdetermined sys-
tem (m > k′ − 1) is in fact equivalent to some m-th determined or primitive
system associated to some new automorphism τ̃ defined in a product gq+1 of
the initial lie algebra g. More precisely, we write

m = qk′ + r, 0 ≤ r ≤ k′ − 1

the Euclidean division of m by k′. Then we consider the automorphism in gq+1

defined by

τ̃ (a1, . . . , aq+1) ∈ gq+1 7−→ (aq+1, τ(a1), . . . , aq) ∈ gq+1.

Then τ̃ is of order (q + 1)k′. We prove that the initial m-th system associated
to (g, τ) is in fact equivalent to the m-th system associated to (gq+1, τ̃ ).

Aknowledgements The author wishes to thank Josef Dorfmeister for his com-
ments on the first parts of this paper. He is also grateful to him for his interest
to the present work.

Index of notations

0.1 Generalities

• Let k ∈ N. Then we will often confuse - when it is convenient to do it- an
element in Zk with one of its representants. For example, let (ai)i∈Zk

be a family
of elements in some vector space E, and 0 ≤ m < k/2 an integer. Then we will
write

ai = a−i 1 ≤ i ≤ m
to say that this equality holds for all i ∈ {1 + kZ, . . . ,m+ kZ} ⊂ Zk.
• Let us suppose that a vector space E admits some decomposition E = ⊕i∈IEi.
Then, for any vector v ∈ E we denote by [v]Ei its component in Ei.

0.2 Almost complex geometry

Let E be a real vector space endowed with a complex structure: J ∈ End(E),
J2 = −Id. Then we denote by E1,0 and E0,1 respectively the eigenspaces of
J associated to the eigenvalues ±i respectively. Then we have the following
eigenspace decomposition

EC = E1,0 ⊕ E0,1 (3)

and the following equalities

E1,0 = ker(J − iId) = (J + iId)EC

E0,1 = ker(J + iId) = (J − iId)EC (4)

so that remarking that (J ± iId)iE = (Id∓ iJ)E = (Id ∓ iJ)JE = (J ± iId)E,
we can also write

E1,0 = (J + iId)E = (Id− iJ)E = {X − iJX,X ∈ E}
E0,1 = (J − iId)E = (Id + iJ)E = {X + iJX,X ∈ E} (5)
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In the same way we denote by

(E∗)C = E∗
1,0 ⊕ E∗

0,1

the decomposition induced on the dual E∗ by the complex structure J∗ : η ∈
E∗ → ηJ ∈ E∗. Besides, given a vector Z ∈ EC, we denote by

Z = [Z]1,0 + [Z]0,1

its decomposition according to (3). Let us remark that

[Z]1,0 = (Id− iJ)Z and [Z]0,1 = (Id + iJ)Z.

Moreover, given η a n-form on E, we denote by η(p,q) its component in Λp,qE∗

according to the decomposition

ΛnE∗ = ⊕p+q=nΛp,qE∗,

where Λp,qE∗ =
(
ΛpE∗

1,0

)
∧

(
ΛqE∗

0,1

)
. However for 1-forms, we will often prefer

the notation η = η′ + η′′, where η′ and η′′ denote respectively η(1,0) and η(0,1).
More generally, all what precedes holds naturally when E is a real vector bundle
over a manifold M , endowed with a complex structure J .
We will write

d = ∂ + ∂̄

the decompostion of the exterior derivative of differential forms on an almost
complex manifold (M,J), according to the decomposition TMC = T 1,0M ⊕
T 0,1M .

In this paper, we will use the following definitions.

Definition 0.1 Let E be a real vector bundle. A f -structure in E is an endo-
morphism F ∈ C(EndE) such that F 3 + F = 0. An f -structure on a manifold
M is a f -structure in TM .

An f -structure F in a vector bundle E is determined by its eigenspaces decom-
position that we will denote by

EC = E+ ⊕ E− ⊕ E0

where E± = ker(F ∓ iId) and E0 = kerF . In particular if E = TM , then we
will set T iM = (TM)i, ∀i ∈ {0,±1}.

Definition 0.2 Let (M,JM ) be an almost complex manifold and N a manifold
with a splliting TN = H⊕ V. Let us suppose that the subbundle H is endowed
with a complex structure JH. Then we will say that a map f : (M,JM )→ N is
H-holomorphic if it satisfies the equation

[
df ◦ JM

]H
= JH[df ]H.

Moreover, if for some reason, H inherits the name of horizontal subbundle, then
we will say that f is horizontally holomorphic.
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This situation occurs for example if N is endowed with a f -structure F which
leaves invariant H and F|H is a complex structure (i.e. T 0N ∩H = {0}).

1 Invariant connections on reductive homoge-

neous spaces

The references for this section where we recall some results that we will need in
this paper, are [27], [29], [9], and to a lesser extent [21] and [1].

1.1 Linear isotropy representation

Let M = G/H be a homogeneous space with G a Lie group and H a closed
subgroup of G. G acts transitively on M in a natural manner which defines a
natural representation: φ : g ∈ G 7→ (φg : p ∈ M 7→ g.p) ∈ Diff(M). Then kerφ
is the maximal normal subgroup of G included in H . Further, let us consider
the linear isotropy representation:

ρ : h ∈ H 7→ dφh(p0) ∈ GL(Tp0M)

where p0 = 1.H is the reference point in M . Then we have kerρ ⊃ kerφ.
Moreover the linear isotropy representation is faithful (i.e. ρ is injective) if and
only if G acts freely on the bundle of linear frame L(M).
We can always suppose without loss of generality that the action of G on M
is effective (i.e. kerφ = {1}) but it does not imply in general that the linear
isotropy representation is faithful. However if there exists on M a G-invariant
affine connection, then the linear isotropy representation is faithful provided that
G acts effectively on M . (Indeed, given a manifold M with an affine connection,
and p ∈M , an affine transformation of M is determined by (f(p), df(p)), i.e. f
is the identity if and only if it leaves one linear frame fixed).

1.2 Reductive homogeneous space

Let us suppose now that G/H is reductive, i.e. there exists a decomposition
g = h ⊕ m such that m is AdH-invariant: ∀h ∈ H,Adh(m) = m. Then the
surjective map ξ ∈ g 7→ ξ.p0 ∈ Tp0M has h as kernel and so its restriction to m

is an isomorphism m ∼= Tp0M . This provides an isomorphism of the associated
bundle G×H m with TM by:

[g, ξ] 7→ g.(ξ.p0) = Adg(ξ).p (6)

where p = π(g) = g.p0.
Moreover, we have a natural inclusion G ×H m 7→ G ×H g and the associated
bundle G×H g is canonically identified with the trivial bundle M × g via

[g, ξ] 7→ (π(g),Adg(ξ)). (7)
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Thus we have an identification of TM with a subbundle [m] of M × g, which we
may view as a g-valued 1-form β on M given by:

βp(ξ.p) = Adg[Adg−1(ξ)]m,

where π(g) = p, ξ ∈ g and [ ]m is the projection on m along h. Equivalently, for
all X ∈ TpM , β(X) is the unique element ξ ∈ [m]p (= Adg(m), with π(g) = p)
such that X = ξ.p, in other words β(X) is caracterized by

β(X) ∈ [m]p ⊂ g and X = β(X).p .

In fact, β is nothing but the projection on M of the H-equivariant 1-form on
G, θm (i.e. θm is the H-equivariant lift of β), defined as the m-component of the
left invariant Maurer-Cartan form of G, which can be written

(π∗β)g = Adg(θm) ∀g ∈ G (8)

with θg(ξg) = g−1.ξg for all g ∈ G, ξg ∈ TgG.

Notation For any AdH-invariant subspace l ⊂ m, we will denote by [l] the
subundle of [m] ⊂M × g defined by [l]g.p0 = Adg(l).

1.3 The (canonical) invariant connection

On a reductive homogeneous space M = G/H , the Ad(H)-invariant summand
m provides by left translation in G, a G-invariant distribution H(m), given by
H(m)g = g.m which is horizontal for π : G→M and right H-invariant and thus
defines a G-invariant connection in the principal bundle π : G → M . In fact
this procedure defines a bijective correspondance between reductive summands
m and G-invariant connections in π : G → M (see [27], chap. 2, Th 11.1).
Then the corresponding h-valued connection 1-form ω on G (of this G-invariant
connection) is the h-component of the left invariant Maurer-Cartan form of G:

ω = θh.

1.4 Associated covariant derivative

The connection ω induces a covariant derivative in the associated bundleG×H m ∼=
TM and thus a G-invariant covariant derivative ∇0 in the tangent bundle TM .
In particular, we can conclude according to section 1.1 that if G/H is reductive
then the linear isotropy representation is faithful (provided that G acts effec-
tively) or equivalently that kerAdm = ker ρ = kerφ. We will suppose in the
following that, without explicit or implicit reference to the contrary, the action
of G is effective and (thus) the linear isotropy representation is faithful.
One can compute explicitely ∇0.

Lemma 1.1 [9]

β(∇0
XY ) = X.β(Y )− [β(X), β(Y )], X, Y ∈ Γ(TM).

11



Let us write (locally) β(X) = AdU(Xm), β(Y ) = AdU(Ym) where U is a (local)
section of π and Xm, Ym ∈ C∞(M,m) then we have (using the previous lemma)

β(∇0
XY ) = AdU (dYm(X) + [α(X), Ym]− [Xm, Ym])

= AdU (dYm(X) + [αh(X), Ym] + [αm(X)−Xm, Ym])

where α = U−1.dU . Besides since U is a section of π (π ◦U = Id), then pulling
back (8) by U , we obtain β = AdU(αm) and then αm(X) = Xm, so that

β(∇0
XY ) = AdU (dYm(X) + [αh(X), Ym]) (9)

Remark 1.1 We could also say that Xm, Ym are respectively the pullback by
U of the H-equivariant lifts X̃, Ỹ of X,Y (given by β(Xπ(g)) = Adg(X̃(g))).
Then ∇0

XY lifts as the m-valued H-equivariant map on G:

∇̃0
XY = dỸ (X̃) + [θh(X̃), Ỹ ]

and then taking the U -pullback we obtain the previous result (without using
lemma 1.1).
Moreover, we can express ∇0 in term of the flat differentiation in the trivial
bundle M × g (⊃ [m]). Let us differentiate the equation Y = AdU(Ym) (we do
the identification TM = [m] ⊂M × g)

dY = AdU (dYm + [α, Ym]) = AdU (dYm + [αh, Ym])+AdU (([αm, Ym])) = ∇0Y+[β, Y ].

Finally,
dY = ∇0Y + [β, Y ] (10)

and we recover lemma 1.1.

1.5 G-invariant affine connections in terms of equivariant
bilinear maps

Now let us recall the following results about invariant connections on reductive
homogeneous spaces.

Theorem 1.1 [27] Let πP : P →M be a K-principal bundle over the reductive
homogeneous space M = G/H and suppose that G acts on P as a group of auto-
morphisms and let u0 ∈ P be a fixed pont in the fibre of p0 ∈M (πP (u0) = p0).
There is a bijective correspondance between the set of G-invariant connections
ω in P and the set of linear maps Λm : m→ k such that

Λm(hXh−1) = λ(h)Λm(X)λ(h)−1 for X ∈ m and h ∈ H (11)

where λ : H → K is the morphism defined by hu0 = u0λ(h) (H stabilizes the
fibre Pp0 = u0.K). The correspondance is given by

Λ(X) = ωu0(X̃), ∀X ∈ g (12)
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where X̃ is the vector field on P induced by X (i.e. ∀u ∈ P , φX̃t (u) = exp(tX).u)
and Λ: g→ k is defined by Λ|m = Λm and Λ|h = λ (hence completely determined
by Λm).

Corollary 1.1 In the previous theorem, let us suppose that P is a K-structure
on M = G/H, i.e. P is a subbundle of the bundle L(M) of linear frame on
M with structure group K ⊂ GL(n,R) = GL(m) (we identify as usual m to
Tp0M by ξ 7→ ξ.p0, and Tp0M to Rn via the linear frame u0 ∈ P ⊂ L(M)).
Then in terms of the G-invariant covariant derivative ∇ corresponding to the
G-invariant affine connection in P , ω, the previous bijective correspondance
may be given by

Λ(X)(Y ) = ∇X̃ Ỹ
where X̃, Ỹ are any (local) left G-invariant vector field extending X,Y i.e. there
exists a local section of π : G→M , g : U ⊂M → G such that X̃ = Adg(p)(X).p.

Remark 1.2 In theorem 1.1, the G-invariant connection in P defined by Λm =
0 is called the canonical connection (with respect to the decomposition g =
h + m). If we set P (M,K) = G(G/H,H) with group of automorphisms G,
the G-invariant connection defined by the horizontal distribution H(m) is the
canonical connection.
Now, let P be a G-invariant K-structure on M = G/H as in corollary 1.1.
Let P ′ be an G-invariant subbundle of P with structure group K ′ ⊂ K, then
the canonical connection in P ′ defined by Λm = 0 is (the restriction of ) the
canonical connection in P which is itself the restriction to P of the canonical
connection in L(M). In particular, if we set P ′ = G.u0, this is a subbundle
of P with group H , which is isomorphic to the bundle G(G/H,H). Then the
canonical affine connection in P ′ corresponds to the invariant connection in
G(G/H,H) defined by the distribution H(m).

Theorem 1.2 Let P ⊂ L(M) be a K-structure on M = G/H. Then the
canonical affine connection (Λm = 0) in P defines the covariant derivative ∇0

in TM (obtained from H(m) in the associated bundle G ×H m ∼= TM). More-
over there is a bijective correpondance between the set of of G-invariant affine
connections on M , ∇, determined by a connection in P , and the set of linear
maps Λm : m→ k ⊂ gl(m) such that

Λm(hXh−1) = Adm(h)Λm(X)Adm(h)−1 ∀X ∈ m, ∀h ∈ H, (13)

given by
∇ = ∇0 + Λ̄m

i.e. ∇XY = ∇0
XY + Λ̄m(X)Y for any vector fields X,Y on M , where with the

help of (13) we extended the Ad(H)-equivariant map Λm : m × m → m to the
bunlde G×H m = TM to obtain a map Λ̄m : TM × TM → TM .
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Example 1.1 Let us suppose that M is Riemannian (i.e. AdmH is compact
and m is endowed with an AdH invariant inner product which defines a G-
invariant metric on M) and let us take P = O(M) the bundle of orthonormal
frames on M , the previous correspondance is between the set of G-invariant
metric affine connection and the set of Ad(H)-equivariant linear maps Λm : m→
so(m).
In particular the canonical connection ∇0 is metric (for any G-invariant metric
on M).

Theorem 1.3 • G-invariant tensors on the reductive homogeneous space M =
G/H (or more generally G-invariant sections of associated bundles) are
parallel with respect to the canonical connection.

• The canonical connection is complete (the geodesics are exactly the curves
xt = exp(tX).p0, for X ∈ m).

• Let P be a G-invariant K-structure on M = G/H, then the G-invariant
connection defined by Λ: m → k has the same geodesics as the canonical
connection if and only if

Λm(X)X = 0, ∀X ∈ m

Theorem 1.4 The torsion tensor T and the curvature tensor R of the G-
invariant connection corresponding to Λm is given at the origin point p0 as
follows:

1. T (X,Y ) = Λm(X)Y − Λm(Y )X − [X,Y ]m,

2. R(X,Y ) = [Λm(X),Λm(Y )]− Λm([X,Y ]m)− adm([X,Y ]h),

for X,Y ∈ m.
In particular, for the canonical connection we have T (X,Y ) = −[X,Y ]m and
R(X,Y ) = −adm([X,Y ]h), for X,Y ∈ m; moreover we have ∇T = 0, ∇R = 0.

1.6 A Family of connections on the reductive space M

We take in what precede (i.e. in section 1.5) P = L(M). Then let us consider
the one parameter family of connections ∇t, 0 ≤ t ≤ 1 defined by

Λtm(X)Y = t[X,Y ]m, 0 ≤ t ≤ 1.

For t = 0, we obtain the canonical connnection ∇0. Since for any t ∈ [0, 1],
Λtm(X)X = 0, ∀X ∈ m, ∇t has the same geodesics as ∇0 and in particular is
complete. The torsion tensor is given (at p0) by

T t(X,Y ) = (2t− 1)[X,Y ]m. (14)

In particular ∇ 1
2 is the unique torsion free G-invariant affine connection having

the same geodesics as the canonical connection (according to theorems 1.3 and
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1.4).

If M is Riemannian, then let us take P = O(M), then ∇t is metric if and only
if Λtm takes values in k = so(m) if and only if (for t 6= 0)M is naturally reductive
(which means by definition that ∀X ∈ m, [X, ·]m is skew symmetric). Now (still

in the Riemannian case) let us construct a family of affine connections,
met

∇t ,
0 ≤ t ≤ 1, which are always metric:

met

∇t = ∇0 + t
(
[ , ][m] + UM

)

where UM : TM ⊕ TM → TM is the naturally reductivity term which is the
symmetric bilinear map defined by3

〈UM (X,Y ), Z〉 = 〈[Z,X ][m], Y 〉+ 〈X, [Z, Y ][m]〉 (15)

for all X,Y, Z ∈ [m]. Since UM is symmetric, the torsion of
met

∇t is once again
given by

T t(X,Y ) = (2t− 1)[X,Y ][m]

and thus
met

∇ 1
2 is torsion free and metric and we recover that

met

∇ 1
2 is the Levi-Civita

connection
met

∇ 1
2 = ∇L.C..

Obviously if M is naturally reductive then
met

∇t = ∇t, ∀t ∈ [0, 1]. Moreover if M is
(locally) symmetric, i.e. [m,m] ⊂ h, then all the connections coincide and are

equal to the Levi-Civita connection:
met

∇t = ∇t = ∇0 = ∇L.C..

Remark 1.3 ∇1 is interesting since it is nothing but the flat differentiation in
the trivial bundle M × g followed by the projection onto [m] (along [h]) (see
remark 1.1). So this connection is very natural and following [1], we will call it
the anticanonical connection.

1.7 Differentiation in End(T (G/H))

According to section 1.2, we have

End(T (G/H)) = G×H End(m) ⊂ (G/H)× End(g),

the previous inclusion being given by [g,A] 7→ (π(g),Adg ◦ A ◦ Adg−1) and
we embedd End(m) in g by extending the an endomorphism in m by 0 in h.
In other words End(T (G/H)) can be identified to the subbundle [End(m)] of
the trivial bundle (G/H)× End(g), with fibers [End(m)]g.p0 = End(Adg(m)) =
Adg(End(m))Adg−1 = Adg(End(m)⊕ {0})Adg−1.

3UM is the AdH-invariant extension of Um : m⊕ m → m, its restriction to m⊕ m.
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Now, let us compute in terms of the Lie algebra setting, the derivative of the
inclusion map I : End(T (G/H)) → M × End(g) or more concretely the flat
derivative inM×End(g) of any section of End(T (G/H)); to do that, we compute
the derivative of

Ĩ : (g,Am) ∈ G× End(m) 7−→ (g.p0, Adg ◦Am ◦Adg−1) ∈M × End(g),

we obtain

dĨ(g,Am) =
(
Adg(θm) . π(g), Adg (dAm + [adθ,Am]) Adg−1

)
.

Then let us decompose the endomorphisms in g by blocs (following g = h⊕m):

End(g) =

(
End(h) End(m, h)

End(h,m) End(m)

)
, (16)

and by regrouping terms, we obtain the following splitting

End(g) = End(m)⊕ (End(m, h)⊕ End(h,m)⊕ End(h)) ,

which applied to dĨ(g,Am), gives us the decomposition

dĨ(g,Am) =
(
0, Adg (dAm + [admθh, Am] + [[admθm]m, Am]) Adg−1

)
(17)

+
(
Adg(θm) . π(g), Adg ([admθm]h ◦Am −Am ◦ adhθm)Adg−1

)
.

The first term is in the vertical space VĨ(g,Am) = Adg(End(m))Adg−1 = End(Tπ(g)M)

and the previous decomposition (17) provides us with a splitting TEnd(M) =
V ⊕ H = π∗

M (End(M)) ⊕ H, i.e. a connection on End(M). Let us determine
this connection: we see that the projection on the vertical space (along the
horizontal space) corresponds to the projection on [End(m)] following (16) so
that according to remark 1.3, we can conclude that the horizontal distribution
H defines the connection ∇1 on End(TM) = TM∗ ⊗ TM .

Remark 1.4 We can recover this fact directly from the first term of (17) and
the definition of ∇1. Indeed, first recall that given two affine connections ∇, ∇′

on M , we can write ∇′ = ∇+F , where F is a section of TM∗⊗End(TM), and
then for any section A in End(TM),

∇′A = ∇A+ [F,A].

Besides ∇1 = ∇0 +[ , ][m], and moreover if we write (locally) A = (π(U), AdU ◦
Am ◦ AdU−1) where U is a local section of π and Am ∈ C∞(M,End(m)), then
according to (9),

∇0A = AdU (dAm + [admαh, Am]) , (18)

so that we conclude that

∇1A = AdU (dAm + [admαh, Am] + [[admαm]m, Am]) AdU−1

which is the (pullback of) the first term of (17).

Furthermore if G/H is (locally) symmetric (i.e. [m,m] ⊂ h), then ∇L.C. =
∇0 = ∇1 and in particular

∇L.C.A = AdU (dAm + [admαh, Am]) . (19)
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2 m-th elliptic integrable system associated to a
k′-symmetric space

2.0.1 Definition of Gτ (even when τ does not integrate in G)

Here, we will extend the notion of subgroup fixed by an automorphism of Lie
group to the situation where only a Lie algebra automorphism is provided. In-
deed, let τ : G→ G be a Lie group automorphism, then usually one can define
Gτ = {g ∈ G| τ(g) = g} the subgroup fixed by τ . Now, we want to extend
this definition to the situation where we only have a Lie algebra automorphism,
and so that the two definitions coincide when the Lie algebra automorphism
integrates in G.

Let g be a Lie algebra and τ : g → g be an automorphism. Then let us denote
by

g0 = gτ := {ξ ∈ g| τ(ξ) = ξ} (20)

the subalgebra of g fixed by τ . Let us assume that τ defines in g a τ -invariant
reductive decomposition

g = g0 ⊕ n, [g0, n] ⊂ n, τ(n) = n.

Without loss of generality, we assume that g0 does not contain non-trivial ideal
of g, i.e. that adn : g0 → gl(n) is injective (the kernel is a τ -invariant ideal of g

that we factor out). We then have

g0 = {ξ ∈ g| τ|n ◦ adnξ ◦ τ−1
|n = adnξ} (21)

Let G be a Lie group with Lie algebra g. Then since g0 satisfies: ∀ξ ∈ g0,
adξ(n) = n and τn ◦ adnξ ◦ τ−1

n = adnξ , then the (connected) subgroup G0
0

generated in G by g0 satisfies: ∀g ∈ G0
0, Adg(n) = n and τn◦Adng◦τ−1

n = Adng.
Now, let us consider the subgroup

G0 = {g ∈ G|Adg(n) = n and τn ◦Adng ◦ τ−1
n = Adng}.

Then G0 is a closed subgroup of G and G0 ⊃ G0
0, so that LieG0 ⊃ g0. Con-

versely, differentiating the second relation defining G0, we obtain, according to
(21), LieG0 ⊂ g0 and thus LieG0 = g0, and G0

0 = (G0)
0.

Moreover, without loss of generality, we will suppose that G0 does not con-
tain non-trivial normal subgroup of G, i.e. that AdnG0 → GL(n) is injective
(see section 1). Now, we want to prove that if τ integrates in G, then we have
G0 = Gτ , where Gτ is the subgroup fixed by τ : G→ G. First, we have ∀g ∈ Gτ ,
Adg(n) = n and τn ◦Adng◦τ−1

n = Adτ(g)|n = Adng, thus Gτ ⊂ G0. Conversely,
∀g ∈ G0, Adng = τn ◦ Adng ◦ τ−1

n = Adτ(g)|n = Adnτ(g) and thus g = τ(g)
since Adn : G0 → GL(n) is injective. We have proved Gτ = G0. This allows us
to make the following:
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Definition 2.1 Let g be a Lie algebra and τ : g→ g be an automorphism, and
G a Lie group with Lie algebra g. Let us assume that τ defines in g a τ-invariant
reductive decomposition: g = g0 ⊕ n. Then we will set

Gτ := {g ∈ G|Adg(n) = n and τn ◦Adng ◦ τ−1
n = Adng}.

Let us conclude this subsection by some notations:

Notation and convention In all the paper, when a Lie algebra g and an
automorphism τ will be given, then g0 will denote the Lie subalgebra defined
by (20), G will denote a connected Lie group with Lie algebra g and G0 ⊂ G a
closed subgroup such that (Gτ )0 ⊂ G0 ⊂ Gτ (which implies that its Lie algebra
is g0).
Moreover, without loss of generality, we will always suppose that g0 does not
contain non-trivial ideal of g - we will then say that (g, g0) is effective - and
also suppose that Gτ does not contain non-trivial normal subgroup of G (by
factoring out, if needed, by some discrete subgroup of G). Consequently, when
τ can be integrated in G, then Gτ will coincide with the subgroup of G fixed
by τ : G→ G.

2.1 Finite order Lie algebra automorphisms

Let g be a real Lie algebra and τ : g→ g be an automorphism of order k′. Then
we have the following eigenspace decomposition:

gC =
⊕

j∈Z/k′Z

gC

j , [gC

j , g
C

l ] ⊂ gC

j+l

where gC
j is the e2ijπ/k

′

-eigenspace of τ .

We then have to distinguish two cases.

2.1.1 The even case: k′ = 2k

Then we have gC
0 = (g0)

C. Moreover let us remark that

gC
j = gC

−j , ∀j ∈ Z/k′Z. (22)

Therefore gC

k = gC

−k = gC

k so that we can set gC

k = (gk)
C with

gk = {ξ ∈ g| τ(ξ) = −ξ}.

Moreover, owing to (22), we can define mj as the unique real subspace in g such
that its complexified is given by

mC

j = gC

j ⊕ gC

−j for j 6= 0, k,

and n as the unique real subspace such that

nC =
⊕

j∈Z′
k\{0}

gC

j ,
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that is n = (⊕k−1
j=1mj) ⊕ gk. In particular τ defines a τ -invariant reductive

decomposition g = g0 ⊕ n.
Hence the eigenspace decomposition is written:

gC =
(
gC

−(k−1) ⊕ . . .⊕ gC

−1

)
⊕ gC

0 ⊕
(
gC

1 ⊕ . . .⊕ gC

k−1

)
⊕ gC

k

so that by grouping

gC = gC

0 ⊕ gC

k ⊕
[
⊕k−1
j=1mC

j

]

= hC ⊕mC

where h = g0⊕gk and m = ⊕k−1
j=1mj. Considering the automorphism σ = τ2, we

have h = gσ and g = h⊕m is the reductive decomposition defined by the order
k automorphism σ. Without loss of generality, and according to our convention
applied to g and σ, we will suppose in the following that (g, h) is effective i.e. h

does not contain non trivial ideal of g. This implies in particular that (g, g0) is
also effective.

Now let us integrate our setting: let G be a Lie group with Lie algebra g and we
choose G0 such that (Gτ )0 ⊂ G0 ⊂ Gτ . Then G/G0 is a (locally) 2k-symmetric
space (it is globally 2k-symmetric if τ integrates in G) and is in particular a
reductive homogeneous space (reductive decomposition g = g0 ⊕ n).
Moreover since σ = τ2 is an order k automorphism, then for any subgroup H ,
such that (Gσ)0 ⊂ H ⊂ Gσ, G/H is a (locally) k-symmetric space. In all the
following we will always do this choice for H and suppose that H ⊃ G0 (it is
already true up to covering since h ⊃ g0) so that N = G/G0 has a structure
of associated bundle over M = G/H with fibre H/G0: G/G0

∼= G ×H H/G0.
We can add that on h, τ is an involution: (τ|h)2 = Idh, whose symmetric
decomposition is h = g0 ⊕ gk, and gives rise to the (locally) symmetric space
H/G0. The fibre H/G0 is thus (locally) symmetric (and globally symmetric if
the inner automorphism Intτ|m stabilizes AdmH). Owing to the effectivity of
(g, h), we have the following caracterisation:

g0 = {ξ ∈ h|[admξ, τ|m] = 0} (23)

gk = {ξ ∈ h|{admξ, τ|m} = 0} (24)

{} being the anticommutator.

Besides (τ|m)k is an involution hence there exists two invariant subspaces, sum
of mj ’s, m′ and m′′, such that

(τ|m)k = −Idm′ ⊕ Idm′′

with m′ = ⊕[ k−2
2 ]

j=0 m2j+1 and m′′ = ⊕[ k−1
2 ]

j=1 m2j , or in other words

m′C =
⊕

zk = −1
z 6= −1

ker(τ − zId), m′′C =
⊕

zk = 1
z 6= ±1

ker(τ − zId).

At this stage, there is two possibilities:
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• if m′′ = 0 then (τ|m)k = −Idm and τ|m admits eigenvalues only on the set

{zk = −1, z 6= −1}.

• if m′′ 6= 0 then (τ|m)k 6= −Idm and τ|m admits eigenvalues in both the sets

{zk = 1, z 6= ±1} and {zk = −1, z 6= −1}.
These two cases give rise to types of 2k-symmetric spaces (see section 3.5).

Now, let us suppose that M = G/H is Riemannian (i.e. AdmH is compact) then
we can choose an AdH-invariant inner product on m for which τ|m is an isometry
(see the Appendice for the proof of the existence of such a inner product). We
will always do this choice. Therefore, τ|m is an order 2k isometry. We will study
this kind of endomorphisms in section 3.
Moreover, let us remark that if G/H is Riemannian then so is G/G0. Further,
since the elliptic system we will study in this paper is given in the Lie algebra
setting it is useful to know how the fact that G/H is Riemannian can be read
in the Lie algebra setting. In fact, under our hypothesis of effectivity, G/H is
Riemannian if and only if h is compactly embedded in g.

2.1.2 the odd case: k′ = 2k + 1

As in the even case we have gC
0 = (g0)

C and gC
j = g−jC , ∀j ∈ Z/k′Z. Then we

obtain the following eigenspace decomposition:

gC =
(
gC

−k ⊕ . . .⊕ gC

−1

)
⊕ gC

0 ⊕
(
gC

1 ⊕ . . .⊕ gC

k

)
, (25)

which provides in particular the following reductive decomposition:

g = g0 ⊕m

with m = ⊕kj=1mj and mj is the real subspace whose the complexified is

mC
j = gC

−j ⊕ gC
j . According to our convention, we suppose that (g, g0) is ef-

fective.
Then, as in the even case, integrating our setting and choosing G0 such that
(Gτ )0 ⊂ G0 ⊂ Gτ , we consider N = G/G0 which is a locally (2k+1)-symmetric
space and in particular a reductive homogeneous space. Moreover, the decom-
position (25) gives rises to a splitting TNC = T 1,0N ⊕ T 0,1N defined by

TNC =
(
⊕kj=1[g

C
−j ]

)
⊕

(
⊕kj=1[g

C
j ]

)

= T 1,0N ⊕ T 0,1N
(26)

This splitting defines a canonical complex structure on G/G0, that we will
denote by J .
Moreover, we have the following caracterisation

g0 = {ξ ∈ g|[admξ, τ|m] = 0}.

Let us suppose that N = G/G0 is Riemannian then the subgroup generated
by AdmG0 and τ|m is compact (because τ|mAdmg τ

−1
|m = Admg, ∀g ∈ G0, and
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τm is of finite order) and thus we can choose an AdG0-invariant inner product
in m for which τ|m is an isometry. We will always do this choice (when N is
Riemannian).

2.2 Definitions and general properties of the m-th elliptic
system.

2.2.1 Definitions

Let τ : g→ g be an order k′ automorphism with k′ ∈ N∗ (if k′ = 1 then τ = Id).
We use the notations of 2.1. Let us begin by defining some useful notations.

Notation and convention Given I ⊂ N, we denote by
∏
j∈I gC

j , the product∏
j∈I gC

jmodk′ . In the case
∑

j∈I gC

jmod k′ is a direct sum in gC, we will identify
it with the previous product via the canonical isomorphism

(aj)j∈I 7−→
∑

j∈I

aj , (27)

and we will denote these two subspaces by the same notation ⊕j∈IgC
j .

Now, let us define them-th elliptic integrable system associated to a k′-symmetric
space, in the sense of Terng [32].

Definition 2.2 Let L be a Riemann surface. The m-th (g, τ)-system (with the
(−)-convention) on L is the equation for (u0, . . . , um), (1, 0)-type 1-form on L
with values in

∏m
j=0 gC

−j:





∂̄uj +

m−j∑

i=0

[ūi ∧ ui+j ] = 0 (Sj), if 1 ≤ j ≤ m,

∂̄u0 + ∂ū0 +

m∑

j=0

[uj ∧ ūj] = 0 (S0)

(Syst)

It is equivalent to say that the 1-form

αλ =

m∑

j=0

λ−juj + λj ūj =

m∑

j=−m

λjα̂j (28)

satisfies the zero curvature equation:

dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ C∗. (29)

Definition 2.3 Let L be a Riemann surface. The m-th (G, τ)-system (with
the (+)-convention) on L is the equation (Syst) as in definition 2.2 but for
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(u0, . . . , um), (1, 0)-type 1-form on L with values in
∏m
j=0 gC

j :
4

It is equivalent to say that the 1-form

αλ =

m∑

j=0

λjuj + λ−j ūj =

m∑

j=−m

λjα̂j (30)

satisfies the zero curvature equation (29).

Remark 2.1 The difference between the two conventions is that in the first
one α′

λ =
∑m

j=0 λ
−juj involves negative powers of λ whereas in the second one

α′
λ involves positive powers of λ (in other words α̂′′

−j = 0, for j ≥ 1 in the first
one whereas α̂′′

j = 0, for j ≥ 1 in the second one). In fact the second system is

the first system associated to τ−1 and vice versa.
The first convention is the traditional one: it was used for harmonic maps into
symmetric space (see [11]) and by Hélein-Romon [17, 18, 19] for Hamiltonian
stationary Lagrangian surfaces in Hermitian symmetric space – first example of
second elliptic integrable system associated to a 4-symmetric space. Then the
tradition was perpetuated in [23, 24, 25]. Terng [32], herself, in her definition
of the elliptic integrable system uses also this convention. However in [6], this
is the second convention which is used.
The (+)-convention is in fact the most natural, as we will see, since it uses
the automorphism τ whereas in the (−)-convention, this is the automorphim
τ−1 which appears in the geometrical interpretation. But the (+)-convention
leads to several changes like for example in the DPW method, we must use
the Iwasawa decomposition ΛGC

τ = ΛGτ .Λ
−
BG

C
τ instead of ΛGC

τ = ΛGτ .Λ
+
BG

C
τ

and in particular the holomorphic potential involves positive power of λ instead
of negative one as it is the case traditionally. We decided here to continue to
perpetuate the tradition as in [25] and to use the first convention. So in the
following when we will speak about the m-th elliptic integrable system, it will
be according to the definition 2.2.

Notation Sometimes, when it will be necessary to do precision we will denote
(Syst) either by (Syst(m, g, τ)), (Syst(m, τ)) or simply by (Syst(m)) depending
on the context and the needs.
For shortness we will also often say the (m, g, τ)-system instead of the m-th
(g, τ)-system. We will also say the m-th elliptic (integrable) system associated
to (the k′-symmetric space) G/G0.
We will say that a family of 1-forms (αλ)λ∈C∗ (denoted by abuse of notation,
simply by αλ) is solution of the (m, g, τ)-system (or of (Syst)) if it corresponds
to some solution u of this system, according to (28). Therefore αλ is solution
of the (m, g, τ)-system if and only if it can be written in the form (28), for
some (1, 0)-type 1-form u on L with values in

∏m
j=0 gC

−j , and satisfies the zero
curvature equation (29).

4instead of
Qm

j=0 gC
−j .
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Definition 2.4 Let us set mk′ =

[
k′ + 1

2

]
=

{
k if k′ = 2k

k + 1 if k′ = 2k + 1
if k′ > 1,

and m1 = 0. Concerning the m-th (G, τ)-system, we will say that:
– we are in the primitive case (or that that the system is primitive) if 0 ≤
m < mk′ ,
– in the determined case (or that that the system is determined) if mk′ ≤
m ≤ k′ − 1,
– and in the underdetermined case (or that that the system is underdeter-
mined) if m > k′ − 1.
Moreover, the determined system of minimal order mk′ will be called ”the mini-
mal determined system”, and the one of maximal order k′−1 will be called ”the
maximal determined system”.

Let us consider the g-valued 1-form α := αλ=1. Then we have α =
∑m
j=0 uj+ ūj

according to (28) which is equivalent to α′ =
∑m
j=0 uj , since α is g-valued.

• In the primitive and determined cases (m ≤ k′ − 1),
∑m

j=0 gC
−j is a direct

sum so that u = (u0, . . . , um) and
∑m
j=0 uj = α′ can be identified via (27) and

according to our convention. We will then write simply u = α′. In particular
we have

uj = α′
−j ∀j, 0 ≤ j ≤ m

with αj := [α]gj ∀j ∈ Z/k′Z. Hence in the primitive and determined cases the
m-th (G, τ)-system can be considered as a system on α. Consequently, we can
recover αλ from α and we will speak about the ”extended Maurer Cartan form”
αλ which is then associated to α by

αλ =

m∑

j=1

λ−jα′
−j + α0 +

m∑

j=1

λjα′′
j

according to (28).

• In the underdetermined case,
∑m

j=0 gC
−j is not a direct sum so that to a given

α (coming from some solution αλ of the m-th (G, τ)-system, according to α =
αλ=1) there are a priori many (other) corresponding solutions u = (u0, . . . , um)
since

∀j ∈ Z/k′Z, α′
−j =

∑

i≡j[k′ ]

ui.

In fact, we will prove that there are effectively an infinity of other solutions
satisfying the condition αλ=1 = α (see 2.4 for a begining of explanation).

2.2.2 The geometric solution

The equation (29) (as well as (28)) is invariant by gauge transformations by the
group C∞(L,G0):

U0 · αλ = AdU−1
0 αλ − dU0.U

−1
0 .
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where U0 ∈ C∞(L,G0). This allows us to define a geometric solution of (Syst)
as a map f : L→ G/G0 which can be lifted (locally, i.e. in the neighbourhood
of each point in L) to some U : L → G (defined locally, on the neighbourhood
under consideration) such that U−1.dU = αλ=1 for some solution αλ of (Syst)
(on the neighbourhood under consideration)5.

Now, to simplify the exposition, let us suppose that L is simply connected (until
the end of 2.2.2). Then (αλ)λ∈C∗ 7→ α = αλ=1 is a surjective map from the set
of solution of (Syst) to the set of Maurer-Cartan forms of lifts of geometric
solutions. According the discussion at the end of subsection 2.2.1, this map is
bijective in the primitive and determined case (m ≤ k′ − 1) and not injective
in the underdetermined case (m > k′ − 1). By quotienting by C∞(L,G0), we
obtain a surjective map πm with the same properties, taking values in the set
of geometric solutions.

Let us precise all that. We suppose, until the end of this subsection, that
the automorphism τ : g → g is fixed (so that the only data which varies in
the (m, g, τ)-system is the order m). First, let us give an explicit expression
of the space S(m) of solutions αλ of the system (Syst(m)), i.e. the solutions
of the zero curvature equation (29), which satisfies the equality (28) for some
(1, 0)-type 1-form u on L with values in

∏m
j=0 gC

−j . To do that, we want to
express the condition (to be written in the form) (28) as a condition on the loop
α• : λ ∈ S1 7→ αλ :6

(28)⇐⇒ (α• ∈ Λmgτ and α′
• ∈ Λ−gC

τ ) (31)

where

Λgτ = {η• ∈ H1(S1, g)| ηωλ = τ(ηλ), ∀λ ∈ S1}
Λmgτ = {η• ∈ Λgτ | ηλ =

∑

|j|≤m

λj η̂j}

Λ−gC

τ = {η• ∈ ΛgC

τ | ηλ =
∑

j≤0

λj η̂j}

and ω is a k′-th root of unity; so that

S(m) = {α• ∈ C(T ∗L⊗Λmgτ )|α′
• ∈ Λ−gC

τ and dα• +
1

2
[α•∧α•] = 0}. (32)

Let us remark that the condition α′
• ∈ Λ−gC

τ can be interpretated as a condition
of C-linearity. Indeed, the Banach vector space Λgτ/g0 is naturally endowed
with the complex structure defined by the following decomposition

(Λgτ/g0)
C = ΛgC

τ /g
C

0 = Λ−
∗ gτ ⊕ Λ+

∗ gτ , (33)

5Our study, in the present paper, is local so one can suppose (when it is necessary to do)
either that L is implicitely simply connected or that all lifts and integrations are done locally.
We consider that these considerations are implicit and will not precise these most of the time.

6Remark that α• determines (αλ)λ∈C∗ , when this latter satisfies (28).

24



where Λ±
∗ gτ = {η• ∈ ΛgC

τ | ηλ =
∑

j≷0 λ
j η̂j}. Then the condition α′

• ∈ Λ−gC
τ

means that [α′
•]∗ : TL → (Λgτ/g0)

C is C-linear, where [ ]∗ denotes the compo-
nent in Λ∗gτ = {η• ∈ Λgτ |ηλ =

∑
j 6=0 λ

j η̂j} ∼= Λgτ/g0.

Now let us integrate our setting. Firstly, let us define the twisted loop group

ΛGτ = {U• ∈ H1(S1, G)|Uωλ = τ (Uλ)}.
Then, let us set

Em = {U• : L→ ΛGτ |Uλ(0) = 1, ∀λ ∈ S1;αλ := U−1
λ .dUλ is a solution of (Syst(m))}

Em1 = {U : L→ G|∃U• ∈ Em, U = U1}
Gm = {f : L→ G/G0 geom. sol. of (Syst(m)), f(0) = 1.G0}
Gm• = {f• = πG/G0

◦ U•, U• ∈ Em}
The space of geometric solutions is obviously obtained from the space of extended
geometric solutions Gm• by Gm = Gm1 . Moreover S(m) ≃ Em is determined by
Gm• because of the gauge invariance: E(m).K ⊂ E(m) where K = C∞

∗ (L,G0) =
{U ∈ C∞(L,G0)|U(0) = 1} so that we can write Gm• = E(m)/K. Consequently,
we have also Gm = Em1 /K.
Finally, we obtain the following diagram

S(m)
int−−−−→
∼=

Em πK−−−−→ Em/K Gm•
y

y
y πm

y

S(m)1
int−−−−→
∼=

Em1 −−−−→ Em1 /K Gm
.

Then πm is bijective for m ≤ k′− 1 and not injective for m > k′− 1. Therefore,
in the primitive and determined case, we can consider that (Syst(m)) is a system
on the map f corresponding to α (since the Maurer-Cartan equation for α is
always contained in (Syst(m)) according to (29), and thus the existence of f is
always guaranteed). This system on f is an elliptic PDE on f of order ≤ 2. In
particular, we are led to the following definition:

Definition 2.5 Given a g-valued Maurer-Cartan 1-form α on L, we define the

geometric map corresponding to α, as f = πG/G0
◦ U , U integrating α:

U−1.dU = α, U(0) = 1.

Let us summarize:

Proposition 2.1 The natural map πm : Gm• → Gm from the set of extended
geometric solutions of the (m, g, τ)-system into the set of geometric solutions
is surjective. Moreover, it is bijective in the primitive and determined cases
(m ≤ k′ − 1) and not injective in the underdetermined case (m > k′ − 1).
Moreover, in the primitive and determined cases, the (m, g, τ)-system - on the
(family of) 1-form αλ - is in fact a system on the 1-form α := αλ=1, itself
equivalent to an elliptic PDE of order ≤ 2 on the corresponding geometric map
f : L→ G/G0.

25



Furthermore, let us interpret the C-linearity of [α′
•]∗ : TL→ (Λgτ/g0)

C in terms
of the corresponding geometric solution f• : L → ΛGτ/G0, defined by f• =
πG/G0

◦ U• where U• integrates α•. Firstly, the complex structure defined in
Λgτ/g0 by (33) is AdG0-invariant so that it defines a ΛGτ -invariant complex
structure on the homogeneous space ΛGτ/G0. Therefore the C-linearity of [α′

•]∗
means exactly that f• : L→ ΛGτ/G0 is holomorphic. Now, let us interpret the
condition α• ∈ Λmgτ in terms of the map f•. Let us consider the following
AdG0-invariant decomposition

Λgτ/g0 = Λm∗gτ ⊕ Λ>mgτ

where Λm∗gτ = Λmgτ ∩ Λ∗gτ and Λ>mgτ = {η• ∈ Λgτ | ηλ =
∑

|j|>m λ
j η̂j},

which gives rise respectively to some ΛGτ -invariant splitting

T (ΛGτ/G0) = HΛ
m ⊕ VΛ

m.

Then HΛ
m and VΛ

m inherit respectively the qualificatifs horizontal and vertical
subbundle respectively. Therefore, in the same spirit as [11] (remark 2.5 and
proposition 2.6), the equation (32) gives us the following familiar twistorial
caracterisation

Proposition 2.2 A map f• : L → ΛGτ/G0 is an extended geometric solution
of the (m, g, τ)-system if and only if it is holomorphic and horizontal.

2.2.3 The increasing sequence of spaces of solutions: (S(m))m∈N

Again, we suppose in all 2.2.3 that the automorphism τ is fixed and that L is
simply connected. Then according to the realisation of (Syst(m)) in the forms
(29) and (28), we see that any solution of (Syst(m)) is solution of (Syst(m′))
for m ≤ m′ (take uj = 0 for m < j ≤ m′). More precisely, (Syst(m)) is
a reduction of (Syst(m′)): (Syst(m)) is obtained from (Syst(m′)) by putting
uj = 0, m < j ≤ m′, in (Syst(m′)). In particular, S(m) ⊂ S(m′) for m ≤ m′; so
that any solution in the primitive case (m < mk′) is solution of any determined
system (mk′ ≤ m ≤ k′−1), and any solution of a determined system is solution
of any underdetermined system (m > k′− 1). Besides we see that πm′ |Gm

•
= πm

if m ≤ m′. In particular, πm′(Gm• ) = Gm. Thus we can set S(∞) = ∪m∈NS(m)
and G∞ = ∪m∈NGm, then we can define a surjective map π∞ : E∞/K → G∞
such that π∞|Em/K is a bijection onto Gm for each m ≤ k′ − 1.
Moreover any geometric solution f ∈ G∞ has an order m which is the smaller
m′ such that f ∈ Gm′

. Then for any solution αλ ∈ S(∞) giving rise to f , we
have αλ ∈ S(m) (m is the maximal power on λ of αλ, which does not depend
on the choice of αλ since these are all equivalent modulo the gauge group K).
Thus we have π−1

∞ (Gm) = Gm• or equivalently π∞(Gm+1
• \ Gm• ) = Gm+1 \ Gm.

Remark 2.2 We can call S(∞) the (g, τ)-system, and then we can speak about
its subsystem of order m, namely S(m). In particular, we have the following
caracterization:

S(∞) = {α• ∈ C(T ∗L⊗ Λ(∞)gτ )|α′
• ∈ Λ−gτ and dα• +

1

2
[α• ∧ α•] = 0}
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where Λ(∞)gτ = ∪m∈NΛmgτ .

The primitive and determined cases (m ≤ k′ − 1) Now, let us apply the
previous discussion (about the increasing sequence (S(m))m∈N) to the study of
the determined case. Let us recall that in this case, we can consider that the
system (Syst(m)) deals only with g-valued 1-forms α.

Proposition 2.3 The solutions of a determined system (Syst(m)), mk′ ≤ m ≤
k′−1, are exactly the solutions of the maximal determined system, i.e. (Syst(k′−
1)), which satisfy the holomorphicity conditions:

α′′
−j = 0, m−mk′ + 1 ≤ j ≤ mk′ .

Moreover, the solutions of a primitive system (Syst(m)), 1 ≤ m ≤ mk′ − 1, are
the solutions of the minimal determined system, i.e. (Syst(mk′ )), which satisfy
the horizontality conditions:

αk = α±(k−1) = . . . α±(m+1) = 0.

The non injectivity of πm in the underdetermined case Now, let us
turn ourself to the underdetermined case.

Proposition 2.4 In the underdetermined case, m > k′ − 1, the map ev1 : α• ∈
S(m)→ α ∈ S(m)1 is not injective.

Sketch of Proof. Since in the underdetermined case, we have m ≥ k′, then
S(m) ⊃ S(k′) and thus it suffices to prove the non-injectivity on S(k′). Let
αλ be a solution of (Syst(k′)) and α its value at λ = 1. Then let us consider
the fibre ev−1

1 (α). Let us denote by α̃λ the current element in ev−1
1 (α), varying

arbitrary, to differentiate it from the fixed element αλ. Then let us consider
the corresponding (1, 0)-type 1-form ũ = (ũ0, . . . , ũk′−1, ũk′) taking values in∏k′

j=0 gC
−j =

(
⊕k′−1
j=0 gC

−j

)
× g0 and then let us set u = (ũ, ũk′). Then we have

by definition ũ + ũk′ = α′ so that ũ0 = α′
0 − ũk′ and ũj = α′

−j . Therefore,

the variable ũ can be parametrized, in ev−1
1 (α), by ũk′ . Furthermore, injecting

these two previous equations in the system (Syst(k′)) satisfied by ũ, this one
becomes a system on ũk′ with some parameters depending on α, which by a
straightforward computation can be written in the form

{
∂̄ũk′ + [α′′

0 ∧ ũk′ ]− [ũk′ ∧ ũk′ ] = 0 (a)
β + [γ ∧ (ũk′ + ũk′ )] = 0 (b)

Hence, ev−1
1 (α) is (parametrized by) the solutions of (a) which lie in the affine

space defined by (b). Therefore since we already know a solution of the system
(a)-(b), namely the component uk′ of the fixed solution αλ, we can now apply
the implicit functions theorem to the following initial value problem

{
∂̄ũk′ + [α′′

0 ∧ ũk′ ]− [ũk′ ∧ ũk′ ] = 0
ũk′(z0) = x0 ∈ {ξ0 ∈ g0| [γ(z0) ∧ (ξ0 + ξ̄0)] = 0}

restricted to the affine space of functions, defined by (b).
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2.2.4 The decreasing sequence (Syst(m, τp))p/k′

Any solution of the m-th (g, τ)-system is solution of the m-th g-system (take
τ = Id, i.e. u = (u0, . . . , um) ∈ (gC)m+1). More precisely, the m-th (g, τ)-
system is the restriction to ⊕mj=0g−j(τ) of the m-th g-system.
More generally, for any p ∈ N∗ such that p divides k′, the m-th (g, τ)-system is
the m-th (g, τp)-system restricted to ⊕mj=0g−j(τ), or equivalently - in terms of

αλ ∈ ΛgC
τp - restricted to ΛgC

τ .

2.3 The minimal determined case

We study here the elliptic system (Syst(m)) in the minimal determined case and
by the way its subcase the primitive case. Let us recall again that in this case,
we can consider that the system (Syst(m)) deals only with Maurer-cartan forms
α and consequently also with geometric maps f . Then we have to translate the
equations on α into geometric conditions on f . This is what we will begin to
do now.
The minimal determined case splits into two cases.

2.3.1 The even minimal determined case: k′ = 2k and m = k

Let us recall the following decomposition

gC =
(
g−(k−1) ⊕ . . .⊕ g−1

)
⊕ gC

0 ⊕ (g1 ⊕ . . .⊕ gk−1)⊕ gC

k .

The system (Syst(k, τ)) can be written




α′′
−j = 0, 1 ≤ j ≤ k − 1 (Hj)

dα+
1

2
[α ∧ α] = 0 (MC)

∂̄α′
−k + [α′′

0 ∧ α′
−k] = 0 (Sk)

. (34)

More precisely the equations (Sj), 0 ≤ j ≤ k−1, of (Syst(k, τ)) are respectively
the projection on g−j , 0 ≤ j ≤ k − 1, of (MC) (owing to the holomorphicity
conditions (Hj) given by proposition 2.3). Moreover, the projection of (MC) on
gk gives us

dαk + [α0 ∧ αk] = 0

which is the real part of (Sk). Hence the only new information (in addition to
(MC) and (H)) given by the minimal determined elliptic integrable system in
the even case is the imaginary part of (Sk):

d(∗αk) + [α0 ∧ (∗αk)] = 0 (Ek)

which is as we will see the vertical part of a harmonic map equation. Hence
(Syst(k, τ)) is equivalent to





α′′
−j = 0, 1 ≤ j ≤ k − 1 (Hj)

d(∗αk) + [α0 ∧ (∗αk)] = 0 (Ek)

dα+
1

2
[α ∧ α] = 0 (MC)

.

28



Besides (Sk) can be written in the form:

[∂̄(AdU(α′
k))]gk

= 0.

where U integrates α. In term of f : L → G/G0, the projection of U , this last
equation means (as we will see in section 4)

(∇v)′′∂vf = 0

where ∇v is the vertical part of the Levi-Civita connection ∇ on the Riemanni-
anhomogeneous space G/G0, the vertical and horizontal spaces are defined by
V = [gk] and H = [m] since we can do the splitting: T (G/G0) = [m]⊕ [gk].
Then the equation (Ek) is equivalent to (see section 4)

d∇
v

(∗dvf) = 0⇐⇒ τv(f) := Trb(∇vdvf) = 0

(for any hermitian metric b on the Riemann surface L). It is easy to see that
the equation (Ek) is a vertically harmonic map equation (τv(f) = 0) for the
canonical connection ∇0 = d + α0. In fact, we will see that in the vertical
subbundle V we have ∇v = ∇0 (see section 4).

The primitive case The m-primitive case is obtained by putting αk =
α±(k−1) = . . . α±(m+1) = 0 in the minimal determined case (34). In partic-
ular αk = 0 and (Sk) is trivial so that the only additionnal conditions on the
geometric map f : L → G/G0 (whose existence is guaranted by (MC)) are the
equations (Hj): α

′′
−j = α′

j = 0, 1 ≤ j ≤ m, and αk = α±(k−1) = . . . α±(m+1) = 0
(which both, let us recall it, come from α′ = u ∈ ⊕mj=0g−j).

Proposition 2.5 Let τ : g → g be an order 2k automorphism, and an integer
m < k then the m-th elliptic integrable system (Syst(m, τ)) means that the
geometric map f : L→ G/G0 satisfies

∂f ∈ ⊕mj=1[g−j ] ⊂ T (G/G0)
C.

Proof. Let f be the geometric map corresponding to the Maurer-Cartan form
α, that we integrate by U : L → G, then we have ∂f = AdU(α′

n) and α is
solution of (Syst(m, τ)) if and only if

α′
n = α′

−1 + . . .+ α′
−m ∈ ⊕mj=1g−j ⇐⇒ ∂f ∈ ⊕mj=1[g−j ].

This completes the proof. �

Remark 2.3 In particular, in the primitive case f is horizontal (αk = 0).
Therefore (Sk) is trivial and (owing to the holomorphicity conditions (Hj), 1 ≤
j ≤ k−1) the free curvature equation (29) is equivalent to (MC) in the primitive
case.

Definition 2.6 We will call m-primitive map (into the locally (2k)-symmetric
space G/G0) a geometric solution of the system (Syst(m, τ)) for m < k.
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Geometric interpretation of the equations (Hj). For m < k, let Fm be
the f -structure on N = G/G0 defined by the following (eigenspace) decomposi-
tion:

TNC =
(
⊕mj=1[g−j]

)
⊕

(
⊕|j|>m[gj ]

)
⊕

(
⊕mj=1[gj ]

)

= T+N ⊕ T 0N ⊕ T−N
.

Then according to proposition 2.5 we have

Theorem 2.1 A map f : L → G/G0 is m-primitive if and only if it is Fm-
holomorphic.

Remark 2.4 The equations (Hj): α
′′
−j = 0, 1 ≤ j ≤ m, on a Maurer-Cartan

1-form α means that the corresponding geometric map f : L → G/G0 satisfies
prm◦(df ◦jL) = Fm◦df where jL is the complex structure in L, and prm : TN →
⊕mj=1[mj ] is the projection on ⊕mj=1[mj ] along

(
⊕k−1
j=m+1[mj ]

)
⊕ [gk]. This means

that the projection prm ◦ df : TL→ ⊕mj=1[mj] is a morphism of complex vector
bundle. Let us denote C∞

m (L,G/G0) = {f ∈ C∞(L,G/G0)| df ∈ ⊕mj=1[mj]}.
Then we have the following equivalences between the Maurer-Cartan 1-form α
and its geometric map:

α ∈ g0 ⊕ (⊕mj=1mj) ⇐⇒ f ∈ C∞
m (L,G/G0)

(Hj) : α′′
−j = 0, 1 ≤ j ≤ m ⇐⇒ prm ◦ (df ◦ jL) = Fm ◦ df (35)

Then additionning these two equivalences, we recover the equivalence: ”α solves
(Syst(m, τ))” ⇐⇒ ”f is Fm-holomorphic”. Moreover, the equations α′′

−j = 0,
1 ≤ j ≤ k − 1, mean that f is horizontally holomorphic.

Theorem 2.2 Let α be a g-valued 1-form on L and f its geometric map. The
following statements are equivalent:

(i) α′′
−j = 0, 1 ≤ j ≤ k − 1

(ii) f is horizontally holomorphic: (df ◦ jL)H = F k−1 ◦ df , H = [m] being the
horizontal space and F k−1

|H defining a complex structure on H.

So that we can conclude: the even minimal determined system (Syst(k, τ))
means that the geometric map f is horizontally holomorphic and ver-
tically harmonic.

Remark 2.5 We can express what precedes in terms of the projection map
π̄G/G0

: α→ f defined as follows. LetMC be the set of g-valued Maurer-Cartan
1-form on L and for m < k, MCm the subset of Maurer-Cartan 1-form taking
values in g0 ⊕ (⊕mj=1mj), then π̄G/G0

:MC → C∞(L,G/G0) is defined by:

π̄G/G0
: α ∈ MC int−−−−→ U ∈ C∞

∗ (L,G)
πG/G0−−−−→ f = πG/G0

◦ U ∈ C∞(L,G/G0).

The preceding results can be summarized as follows: for any m < k

π̄G/G0
(MCm) = C∞

m (L,G/G0) and π̄G/G0
(S(m)) = Hol((L, j), (G/G0, F

m)),
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the set of Fm-holomorphic maps; and the equations (Hj), 1 ≤ j ≤ m, in
MC are transformed by π̄G/G0

into the equation prm ◦ (df ◦ jL) = Fm ◦ df in
C∞(L,G/G0).

2.3.2 The minimal determined odd case

The order of the automorphism τ is odd k′ = 2k + 1, and m = k + 1. Let us
recall the following decomposition

gC = (g−k ⊕ . . .⊕ g−1)⊕ gC

0 ⊕ (g1 ⊕ . . .⊕ gk) .

The equations (Sj), 0 ≤ j ≤ k − 1, of (Syst(k + 1, τ)) are respectively the
projection on g−j , 0 ≤ j ≤ k − 1, of the Maurer-Cartan equation (MC) (owing
to the holomorphicity conditions given by proposition 2.3). Hence the elliptic
system (Syst(k + 1, τ)) can be written:





α′′
−j = 0, 1 ≤ j ≤ k − 1 (Hj)

∂̄α′
k + [α′′

0 ∧ α′
k] = 0 (Sk+1)

∂̄α′
−k + [α′′

0 ∧ α′
−k] + [α′′

1 ∧ α′
k] = 0 (Sk)

dα+
1

2
[α ∧ α] = 0 (MC)

. (36)

Then we see that the projection on g−k of (MC):

dα−k + [α0 ∧ α−k] + [α1 ∧ αk] = 0 (37)

is nothing but (Sk) + (Sk+1).

Now we have to distinguish two cases.

• Let us suppose that k ≥ 2, then we have

(Sk) ∨ (Sk+1) ≡ (Sk) + (Sk+1)⇐⇒
[
∂̄(AdU(α′

mk
))

]
mk

= 0

where U integrates α. For the last equivalence, just do the computation:

[
∂̄(AdU(α′

mk
))

]
mk

= ∂̄α′
mk

+ [α′′ ∧ α′
mk

]mk

= ∂̄α′
mk

+ [α′′
0 ∧ α′

mk
] + [α′′

1 ∧ α′
k] + [α′′

−1 ∧ α′
−k]

= (Sk) + (Sk+1)

since α′′
−1 = 0. Hence we obtain that

(Syst)⇐⇒





α′′
−j = 0, 1 ≤ j ≤ k − 1 (Hj)

∂̄α′
k + [α′′

0 ∧ α′
k] = 0 (Sk+1)

dα+
1

2
[α ∧ α] = 0 (MC)

⇐⇒





α′′
−j = 0, 1 ≤ j ≤ k − 1 (Hj)

∂̄α′
−k + [α′′

0 ∧ α′
−k] + [α′′

1 ∧ α′
k] = 0 (Sk)

dα+
1

2
[α ∧ α] = 0 (MC)

⇐⇒





α′′
−j = 0, 1 ≤ j ≤ k − 1 (Hj)[
∂̄(AdU(α′

mk
))

]
mk

= 0 (Smk
)

dα+
1

2
[α ∧ α] = 0 (MC)
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In terms of the geometric map f : L→ G/G0, we have according to remark 1.3
(see also section 5) the following geometric interpretation:

(Smk
)⇐⇒ ((∇1)′′∂vf)v = 0,

where the splitting TN = H ⊕ V is defined by H = [m′], V = [mk] and m′ =
⊕k−1
j=1mj . Moreover since Re(Smk

) is

dαmk
+ [α0 ∧ αmk

] + [αm1 ∧ αmk
]mk

= 0

which is nothing but [MC]mk
(in the presence of (H)), the projection of (MC)

on mk, then the only new information (in addition to (MC) and (H)) given by
the determined elliptic integrable system in the odd case is the imaginary part
of (Smk

) which means that f is vertically harmonic (with respect to ∇1):

Im(Smk
) : d∗αmk

+[α0∧∗αmk
]+[αm1∧∗αmk

]mk
= 0⇐⇒ τv1 (f) := Tr((∇1)vdvf) = 0.

• Let us suppose that k = 1, then we have

(S1)⇐⇒
[
∂̄(AdU(α′

m))
](1,0)

m
= 0

where U integrates α and [ ](1,0) denotes the (1, 0)-component with respect to
the canonical complex structure in N defined by the decomposition (26), i.e. in
our case TNC = [g−1]⊕ [g1]. Indeed we have

[
∂̄(AdU(α′

m))
]
m

= ∂̄α′
m + [α′′ ∧ α′

m]m

= ∂̄α′
m + [α′′

0 ∧ α′
m] + [α′′

m ∧ α′
m]m

= ∂̄α′
−1 + [α′′

0 ∧ α′
−1] + [α′′

1 ∧ α′
1]

+ ∂̄α′
1 + [α′′

0 ∧ α′
1] + [α′′

−1 ∧ α′
−1]

the up term being the (1, 0)-component and the down one, the (0, 1)-component.
Then recalling that (S1)+(S2) is the projection on g−1 of (MC), we obtain that

(Syst)⇔
{

(S2)
(MC)

⇔
{

(S1)
(MC)

⇔





[
∂̄(AdU(α′

m))
](1,0)

m
= 0 (S

(1,0)
m )

dα +
1

2
[α ∧ α] = 0 (MC)

and the only new information (in addition to (MC)) given by the minimal de-

termined elliptic integrable system in this case is (S
(1,0)
m ).

In terms of the geometric map, f : L→ G/G0, we have according to remark 1.3
(see also section 5) the following geometric interpretation:

(S
(1,0)
m )⇐⇒

[
(∇1)′′∂f

](1,0)
= 0,

we will say that f is holomorphically harmonic (see section 5 for a precise
definition).
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The primitive case. The m-primitive case is obtained by putting αj = 0,
m + 1 ≤ |j| ≤ k − 1, and α′′

−k = α′
k = 0 in the minimal determined case (36).

As in the even case we obtain:

Proposition 2.6 Let τ : g → g be an order 2k + 1 automorphism, and an
interger m ≤ k then the m-elliptic integrable system (Syst(m, τ)) means that
the geometric map f : L→ G/G0 satisfies:

∂f ∈ ⊕mj=1[g−j ] ⊂ T (G/G0)
C.

Geometric interpretation of the equations (Hj). Let F be the canonical
complex structure on N = G/G0 (see (26)) and set Fm := prm ◦ F = F ◦ prm
for m ≤ k, where prm : TN → ⊕mj=1[mj ] is the projection on ⊕mj=1[mj ] along

⊕kj≥m+1[mj ] (remark that prk = Id). Then Fm is a f -structure on N (remark

that F k = F is a complex structure). Then we have:

Theorem 2.3 A map f : L → G/G0 is m-primitive if and only if it is Fm-
holomorphic. In particular, f is k-primitive if and only if it is holomorphic
(with respect to the canonical complex structure on G/G0), and thus any m-
primitive map is in particular a holomorphic curve in G/G0. More precisely,
m-primitive maps are exactly the integral holomorphic curves of the complex
Pfaff system ⊕mj=1[mj] ⊂ TN .

Remark 2.6 The equivalences (35) hold also in the odd case. However for
m = k, the first equivalence of (35) is trivial: α ∈ g ⇐⇒ f ∈ C∞(L,G/G0).
There is no restriction (in the form ”α takes values in a subspace of g”) in the
highest primitive case.

Theorem 2.4 Let α be a g-valued 1-form on L and f its geometric map. The
following statements are equivalent:

(i) α′′
−j = 0, 1 ≤ j ≤ k − 1

(ii) f is horizontally holomorphic: (df ◦ jL)H = F k−1 ◦ df , where H = [m′] is
the horizontal space, and F k−1

|H = F|H defines a complex structure on
H.

We can conclude that the odd minimal determined system (Syst(k+1, τ))
means that the geometric map f is horizontally holomorphic and ver-
tically harmonic if k ≥ 2, and if k = 1, it means that f is holomorphi-
cally harmonic.

2.4 The underdetermined case

Here we study the underdetermined case.
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Theorem 2.5 Let us consider an underdetermined system (Syst(m, g, τ)), m ≥
k′. Let us write

m = qk′ + r, 0 ≤ r ≤ k′ − 1

the Euclidean division of m by k′. Then let us consider the automorphism in
gq+1 defined by

τ̃(a0, a1, . . . , aq) ∈ gq+1 7−→ (a1, . . . , aq, τ(a0)) ∈ gq+1.

Then τ̃ is of order (q + 1)k′. Moreover the m-th system associated to (g, τ) is
in fact equivalent to the m-th system associated to (gq+1, τ̃). More precisely,
denoting by ω̃ a (q + 1)k′-th primitive root of unity, then the map

αλ 7−→ (αλ, αω̃ , . . . , αω̃pλ)

is a bijection from the set of solutions of the underdetermined (m, g, τ)-system
into the set of solutions of the determined (m, gq+1, τ̃)-system.

2.5 Examples

2.5.1 The trivial case: the 0-th elliptic system associated to a Lie
group.

We consider the determined system (Syst(m, τ)) with τ = Id and (thus) k′ = 1
so that m′

k = m1 = 0 = k′ − 1. Then the determined system (Syst(0, Id)) is
nothing but the Maurer-Cartan equation for g-valued 1-form α (i.e. in other
words the ”equation” for the trivial geometric map f : L→ G/G).

2.5.2 Even determined case

The first elliptic system associated to a symmetric space [11]. We con-
sider the even determined system (Syst(k, τ)), with k = 1 and τ an involution.
Then the horizontal subbundle is trivial H = [m] = {0} and TN = [V ] = [g1]
so that the horizontal holomorphicity is trivial and vertical harmonicity means
harmonicity. Hence the first elliptic system associated to a symmetric space,
(Syst(1, τ)), is the equation for harmonic maps f : L→ G/G0.

The second elliptic system associated to a 4-symmetric space ([25, 6]).
Here τ is an order four automorphism and (thus) k = 2. Then we consider the
even determined system (Syst(2, τ)). ...
Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric spaces,
([19, 17, 18]). ρ-harmonic surfaces in O, [23]. Surfaces with holomorphic mean
curvature vector in 4-dimensional spaces form, surfaces with anti-holomorphic
mean curvature vector in CP 2, [6].

2.5.3 Primitive case

τ order k′, m = 1. Affine Toda fields , [7]. Non-superminimal (weakly) confor-
mal harmonic maps into Sn; (weakly) conformal non-isotropic harmonic maps
into CPn; [5].
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2.5.4 Odd determined case

τ of order 3, m = 2. Holomorphically harmonic maps (see 5.1.2).

2.5.5 Underdetermined case

First elliptic integrable system associated to a Lie group ([33, 32]).
(Syst(m, τ)) with m = 1 and τ = Id, k′ = 1 and m1 = 0 < m, thus underdeter-
mined system.

Second elliptic integrable system associated to the symmetric space
Sn. Constrained Willmore surfaces in Sn...[8].
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3 Finite order isometries and Twistor spaces

3.1 Isometries of order 2k with no eigenvalues = ±1

Let E be an Euclidean space and let us define (for p ∈ N∗)

Up(E) = {A ∈ SO(E), Ap = Id, Ak 6= Id if 1 ≤ k < p}
U∗
p (E) = {A ∈ Up(E)|1 /∈ Spect(A)}, U∗∗

p (E) = {A ∈ Up(E)| ± 1 /∈ Spect(A)}.

Then for k ∈ N∗ we set

Z2k(E) = U∗∗
2k (E) and Z2k+1(E) = U∗

2k+1(E) = U∗∗
2k+1(E).

We will be interested here in the study of Z2k(E). Then for eachA ∈ Z2k(E),
we have the following eigenspace decomposition:

EC = ⊕k−1
j=1

(
EA(ωj2k)⊕ EA(ω−j

2k )
)

with EA(λ) = ker(A− λId) and ω2k = eiπ/k.
Let us set mC

j = EA(ωj2k) ⊕ EA(ω−j
2k ) for j ≥ 0. Then we have dimR mj =

1

2

(
dimR EA(ωj2k) + dimR EA(ω−j

2k )
)

= dimR EA(ωj2k) = 2 dimC EA(ωj2k). Hence

dimR mj is even and hence we will suppose now that E = R2n (in all section 3.1).

Example 3.1 We have Z2(E) = ∅, and Z4(E) = Σ(E) the set of almost
complex structure in E.

Situation in the plan Here E = R2, and any element of Z2k(E) is written
A = R( lπk ), with (l, 2k) = 1 (R(θ) being the rotation of angle θ ∈ R/2πZ ) i.e. A
is a primitive (2k)-th root of the unity. Hence card(Z2k(R2)) = φ(2k), φ being
the Euler characteristic.

3.1.1 The set of connected components in the general case

Theorem 3.1 π0(Z2k(R2n)), the set of connected components of Z2k(R2n) is
(in one to one correspondance with):

X2k :=



(ε, (p1, . . . , pk−1)) ∈ Z2 × Nk−1

∣∣∣∣∣∣

k−1∑

j=1

pj = n and ∃j, (j, 2k) = 1|pj 6= 0





Proof. Let A ∈ Z2k(R2n), then A|mC

j
= ωj2kIdEA(ωj

2k) ⊕ ω−j
2k IdEA(ω−j

2k ). We

choose an orientation on each mj (such that the induced orientation on ⊕k−1
1 mj

is the one of R2n). Then there exist oriented plans P lj such that mj = ⊕pj

l=1P
l
j

(sum of non oriented spaces), where pj =
dim mj

2 , and

A|mj
= ⊕pj

l=1RP l
j
(θj)
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where RP l
j
(θj) is the rotation on P lj of angle θj = jπ

k . Let εj be the orientation7

of ⊕pj

l=1P
l
j (sum of oriented spaces) in mj . Now let us consider the map

f : A ∈ Z2k(R2n) 7→ (Πk−1
j=1 εj , (pj)1≤j≤k−1) ∈ X2k.

Then it is a continuous8 surjection and f−1({(ε, p)}) is an SO(2n)-orbit in the

action of SO(2n) on Z2k(R2n). This completes the proof. �

Remark 3.1

Remark 3.2

Each connected component is a SO(2n)-orbit and thus is compact, and con-
sequently closed. Hence its complementary which is an finite union of closed
subset is closed: each connected component is an open and closed submanifold
of Z2k(R2n) (which is itself a compact submanifold in SO(2n)).

Definition 3.1 We will denote by Zα2k(R2n) (and sometimes only by Zα2k) the
connected component f−1({α}), for α = (ε, p) ∈ X2k. We define

Z0
2k(R

2n) =
{
A ∈ Z2k(R2n)|Ak = −Id

}
=

⊔

{α|∀j,p2j=0}

Zα2k

Z∗
2k(R

2n) =
{
A ∈ Z2k(R2n)|Ak 6= −Id

}
=

⊔

{α|∃j,p2j 6=0}

Zα2k

Z0
2k(R

2n) is the union of order k components in Z2k(R2n), and Z∗
2k(R

2n)
is the union of order 2k components (see below for the meaning of this
appellation).
In the following we will denote by Za2k(R2n), for a ∈ {0, ∗} any of the two
spaces Z0

2k(R
2n) and Z∗

2k(R
2n), and r the order of these two spaces i.e. r ={

2k in Z∗
2k(R

2n)

k in Z0
2k(R

2n)
. r is in fact the order of AdJ , for J ∈ Z2k(R2n) (see below).

Let us compute the tangent space of Z2k(R2n): ∀J ∈ Z2k(R2n),

TJZ2k(R2n) =



A ∈ J.so(2n)

∣∣∣∣∣∣
∑

p+l=2k−1

JpAJ l = 0



 (38)

and for J ∈ Z0
2k(R

2n), we have in addition

TJZ2k(R2n) = TJZ0
2k(R

2n) =



A ∈ J.so(2n)

∣∣∣∣∣∣
∑

p+l=k−1

JpAJ l = 0



 (39)

7see remark 3.1
8see remark 3.2

37



It could seem strange that the two expressions (38) and (39) are equal for
J ∈ Z0

2k(R
2n), but as we will see below, it comes from the fact that the ”even”

eigenspaces of AdJ vanish, for J ∈ Z0
2k(R

2n), which leads to this last equality
(which is in general an inclusion ”⊃”)

Example 3.2 If k = 2, then X2k = {±1} = Z2 and Z4(R2n) = Z0
4 (R2n) =

Σ(R2n) = {J ∈ SO(R2n)|J2 = −Id} = Σ+(R2n)
⊔

Σ−(R2n) (resp. the positive
and negative components of Σ(R2n)), whereas Z∗

4 (R2n) = ∅.

3.1.2 Study of AdJ, for J ∈ Za2k(R2n)

Let J ∈ Za2k(R2n). AdJ is then an order r automorphism of End(R2n) (since
(AdJ)p = Id ⇔ Jp = ±Id) thus we have the following eigenspaces decomposi-
tion:

End(R2n)C =
⊕

j∈Z/rZ

ker(AdJ − ωjrId)

with ωr = e2iπ/r. Let us set

Aj(J) = ker(AdJ − ωjrId).

Then A0(J) = Com(J) := {A ∈ End(R2n)|[A, J ] = 0} and for j 6= 0 we have:
∀A ∈ Aj(J)(j 6= 0),

∑

l+p=r−1

J lAJp =
∑

l+p=r−1

(ωjr)
lAJp+l =

[
l−1∑

0

(ωjr)
l

]
Jr−1 = 0.

Hence
⊕

j∈Z/rZ\{0}

Aj(J) ⊂ ker


 ∑

l+p=r−1

L(J l) ◦R(Jp)




with obvious notation. This inclusion is in fact an equality. Indeed, let A ∈
End(R2n), then A =

∑r−1
j=0 Aj , with Aj ∈ Aj(J), thus

∑r−1
j=0 J

lAJr−1−l =

rA0J
r−1 + 0 = rA0J

r−1 which vanishes if and only if A0 = 0. This proves the
equality:

⊕

j∈Z/rZ\{0}

Aj(J) = ker


 ∑

l+p=r−1

L(J l) ◦R(Jp)


 .

Now, let us restrict ourself to J.so(2n), resp. to so(2n), (which does not change
the order of AdJ|J.so(2n), resp. AdJ|so(2n)) and set9

Bj(J) = Aj(J) ∩ (J.so(2n))C, resp. soj(J) = Aj(J) ∩ so(2n)C.

9Bj(J) is stable by AdJ and we have Bj(J) = J.soj(J) = soj(J).J . Besides we have more
generally J.Aj(J) = Aj(J).J = Aj(J).
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Then we have, according to (38)-(39),

TJZa2k(R2n) =
(
⊕r−1
j=1Bj(J)

)
∩ End(R2n). (40)

The inner automorphism10 T = IntJ|SO(2n) gives rise to the r-symmetric space
SO(2n)/U0(J), where U0(J) = SO(2n)T = Com(J)∩SO(2n), which is nothing
but the connected component Zα2k of J (which is also the orbit SO(2n) · J =
Int(SO(2n))(J) ):

Zα2k(R2n) = SO(2n)/U0(J).

Consider now

Uj−1(J) := Com(Jj) ∩ SO(2n) = SO(2n)T
j

,

Then T is an order j automorphism11 on Uj−1(J) and gives rises to the j-
symmetric space Uj−1(J)/U0(J) which is in fact equal to

Zα2k,j(R2n, Jj) := {J ′ ∈ Zα2k(R2n)|(J ′)j = Jj}.

Indeed let J ′ ∈ Zα2k(R2n), then there exists g ∈ SO(2n) such that J ′ = gJg−1,
then (J ′)j = Jj if and only if gJjg−1 = Jj i.e. g ∈ Uj−1(J), which proves that
Zα2k,j(R2n, Jj) = Int(Uj−1(J))(J) i.e.

Zα2k,j(R2n, Jj) = Uj−1(J)/U0(J).

Remark 3.3 Obviously, in this equation J can be replaced by any J ′ ∈
Zα2k,j(R2n, Jj).

Example 3.3 If k = 2, then we haveZα4,2(R2n, J2) = Zα4,2(R2n,−Id) = Zα4 (R2n) =
Σα(R2n) = SO(2n)/U(n), and the other values of j are trivialZα4,±1(R

2n, J±1) =
{J}.

Remark 3.4 Sometimes, we will need to precise clearly what is the eignevalues
of the eigenspaces Ai(J) and soi(J), then we will simply use the notation

A(ω)(J) = ker(AdJ − ωId)

and idem for so(ω)(J) and B(ω)(J).
Besides, sometimes for the homogeneity of the equations, we will extend the
notations Ai(J) for real index and set for t ∈ R

At(J) = ker(AdJ − ωtrId).

10The conjugaison by J is denoted by IntJ : GLn(R) → GLn(R) when the domain of defin-
tion is a Lie subgroup and by AdJ : gln(R) → gln(R) when it is a Lie subalgebra.

11We confuse j ∈ Zr and its representant in {0, . . . , r − 1}.
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3.1.3 Study of AdJj

Let j ∈ Z∗. Then we have

AdJj = (AdJ)j = ⊕r−1
l=0

(
ωlr

)j
IdAl

(J),

ωjr is of order p =
r

(r, j)
, i.e. it is in Ûp = {z ∈ S1|zp = 1} = exp

(
(Z/pZ) · 2iπ

p

)
.

Hence

AdJj =

(r,j)−1⊕

q=0

[
⊕p−1
l=0

(
ωjr

)l
IdAqp+l

(J)
]

hence writing (AdJj is of order p):

AdJj = ⊕p−1
l=0 ω

l
p IdAl

(Jj)

we obtain that
Al(Jj) = ⊕(r,j)−1

q=0 Aqp+l′ (J) (41)

where l′ = (j′)−1l in the ring Z/pZ, and j′ =

[
j

(j, r)

]

mod p

(j′ is inversible in

the ring Z/pZ, since (j′, p) = 1 by definition of (r, j)).
In particular,

Com(Jj) = A0(J
j) = ⊕(r,j)−1

q=0 Aqp(J). (42)

More particulary,

Com(Jk) =

{
⊕k−1
q=0Aq(J) = End(R2n)C if r = k

⊕k−1
q=0A2q(J) if r = 2k

and

Com(J2) =





A0(J)⊕Ak(J) if r = 2k

A0(J)⊕A k
2
(J) if r = k ∈ 2Z

}
= A0(J)⊕A r

2
(J) if r is even

A0(J) if r = k is odd

.

We can rewrite all what precedes in J.so(2n) (resp. in so(2n)) by replacing Al
by Bl (resp. sol). In particular we have, according to (42),

uj−1(J) := Lie (Uj−1(J)) = so0(J
j) ∩ so(2n) =

(
⊕(r,j)−1
q=0 soqp(J)

)
∩ so(2n),

this12 is the eigenspace decomposition of the order j automorphism obtained by
restricting T = AdJ to uj−1(J). Moreover we have

TJZα2k,j(R2n, Jj) =




(r,j)−1⊕

q=1

Bqp(J)


 ∩ End(R2n). (43)

12We mean uj−1(J)C = ⊕
(r,j)−1
q=0 soqp(J)
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Indeed, g ∈ Uj−1(J) 7→ gJg−1 ∈ Zα2k,j(R2n, Jj) is a surjective submersion whose
the (surjective) derivative at g = 1,

A ∈ uj−1(J) 7→ [A, J ] =

(r,j)−1∑

q=0

[Aqp, J ] =

(r,j)−1∑

q=0

(1−ωqpr )AqpJ ∈ TJZα2k,j(R2n, Jj)

has
(
⊕(r,j)−1
q=1 Bqp(J)

)
∩ End(R2n) as image, which proves the equality (43).

More simply by differentiating the definition equation of Zα2k,j(R2n, Jj) we ob-
tain

TJZα2k,j(R2n, Jj) =



A ∈ J.so(2n)

∣∣∣∣∣∣
∑

p+l=j−1

JpAJ l = 0



 (44)

In particular, let us apply (43) for j = 2 :

TJZα2k,2(R2n, J2) =

{
B r

2
(J) = {A ∈ J.so(2n)|AJ + JA = 0} if r is even

0 if r is odd.

This can be recovered from (44) by remarking that if r is odd then −1 is not a
r-th root of unity (and thus not an eigenvalue of AdJ).

Remark 3.5 If (j, 2k) = 1 (so that (j, r) = 1 also) then Jj ∈ Z2k(R2n) and T j

is of order r and we have, according to (41)

Al(Jj) = A[j]−1
r ·l(J), ∀l ∈ Z/rZ,

in others words Al(J) = Aj·l(Jj), ∀l ∈ Z/rZ. In particular

Uj−1(J) = A0(J
j) ∩ SO(2n) = A0(J) ∩ SO(2n) = U0(J).

Hence
Zα2k,j(R2n, Jj) = {J}.

More generally, we have, according to (42), since (jl, r) = (l, r),

Com((Jj)l) = Com(Jjl) = ⊕(l,r)−1
q=0 Aqp(J) = Com(J l)

with p =
r

(l, r)
, and thus

Com((Jj)l) = Com(J l) ∀l ∈ Z/rZ.

In particular, Ul−1(J
j) = Ul−1(J) ∀l ∈ Z/rZ and thus

Zα2k,l(R2n, (Jj)l) = Z [j]−1
2k ·α

2k,l (R2n, J l)

where [j]−1
2k · α is the action of [j]−1

2k on α ∈ X2k, the action of l ∈ (Z/rZ)∗ on
X2k being defined by the bijective map

J ∈ Z2k(R2n) 7→ J l ∈
(
Z2k(R2n)

)l
= Z2k(R2n)
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which sends a connected component onto another one

(
Zα2k(R2n)

)l
=: Z l·α2k (R2n).

In particular, for j = 1, we have

Ul−1(J
−1) = Ul−1(J) ∀l ∈ Z/rZ

and thus
Zα2k,l(R2n, (J−1)l) = Z−α

2k,l(R
2n, J l)

where −(ε, p) = ((−1)nε, p) in X2k. Hence Zα2k,l(R2n, (J−1)l) = Zα2k,l(R2n, J l)

if and only if n is even (i.e. J and J−1 are in the same connected component).

3.2 Isometries of order 2k + 1 with no eignevalue = 1

We can do exactly the same study for Z2k+1(E) as we did for Z2k(E), with
however the following simplification: all the connected components have the
same order r = 2k + 1 and we do not have to distinguish two types of orbits as
previously.

3.3 The effect of the power maps on the finite order isome-
tries

Let J ∈ Uk′ then Jj ∈ Up with p = k′

(k′,j) . Moreover it is easy to see (from the

diagonalisation) that the power map

J 7→ Jj

is surjective from Uk′ onto Up (since z ∈ Ûk′ 7→ zj ∈ Ûp is surjective). Besides,
since each connected component in Uk′ (and in Up) is a SO(2n)-orbit, then the
power map J 7→ Jj sends one component in Uk′ onto another one in Up so that
it induces a map:

α ∈ π0(Uk′ ) −→ j · α ∈ π0(Up)
such that

(Uαk′ )j =: Uj·αp , ∀α ∈ π0(Uk′ ).

Remark 3.6 In general we have (Z2k)
j * Zp. For example, for j = 2, we have

(Z2k(R2n))2 =

{
U∗
k if k is even

Zk if k is odd

Besides, given J ∈ Zα2k(R2n), then Zα2k,j(R2n, Jj) is the inverse image of Jj by
the map

J ′ ∈ Zα2k(R2n) 7−→ (J ′)j ∈ (Zα2k(R2n))j = Uj·αp (R2n).
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Since (J ′)j is constant in Zα2k,j(R2n, Jj), we can denote it by Jj and then

Zα2k,j(R2n, Jj) = Zα2k,j(R2n, Jj).

�

Furthermore, we have also for any J ∈ Uαk′ , U0(J
j) = Uj−1(J) so that

Uj·αk′ = SO(2n)/U0(J
j) = SO(2n)/Uj−1(J)

so that
(Uαk′ )j = SO(2n)/Uj−1(J) (45)

which we can recover directly by taking the power j in the equality Uαk′ =
{gJg−1, g ∈ SO(2n)}.
Convention: for each α ∈ π0(Z2k), we will choose (and fix) a canonical rep-
resentant in Zα2k(R2n). For example, let (ǫ1, . . . , ǫ2n) be the canonical basis in
R2n, and

e2l+1 =
ǫ2l+1 + iǫ2l+2√

2
, 0 ≤ l ≤ n− 1,

e2l = e2l−1, 1 ≤ l ≤ n.

Then e = (e1, . . . , e2n) is a hermitian basis in C2n and we can take Jα0 such that

Mate(J
α
0 ) = Diag

((
eiθj Idpj 0

0 e−iθj Idpj

)
, 1 ≤ j ≤ n− 1

)

where p = (p1, . . . , pk−1) is determined by α = (ε, p) ∈ π0(Z2k) (see sec-

tion 3.1.1), θj =
jπ

k
, andMate(·) means ”the matrice in the basis e of ”.

3.4 The Twistor spaces of a Riemannian manifolds and its
reductions

Let M be an oriented (even dimensional) Riemannian manifolds and let us
consider the bundle of order 2k isometries U2k(M) as well as its subbundles
U∗

2k(M) and Z2k(R2n). Let us fix α ∈ π0(Z2k(R2n)) and consider the component
Zα2k(R2n). Then denoting by SO(M) the SO(2n)-bundle of positively oriented
orthonormal frames on M , we have

Zα2k(R2n) = SO(M)/U0(J
α
0 )

(see section 4.3 for more precisions about this equality). We want to ask
the following question: does SO(M) admit Uj−1(J

α
0 )-reduction for 1 ≤ j ≤

r. We know (according to [27]) that SO(M) admits an Uj−1(J
α
0 )-reduction

if and only if the associated bundle SO(M)/Uj−1(J
α
0 ) (= SO(M) ×SO(2n)
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SO(2n)/Uj−1(J
α
0 )) admits a global section Jj : M → SO(M)/Uj−1(J

α
0 ). Be-

sides Uj−1(J
α
0 ) = U0((J

α
0 )j) and according to (45),

SO(M)/Uj−1(J
α
0 ) = (Zα2k(R2n))j = Uj·αp (M)

with p =
2k

(2k, j)
. Hence Jj (when it exists) is a global section of (Zα2k(M))j

and then the Uj−1(J
α
0 )-reduction is given in terms of Jj by:

Uαj−1(M) := {e = (e1, . . . , e2n) ∈ SO(M)|Mate(Jj) = (Jα0 )j}.

Then we have
Uαj−1(M)/U0(J

α
0 ) = Zα2k,j(M,Jj).

In particular, since (Jα0 )r = ±Id, we have Ur−1(J
α
0 ) = SO(2n) and SO(M) has

always an (unique and trivial) SO(2n)-reduction for which Jr = ±IdTM and
thus Uαr−1(M) = Uα0 (M) = SO(M) and Zα2k,r(M,Jr) = Zα2k(M).

Example 3.4 For k = 2, and thus r = 2, J = −Id defines the trivial reduction;
and J1(when it exists) defines on M an (almost) complex structure and Uα0 (M)
is then the subbundle of hermitian frames on M (with respect to this complex
structure).

3.5 Return to an order 2k automorphism τ : g→ g.

We give ourself the same ingredients as in section 2.1 and we use the same
notations. In particular, we suppose that the subgroup H is chosen such that
(Gσ)0 ⊂ H ⊂ Gσ. In addition to that we suppose G/H Riemannian.

3.5.1 Case r = k

Suppose that we have τk|m = −Id i.e. τ|m ∈ Z0
2k(m). Then g2j = 0 for all

2j ∈ Z/(2k)Z \ {0, k}. Hence we have

[gp, gl] = {0} if p+ l 6= 0, k.

Indeed, if p or l is even then the corresponding eigenspace vanishes. If p and l
are odd then [gp, gl] ⊂ gp+l and p+ l is even, thus gp+l = {0} except if p+ l = 0
or k. Consequently, we have [m,m] ⊂ h and thus G/H is a (locally) symmetric
space. Let us distinguish the following two cases.

k is odd. Then [gk, gj ] ⊂ gk+j = {0} for all j odd 6= 0, k. Hence [gk,m] = {0}
i.e. admgk = 0 so that gk = 0 and thus this case is trivial because H = G0

up to covering and thus the fibre H/G0 is trivial (i.e. a discret set). Moreover
we have [m,m] ⊂ h = g0 and G/H = G/G0 (up to covering) is the (locally)
symmetric space associated to the involution τk.
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k is even. Then the symmetric decomposition g = h ⊕ m is the eigenspace
decomposition of τk, and G/H is the (locally) symmetic space corresponding to
this involution τk.

In conclusion, if r = k, then G/H is the (locally) symmetic space correspond-
ing to τk.

Example 3.5 For 2k = 4, we always have r = k = 2 (since τ2
|m = −Id) and

G/H is the symmetric space corresponding to σ = τ2.

3.5.2 Action of Adτ|m on adgj

We have τ ◦ adX ◦ τ−1 = adτ(X), ∀X ∈ g. In particular,

∀Xj ∈ gj , τ ◦ adXj ◦ τ−1 = ωj2kadXj (j ∈ Z/(2k)Z).

Hence by taking the restriction to m and projecting on m:

τ|m ◦ [admXj]m ◦ τ−1
|m = ωj2k[admXj ]m

so that
[admgj ]m ⊂ Aj(τ|m) 13 ∀j ∈ Z/(2k)Z.

If r = k then [m,m] ⊂ h, hence [admgj ]m = 0, for all j ∈ Z/(2k)Z \ {0, k}.
Let us recall that we always have (r = 2k or k)

[admg0]m = admg0 ⊂ so0(τ|m) = Com(τ|m) ∩ so(m)

[admgk]m = admgk ⊂
{

so r
2
(τ|m) = Ant(τ|m) ∩ so(m) if r = k is even

0 if r = k is odd (trivial case)

where Ant(τ|m) = {A ∈ End(m)|Aτ|m + τ|mA = 0}.

Remark 3.7 There is no raison to have [admgj ]m ⊂ soj(τ|m) (if the metric is
not naturally reductive) and no raison also to have [admgj ]m ⊂ Bj(τ|m).

3.6 The canonical section in (Z2k(G/H))2, the canonical
embedding, and the Twistor lifts

Once more, we give ourself the same ingredients and notations as in section 2.1.
We suppose that (Gσ)0 ⊂ H ⊂ Gσ and that G/H is Riemannian. We denote
by p0 := 1.H the reference point in G/H . According to the definition of H , we
have

13see remark 3.7
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Lemma 3.1 Let J0 be the element in Zα0

2k (Tp0M) corresponding 14 to τ−1
|m (or

more generally to τ j|m with (j, 2k) = 1) under the identification Tp0M = m.

Then we have ∀g ∈ H, gJ2
0 g

−1 = J2
0 . Hence there exists a unique section

J2 : G/H 7→ (Zα0

2k )2 = Uα
2
0

k (G/H)

defined by
g.p0 ∈ G/H 7→ gJ2

0g
−1 ∈ (Zα0

2k )2.

Proceeding as in [25], Theorem 3, we obtain:

Theorem 3.2 Let τ : g → g be an order 2k automorphism and M = G/H
a (locally) Riemannian k-symmetric space corresponding to σ = τ2. Let us
make G acting on Z2k(M): g · J = gJg−1. Let J0 ∈ Zα0

2k (Tp0M) be the finite
order isometry corresponding to τ−1

|m under the identification Tp0M = m. Then

the orbit of J0 under the action of G is an immersed submanifold in Zα0

2k (M).
Denoting by G0 the stabilizer of J0, then G0 = Gτ ∩H and thus N = G/G0 is
a locally 2k-symmetric bundle over M and the natural map:

IJ0 : G/G0 −→ Zα0

2k,2(G/H, J2)

g.G0 7−→ gJ0g
−1

is an injective immersion and a morphism of bundle. Moreover, if the image of
G in Is(M) (the group of isometry of M) is closed, then IJ0 is an embedding.

Remark 3.8 Say something about the choice J0 = τ j|m with (j, 2k) = 1 etc...

Notation For a geometric map f : L → G/G0, we will denote by J the cor-
responding map IJ0 ◦ f : L → Z2k,2(G/H, J2) under the previous inclusion
G/G0 →֒ Z2k,2(G/H, J2).

3.6.1 The Twistor lifts

Definition 3.2 An isometry A ∈ SO(R2n) will be called an eiθ-structure if
Spect(A) = {eiθ, e−iθ}. An isometry A ∈ SO(R2n) will be called a 2k-structure
if A ∈ Z2k(R2n).

Definition 3.3 Let (L, i) be a complex manifold (of dimension d ≥ 1), M an
oriented Riemannian manifold and u : L → M a immersion. Then an element
J : L → u∗(Z2k(M)) is an admissible twistor lift of u if one of the following
equivalent statements holds:

(i) Let Ej be the orthogonal projection of the tangent subbundle u∗(TL) on the
subbundle mj(J) (with obvious notations). Then for all j ∈ {1, . . . , k−1},
J stabilizes Ej and J|Ej

is a ωj2k-structure and prEj
◦ i = J ◦ prEj

.

14α0 denotes off course the connected component of J0 in Z2k(Tp0M).
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(ii) J stabilizes Ej and induces on it an ωj2k-structure, i induces on Ej a well

defined map which is nothing but the ωj2k-structure J|Ej
.

(iii) [∂u]mj(J)C ∈ gj(J) for 1 ≤ j ≤ k − 1 (still with obvious notations).

(iv) Let J be the complex structure defined on u∗(TM) by the decomposition

u∗(TM)C =
[
⊕k−1
j=1gj(J)

]
⊕

[
⊕k−1
j=1g−j(J)

]

(1, 0) (0, 1)

then u is J-holomorphic: ∗du := du ◦ i = J ◦ dX

In particular, if (L, i) is a Riemann surface, then we can add that the existence
of an admissible twistor lift J of u implies in particular that u is a conformal
immersion.

Theorem 3.3 In the situation described in theorem 3.2, let α be a g-valued
Maurer-Cartan 1-form on a Riemann surface L and f : L→ G/G0 its geometric
map and J = IJ0 ◦ f . The the following statements are equivalent:

(i) α′′
−j = 0, 1 ≤ j ≤ k − 1

(ii) J : L→ Z2k,2(G/H, J2) is an admisible twistor lift.
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4 Vertically Harmonic maps and Harmonic sec-
tions of submersions

We will recall here some definitions and properties about vertical harmonicity
and refer to [35, 36] for details and proofs (section 4.1 and 4.2). Then we will
apply these latter to the study of the examples we are interested in (and that we
have already introduced and begun to study in 4.1) : homogeneous spaces and
Twistor spaces (section 4.3). Finally, we will conclude with a geometric inter-
pretation of the even determined elliptic integrable system in terms of vertically
harmonic twistor lifts (section 4.4).

4.1 Definitions, general properties and examples

4.1.1 The vertical energy fonctional

Let (M, g), (N, h) be Riemannian manifolds and π : N →M a submersion. We
can do the splitting TN = V ⊕H, where the vertical and horizontal subbundles
are defined by V = ker dπ and H = (ker dπ)⊥ = V⊥.
For any map u : M → N , we denote by dvu = (du)v the vertical component
of du. Following [35], this allows us to define the vertical energy density of u,

ev(u) =
1

2
|dvu|2, and the associated vertical energy fonctional:

Ev(u) =
1

2

∫

M

|dvu|2dvolg.

Let us define the vertical tension field of u : M → N by

τv(u) = Tr(∇vdvu)

where ∇v denotes the vertical component of the Levi-Civita connection (of N)
in TN , and Trg the trace with respect to g. Then we have

Theorem 4.1 [35] The map u : M → N is a critical point of Ev with respect to
vertical variations if and only if τv(u) = 0. In particular, if u is a section, i.e.
π ◦ u = IdM , then it is a critical point of Ev with respect to variations through
sections if and only if τv(u) = 0.

We define a map u : M → N to be vertically harmonic if τv(u) = 0, and if u is
a section we will say that it is a harmonic section.

4.1.2 Examples

Example 4.1 Let π : N →M be like above. Let (L, b) be a Riemannian mani-
fold and f : L→ N a map. Then we can consider the projection u = π ◦f : L→
M and the manifold

u∗N = {(z, n) ∈ L×N, n ∈ π−1({u(z)})}.
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Then we have the submersion u∗π : (z, n) ∈ u∗N 7→ z ∈ L. Furthermore, u∗N
can be endowed canonically with a Riemannian metric: take the metric induced
by the product metric

|(dz, dn)|2 = |dz|2 + |dn|2

in L×N ⊃ u∗N . Then we will say that f : L→ N is vertically harmonic if and
only if

Trb(∇vdvf) = 0.

When u is an isometry and π a Riemannian submersion this is equivalent to
say that the corresponding section f̃ : L → u∗N is a harmonic section
(see the Appendix, theorem 6.1).

Example 4.2 Let p: (E,∇, 〈·, ·〉) 7→ (M, g) be a Riemannian vector bundle
of rank 2n (in particular 〈·, ·〉 is ∇-parallel). Then we consider the bundle of
orhogonal almost complex structure: NΣ = Σ(E) = {(x, Jx), Jx ∈ Σ(Ex)},
where Σ(Ex) = {J ∈ so(Ex)|J2 = −Id}. We have a fibration πΣ : NΣ → M .
The vertical space is given by: ∀J ∈ NΣ,

VJ := TJΣ(Ex) = {A ∈ so(Ex)|AJ + JA = 0}

where x = πΣ(J).
The metric connection ∇ gives us a splitting : TΣ(E) = VΣ ⊕HΣ. Indeed we
have the following splitting (coming from ∇)

T so(E) = p∗so(E)⊕H (46)

where p: so(E) → M is the natural fibration15. Then for any (local) section
J : U ⊂M → Σ(E), we have

0 = ∇J2 = (∇J)J + J(∇J)

so that ∇J ∈ VΣ and thus in the decomposition (46): [dJ ]so(E) = ∇J ∈ VΣ and
thus [dJ ]H = dJ −∇J ∈ TNΣ which allows us to conclude that

TΣ(E) = VΣ ⊕H|Σ(E).

Then we can endow NΣ with the metric

h = π∗g + 〈 , 〉VΣ (47)

where 〈 , 〉VΣ is the fibre metric in VΣ induced by the metric in so(E):

〈A,B〉 = Tr(At.B). (48)

With this metric we have obviously HΣ = VΣ⊥
.

15we denote by the same letter the fibration p: E → M and all its ”tensorial extensions”:
p: End(E) → M , p : so(E) → M , etc..
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Furthermore, let us remark that TΣ(E) is a subbundle of T so(E)|Σ(E) and that
we have

T so(E)|Σ(E) = π∗
Σso(E) ⊕H|Σ(E) = so−(π∗

ΣE)⊕ so+(π∗
ΣE)⊕H|Σ(E)(49)

= TΣ(E)⊕ so+(π∗
ΣE) (50)

with16

so+(π∗
ΣE)J = so+(Ex, J) := {A ∈ so(Ex)| [A, J ] = 0}

so−(π∗
ΣE)J = so−(Ex, J) := {A ∈ so(Ex)|AJ + JA = 0} = VΣ

J

for all J ∈ Σ(E) (and where x = πΣ(J)). In other words, π∗
ΣE is canonically en-

dowed with a complex structure: IJ = J , ∀J ∈ NΣ, and this complex structure
defines the two spaces so±(π∗

ΣE) by

so±(π∗
ΣE) = so±(π∗

ΣE, I).

Now given a section J ∈ C(πΣ), then we consider the vertical part of the rough

Laplacian ∇∗∇J , in the decomposition (49): (∇∗∇J)V
Σ

=
1

2
J [J,∇∗∇J ]. We

will see in section 4.3.2 that this is in fact exactly the vertical tension field of J
in NΣ:

τv(J) =
1

2
J [J,∇∗∇J ].

In particular, we recover the definition of vertical harmonicity used in [25] and
[6].

Example 4.3 Let p: (E,∇, 〈·, ·〉) 7→ (M, g) be a Riemannian vector bundle
of rank 2n. Then we consider more generally the bundle of order 2k isome-
tries U2k(E) as well as its subbundles U∗

2k(E) and Z2k(E). Let us fix α ∈
π0(Z2k(R2n)) and consider the component Zα2k(E) := NZ . We have a natural
fibration πZ : Zα2k(E)→M . The vertical space is given by

∀J ∈ NZ , VZ
J = TZα2k(Ex) =


 ⊕

j∈Z/rZ\{0}

Bj(Ex, J)


 ⋂

End(Ex) = J.so∗(Ex, J)

(51)
according to section 3.1.2 (more particulary equation (40)) and where

so∗(Ex, J) :=


 ⊕

j∈Z/rZ\{0}

soj(Ex, J)


 ⋂

so(Ex).

The metric connection ∇ gives us a splitting: TZα2k(E) = VZ ⊕HZ . Indeed we
have the following splitting (coming from ∇)

TSO(E) = VSO(E) ⊕H (52)

16using the notations defined in section 3.1.2 (i.e. the definition of soj(J) for j ∈ Z/2Z).
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where VSO(E)
J = TJSO(Ex) = J.so(Ex) (since 0 = ∇(J tJ) = (∇J)tJ + J t(∇J)

=⇒ ∇J ∈ TJSO(Ex)). Then for all (local) section J : U ⊂M → NZ , we have

0 = ∇J2k =
∑

p+l=2k−1

Jp(∇J)J l

so that according to (38), ∇J ∈ VZ and thus in the decomposition (52), we
have [dJ ]Vso(E) ∈ VZ and hence [dJ ]H = dJ − [dJ ]Vso(E) ∈ TNZ which leads to

TZα2k(E) = VZ ⊕H|Zα
2k(E). (53)

Then we can endow NZ with the metric defined as in (47) and where the fibre

〈 , 〉VZ is induced by the trace metric (48), for which we have HZ = VZ⊥
.

Furthermore let us remark that TZα2k(E) is a subbundle of TSO(E)|Zα
2k(E) and

that we have

TSO(E)|Zα
2k(E) = B0(π

∗
ZE)⊕ B∗(π∗

ZE)⊕H|Zα
2k(E)

= B0(π
∗
ZE)⊕ TZα2k(E)

where 17

B0(π
∗
ZE)J = B0(Ex, J) and

B∗(π∗
ZE)J = B∗(Ex, J) :=


 ⊕

j∈Z/rZ\{0}

Bj(Ex, J)


 ⋂

End(Ex) = VZ
J

for all J ∈ Zα2k(E). In other words, π∗
ZE is canonically endowed with a

2k-structure: IJ = J , ∀J ∈ NZ , and this 2k-structure defines the spaces
Bj(π∗

ZE) := Bj(π∗
ZE, I).

Now let us precise the relation between SO(E) and so(E) and in particular the
relation TJSO(Ex) = J.so(Ex). For J ∈ SO(E), let

LJ : A ∈ End(Ex) 7−→ J.A ∈ End(Ex)

be the left multiplication by J in End(Ex), with x = p(J). Let us still denote
by I, the tautological section of p∗SO(E) defined by IJ = J , ∀J ∈ SO(E),
and whose restriction to NZ is our canonical 2k-structure I on π∗

ZE. Then let
LI : SO(E) −→ Aut(End(p∗E)) be the section of the bundle of linear automor-
phism of the vector bundle End(p∗E) defined by

LI : J ∈ SO(E) 7−→ LJ ∈ Aut(End(Ep(J)))

or more concretely

LI : (J,A) ∈ End(p∗E) 7−→ (J, J.A) ∈ End(p∗E).

17still with the notation defined in section 3.1.2
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Then we have

VSO(E) = LI(so(p∗E)) and Bj(π∗
ZE) = LI(soj(π

∗
ZE))

which we will denote more simply by

VSO(E) = I.so(p∗E) and Bj(π∗
ZE) = I.soj(π∗

ZE).

Example 4.4 Let us consider the previous example and let us suppose that
there exists a (global) section Jj of (Z2k(E))j = Uj·αp′ (E) for some j ∈ Z and

p′ =
2k

(2k, j)
. Let us consider the subbundle

N j
Z := Zα2k,j(E, Jj) = {J ∈ Zα2k(E)| Jj = Jj}

for which we have the natural fibration πjZ : Zα2k,j(E, Jj) → M . The vertical
space is given by

∀J ∈ N j
Z , VZ,j

J = TJZα2k,j(Ex, Jj) = ⊕(r,j)−1
q=1 Bqp(Ex, J) = J.u∗j−1(Ex, J)

according to (43)18, where

u∗j−1(Ex, J) = ⊕(r,j)−1
q=1 sopq(Ex, J) = uj−1(Ex, J)/u0(Ex, J) = so0(Ex, J)/so0(Ex, J).

Furthermore, differentiating the definition equation of Z2k,j(E, Jj): Jj = Jj ,

we obtain: for all (local) section J of πjZ ,

∇Jj =
∑

l+q=j−1

J l∇J Jq = ∇Jj (54)

so that
∇J ∈ VZ,j ⇐⇒ ∇Jj = 0,

therefore in general, we have ∇J /∈ VZ,j. We will simply set

HZ,j = VZ,j⊥ ∩ TZα2k,j(E, Jj).

Then the splitting
TZα2k,j(E, Jj) = VZ,j ⊕HZ,j

do not correspond to the splitting (52) or equivalently to (53), in general. In
other words, the connection in πZ defined by the horizontal distribution H|NZ

is not reducible to a connection in πjZ (which could only be HZ,j): it happens if

and only ifH is tangent to N j
Z . Besides we have two different ways to decompose

18and with the notations of section 3.1.3, in particular p =
r

(r, j)
.
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the orthogonal of VZ,j in TNZ , using the decompositions TNZ = VZ ⊕HZ or

TNZ|Nj
Z

= TN j
Z ⊕ TN j

Z

⊥
:

TNZ|Nj
Z

= VZ,j ⊕ VZ,j⊥

= VZ,j ⊕ VZ,j⊥ ∩ VZ ⊕H|Nj
Z

= VZ,j ⊕HjZ︸ ︷︷ ︸
TNj

Z

⊕TN j
Z

⊥

In particular, we have for any (local) section J : U ⊂M → N j
Z

[dJ ]VZ,j = [∇J ]VZ,j = prV
Z

VZ,j (∇J)

where [ ]VZ,j : TNZ → VZ,j and prV
Z

VZ,j : VZ → VZ,j are resp. the orthogonal
projections. Moreover, let us decompose TSO(E)|Zα

2k,j(E) into an orthogonal

sum making appear the vertical subbundle VZ,j of N j
Z :

TSO(E)|Nj
Z

= B0(π
j
Z

∗
E, I)⊕ B∗(πjZ

∗
E, I) ⊕ H|Nj

Z

= B0(π
j
Z

∗
E, I)⊕ VZ,j

︸ ︷︷ ︸
I.so∗(πj

Z

∗
E,Ij)

⊕ I.so∗(πjZ
∗
E, Ij)︸ ︷︷ ︸

VZ,j⊥∩VZ

⊕ H|Nj
Z
.

Now let us see how we can determine HZ,j from the section Jj . First we

remark that HZ,j ∩VZ = {0} (indeed ker dπZ ∩HZ,j ⊂ ker dπZ ∩ TN j
Z = VZ,j

and of course VZ,j ∩ HZ,j = {0}). Therefore HZ,j is a vector subbundle of

(VZ,j⊥ ∩VZ)⊕H which satisfies (VZ,j⊥ ∩VZ)∩HZ,j = {0}. Thus HZ,j is the

graph of some linear map19 Γ: H → VZ,j⊥ ∩ VZ , 20

Id + Γ: W ∈ H 7→W + Γ(W ) ∈ H⊕ (VZ,j⊥ ∩ VZ)

has HZ,j as image.
Let us concentrate ourself on (54). ∇J is in VZ so that we can write it ∇J =∑r−1
i=1 JAi with Ai ∈ soi(E, J), according to (51). Then we have ∀i ∈ {1, . . . , r−

1},
∑

l+q=j−1

Jq(JAi)J
l =

j−1∑

l=0

Jj−1ωlrJAi =
1− (ωir)

j

1− ωir
JjAi

so that

∑

l+q=j−1

Jq(∇J)J l = Jj



r−1∑

i=1
i/∈p.Z

1− (ωir)
j

1− ωir
Ai




19i.e. a morphism of vector bundle
20In the following reasoning, we will forget the index ”|Nj

Z” in H
|N

j
Z

to do not weigh down

the equations. The right notation will reapear in the final equation.
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where as usual p =
r

(r, j)
is the order of ωjr . In particular, we remark that (with

obvious notation)21

∑

l+q=j−1

L(J l) ◦R(Jq)−1 : B∗(E, J) 7−→ B∗(E, Jj) (55)

is a surjective map with kernel22

⊕

i∈p.Zr\{0}

Bi(E, J) = J∗VZ,j,

so that it induces an isomorphism from

J.so∗(E, Jj) = J∗(VZ,j⊥ ∩ VZ)

onto B∗(E, Jj). Let us denote by P j(J) the surjective map (55) and by P j(J)−1

the inverse map of the isomorphism induced on J.so∗(E, Jj). Then we have

P j(J)(∇J) = ∇Jj

so that [∇J ]V
Z,j⊥

∩VZ

= P j(J)−1(∇Jj), but we have ∇J = [dJ ]V
Z

, and there-
fore

[dJ ]V
Z,j⊥

∩VZ

= P j(J)−1(∇Jj). (56)

On the other hand, dπZ ◦ dJ = IdTM so that dπZ ◦ [dJ ]H = IdTM , which with
(56) allows to conclude that

Γ = P j(J)−1 ◦ (∇Jj) ◦ dπZ
|H

that is to say, for all W ∈ H|Nj
Z

Γ(W ) = P j(J0)
−1 · ∇(πZ )∗WJj

where W = (J0,WJ0), J0 ∈ N j
Z , WJ0 ∈ HJ0 .

4.1.3 Ψ-torsion, Ψ-difference tensor, and curvature of a Pfaff system

Ψ-torsion, Ψ-difference. Let us consider a vector bundle morphism

TM
Ψ−−−−→ (E,∇)

y
y

M
ψ−−−−→ N

,

∇ being a connections on the vector bundle E. Then the Ψ-torsion of ∇ is the
ψ∗E-valued 2-form on M ,

TΨ(X,Y ) = ∇X(ΨY )−∇Y (ΨX)−Ψ[X,Y ] = d∇Ψ(X,Y ) ∀X,Y ∈ C(TM).

Let us give now some examples.

21remark that B∗(E, Jj) = Jj .so∗(E, Jj) = Jj .
``

⊕i∈Zr\p.Zr
soi(E, J)

´

∩ so(E, J)
´

22Obviously, since J is a local section, everything is local here and E must be replaced by
EU := p−1(U), but we do not want to weigh down the notations.

54



Example 4.5 Let N be a manifold and suppose that we have a splitting TN =
V ⊕H and suppose also that the vertical bundle V is endowed with a covariant
derivative ∇c and let φ : TN → V be the projection (morphism) on V along H,
then we can speak about the φ-torsion of ∇c, T φ = d∇

c

φ.

T N
φ

−−−−−−−→ (V, ∇c)

??y
??y

N
Id

−−−−−−−→ N

,

Example 4.6 Let s : M → (N,∇) be a map from a manifold M into an affine
manifold (N,∇) and suppose that we have a splitting TN = V ⊕H, then let us
consider the morphism of bundle

TM
dvs−−−−→ (V ,∇v)

y
y

M
s−−−−→ N

where ∇v is the vertical part
of the affine connection∇.

Then the vertical s-torsion of N is T s := T d
vs = d∇

v

dvs.

Example 4.7 In particular let us take s = IdN (in the previous example) and
thus dvs = φ the projection on V and then the φ-torsion of ∇v (or IdN -torsion
of N) is the vertical torsion in V : T v = d∇

v

φ.
Now for any map s : M → N we have

T s = s∗T v.

We will say that s is vertically torsion free if T s = 0. �

Now, we define the ψ-difference and the ψ-equivalence.

Definition 4.1 Let E → N be a vector bundle and let us suppose that we have
a morphism of bundle ψ : TN → E (over IdN ). Let us consider the ψ-torsion of
a given connection ∇ in E (if ψ is an isomorphism then Tψ = ψ ◦T , where T is
the torsion of the linear connection ψ−1◦∇◦ψ on N). Given another connection
∇′ in E, the ψ-difference tensor Sψ for the pair (∇,∇′) is defined by

Sψ(X,Y ) = ∇X(ψY )−∇′
X(ψY ) = (∇−∇′)X(ψY ).

Then Sψ is symmetric precisely when ∇ and ∇′ have the same ψ-torsion. On
the other hand, if Sψ is skew-symmetric we will way (following [36]) that ∇
and ∇′ are ψ-equivalent: it means that these have the same ψ-geodesics, a
ψ-geodesic of ∇ being a path y(t) in N solution of the equation

∇y′(t)(ψy′(t)) = 0

(if ψ is an isomorphism then ψ-geodesics are precisely the geodesics of ψ−1 ◦
∇ ◦ ψ).
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Curvature of a Pfaff system

Definition 4.2 Let P be a Pfaff system on the manifold N . Then for any local
sections of P, X,Y : (N, a) → P, defined in the neighbourhood of a ∈ N , the
image ([X,Y ]a)V of [X,Y ]a by the canonical projection TaN → Va = TaN/Pa,
depends only on the values Xa, Ya at a ∈ N , of the vector fields X,Y . We define
the curvature of P as the tensor R ∈ Λ2P∗ ⊗ V,

Ra(Xa, Ya) := −([X,Y ]a)V .

Definition 4.3 Let N be a manifold endowed with a Pfaff system V (”vertical
subbundle”) and let us suppose that V admits a connection i.e. a complement H
(”horizontal subbundle”): TN = V ⊕H. Then V is identified to TN/P so that
the curvature of the connection H becomes the tensor R ∈ Λ2H∗ ⊗V defined by

R(X,Y ) = −[X,Y ]V ∀X,Y ∈ C(H)

the subscripts ”V” designing the V-component along H.

Convention We will often extend R to the corresponding horizontal 2-form on
N , still denoted by R: R ∈ Λ2T ∗N ⊗V such that R(X,Y ) = 0 if X or Y ∈ V .

Theorem 4.2 Let π : Q → Q/H = M be a H-principal bundle endowed with
a connection 1-form ω : TQ → h. Let H = kerω ⊂ TQ be the corresponding
horizontal subbundle. Let be Ω = dω + 1

2 [ω ∧ ω] the curvature 2-form. Then we
have

RH
q (X,Y ) = q.Ωq(X,Y ) ∀q ∈ Q, ∀X,Y ∈ Hq

RH being the curvature of the connection H. In other words, we have

RH = Ω∗

where Ω∗
q = q.Ωq.

4.2 Harmonic sections of homogeneous fibre bundles

In this section, we study fibre bundles π : N → M for which the fibre is a
homogeneous space H/K. To do that, we follow the exposition of [36] (subsec-
tion 4.2.1 and 4.2.2) and then we add a generalisation of the results (of [36])
to non section maps in the end of 4.2.2, and finally we study the homogeneous
fibre bundle reductions in 4.2.3.

4.2.1 Definitions and Geometric properties

Let πM : Q → M be a principal H-bundle, with H a Lie group. Let K be a
Lie subgroup of H and N = Q/K. Then the map πN : Q → N is a principal
K-bundle and we have πM = π ◦ πN where π : N → M is a fibre bundle with
fibre H/K, which is naturally isomorphic to the associated bundle Q×H H/K.
We assume the following hypothesis
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(i) H/K is reductive: h = k⊕p, and AdK(p) ⊂ p, where h and k are respectively
the Lie algebras of H and K.

(ii) M is endowed with a Riemannian metric g

(iii) H/K is Riemannian: there exists a H-invariant Riemannian metric on
H/K (equivalently an AdK-invariant (positive definite) inner product on
p). Equivalently AdpK is compact.

(iv) The principal H-bundle πM : Q → M is endowed with a connection. We
denote by ω the corresponding h-valued connection form on Q.

Then the splitting TQ = V0 ⊕ H0 defined by ω (V0 = ker dπM , H0 = kerω)
gives rise by dπN , to the following decomposition TN = V ⊕ H, where V =
kerdπ = dπN (V0) and H = dπN (H0). Let pQ := Q ×K p → N be the vector
bundle associated to πN : Q→ N with fibre p. Let us denote by [q, a] ∈ pQ the
element defined by (q, a) ∈ Q × p. Then we have the following vector bundle
isomorphism

I : V −→ pQ
dπN (q.a) 7−→ [q, a]

where q ∈ Q, a ∈ p and as usual q.a =
d

dt |t=0
q. exp(ta) ∈ TqQ. Decomposing

ω = ωh + ωp following h = k ⊕ p, then since H/K is reductive, ωp is a K-
equivariant (ωp(X.h) = Adhωp(X)) and πN -horizontal (ωp|V0

= 0) p-valued

1-form on Q and hence projects to a p-valued 1-form φ on N :

φ(dπN (X)) = [q, ωp(X)].

Then we have
φ|V = I and kerφ = H.

We can now construct a Riemannian metric h on N :

h = π∗g + 〈φ, φ〉 (57)

where 〈 , 〉 is the fibre metric induced on pQ by the inner product on p.

In the same way, let Φ be the pQ- valued 2-form on N defined by the component
Ωp of the curvature form Ω of ω. Since Ωp is πM -horizontal (Ω(X,Y ) = 0 if
X ∈ V0 or Y ∈ V0), then Φ is π-horizontal: Φ(X,Y ) = 0, if X ∈ V or Y ∈ V .

Remark 4.1 In [36], pQ is called the canonical bundle, I the canonical isomor-
phism, φ the homogeneous connection form, and Φ the homogeneous curvature
form.

The 1-form ωk (which is a connection form in πN because H/K is reductive)
defines a connection in πN called the canonical connection. This connection
induces a covariant derivative ∇c in the associated bundle pQ, with respect
to which the fibre metric is parallel. ∇c defines a exterior derivative dc on the

57



space of pQ-valued differential forms onN . This allows us to define the canonical
torsion T c which is nothing but the φ-torsion of ∇c (see section 4.1.3)

T c(A,B) = dcφ(A,B) = ∇cA(φB)−∇cB(φA)−φ[A,B], ∀A,B ∈ C(TN) (58)

Let hQ := Q ×H h → M be the vector bundle associated to πM with fibre h,
and in the same way kQ := Q×K k→ N the bundle associated to πN with fibre
h. Then we have

π∗hQ = kQ ⊕ pQ.

The Lie bracket of h induces a bracket on the fibres of hQ, and those of π∗hQ,
which we continue to denote by [ , ] , and we denote also its pQ-component
(when there is no risk of confusion) by [ , ]p (otherwise we denote it by [ , ]pQ).

Taking the p-component of the structure equation dω = Ω− 1

2
[ω ∧ ω] and then

projecting on N , we obtain the homogeneous structure equation:

T c = Φ− 1

2
[φ ∧ φ]p (59)

and thus
T c|V×V = −[I·, I·]p, T c|V×H = 0

T c|H×H = Φ|H×H.

In particular, T c is horizontal if and only if H/K is a (locally) symmetric space,
and in this case

T c = Φ (60)

Remark 4.2 According to (59) and (58), for all X,Y ∈ H, (extended to vector
fields in N denoted by the same letters), we have

Φ(X,Y ) = T c(X,Y ) = −φ([X,Y ])

so that
Φ = RH,

according to definition 4.3. The homogeneous curvature form is nothing but the
curvature of the connection H. �

Now, let U be the pQ-valued symmetric bilinear form defined on pQ by:

〈U(a, b), c〉 = 〈[c, a]p, b〉+ 〈a, [c, b]p〉 (61)

where 〈 , 〉 is the fibre metric, and a, b, c ∈ pQ. Let us set

B = U + [ , ]p

which is a pQ-valued bilinear form on pQ, whose the symmetric and skew sym-
metric components are respectively U and [ , ]p. U vanishes if and only if H/K
is naturally reductive and B if and only if H/K is (locally) symmetric . Then
denoting by ∇N the Levi-Civita connection on N , we have:
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Theorem 4.3 [36] Let us consider the difference tensor:

S(A,B) = φ(∇NAB)−∇cA(φB)

then we have
2S = φ∗U− T c = φ∗B− Φ.

Consequently, ∀V ∈ C(V)

I(∇vAV ) = ∇cA(IV ) +
1

2
B(φA, IV ). (62)

In particular, if H/K is a (locally) symmetric space, we have

I∇vAV = ∇cA(IV ).

Remark 4.3 If H/K is a symmetric space, under the canonical identification

I : V ≃−→ pQ, we have ∇v = ∇c on V . More generally the difference between
∇v and ∇c looks like to the difference between the Levi-Civita and canonical
connections of a reductive Riemannian homogeneous space (see section 1.6).
Moreover, ∇v is φ-equivalent to ∇c when H/K is naturally reductive, according
to (62).

Let ∇ω be the covariant derivative in the vector bundle hQ (associated to πM ),
defined by the connection form ω. Let us decompose (the π-pullback of) ∇ω
following the decomposition π∗hQ = kQ ⊕ pQ, and the pQ-component gives us a
connection ∇p in pQ.

Theorem 4.4 For all V ∈ C(pQ),

∇pV = ∇ωV − [φ, α]h

and
∇cV = ∇pV − [φ, V ]p = ∇ωV − [φ, V ].

Consequently, ∇p and ∇c are φ-equivalent (since their φ-difference is [φ, φ]p).
In particular ∇c = ∇p if H/K is a (locally) symmetric space.

Example 4.8 Let us consider the situation described by example 4.1 and sup-
pose that u : L→M is an isometry. Then if π : N →M is a homogeneous fibre
bundle like above then this is also the case for u∗π : u∗N → L.
Indeed let us set

u∗Q = {(z, q) ∈ L×Q, q ∈ π−1
M ({u(z)}) } =

⊔

z∈L

{z} × f(z).H

then u∗πM : (z, q) ∈ u∗Q 7→ z ∈ L is a principal H-bundle over L. Then we
have u∗N = u∗Q/K, and u∗π : u∗N → L is a fibre bundle with fibre H/K.
Finally we have to define a connection on u∗πM : u∗Q → L. Let us extend the
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connection ω, to a connection on IdL×πM : L×Q→ L×M by ω̃(z,q)(dz+dq) =
ωq(dq) and then let us set

u∗ω := ω̃|T (u∗Q).

In the same way, the homogeneous connection and curvature forms on u∗N are
given respectively by

u∗φ := φ̃|T (u∗N) and u∗Φ := Φ̃|T (u∗N)⊕T (u∗N).

The canonical torsion T c on u∗N is also given by u∗T c := T̃ c|T (u∗N)⊕T (u∗N).

4.2.2 Vertical harmonicity equation

We know that the structure group H of πM : Q → M is reducible to K (i.e.
there exists an K-bundle π′

M : Q′ → M) if and only if the associated bundle
π : N → M admits a (global) section s : M → N (see [27]) so that there is a
one to one correspondance between the K-reductions of πM and the space of
sections C(π).
Let ω′ = ωh|TQ′ . Then ω′ a connection in π′

M , and ω is reducible if and only if

ω|TQ′ = ω′ (see [27]). The reducibility of ω can be characterized as follows.

Proposition 4.1 The following statements are equivalent:

(i) s is horizontal;

(ii) s∗φ = 0;

(iii) s is an isometric immersion;

(iv) ω is reducible

Now we have the following expression of the tension field for sections s : M → N .

Theorem 4.5 [36] For all s ∈ C(π),

I(τv(s)) = −d∗(s∗φ) +
1

2
Tr(s∗φ∗U)

where d∗ is the coderivative for s∗pQ-valued differential forms on M relative to
the s-pullback of any connection in pQ which is φ-equivalent to ∇c. In particular,
if H/K is naturally reductive then s is an harmonic section if and only if s∗φ
is coclosed.

Remark 4.4 If H/K is naturally reductive, to compute the vertical tension
field τv(s) = Tr(∇vdvs), we can use instead of ∇v any connection in V ∼= pQ
which is φ-equivalent to ∇c.
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From the homogeneous structure equation (59), we obtain

s∗Φ = dc(s∗φ) +
1

2
[s∗φ ∧ s∗φ]p,

hence every horizontal section is flat (i.e. s∗Φ = 0).
Let us introduce the following 3-covariant tensor 〈s∗φ⊗ s∗Φ〉 on M :

〈s∗φ⊗ s∗Φ〉(X,Y, Z) = 〈s∗φ(X), s∗Φ(Y, Z)〉,

then we have

Theorem 4.6 [36] For all s ∈ C(π) we have

(i) φ(∇ds) = ∇c(s∗φ) +
1

2
s∗φ∗B− 1

2
s∗Φ.

In particular, if s is vertically geodesic then s is a harmonic section.

(ii) 2g(π∗∇ds(X,Y ), Z) = 〈s∗φ⊗ s∗Φ〉(X,Y, Z) + 〈s∗φ⊗ s∗Φ〉(Y,X,Z).
Therefore s is horizontally geodesic if and only if 〈s∗φ⊗ s∗Φ〉 is a 3-form
on M . In particular, if s is flat then s is horizontally geodesic.

Theorem 4.7 [36]

(i) The symmetric and skew symmetric components of Πvs := ∇vdvs are given
by:

I(Πvs) = φ ◦ ∇ds+
1

2
s∗Φ.

(ii) The section s is superflat if and only if s is flat and totally geodesic. In
particular, if s is flat then s is totally geodesic if and only if s is super-flat.

(iii) Moreover τv(s) is the vertical component of the tension field τ(s). So if s
is an harmonic map, then it is certainly a harmonic section.

Theorem 4.8 [36] An harmonic section s is a harmonic map if and only if
〈s∗φ, s∗Φ〉 = 0 where

〈s∗φ, s∗Φ〉(X) =
∑

i

〈s∗φ⊗ s∗Φ〉(Ei, Ei, X)

for any orthonormal tangent frame (Ei) of M .
In particular, if s is flat (s∗Φ = 0) then s is a harmonic map if and only if s is
a harmonic section.

Remark 4.5 Let us consider the situation described by examples 4.1 and 4.8.
Then if f∗Φ = 0, f : L → N is vertically harmonic if and only if f̃ : L → u∗N
is an harmonic section if and only if f̃ : L → u∗N is an harmonic map. But it
does not imply that f : L→ N is harmonic! (See the Appendix.) Indeed in the
previous theorem it is essential that s be a section: π ◦ s = Id.
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In fact the previous theorems can be easily generalized for non section map .
The proofs in [36] holds without any change for theorems 4.5, 4.6-(i), 4.7-(i, iii),
while for theorems 4.6-(ii), 4.7-(ii), 4.8: follow the proof of [36], just replace the
starting equation π ◦ s = Id by π ◦ s = u. Then we obtain

Theorem 4.9 For all s ∈ C∞(M,N), we have

(i) I(τv(s)) = −d∗(s∗φ) +
1

2
Tr(s∗φ∗U)

(ii) φ(∇ds) = ∇c(s∗φ) +
1

2
s∗φ∗B− 1

2
s∗Φ.

In particular if s is vertically geodesic then s is a harmonic section.

(iii) I(Πvs) = φ ◦ ∇ds+
1

2
s∗Φ.

The map s is superflat if and only if s is flat and vertically geodesic.
Moreover τv(s) is the vertical component of the tension field τ(s). So if s
is an harmonic map, then it is certainly vertically harmonic.

(iv) 2g(π∗∇ds(X,Y ), u∗Z) = 〈s∗φ ⊗ s∗Φ〉(X,Y, Z) + 〈s∗φ ⊗ s∗Φ〉(Y,X,Z) +
2g (∇du(X,Y ), u∗Z).

Let us suppose now that u is an immersion, then this equation determines
the horizontal part of ∇ds. In particular, if s is flat then s is horizontally
geodesic if and only if u is totally geodesic; and s is totally geodesic if and
only if s is superflat and u is totally geodesic.

(v) A vertically harmonic map s is a harmonic map if and only if

g(τ(u), ·) + 〈s∗φ, s∗Φ〉 = 0.

In particular if s is flat, then s is a harmonic map if and only if s is
vertically harmonic and u = π ◦ s is harmonic.

We could also deduce this generalisation from the previous theorems 4.5-4.8
themself. Indeed we can apply these to the section s̃ ∈ C(u∗N) corresponding
to s and use theorems 6.1 and 6.2 in the Appendix, but we must suppose in
addition that u is an isometry.
Let us go further in the generalisation and consider maps f ∈ C∞(L,N) with(L, b)
a Riemannian manifold (see examples 4.1 and 4.8). Then the proofs in [36]
holds fo theorems 4.5, 4.6-(i), 4.7-(i, iii), whereas theorems 4.6-(ii), 4.7-(ii),
4.8 are no longer valid. Indeed the equation in theorem 4.9-(iii) holds, but
it gives us only [π∗∇df ]u∗TL, the component of [π∗∇df ] in the tangent bun-
dle u∗TL. So if we want [π∗∇df ](u∗TL)⊥ we must introduce the 3-linear form
〈f∗φ⊗ f∗Φ(1,·)〉 ∈ C(T ∗L⊗ T ∗L⊗ f∗H) defined by :

〈f∗φ⊗ f∗Φ(1,·)〉(a, b, Z) = 〈f∗φ(a),Φ(f∗a, Z)〉.

Then we have
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Theorem 4.10 For all f ∈ C∞(L,N), we have

(i) g(π∗∇df(a, b), π∗Z) = 〈f∗φ⊙ f∗Φ(1,·)〉(a, b, Z) + g(∇du(a, b), π∗Z).

In particular, if f is strongly flat i.e. (f∗Φ(1,·) = Φf (df, ·) = 0) then:
- f is horizontaly geodesic if and only if u is totally geodesic.
- f is totally geodesic if and only if f is superflat and u is totally geodesic.

(ii) A vertically harmonic map f is a harmonic map if and only if

g(τ(u), ·) + 〈f∗φ, f∗Φ(1,·)〉 = 0

where 〈f∗φ, f∗Φ(1,·)〉(X) =
∑

i〈f∗φ ⊗ f∗Φ(1,·)〉(ei, ei, X) for any tangent
frame (ei) of L. In particular if f is strongly flat (f∗Φ(1,·) = 0) then f is
a harmonic map if and only if f is vertically harmonic and u is harmonic.

4.2.3 Reductions of homogeneous fibre bundles

Let us suppose now that the structure group H of πM : Q → M is reducible
to a (closed) subgroup Hv ⊃ K. That is to say, there exists a principal Hv-
subbundle πv

M : Qv → M . Let us suppose in addition to that, that Hv/K
is reductive: hv = k ⊕ pv and Adk(pv) = pv, ∀k ∈ K. The restriction to
pv of the AdK-invariant inner product on p defines a Hv-invariant metric on
Hv/K which is nothing but the metric induced by the H-invariant metric on
H/K, so that the inclusion Hv/K → H/K is an isometric embedding. Let
p′ = (pv)⊥ in p and let us suppose that p′ is AdHv-invariant, so that h = hv⊕p′

is a reductive decomposition and H/Hv is reductive. Conversely if H/Hv is
reductive: h = hv ⊕ p′ with p′ AdHv-invariant, then we can always complete
any AdHv-inner product in p′ by an AdK-invariant inner product p = pv ⊕ p′:

〈 , 〉p = 〈 , 〉pv + 〈 , 〉p′

for which p′ = (pv)⊥ in p.
In the following we suppose that H/Hv is reductive andthat the inner product
in p is chosen as described above.
Now let us turn toward the connection 1-form ω. Its restriction ωv := ωhv|TQv

defines a connection on πv
M : →M . We endow Qv with ωv and (Qv, Hv,K, ωv)

is then a homogeneous fibre bundle as defined in the begining of 4.2.
Moreover ω is reducible (to ωv) inQv if and only if one of the following equivalent
statements holds ([27])

• ∀q ∈ Qv, (H0)q is tangent to Qv.

• ω|TQv = ωv (i.e. ω|TQv is hv-valued).

• The canonical cross section sv of the associated bundle Ev := Q/Hv = Q×H
(H/Hv), which defines the Hv-reduction Qv is horizontal.

The vertical bundle (in TQ), V0, splits as follows

V0 = V ′
0 ⊕ Vv

0
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where (Vv
0 )q = q.hv = Tq(q.H

v) and (V ′
0)q = q.p′, and quotienting by k, i.e. by

applying dπN we obtain the following decomposition of V :

V = V ′ ⊕ Vv

with V ′ = dπN (V ′
0) and Vv = dπN (Vv

0 ).
Then the canonical isomorphism I : V → pQ sends the previous decomposition
onto the following pQ = p′Q ⊕ pv

Q (i.e. V ′, Vv are sent resp. onto p′Q and pv
Q).

Then the vertical space in TNv is Vv
|Nv that we will also denote by Vv when

there is no possibilities of confusion. The splitting of TNv by ωv is then

TNv = V|Nv ⊕Hv
|Nv

where Hv = dπN (Hv
0) and Hv

0 = kerωhv . Let us remark that ω is reducible if
and only if Hv

|Nv = H|Nv .
The canonical bundle on Nv, pv

Qv = Qv×K pv → Nv is the restriction to Nv of
pv
Q → N , and the canonical isomorphism Iv : Vv

|Nv → pv
Qv is the restriction to

Vv
|Nv of I : V → pQ.

Since ω = ωpv + ωp′ , the homogeneous connection form on Nv, φv (the pv
Qv -

valued 1-form onNv defined by ωpv) is the restriction toNv of the pv
Q-component

of φ:
φv = [φ]pv

Q|Nv = [φ|Nv ]pv
Qv
.

The homogeneous curvature form Φv (defined by Ωv
pv , with Ωv = dωv +

1

2
[ωv ∧

ωv]) is given by
Φv = [Φ]pv

Q|Nv = [Φ|Nv ]pv
Qv
.

Furthermore, pv
Qv is ∇c-parallel: the covariant derivative on pv

Qv defined by
ωk|TQv is the restriction of ∇c to pv

Qv . In other words ∇c commutes with the
projection on pv

Q. The canonical torsion on Nv is given by

(T c)v = dcφv = [T c]pv
Q|Nv .

Let us denote by τv(s) the vertical tension field of s ∈ C∞(M,Nv). According
to theorem 4.7, we have τv(s) = [τN (s)]V for all s ∈ C∞(M,N), and τv(s) =
[τNv(s)]Vv for all s ∈ C∞(M,Nv). But if ω is reducible in Qv, then the inclusion
Nv → N is an isometry and hence the Levi-Civita connection in Nv is the
orthogonal projection in TNv of the Levi-Civita connection in N . Thus we have
τNv(s) = [τN (s)]TNv for all s ∈ C∞(M,Nv), so that τv(s) = [[τN (s)]TNv ]Vv =
[τN (s)]Vv . Therefore we obtain

Theorem 4.11 Let us suppose that ω is reducible in Qv. Let s ∈ C∞(M,Nv),
then s is vertically harmonic in N (τv(s) = 0) if and only if it is vertically
harmonic in Nv (τv(s) = 0) and [τN (s)]V

′

= 0. In particular if s is vertically
harmonic in N then it is also vertically harmonic in Nv.
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4.3 Examples of Homogeneous fibre bundles

In this section, we give examples and applications for the theory developped in
the previous sections whose we use here the same notations.

4.3.1 Homogeneous spaces fibration

Let us take Q = G a Lie group, and K ⊂ H ⊂ G subgroups of G, (H,K) sat-
isfying the hypothesis in the begining of section 4.2.1. Let us suppose that
M = G/H is reductive and Riemannian: that is to say if g = h ⊕ m is
the reductive decomposition, then AdmH is compact and we choose an AdH-
invariant inner product 〈 , 〉m in m. For ω, we take the canonical connection on
πM : G→ G/H which is given, let us recall it, by ω = θh where θ is the Maurer-
Cartan form in G (see section 1.3). Then the corresponding decomposition
TQ = V0 ⊕H0 is given by

TgG = g.g = g.h︸︷︷︸
V0

⊕ g.m︸︷︷︸
H0

.

Since n := p ⊕ m is AdK- invariant, then g = k ⊕ n is a reductive decompo-
sition and N = G/K is reductive. Let us recall that we have the canonical
identification G ×K g ∼= N × g given by (7), which gives us an identification
nG = G ×K n ∼= [n]. Then under this last identification and under the one

given by the Maurer-Cartan form of G/K, β : TN
∼=−→ [n] (see section 1.2), the

splitting TN = V ⊕H is
TN = [p]⊕ [m],

the canonical isomorphism I : V → pG is then the identity, and φ : TN → pG
the projection on [p] along [m]. The metric h on G/K is then defined by the
AdK-invariant inner product:

〈 , 〉n = 〈 , 〉p + 〈 , 〉m.

Furthermore, Ω = dω +
1

2
[ω ∧ ω] = dθh +

1

2
[θh ∧ θh] and thus

Ωp = dθp + [θk ∧ θp] +
1

2
[θp ∧ θp]p.

Since dθ +
1

2
[θ ∧ θ] = 0, then (projecting on h) we have

dθh +
1

2
[θh ∧ θh] +

1

2
[θm ∧ θm]h = 0

thus

Ω = −1

2
[θm ∧ θm]h

so that

Ωp = −1

2
[θm ∧ θm]p (63)
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therefore

Φ = −1

2
[ψ ∧ ψ]p (64)

where ψ : TN → H = [m] is the projection on H along V = [p].
The covariant derivative ∇c, which lifts into d + θk in G, is nothing but the
canonical affine connection ∇0 in N = G/K restricted to [p] ⊂ TN (see sec-
tion 1.4 and 1.5).
The canonical torsion T c, which lifts in G into

dθp + [θk ∧ θp] = −1

2
[θm ∧ θm]p −

1

2
[θp ∧ θp]p (65)

is given by 23

T c = −1

2
[ψ ∧ ψ]p −

1

2
[φ ∧ φ]p

= [ , ]n + [φ ∧ ψ]p.

The associated bundle

hG = G×H h ∼= [h]M := {(g.p0,Adg(a)), g ∈ G, a ∈ h} ⊂M × g

can be embedded into so(TM) by24

ξ = Adg(a) ∈ Adg(h) = [h]Mg.p0 7−→ adξ|Adg(m) = Adg◦adma◦Adg−1 ∈ so(Adg(m)).
(66)

In the same way, kG = G×K k ∼= [k]N embedds in so(N). Moreover let us remark
that we have

π∗hG = G×K h = [h]N = {(g.n0,Adg(a)), g ∈ G, a ∈ h},

and that π∗hG embedds into so(π∗TM).

As concerns the covariant derivative ∇ω, defined in hG, it lifts into d + θh

in G and under the embedding (66), it is nothing but the restriction to the
subbundle so(TM) of the endomorphism connection on M (i.e. the tensor
product connection in T ∗M ⊗ T ∗M) defined by the canonical affine connection

in M ,
M

∇0. Indeed under the embedding (66), ∇ω lifts to the derivative d+admθh

and equation (18) allows to conclude.
Therefore ∇p is given by its lift 25

[(d+ θh)|p]p = d+ adpθk + [θp, ·|p]p (67)

that is to say ∇p is the [p]-component of the affine connection ∇1 in G/K (see
section 1.6) restricted to [p] ⊂ TN . (Indeed we have [θn, ·|p]p = [θp, ·|p]p +

23In particular, according to (64), we recover, for this example, the Homogeneous structure
equation (59).

24Or in other words [g, a] ∈ hG = G ×H h 7→ [g, adma] ∈ G ×H so(m) ∼= so(TM).
25 [ ]p denotes as usual the p-component.
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[θm, ·|p]p, but [m, p] ⊂ [m, h] ⊂ m by reductivity.)

Moreover the Levi-Civita connection in N is given by (see section 1.6)

N

∇ =
met

∇ 1
2 = ∇0 +

1

2
BN

where BN = [ , ][n] +UN and UN is defined by equation (15). Then we have by
taking the projection on the vertical subbundle [p]:

φ(∇NAV ) = ∇0
A(φV ) +

1

2
φ ◦ BN (A, V )

so that we can conclude according to theorem (4.3) that

φ ◦ BN = φ∗B− Φ

which can be verified directly using the expressions of BN , B and Φ.

If H/K is (locally) symmetric. In this case, we have T c = Φ (see (59),
or (65) and (63)). Moreover, according to (67), ∇p lifts to d + θk, so that we
recover that ∇p = ∇c in this case. Now, let us apply the equality ∇v = ∇c in
V (theorem 4.3)26.
Let f : (L, b)→ N be a map then we have

τv(f) = Trb(∇vdvf) = ∗d∇v ∗ dvu = ∗AdF (d(∗αp) + [αk ∧ (∗αp)]) .f

where F lifts f in G and α = F−1dF . Then f is vertically harmonic if and only
if

d(∗αp) + [αk ∧ (∗αp)] = 0

Moreover f is flat (f∗Φ = 0) if and only if it is vertically torsion free (f∗T c = 0)
if and only if

[αm ∧ αm]p = 0⇐⇒ dαp + [αk ∧ αp] = 0.

G/K is a (locally) 2k-symmetric space Let us suppose that there exists
an order 2k automorphism τ : g → g such that K = G0 with G0 such that
(Gτ )0 ⊂ G0 ⊂ Gτ , and (Gσ)0 ⊂ H ⊂ Gσ with σ = τ2 (see section 2.1). Then
H/K is (locally) symmetric (see section 2.1). We have the following identities
(with the notation of section 2.1)

m = ⊕k−1
j=1mj and k = g0, p = gk.

Then we have

Ωp =
1

2
[θm ∧ θm]p = −1

2

∑

i+j=k
i,j∈Z2k\{0,k}

[θj ∧ θi],

so that in particular

26We can also use directely theorem 4.5.
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Proposition 4.2 Let (L, j) be a Riemann surface. If f : (L, j) → N satisfies
the equations α′′

−j = 0, 1 ≤ j ≤ k − 1 then we have f∗Φ = 0. In other words if
f : (L, j) → N is horizontally holomorphic then it it is flat, that is to say f is
vertically torsion free or equivalently

dαk + [α0 ∧ αk] = 0 (68)

Theorem 4.12 In the even determined elliptic integrable system (Syst(k, τ)),
the last equation (Sk) is equivalent to

{
(Re(Sk)) ≡ dαk + [α0 ∧ αk] = 0 ⇐⇒ f is vertically torsion free i.e. f is flat,
(Im(Sk)) ≡ d(∗αk) + [α0 ∧ (∗αk)] = 0 ⇐⇒ f is vertically harmonic.

In conclusion the even determined elliptic system (Syst(k, τ)) means that the
geometric map f is horizontally holomorphic (which implies that f is flat) and
vertically harmonic.

Remark 4.6 The vertical torsion free equation (68) is the projection on p of the
Maurer-Cartan equation provided that we assume the horizontal holomorphicity
α′′
−j = 0, 1 ≤ j ≤ k − 1. In the same way, the equations (Sj), 0 ≤ j ≤ k − 1, of

the elliptic system (Syst(k, τ)), are the projections on the different spaces g−j ,
of the Maurer-Cartan equation, provided that we assume the horizontal holo-
morphicity. In section 2, this hyphothesis was (sometimes) implicitely assumed
implicitely by definition of α: α′ = u.

Use of the canonical 2k-structure IJ0. Furthermore the morphism of bun-
dle (over M) IJ0 : N → Zα0

2k,2(M,J2) ⊂ Zα0

2k (M) defines a 2k-structure on
π∗TM (still denoted by IJ0), which according to (23) allows to precise the
subbundles kG and pG (under the embedding π∗hG →֒ so(π∗TM))

kG = {A ∈ π∗hG|[A, IJ0 ] = 0} := so(+1)(π
∗TM, IJ0) ∩ π∗hG (69)

pG = {A ∈ π∗hG|AIJ0 + IJ0A} := so(−1)(π
∗TM, IJ0) ∩ π∗hG (70)

Remark 4.7 The embedding hG →֒ so(TM) is the H-equivariant extention of
the map a ∈ h 7→ adma ∈ so(m) ∼= so(Tp0M), and in the same way IJ0 is the
H-equivariant extention of the map h.G0 ∈ H/G0 7→ hJ0h

−1 ∈ Z(Tp0M,J0),
so that the equations (69) are obtained by H-equivariance from (23).

Let us now express the homogeneous fibre bundle tools φ, Φ, and ∇c in terms
of the embedding IJ0 . To do not weigh the notation we will forget the index J0

in IJ0 , in the following theorem.

Theorem 4.13 If A,B ∈ TN , F ∈ C(pG) then

(i) φA = −1

2
I−1

M

∇0
AI
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(ii) Φ(A,B) =
1

2
I−1[I, π∗R

M

∇0

(A,B)] where R
M

∇0

is the curvature of
M

∇0.

(iii) ∇cAF =
N

∇0
AF =

1

2
I−1[I,

M

∇0
AF ].

Theorem 4.14 Let s ∈ C(π) and J = s∗IJ0 ∈ C(Zα0

2k,2(M,J2)) be the corre-
sponding 2k-structure. Then

(i) I(dvs) = −1

2
J−1

M

∇0J . Thus s is horizontal if and only if J is
M

∇0-parallel.

(ii) I(Πv(s)) = −1

4
[J−1, (

M

∇0)2J ].

Thus s is superflat if and only if (
M

∇0)2J commutes with J .

(iii) I(τv(s)) =
1

4
[J−1, (

M

∇0)∗
M

∇0J ].

Thus s is a harmonic section if and only if (
M

∇0)∗
M

∇0J commutes with J .

(iv) s∗Φ =
1

2
J−1[J,R

M

∇0

].

These properties hold also for maps f ∈ C∞(L,N), (L, b) being a Riemannian

manifold: (i),(ii),(iii) without any change and (iv) becoming f∗Φ =
1

2
J−1[J, u∗R

M

∇0

],

with u = π ◦ f .

Corollary 4.1 Let (L, j) be a Riemann surface, f : L → N a map and J =
f∗IJ0 the corresponding map into Zα0

2k,2(M,J2). Then f is a geometric solution
of the even determined system (Syst(k, τ)) if and only if

(i) J is an admissible twistor lift (⇔ f is horizontally holomorphic).

(ii) J is vertically harmonic27:

[
(
M

∇0)∗
M

∇0J, J

]
= 0 (⇔ f is vertically har-

monic).

Moreover the first condition implies that

[
u∗R

M

∇0

, J

]
= 0 i.e. that J is a flat

section in (End(u∗TM), u∗
M

∇0) (⇔ f is flat).
Furthermore f is a primitive geometric solution (i.e. there exists m ≤ k such
that f is m-primitive, which is equivalent to say that f is k-primitive) if and
only if

(i) J is an admissible twistor lift

(ii) J is parallel:
M

∇0J = 0 (⇔ f is horizontal).

27See section 4.3.4 for the definition of vertical harmonicity in Zα0
2k,2(M, J2).
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4.3.2 The twistor bundle of almost complex structures Σ(E)

We give ourself the same ingredients as in example 4.2. Let us suppose that
the vector bundle E is oriented. Then the bundle of positive (resp. negative)
orthogonal almost complex structure on E (i.e. the component Σε(E) of Σ(E)
with ε = ±1), πΣ : Σε(E)→M is a homogeneous fibre bundle. Indeed, we take
Q = SO(E) the SO(2n)-bundle of positively oriented orthonormal frames of E,

H = SO(2n) and K = U(n) (embedded in SO(2n) via A+ iB 7→
(
A −B
B A

)
).

K is the subgroup of SO(2n) which commutes with Jε0 = ε

(
0 −Id
Id 0

)
. The

involution T = IntJε0 in SO(2n) gives rise to the symmetric space H/K =
Σε(R2n), and to the following symmetric decomposition h = k⊕ p with

k = {A ∈ so(2n)|[A, Jε0 ] = 0}
p = {A ∈ so(2n)|AJε0 + Jε0A = 0}.

Concerning ω, we take the so(2n)-valued connection 1-form on Q corresponding
to the covariant derivative ∇ in E: if e = (e1, . . . , e2n) is a (local) moving frame
of E (i.e. a section of Q) then

∇(e1, . . . , e2n) = (e1, . . . , e2n)ω(e; de).

Now, let us consider the isomorphism of bundle:

J : e.U(n) ∈ SO(E)/U(n)
∼=7−→ J ∈ Σε(E)|Mate.U(n)(J) = Jε0 .

The isomorphismJ defines a bijection between the set of section of π : N →M28

and the set of complex structure of E (sections of πΣ): s ∈ C(N)→ J = J ◦s ∈
C(Σ+(E)).
The existence of a (positive) complex structure J in E – i.e. a section of
πΣ : Σ+(E) → M– is equivalent to the existence of an U(n)-reduction of the
principal bundle SO(E)→M : J defines a Hermitian structure on E and then
the U(n)-subbundle of unitary frames for this Hermitian structure, and vice
versa.
The isomorphism of bundle over M , J : N → Σ+(E) defines tautologically
a canonical complex structure on π∗E → N (which we still denote by J )29

J : N → Σ+(π∗E). Under this identification, let us precise the subbundles pQ
and kQ. First, we have hQ = so(E)30, the bundle of skew-symmetric endomor-
phism of E and then31

(kQ)y = {F ∈ so(Eπ(y))|[F,J (y)] = 0} =: so+(Eπ(y),J (y)) =: so+(π∗E)y

(pQ)y = {F ∈ so(Eπ(y))|FJ (y) + J (y)F = 0} =: so−(Eπ(y),J (y)) =: so−(π∗E)y.

28In all the section 4.3, as it was the case in all the section 4.2, N := Q/K.
29and which is in fact nothing but J ∗I = I ◦ J , see example 4.2.
30See remark (4.8) (and more precisely equation (71)) for the identification map.
31Since π∗E is canonically endowed with the complex structure J , we need not to precise

this latter in the notation so±(π∗E), whereas Ex, for x ∈ M , could be endowed with any
element Jx ∈ Σ+(Ex), this is why we must precise it in the notation so±(Ex, Jx).
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Then the decomposition following π∗hQ = kQ ⊕ pQ of any element F ∈ π∗hQ =
so(π∗E) is given by

F =
1

2
J {F,J }+

1

2
J [F,J ]

where { , } is the anticommutator.

Remark 4.8 The canonical complex structure J is a section of the associated
bundle over N : Σ+(π∗E) = π∗(Q ×H Σε(R2n)) = π∗Q×H Σε(R2n), so that it
can be lifted to a H-equivariant map J̃ : π∗Q → Σε(R2n) ⊂ h, which is given
by

J̃ : (e.K, e.h−1) ∈ π∗Q 7−→ hJε0h
−1 ∈ Σε(R2n).

Remark that the restriction of J̃ to Q ⊂ π∗Q is the constant map Jε0 (the
inclusion Q ⊂ π∗Q is given by e 7→ (e.U(n), e)), and that J̃ : π∗Q → Σε(R2n)
is the H-equivariant extension of the K-equivariant constant map Jε0 on Q. J̃
can also be given in term of J by

J̃ : (y; e) ∈ π∗Q 7−→Mate(J (y)) ∈ Σε(R2n) ⊂ h.

Furthermore, we have a canonical identification N = Q×HH/K (via [e, h.K] 7→
(e.h).K) and the identification depending on Jε0 : H/K = Σε(R2n) (via h.K 7→
hJ0h

−1) so that N = Q×H Σε(R2n) (via e.K 7→ [e, J0]). Then under this last
identification, J is the restriction to N of the canonical identification

hQ := Q×H h
∼=−→ so(E)

[e, a] 7−→ A| Mate(A) = a.
(71)

Therefore
hQ = J ∗so+(π∗

ΣE) and pQ = J ∗so−(π∗
ΣE),

with the notations of example 4.2.

Let us now express the homogeneous connection φ, the curvature foms Φ and
the canonical connection ∇c in terms of J (following [36]).

Theorem 4.15 [36] If A,B ∈ TN , F ∈ C(pQ) then:

(i) φA =
1

2
J .∇AJ

(ii) Φ(A,B) =
1

2
J [π∗R(A,B),J ], where R is the curvature operator of the ∇.

(iii) ∇cF =
1

2
J [∇AF,J ]

Theorem 4.16 [36] Let s ∈ C(π) and J = s∗J be the corresponding complex
structure, and ∇∗∇ = −Tr∇2, the rough Laplacian of E. Then

(i) I(dvs) =
1

2
J.∇J =

1

4
[J,∇J ]. Thus s is horizontal if and only if J is parallel.
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(ii) I(Πv(s)) =
1

4
[J,∇2J ]. Thus s is superflat if and only if ∇2J commutes

with J .

(iii) I(τv(s)) = −1

4
[J,∇∗∇J ]. Thus s is a harmonic section if and only if

∇∗∇J commutes with J .

(iv) s∗Φ =
1

2
J [R, J ].

From theorem 4.15-(i) (or theorem 4.16-(i)) it follows that dJ sends the de-
composition TN = V ⊕ H onto the decomposition TΣε(E) = VΣ ⊕HΣ coming
from ∇ (see example 4.2) so that we can consider πΣ : Σε(E)→M as a homo-
geneous fibre bundle over M with structure group H = SO(2n) and K = U(n).
Besides, since the vertical and horizontal subbundles corresponds via J , then
we can conclude according to (47) and (57) that J is an isometry.

Moreover, we see that s is vertically harmonic in N if and only if the rough
Laplacian ∇∗∇J of J in so(E) is vertical (i.e. in VΣ

J , see example 4.2) so that
we recover the definition of vertically harmonic twistor lifts used in [25] and [6].
More precisely, via the isometry J , the vertical tension field of s – which is,
let us recall it, defined using the Levi-Civita connection in N which corresponds
via the isometry J to the Levi-Civita connection in Σ+(E)– is exactly the
vertical part in π∗

Σso(E) of the rough laplacian of J :

dJ (τv(s)) = ∇τv(s)J = −2J ◦ φ(τv(s)) =
1

2
J [J,∇∗∇J ]

according to theorem 4.15-(i) and theorem 4.16-(iii). Concretely, to compute
the vertical tension field in Σ+(E), instead of using the (abstract) Levi-
Civita connection, it is enough to take the vertical part of the rough
Laplacian (which uses the concrete metric connection ∇).

4.3.3 The twistor bundle Z2k(E) of a Riemannian vector bundle

We give ourself the same ingredients and notations as in example 4.3. Let us
suppose that the vector bundle E is oriented. Then the bundle πZ : Zα2k(E)→
M is a homogeneous fibre bundle. Indeed, we take Q = SO(E), H = SO(2n)
and K = U0(J

α
0 ). Let us recall that the order r automorphism T = IntJα0

in SO(2n) gives rise to the r-symmetric space H/K = Zα2k(R2n), and to the
following reductive decompostion h = k⊕ p with

k = so0(J
α
0 ) and p = so∗(J

α
0 ) :=


 ⊕

j∈Z/rZ\{0}

soj(J
α
0 )


 ⋂

so(2n).

Concerning ω, we take the same as in the previous example. Now let us consider
the isomorphism of bundle:

J : e.U0(J
α
0 ) ∈ SO(E)/U0(J

α
0 )

∼=7−→ J ∈ Zα2k(E)|Mate(J) = Jα0 . (72)
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The isomorphism J defines a bijection between the sections of π : N →M and
the set of sections of πZ : Zα2k(E)→M , s ∈ C(N) 7→ J = J ◦ s ∈ C(Zα2k(E)).
The isomorphism of bundle over M , J : N → Zα2k(E) defines tautologically a
canonical 2k-structure32 on π∗E → N (still denoted by J ), J : N → Zα2k(π∗E).
Under this consideration, we therefore have h = so(E) and for all y ∈ N ,

kQ = so0(π
∗E,J )

pQ = so∗(π
∗E,J ) =


 ⊕

j∈Z/rZ\{0}

soj(π
∗E,J )


 ⋂

so(π∗E).

Since π∗E is canonically endowed with J , we will not precise it and use the
notation soj(π

∗E) := soj(π
∗E,J ).

Let us consider the surjective morphism of vector bundle

adJ : π∗hQ = so(π∗E) −→ B∗(π∗E) = J .so∗(π∗E) = J .pQ
(J,A) 7−→ adJ(A) = [J,A] = J

∑r
j=1(1− ωjr)Aj

where Aj = [A]soj(Ex) is the soj(Ex)-component of A ∈ so(Ex). The kernel of
adJ is kQ = so0(π

∗E) so that adJ induces an isomorphism from pQ onto J .pQ.
We will set

(adJ )−1 = (adJ|J .pQ
)−1 ⊕ 0J .kQ

so that

(adJ )−1 ◦ adJ = prpQ
, the projection on pQ along kQ, and (73)

adJ ◦ (adJ )−1 = prJ .pQ
, the projection on J .pQ along J .kQ. (74)

Let us remark that J .pQ = J ∗VZ is the (pullback by J of the) vertical space
of πZ (see example 4.3). More precisely the J -pullback of the decomposi-
tion VSO(E)

|NZ
= B0(π

∗
ZE)⊕ B∗(π∗

ZE) (see example 4.3) is the decomposition
J .so(E) = J .kQ ⊕ J .pQ.

Let us now express the homogeneous fibre bundle tools φ,Φ and ∇p in terms of
J .

Theorem 4.17 If A,B ∈ TN , F ∈ C(pQ) then

(i) ∇J = −adJ ◦ φ thus φA = −(adJ )−1∇AJ

(ii) Φ(A,B) = (adJ )−1[J , π∗R(A,B)]

(iii) ∇p
AF = (adJ )−1[J ,∇AF ]

Theorem 4.18 Let s ∈ C(π) and J = s∗J be the corresponding 2k-structure.
Then

(i) I(dvs) = −(adJ)−1∇J . Thus s is horizontal if and only if J is parallel.

32and which is in fact nothing but J ∗I = I ◦ J , see example 4.3.
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(ii) I(Πv(s)) = −(adJ)−1∇2J +
1

2
(adJ)−1[∇J ⊙ (adJ)−1∇J ].

Thus s is superflat if and only if ∇2J − 1

2
[∇J ⊙ (adJ)−1∇J ] commutes

with J .

(iii) I(τv(s)) = +(adJ)−1∇∗∇J + (adJ)−1Tr
(
[∇J, (adJ)−1∇J ]

)
.

Thus s is a harmonic section if and only if ∇∗∇J+ Tr
(
[∇J, (adJ)−1∇J ]

)

commutes with J .

(iv) s∗Φ = (adJ)−1[J,R].

As above, from theorem 4.17-(i), we conclude that dJ sends the decomposition
TN = V ⊕ H onto the decomposition TNZ = VZ ⊕ HZ coming from ∇ (see
example 4.3) so that we can consider πZ : Zα2k(E)→M as a homogeneous fibre
bundle over M with structure groups H = SO(2n) and K = U0(J

α
0 ). We will

call this structure the homogeneous fibre bundle structure defined in NZ by ∇
(or by the Riemannian vector bundle (E,∇)).
Besides, since the vertical and horizontal subbundles corresponds via J , then
we can conclude according to (47) and (57) that J is an isometry.

Moreover, the vertical tension field of J in NZ = Zα2k is given by

dJ (τv(s)) = ∇τv(s)J = −(adJ ) ◦ φ(τv(s))

= −(adJ ) ◦ (adJ )−1(∇∗∇J + Tr
(
[∇J, (adJ)−1∇J ]

)
)

= −
[
∇∗∇J + Tr

(
[∇J, (adJ)−1∇J ]

)]
VZ

By taking k = 2 in the two preceding theorems, we recover of course the results
of the previous section: just remark that in this case, adJ = 0kQ ⊕2LJ |pQ

, and
that ∇J anticommutes with J .

Remark 4.9 Let us consider the canonical identification

HQ : = Q×H H
∼=−→ SO(E)

[e, h] 7−→ A| Mate(A) = h.
(75)

then J is the restriction to N ∼= Q×H Zα2k(R2n) (via e.K 7→ [e, Jα0 ]) of (75).
More generally, for j ∈ Z, we can consider Jj the restriction of (75) toQ/Uj−1(J

α
0 ) =

Q×SO(2n) (Z2k(R2n))j (via e.Uj−1(J
α
0 ) 7→ [e, (Jα0 )j ]):

Jj : e.Uj−1(J
α
0 ) ∈ SO(E)/Uj−1(J

α
0 )

∼=7−→ J ∈ (Zα2k(E))j |Mate(J) = (Jα0 )j .
(76)

Remark 4.10 The previous study could have been done (without any change)
for any component Uα2k(E). In particular, by replacing Jα0 by (Jα0 )j in what
precedes, we get the isomorphism (76)

Jj : SO(E)/Uj−1(J
α
0 )

∼=7−→ (Zα2k(E))j = Uj·αp (E),
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where p =
2k

(2k, j)
, and by applying theorem 4.18, we see that a cross section

sj : M → SO(E)/Uj−1(J
α
0 ) is horizontal if and only if the corresponding section

Jj = Jj ◦ sj : M → (Zα2k(E))j is parallel: ∇Jj = 0.

4.3.4 The Twistor subbundle Zα2k,j(E)

We continue here the study of example 4.4, πjZ : Zα2k,j(E, Jj) → M , and prove
that it defines a homogeneous bundle fibre bundle. Let us recall that we have
a bijection between the set of (global) sections Jj in (Zα2k(E))j = Uj·αp (E) and

the set of Uj−1(J
α
0 )-reductions πj : Qj →M of SO(E), which is given by

Qj = Uαj−1(E) := {e ∈ SO(E)|Mate(Jj) = (Jα0 )j}. (77)

Let us consider such a reduction Qj (defined by some Jj). Then πj : Qj → M
is a principal bundle with structural group Hj = Uj−1(J

α
0 ) and we take for the

second structural group K = U0(J
α
0 ) as in the previous example. Let us recall

that the order j automorphism T = IntJα0 |Uj−1(Jα
0 ) gives rise to the j-symmetric

space Hj/K = Zα2k,j(R2n, (Jα0 )j), and to the following reductive decomposition

hj = k⊕ pj where

k = so0(J
α
0 ) and

pj = u∗j−1(J
α
0 ) = ⊕(r,j)−1

q=1 sopq(J
α
0 ) = uj−1(J

α
0 )/u0(J

α
0 ) = so0((J

α
0 )j)/so0(J

α
0 ) ∼= TJα

0
Zα2k,j(R2n, (Jα0 )j),

the last identification is given by

A ∈ ⊕(r,j)−1
q=1 sopq(J

α
0 ) 7−→ A · Jα0 = [A, Jα0 ] ∈ ⊕(r,j)−1

q=1 Bpq(Jα0 )

(see section 3.1.3).
For the connection form on Qj we take

ωj := ωhj |TQj .

We set as usual N j = Qj/K which is a Homogeneous fibre bundle over M .
Moreover the isomorphism of bundle (and isometry) J : N → Zα2k(E) satisfies

J (N j) = Zα2k,j(E, Jj)
by definition of J and Qj (see (72) and (77)), so that it induces an isomorphism
of bundle from N j onto N j

Z .
Let us denote by TN j = Vj⊕Hj the splitting in terms of vertical and horizontal
subbundles given by ωj. Then denoting by sj the cross section in the associated
bundle Q/Hj = SO(E)/Uj−1(J

α
0 ) defining the Hj-reduction Qj (i.e. Jj ◦ sj =

Jj)
33, according to section 4.2.3, we have the following equivalences

ω is reducible in Qj (to ωj)
4.2.3⇐⇒ sj is horizontal

4.2.3⇐⇒ Hj = H|Nj

Rmk 4.10m m
∇Jj = 0

ex. 4.4⇐⇒ HZ,j = HZ
|Nj

Z

33See remark 4.9 and 4.10.
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Example 4.9 Let M = G/H be the k-symmetric space correponding to some

2k-symmetric space G/G0 (see section 2.1.1), and take (E,∇) = (TM,
M

∇0),
j = 2 and J2 given by lemma 3.1. Then we have

M

∇0J2 = 0.

Indeed
M

∇0J2 lifts in G into

(d+ θh)J2
0 = dJ0 + [θh, J

2
0 ] = 0

(see lemma 3.1). Therefore we can conclude that in this case ω is reducible in
Q2 (to ω2).

If ω is not reducible in Qj (to ωj), then according to (47) and (57), N j →֒ N and
N j

Z →֒ NZ are not isometries, and thus we can not say directly that J induces

an isometry from N j onto N j
Z , even if as we will see below it is effectively

the case. As above, the result of (47) and (57), and dJ (Vj) = VZ,j, is that:
J : N j → N j

Z is an isometry if and only if dJ (Hj) = HZ,j.

Now let us come back to the connection form ωj : TQj → hj ⊂ so(2n). It defines
a metric covariant derivative ∇[j] in the associated vector bundle E. Then we
have

∇[j]Jj = 0.

Indeed Jj lifts into the Hj-equivariant (constant) map J̃j : e ∈ Qj → (Jα0 )j ∈
(Zα2k(R2n))j ⊂ gl2n(R

2n) and ∇[j]Jj lifts into

D̄j J̃j = dJ̃j + [ωj, J̃j ] = 0 + 0 = 0,

since by definition hj = uj−1(J
α
0 ) = so0((J

α
0 )j) commutes with (Jα0 )j .

Remark 4.11 We can do the things more concretely by using a (local) moving
frame e in Qj : ∇[j] is then caracterized by

∇[j](e1, . . . , e2n) = (e1, . . . , e2n).ω
j(e; de) (78)

Then by definition of Qj we have

Jje = e.(Jα0 )j (79)

so that
(∇[j]Jj)e+ Jj(∇[j]e) = e.ωj(Jα0 )j

then using (79) and (78), we obtain

(∇[j]Jj)e = e.ωj(Jα0 )j − Jj(e.ωj) = e.(ωj(Jα0 )j − (Jα0 )jωj) = 0

since ωj takes values in hj = so0((J
α
0 )j).
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In fact we can caracterize∇[j] in the following more general way, which in partic-
ular generalizes a well-known result of Rawnsley [31] about complex structures
on vector bundles.

Theorem 4.19 Let E be a Riemannian vector bundle as above. Let p′ ∈ N∗

and J ∈ C(Up′(E)), then AdJ defines an automorphism of the linear bundle
End(E) (over IdM), i.e. a section of End(End(E)). Then the metric covariant
derivative ∇ in E admits an unique decomposition in the form: 34

∇ =
J

∇0 +

rp′−1∑

i=1

Ai (80)

where
J

∇0 is a metric covariant derivative for which

J

∇0J = 0

and Ai ∈ C(T ∗M ⊗ soi(E, J)), i.e. JAiJ
−1 = ωirAi and Ai ∈ so(E)C.

J

∇0 will be called the J-commuting component of ∇, A∗ =
∑rp′−1

i=1 Ai ∈ C(T ∗M⊗
so∗(E, J)) the so∗(E, J)-component of ∇, and Ai the soi(E, J)-component of ∇.

Proof. Unicity. Let us suppose that (80) exists then we have

∇J =

rp′−1∑

i=1

[Ai, J ]

so that
rp′−1∑

i=1

Ai = −(adJ)−1(∇J)

(see section 4.3.2) which proves the unicity of (Ai)1≤i≤rp′−1 (these are deter-

mined by ∇ and J , more precisely these are the components of −(adJ)−1(∇J)).

Now
J

∇0 = ∇−∑rp′−1

i=1 Ai is also unique.

Existence. Let ∇0 be any metric covariant derivative commuting with J , that
is to say ∇0 corresponds to a connection on the principal bundle of Hermitian
frames on (E, 〈 , 〉, J) (such a connection always exists, see [27]). Then consider

A = ∇−∇0 ∈ C(T ∗M ⊗ so(E))

and let A =
∑rp′−1

i=0 Ai be the decomposition of A following so(E, J)C =

⊕rp′−1

i=0 soi(E, J). Let us set
J

∇0 = ∇0 +A0

34As usual rp′ is the order of AdJ , i.e. rp′ = p′ if p′ is odd, and if p′ is even then r = p′ if

J
p′

2 6= −Id and rp′ =
p′

2
if J

p′

2 = −Id.
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then
J

∇0 is a J-commuting metric covariant derivative in E and we have

∇ =
J

∇0 +

rp′−1∑

i=1

Ai

which proves the existence. �

Applying this theorem to Jj , we obtain the following.

Corollary 4.2 ∇[j] is the Jj-commuting component of ∇.

Proof. The H-equivariant lift of ∇ is the covariant derivative on Q:35

d+ ω = (d+ ω0) +

rp′−1∑

i=1

ωi (81)

where ωi = [ω]soi((Jα
0 )j), and in particular ω0 = ωj. Then restricting (81) to Qj ,

and projecting on M , we obtain the decomposition (80) of ∇:

∇ = ∇[j] +

rp′−1∑

i=1

Ai

that is to say d+ω0 is the Hj-equivariant lift of
Jj

∇0, which is thus equal to ∇[j],
and ωi is the Hj-equivariant lift of the soi(E, Jj)-valued 1-form on M , Ai. This
completes the proof.

Remark 4.12 Moreover ω is reducible in Qj (∇Jj = 0) if and only if ∇[j] = ∇.

Remark 4.13 Under the hypothesis of theorem 4.19 we have

∀F ∈ C(A0(E, J)),
J

∇0F = prA0(E,J) ◦ ∇F

where prA0(E,J) : End(E) → A0(E, J) is the orthogonal projection (i.e. along
A∗(E, J)) so that in particular

∀F ∈ C(so0(E, J)),
J

∇0F = prso0(E,J) ◦ ∇F

where prso0(E,J) : so(E)→ so0(E, J) is the orthogonal projection. Indeed,

∇F =
J

∇0F +

rp′−1∑

i=1

[Ai, F ]

35Remark that here rp′ is the order of Ad(Jα
0 )j , so that rp′ =

r

(r, j)
= p.
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and J commutes with
J

∇0 and F so with
J

∇0F : (
J

∇0F ).J =
J

∇0(F.J)−F
J

∇0J =
J

∇0(J.F ) = J
J

∇0F . Moreover [Ai, F ] ∈ [Ai(J),A0(J)] ⊂ Ai(J), so that we can
conclude. �

The canonical 2k-structure in π∗E, J : N → π∗E induces by restriction a 2k-
structure in πj

∗
E, still denoted by J : N j → πj

∗
E.

Now, let us precise the subbundles p
j
Qj and kQj . First, we have h

j
Qj = u0(E, Jj)

36

and then

kQj = kQ|Qj = so0(π
j∗E,J )

p
j
Qj = u∗j−1(E,J ) =

(
⊕i∈p.Zr\{0}soi(π

j∗E,J )
) ⋂

so(πj
∗
E).

The morphism of vector bundle adJ : so(π∗E) → J .pQ induces a surjective

morphism from πj
∗
h
j
Qj = uj−1(π

j∗E,J ) onto J .pjQj , with kernel kQj :

adJ : πj
∗
h
j
Qj = uj−1(π

j∗E,J ) −→ J .u∗j−1(π
j∗E,J ) = J .pjQj

(J,A) 7−→ adJ(A) = [J,A] = J

(r,j)−1∑

i=1

(1− ωipr )Aip

where Ai = [A]soi(Ex).

As above, now we express the homogeneous fibre bundle tools φj , Φj and ∇pj

in terms of J .

Theorem 4.20 If A,B ∈ TN j, F ∈ C(pjQj ) then

(i) ∇[j]J = −adJ ◦ φj thus φjA = −(adJ )−1∇[j]
A J

(ii) Φj(A,B) = (adJ )−1
[
J , πj∗R∇[j]

(A,B)
]

where R∇[j]

is the curvature of

∇[j].

(iii) ∇pj

A F = (adJ )−1
[
J ,∇[j]

A F
]

In the following theorem, we use the notation of 4.2.3. In particular, we denote
by ” ·v ” instead of ” ·v ” the vertical component in Vj ⊂ TN j.

Theorem 4.21 Let s ∈ C(πj) and J = s∗J be the corresponding 2k-structure.
Then

(i) I(dvs) = −(adJ)−1∇[j]J . Thus s is horizontal if and only if J is ∇[j]-
parallel.

36 The restriction of the identification (71), hQ
∼= so(E) to h

j

Qj gives rises to an identification

h
j

Qj := Qj ×Hj hj ∼= so0(E, Jj).
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(ii) I(Πv(s)) = −(adJ)−1(∇[j])2J +
1

2
(adJ)−1

[
∇[j]J ⊙ (adJ)−1∇[j]J

]
.

Thus s is superflat if and only if (∇[j])2J − 1

2

[
∇[j]J ⊙ (adJ)−1∇[j]J

]

commutes with J .

(iii) I(τv(s)) = +(adJ)−1∇[j]∗∇[j]J + (adJ)−1Tr
([
∇[j]J, (adJ)−1∇[j]J

])
.

Thus s is a harmonic section if and only if ∇[j]∗∇[j]J+ Tr
([
∇[j]J, (adJ)−1∇[j]J

])

commutes with J .

(iv) s∗Φj = (adJ)−1
[
J,R∇[j]

]
.

As above, from theorem 4.20-(i), we conclude that dJ sends the decomposition
TN j = Vj ⊕Hj onto the decomposition TN j

Z = VZ,j ⊕HZ,j (see example 4.4)

so that we can consider πjZ : N j
Z(E) → M as a homogeneous fibre bundle over

M with structure groups Hj = Uj−1(J
α
0 ) and K = U0(J

α
0 ). We will call this

structure the homogeneous fibre bundle structure defined by (the Jj-commuting
part of) ∇.
Besides, since the vertical and horizontal subbundles corresponds via J , then
we can conclude according to (47) and (57) that J : N j → N j

Z is an isometry.

Moreover, the vertical tension field of J in N j
Z = Zα2k,2(E, Jj) is given by

dJ (τv(s)) = −
[
∇[j]∗∇[j]J + Tr

([
∇[j]J, (adJ)−1∇[j]J

])]
VZ,j

Remark 4.14 According to 4.2.3, the canonical connection in p
j
Qj → N j is the

restriction of the canonical connection in pQ → N , to p
j
Qj .

Remark 4.15 If we endow E with ∇[j] and apply the theorems 4.17 and 4.18
(with the Riemannian vector bundle (E,∇[j])), then by restriction to N j , we
obtain theorems 4.20 and 4.21, which is not surprising since in this case ω is
reducible in Qj and then everything corresponds in the reduction N j →֒ N .
In particular, superflatness and vertical harmonicity (for sections in N j) are the
same in N j and N . This is what happens in particular in example 4.9.

The particular case of Zα2k,2(E, J2) According to theorem 3.2, we will be es-
pecially interested by this subcase in our interpretation of the elliptic integrable
system. In this subcase the fibre H2/K = Z2k,2(R2n, (Jα0 )2) is symmetric so
that we obtain simplifications (coming in particular from the facts that∇c = ∇p

and that any section J ∈ C(π2
Z) anticommutes with ∇[2]J) in theorems 4.20

and 4.21 which then take the same forms as theorems 4.15 and 4.16 about the
twistor bundle Σε(E), just by doing the change ∇←→ ∇[2]. Therefore the case
Zα2k,2(E, J2) is very similar to that of Σε(E).
Before writing the simplified theorems for j = 2, let us do some useful observa-
tions.
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First, we have37

kQ2 = so0(π
2∗E,J ) = {A ∈ so(π2∗E)| [A,J ] = 0} = so(+1)(π

2∗E,J ) (82)

p2
Q2 = so r

2
(π2∗E,J ) = {A ∈ so(π2∗E)|A.J + J .A = 0} = so(−1)(π

2∗E,J ). (83)

Then adJ induces a surjective morphism from π2∗h2
Q2 = u1(π

2∗E,J ) onto

J .p2
Q2 = B r

2
(π2∗E,J ) with kernel kQ2

adJ : u1(π
2∗E,J ) = so(+1)(π

2∗E,J )⊕ so(−1)(π
2∗E,J ) −→ B(−1)(π

2∗E,J ) = J .so(−1)(π
2∗E,J )

(J,A0 +A1) 7−→ adJ(A) = [J,A] = 2JA1

where we denoteA0+A1 the decomposition following so(+1)(π
2∗E,J )⊕so(−1)(π

2∗E,J )
instead of A0 +A r

2
.

Theorem 4.22 If A,B ∈ TN2, F ∈ C(p2
Q2) then

(i) φ2A = −1

2
J−1∇[2]J

(ii) Φ2(A,B) =
1

2
J−1

[
J , π2∗R∇[2]

(A,B)
]

where R∇[2]

is the curvature of ∇[2].

(iii) ∇cAF =
1

2
J −1

[
J ,∇[2]

A F
]

38

Theorem 4.23 Let s ∈ C(π2) and J = s∗J be the corresponding 2k-structure.
Then

(i) I(dvs) = −1

2
J−1∇[2]

A J . Thus s is horizontal if and only if J is ∇[2]-parallel.

(ii) I(Πv(s)) = −(adJ)−1
(
∇[2]

)2
J = −1

4

[
J−1,

(
∇[2]

)2
J
]
.

Thus s is superflat if and only if
(
∇[2]

)2
J commutes with J .

(iii) I(τv(s)) = (adJ)−1∇[2]∗∇[2]J =
1

4

[
J−1,∇[2]∗∇[2]J

]
.

Thus s is a harmonic section if and only if ∇[2]∗∇[2]J commutes with J .

(iv) s∗Φ2 =
1

2
J−1

[
J,R∇[2]

]
.

Let us add that the vertical tension field N2
Z is given

dJ (τv(s)) = −
[
∇[2]∗∇[2]J

]
VZ,2

= −1

2
J

[
J−1,∇[2]∗∇[2]J

]
(84)

37with notation defined in remark 3.4.
38see remark 4.14
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4.4 Geometric interpretation of the even determined sys-
tem

4.4.1 The injective morphism of homogeneous fibre bundle IJ0 : G/G0 →֒
Zα0

2k,2(G/H, J2).

Here, we want to ask ourself if the inclusion IJ0 : G/G0 →֒ Zα0

2k,2(G/H, J2) given
by theorem 3.2 conserves the homogeneous fibre bundle structure, in particular:
the vertical harmonicity is it conserved. We use the notations of 4.3.1 and 4.3.4
(with E = TM , ∇ a metric connection on M and j = 2)39. First, we see
that IJ0 is obtained by ”passage to the quotient” from the following injective
morphism of bundle (which is an embedding if G is closed in Is(M)):

Ie0 : G →֒ Q2 = Uα0
1 (G/H, J2) ⊂ SO(M)

g 7−→ g · e0 (85)

where e0 ∈ SO(Tp0M) is such that Mat(J0) = Jα0
0 , and J0 = τ−1

|m . In other

words G → M is a reduction of Uα0

1 (G/H, J2) → M itself a reduction of
SO(M)→M .
Further quotienting in (85) by U0(J

α
0 ) the target space and then by G0 the

domain, we obtain (by definition of G0 = Gτ ∩H , see theorem 3.2) the injective
morphism of bundle

Ie0 : g.G0 7−→ (g · e0)U0(J
α
0 ) ∈ Uα0

1 (M,J2)/U0(J
α
0 ) ⊂ SO(M)/U0(J

α
0 )

where e0 = e0U0(J
α
0 ) ∈ N2, and finally composing with J (in the target space)

we obtain the map IJ0 :

g.G0 7−→ g · (e0U0(J
α
0 ))

J7−→ J = gJ0g
−1 ∈ Zα0

2k,2(M,J2).

Since IJ0 (resp. Ie0) is an injective morphism of bundle (and an immersion)
dIJ0 (resp. dIe0) induces an injective morphism of bundle from the vertical
subbundle VG/G0 = [gk] into the vertical subbundle VZ,2 (resp. V2).
IJ0 is the restriction to G/G0 of the inclusion map I : End(G/H)→M×End(g)
(see 1.7). Indeed, we have the inclusion depending on J0: g.G0 ∈ G/G0 7→
[g, J0] ∈ G ×H End(m) = End(G/H) which under the inclusion I gives g.G0 ∈
G/G0 7→ (g.x0,Adg ◦ τ−1

|m ◦ Adg−1) ∈ M × End(g) which is in nothing but IJ0

(as usual under the identification TM = [m]). Then under the inclusion hG ⊂
so(TM), we have hG ⊂ h2

Q2 = u0(TM, J2). Indeed, under the linear isotropy

representation of H in Tx0M , we have H ⊂ U0(Tx0M,J2
0 ) = U1(Tx0M,J0) so

that h ⊂ u0(Tp0M,J2
0 ) and thus hG := G ×H h ⊂ u0(TM, J2). Moreover let us

remark that π2 ◦ Ie0 = π so that π∗hG ⊂ π2∗h2
Q2 over Ie0 : N → N2 (i.e. the

inclusion is a morphism of bundle over Ie0).
Furthermore, since AdJ0 leaves invariant h ⊂ u1(Tx0M,J0), the restriction to h

of the symmetric decomposition

u1(Tx0M,J0) = so(+1)(Tx0M,J0)⊕ so(−1)(Tx0M,J0)

39That is to say the notations for Zα0
2k,2(G/H, J2) will have the subscript ”2” and these of

G/G0 will not have subscript according to 4.3.1 and 4.3.4
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gives rise to the decomposition h = g0 ⊕ gk according to (23), so that the
symmetric decomposition given by AdJ on π2∗h2

Q2 = u1(π
2∗TM,J ), that is to

say
u1(TM,J ) = so(+1)(π

2∗TM,J )⊕ so(−1)(π
2∗TM,J )

gives rise in the AdJ -invariant subspace π∗hG ⊂ π2∗h2
Q2 to the symmetric

decomposition of AdIJ0 (restricted to π∗hG ⊂ so(π∗TM))

π∗hG = kG ⊕ pG

according to (69). In other words, the decomposition given by (69) injects into
the decomposition given by (82) via the inclusion π∗hG ⊂ π2∗h2

Q2 .

Now let us interpret theorems 4.13 and 4.14 using the homogeneous fibre bundle
structure in Zα0

2k (M,J2) defined by the Riemannian vector bundle (E,∇) =

(TM,
M

∇0) (in the sense of 4.3.4). We continue to use the same conventions for
the notations in N and N2 (no subscript for N and subscript 2 for N2 and

NZ,2). Recall that we have IJ0 = J ◦ Ie0 = I∗
e0
J and that (

M

∇0)[2] =
M

∇0. Then
according to theorems 4.22 and 4.23, theorems 4.13 and 4.14 implies

Theorem 4.24 We have the following identities

(i) φ = I∗
e0
φ2

(ii) Φ = I∗
e0

Φ2

(iii) ∇c =
N

∇0|[p] = I∗
e0
∇c,2, where ∇c,2 is the canonical connection in p2

Q2 .

Theorem 4.25 Let s ∈ C(π) and identify it (temporarily) with s∗Ie0 ∈ C(π2).
Then under the inclusion Ie0 : N → N2, we have:

(i) dvs = dv,2s

(ii) Πvs = Πv,2

(iii) τvs = τv,2s

(iv) s∗Φ = s∗Φ2

These properties holds also, without any change, for maps f ∈ C(L,N), (L, b)
being a Riemannian manifold.

Let us remark that since the connection form ω, on Q = SO(TM) defined by
M

∇0 is reducible in Q2, then in the previous theorems all the ”quantities” in N2

(right handside) can also be computed in SO(TM)/U0(J
α0
0 ) ∼= Zα0

2k (M), since
”everything is reducible” in this case (see remark 4.15).
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Now, let us compute the vertical tension field of J : L→ N2
Z for the homogenous

fibre bundle structure defined in N2
Z by

M

∇0: according to (84) we have

τv,2(J) = −1

2
J

[
J−1, (

M

∇0)∗
M

∇0J

]
. (86)

Then suppose that J ∈ IJ0(G/G0) i.e. J = s∗IJ0 for a certain s ∈ C∞(L,N),
then according to theorem 4.25 (and IJ0 = J ◦ Ie0) we have

dIJ0(τ
v(s)) = dJ (τv,2(s̄)) = τv,2(J)

where s̄ = J −1 ◦ J i.e. J = s̄∗J .
The tension fields (and thus vertical harmonicity) correspond via the
different inclusions and identifications, in particular via IJ0 : N → N2

Z .

In fact in what precedes we can replace the canonical connection in M ,
M

∇0, by
(the J2 commuting part of) the Levi-Civita connection in M .

Theorem 4.26 The canonical affine connection on M is the J2-commuting

component of the Levi-Civita connection
M

∇ on M :

M

∇0 =
J2

∇0 =
M

∇[2].

Corollary 4.3 The homogeneous fibre bundle structures in N2
Z defined by the

canonical affine coonection
M

∇0 and by (the J2-commuting part of) the Levi-

Civita connection
M

∇, in M , are the same. Therefore theorems 4.13, 4.14 and

corollary 4.1 still hold if we replace
M

∇0 by
M

∇[2]. Moreover theorems 4.24 and
4.25 hold with the homogeneous fibre bundle structure defined in N2 by the (J2-

commuting part of) the Levi-Civita connection
M

∇.

Let us conclude this subsection by some additionnnal equalities.

Theorem 4.27 The canonical affine connection on M is the J2-commuting

component of the connections
met

∇t on M :

M

∇0 =

(
met

∇t
)[2]

.

Theorem 4.28 Let J1 ∈ C(U∗
2k(N)) be the section defined by τ−1

|n with, let us

recall it, n = p⊕m = gk ⊕m, then
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(i) The J1-commuting component of the (π-pullback of the) canonical affine

connection in M , π∗
M

∇0, is
N

∇0 the canonical affine connection in N . This
latter is also the J1-commuting component of the (π-pullback of the) Levi-

Civita connection, and more generally of the connections
met,M

∇t .

(ii) The J1-commuting component of the Levi-Civita connection in N ,
N

∇, is
N

∇0.

(iii) More generally, the J1-commuting component of
met,N

∇t is
N

∇0.

(iv) Let s ∈ C(π) and J = s∗IJ0 the corresponding 2k-structure on M , then

s∗
N

∇0 is the J1-commuting component of
M

∇0, and also the J1-commuting

component of (the s-pulback of) the Levi-Civita connection on M , s∗
M

∇;

and more generally of (the s-pulback of) the the connections
met,N

∇t .

We recover in particular [6] from (iv).

4.4.2 Conclusion

Now we can conclude:

Theorem 4.29 Let (L, j) be a Riemann surface, f : L→ N = G/G0 be a map
and J = f∗IJ0 the corresponding map into Zα0

2k,2(M,J2). Then f is a geometric
solution of the even determined system (Syst(k, τ)) if and only if

(i) J is an admissible twistor lift (⇔ f is horizontally holomorphic)

(ii) J is vertically harmonic in Zα0

2k,2(M,J2) endowed with its homogeneous fibre
bundle structure defined by the Levi-Civita connection, ∇, in M :

[
∇[2]∗∇[2]J, J

]
= 0,

where ∇[2] is the J2-commuting component of ∇. (⇔ f is vertically har-
monic in G/G0).

Moreover the first condition implies that J is flat in Zα0

2k,2(M,J2):

J∗ΦZ,2 =
[
u∗R∇[2]

, J
]

= 0,

where ΦZ,2 is the homogeneous curvature form in Zα0

2k,2(M,J2), which means

also that J is a flat section in End(u∗TM, u∗∇[2]). (⇔ f is flat in the homoge-
neous fibre bundle N →M).
Furthermore f is a primitive geometric solution (i.e. there exists m ≤ k such
that f is m-primitive, which is equivalent to say that f is k-primitive) if and
only if
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(i) J is an admissible twistor lift

(ii) J is parallel: ∇[2]J = 0 (⇔ f is horizontal).

Besides in these characterizations, in the points (ii) the Levi-Civita connec-
tion can be replaced by any G-invariant metric connection ∇′ whose the J2-

commuting component ∇′[2] leaves invariant hG ⊂ so(TM). This is the case in
particular for the connections

met

∇t =
M

∇0 + t
(
[ , ][m] + ŪM

)
, 0 ≤ t ≤ 1,

for which the J2-commuting component is the canonical connection on M :
M

∇0.
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5 Affine (vertically) harmonic maps

5.1 Affine harmonic maps and holomorphically harmonic
maps

A map u : M → N between two Riemannian manifolds (M, g) and (N, h) is
harmonic if it extremizes the energy functional

E(u) =
1

2

∫

D

|du|2dvolg

for all compact subdomains D ⊂ M , where |du|2 = Trg(u
∗h). The associated

Euler-Lagrange equation is τ(u) := Trg(∇du) = 0, where ∇ is the connection
on T ∗M ⊗ u∗TN induced by the Levi-Civita connections of M and N .

Now, we generalise this definition for maps from a Riemannian manifold into
an affine manifold. We present to different ways to do that. The first one is the
natural one (see also [21]) and concerns general affine manifolds whereas the
second one concerns maps from Riemann surfaces into affine almost complex
manifolds.

5.1.1 Affine harmonic maps: general properties

Definition 5.1 Let s : (M, g) → (N,∇) be a smooth map from a Riemannian
manifold (M, g) into an affine manifold (N,∇). We set

τ(s) = Trg(∇ds) = −∇∗ds = ∗d∇ ∗ ds

and we say that s is affine harmonic with respect to ∇ or ∇-harmonic if τ(s) =
0.

Now, let us consider the case where (M, g) is a Riemannian surface surface i.e. a
Riemann surface (L, j) with a Hermitian metric b. Then the action of the Hodge
operator ∗ of L, is independent of the metric b on 1-forms (∗α = α ◦ j), whereas
in 2-forms (resp. 0-forms) it is multiplied by the factor λ2 (resp. λ−2 > 0)
when the metric is multiplied by the factor λ ∈ C∞(L,R∗

+). Hence the tension
field τ(f) = ∗d∇(∗df) is multiplied by λ2, under this last transformation. In
particular the affine harmonicity for maps f : (L, j)→ (N,∇) does not depend
on the hermitian metric L but only on the conformal structure of (L, j). Thus
we have:

Theorem 5.1 Let (L, j) be a Riemann surface and f : (L, j)→ (N,∇) a smooth
map. Let TLC = T ′L⊕T ′′L be the decomposition into the (1, 0) and (0, 1)-parts,
and d = ∂ + ∂̄ and ∇f∗(TN) = ∇′ +∇′′ the corresponding splittings. Then we
have

2 ∂̄∇∂f = d∇df + id∇ ∗ df,
moreover d∇df = f∗T , where T is the torsion of ∇ and d∇ ∗ df = τ(f)volb for
any hermitian metric b in M . Therefore the following statements are equivalent:
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(i) ∇′′

∂f = 0

(ii) ∂̄∇∂f = 0

(iii) ∇ ∂
∂z

(
∂f
∂z

)
= 0, for any holomorphic local coordinate z = x+ iy (i.e. (x, y)

are conformal coordinates for any hermitian metric in L).

(iv) f is ∇-harmonic with respect to any hermitian metric in L and torsion
free: f∗T = 0 (i.e. T (∂u∂x ,

∂u
∂y ) = 0 for any conformal coordinates (x, y)).

We will say in this case that f is strongly ∇-harmonic.

Remark 5.1 We remark that the imaginary part (resp. the real part) of equa-
tion (ii) (resp. equation (iii)) is the ∇-harmonic maps equation whereas its real
part (resp. imaginary part) is the torsion free equation f∗T = 0.
If T = 0 or more generally f∗T = 0, then f is strongly ∇-harmonic if and only
if it is ∇-harmonic.

5.1.2 Holomorphically harmonic maps

In the case the target space N is endowed with an almost complex structure J
then we have another way to generalise the definition of harmonicity to maps
from a Riemann surface into N .

Definition 5.2 Let (L, j) be a Riemann surface and (N,∇) be an affine mani-
fold endowed with a complex structure J . Let us denote TNC = T 1,0N ⊕T 0,1N
the corresponding decomposition of TNC. We will say that f : L → N is holo-
morphically harmonic if

[∂̄∇∂f ]1,0 = 0.

Proposition 5.1 Let (L, j) be a Riemann surface and (N,∇) be an affine man-
ifold endowed with a complex structure J . Then f is holomorphically harmonic
if and only if (for any hermitian metric b in M)

Tb(f) + Jτb(f) = 0

where Tb(f) = ∗(f∗T ) = f∗T (e1, e2), with (e1, e2) an orthonormal basis of TL,
or equivalently

τb(f)volb = J(f∗T ).

Therefore f is strongly harmonic if and only if it is torsion free and holomor-
phically harmonic. In particular, if T = 0, or more generally f∗T = 0, then
f is holomorphically harmonic if and only if it is harmonic. Hence for torsion
free connection ∇ harmonicity and holomorphic harmonicity are the same.

Proof. Let Z = X + iY ∈ TNC with X,Y ∈ TN , then since T 1,0N and T 0,1N
are given respectively by {V ∓ iJV, V ∈ TN}, we deduce that

[Z]1,0 = 0⇔ X + JY = 0 and [Z]0,1 = 0⇔ X − JY = 0.
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Now, let us apply that to the TNC-valued 2-form ∂̄∇∂f , we obtain

[∂̄∇∂f ]1,0 = 0⇐⇒ d∇df + Jd∇ ∗ df = 0

according to theorem 5.1. This proves the first assertion. Then the assertion
concerning strongly harmonicity follows from theorem 5.1(iv). This completes
the proof. �

Let us remark that

Proposition 5.2 In the same situation as in the previous proposition, let us
suppose in addition that ∇J = 0. Then if a map f : L→ N is holomorphic i.e.
df ◦ jL = Jdf , then f is anti-holomorphically harmonic (i.e. holomorphically
harmonic with respect to −J).

Proof. f is holomorphic if and only if df(T 1,0L) ⊂ T 1,0N i.e. [∂f ]0,1 = 0.
Then we have

[∂̄∇∂f ]0,1 = ∂̄∇[∂f ]0,1 = 0

since ∇ commutes with J . This completes the proof. �

Holomorphic sections of complex vector bundles Now, we need to do
some recalls about complex vector bundles that we will apply in the next para-
graph to obtain an interpretation of the holomorphic harmonicity in terms of
holomorphic 1-forms.

LetE →M be a real vector bundle (over a manifoldM) endowed with a complex
structure J ∈ End(E). Then any frame in the form (e1x, . . . , e

r
x, Je

1
x, . . . , Je

r
x) at

some point x ∈M can be extended to a local frame (e1, . . . , er, Je1, . . . , Jer) in
the neighbourhood of x. Then there exists an open covering (Uα)α∈I of M and
local trivialisations Φα : (E|Uα

, J) → Uα × (Cr, iId) which are C-linear isomor-
phisms (Φα ◦ J = iΦα), or equivalently of which transition maps take values in
the endomorphisms of Cr: φαβ = Φβ ◦ Φ−1

α : Uα ∩ Uβ → GL(Cr). Therefore E
is a complex vector bundle.

Remark 5.2 Let us set Ĉ = R[J ], then Ĉ = R[J ] is a vector bundle over M

whose fibres are fields isomorphic to C = R[i] and each fibre Ex of E is a Ĉx-
vector space. Then EC is endowed with two different structures of vector bundle:
one over the field C (the tautological one defined by the complexification of E)

and another one ”over the distribution of field Ĉ” (i.e. the one defined by J).
Therefore we have two different complex conjugaisons in EC, that we will call
respectively the C-conjugaison and the Ĉ-conjugaison.

Now, let us suppose that E is endowed with a complex connection ∇, i.e.
a connection which commutes with J : ∇J = 0. Then for all X ∈ TM ,
∇X : C(E) → C(E) is C-linear with respect to the complex vector space struc-
ture defined on C(E) by the complex vector bundle structure on E. Then we
have two different ways to extend ∇ to TMC.
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1. The canonical one: for any section s ∈ C(EC), we extend ∇s by C-linearity
to a linear morphism from TMC to EC,

∇iXs = i∇Xs, ∀X ∈ TM, s ∈ C(EC)

after, of course, having extended ∇ to a connection on EC by setting
∇is = i∇s, ∀s ∈ C(E). In conclusion, ∀s ∈ C(EC), ∇s ∈ C(T ∗MC ⊗ EC).

2. By using the complex vector bundle structure of E defined by J : for any
s ∈ C(E), we extend ∇s by C-linearity to a linear morphism from TMC

to E:
∇̂iXs = J∇̂Xs, ∀X ∈ TM, s ∈ C(E).

Let us remark that ∇̂ depends on J , and since we use the complex vector space
structure defined by J , one needs that ∇ and J commute. One the other side
the simple canonical complex extention defined in 1 (that we still denote by
∇) is independant of J and one needs not to do any additionnal hypothesis.

Remark that the extention 1 is nothing but the extention ∇̂ defined by the
complex structure iIdEC on E (which commutes obviously with ∇).

Now let us suppose that M is an (almost) complex manifold with (almost)
complex structure jM . Then we have the splitting TMC = T 1,0M ⊕ T 0,1M
defined by jM which gives rise respectively to the following decompositions of
∇ and ∇̂:

∇̂ = ∇(1,0) +∇(0,1)

∇ = ∇′ +∇′′.

More generally, let η ∈ C(T ∗M ⊗E) be a 1-form on M with values in E. Then
we can extend it in two different ways by C-linearity in TMC by setting:

ηC(X + iY ) = η(X) + iη(Y ), ∀X,Y ∈ TM
η̂(X + iY ) = η(X) + Jη(Y ), ∀X,Y ∈ TM.

Remark that ηC ∈ C(T ∗MC⊗EC) whereas η̂ ∈ C(T ∗MC⊗E). As above we can
decompose ηC and η̂ according to the decomposition TMC = T 1,0M ⊕ T 0,1M :

ηC = η′ + η′′ (87)

η̂ = η(1,0) + η(0,1). (88)

Then we have the following relations

Lemma 5.1

[η′]
1,0

= η(1,0) − iJη(1,0) [η′′]
0,1

= η(1,0) + iJη(1,0)

[η′]
0,1

= η(0,1) + iJη(0,1) [η′′]
1,0

= η(0,1) − iJη(0,1) (89)
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Proof. Let Z = X − ijMX ∈ T 1,0M with X ∈ TM . Then

[η(Z)]
1,0

= [η(X)− iη(jMX)]
1,0

= η(X)− iJη(X)− i (η(jMX)− iJη(jMX))

= η(X)− Jη(jMX)− iJ (η(X)− Jη(jMX))

= η(1,0)(Z)− iJη(1,0)(Z).

This gives us [η′]
1,0

. Then by taking the Ĉ-conjugate, we obtain [η′]
0,1

. Finally,
the second column of (89) is obtained by C-conjugaison from the first column.
This completes the proof. �

We can apply what precedes to the flat differentiation d. Let (N, J) be an
almost complex manifold and s : M → N a map. Then we consider the complex
vector bundle E = s∗TN over M . Then applying what precedes to the 1-form
η = ds, we can consider the extensions d̂s and (ds)C, which then allows us to
define the following extension of d to TMC:

d̂s = d̂s and dCs = (ds)C,

and by abuse of notation40 dC will be still denoted by d. Then we can
write the following decompositions

d̂ = ∂̂ + ∂̂ and d = ∂ + ∂̄

according to the decomposition TMC = T 1,0M ⊕ T 0,1M .

Now let us come back to the general situation of a complex vector bundle E
over an almost complex manifold (M, jM ), endowed with a complex connection
∇. Let us set

H(M,E) = {η ∈ T ∗M ⊗ E|η jM = Jη}.
Then H(M,E) is a vector subbundle of the vector bundle T ∗M ⊗ E and is
naturally endowed with the complex structure defined by

I(η) = η jM = Jη, ∀η ∈ T ∗M ⊗ E, (90)

which makes H(M,E) being a complex vector bundle whose the set of sections
is

Hom((TM, jM ), (E, J)) = {η ∈ C(T ∗M ⊗ E)|η ◦ jM = J ◦ η}.
The sections of H(M,E) can also be caracterized by using the splittings (87-88):

Lemma 5.2 We have the following equivalences for 1-forms η ∈ C(T ∗M ⊗E):

η ◦ jM = J ◦ η ⇐⇒ η′ ∈ T ∗M ⊗ E1,0 ⇐⇒ η(0,1) = 0.

Then we deduce in particular

40and to be coherent with the notation used until now, in the paper.
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Lemma 5.3 Let s ∈ C(E), then we have the following equivalences:

∇s ◦ jM = J ◦ ∇s⇐⇒ ∇(0,1)s = 0⇐⇒ [∇′s]
0,1

= 0⇐⇒ ∇′(s− iJs) = 0.

We will say that s is a vertically holomorphic section.

In fact we can say more

Lemma 5.4 Let us consider the splitting TE = H ⊕ V given by ∇, where
V = kerπ = π∗E is the vertical subbundle and H the horizontal one. Then let
us define an almost complex structure J̌ on the manifold E by setting

J̌ = ((dπ)∗jM )|H ⊕ π∗J.

Then a section s ∈ C(E) is J̌-holomorphic if and only if it is vertically holo-
morphic.

Proof. It suffices to prove that any section s ∈ C(E) is horizontally holo-
morphic, i.e. satisfies the horizontal part of the equation ds ◦ jM = J ◦ ds.
We have dπ ◦ (ds ◦ jM ) = jM since s is a section. In the other side we have
dπ ◦ (J̌ ◦ ds) = jM ◦ dπ ◦ ds = jM , by definition of J̌ and using the fact s is a
section. In conclusion dπ ◦ (ds◦ jM ) = dπ ◦ (J ◦ds). This completes the proof.�

In the following, we will say that a section of a complex vector bundle (E, J,∇)
is holomorphic if it is J̌-holomorphic.

Now, let us apply the two previous lemmas to the vector bundle H(M,E). First,
let us endow M with an almost complex connection ∇M (it means ∇MJ = 0;
such a connection always exists, see [27]). Then T ∗M ⊗E is naturally endowed

with the connection
⊗

∇ defined by ∇M and ∇. Further, we denote by ∇ the re-

striction to H(M,E) of
⊗

∇. Then we remark that ∇ commutes with the complex
structure I (defined by (90)). Therefore, we can now apply the two previous
lemmas to the complex vector bundle

(
H(M,E), I,∇

)
:

Proposition 5.3 A section of H(M,E), η ∈ Hom((TM, jM ), (E, J)), is holo-
morphic if and only if it satisfies one of the following equivalent statements

(i) ∇(0,1)
η = 0

(ii) ∇′′
η′ = 0

(iii)
[
∇′′

η
]1,0

.

Moreover if M is a Riemann surface41, then it also equivalent to

(iv) ∂̂
b∇
η̂ = ∂̂

b∇
η(1,0) = 0, or

41and ∇M the unique torsion free complex connection in M , which coincides also with the
Levi-Civita connection of any Hermitian metric on M .
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(v) ∂̄∇η′ = 0

Moreover, if M is a complex manifold (i.e. jM is integrable) then we choose
for ∇M the unique torsion free complex connection on M . Then we obtain the
following result:

Proposition 5.4 Let l ∈ TM be a complex line in the tangent bundle of the
complex manifold M . Then for any section η ∈ Hom((TM, jM ), (E, J)) we have
the following equality

∇(0,1)
η|l×l = d∇η|l×l.

Moreover if η is holomorphic then d∇η = 0. More particulary, if M is a Rie-
mann surface then we have the following equivalence

η is holomorphic ⇐⇒ d∇η = 0.

Remark 5.3 One could directly deduces the case of a Riemann surface by using
proposition 5.3.
Indeed, the first way to do that is to write d∇η = d∇η′ + d∇η′′. Then remark
that η′ and η′′ takes values in E1,0 and E0,1 respectively, according to lemma 5.3.
Therefore since E1,0 and E0,1 are ∇-parallel, we can say that d∇η′ and d∇η′′

take values resp. in E1,0 and E0,1 resp., so that d∇η = 0 ⇔ d∇η′ = 0 ⇔
d∇η′′ = 0. Then if M is a Riemann surface d∇η′ = ∂̄∇η′, and we conclude by
using proposition 5.3.
The second way to do that is to use the Ĉ-linearity. Indeed, the extension to

TMC by Ĉ-linearity of d∇η is d̂∇η = d
b∇η̂ = d

b∇η(1,0) = 0, since η(0,1) = 0

(see lemma 5.3). Then if M is a Riemann surface d
b∇η(1,0) = ∂̂

b∇
η(1,0), and we

conclude by using proposition 5.3-(iv).

Remark 5.4 Let us consider a 1-form β ∈ C(T ∗M ⊗E), then we can associate
to it

η = β − Jβ ◦ jM = β̂ ◦ (Id− ijM ) = β(1,0) ◦ (Id− ijM ).

By definition η ∈ C(H(M,E)), i.e. η ◦ jM = J ◦ η. Moreover, still suppposing
that M is complex and that ∇M is the unique torsion free complex connection
on M , we have

∇̂η̂ = ∇̂β(1,0) ◦ (Id− ijM ) (91)

because (Id− ijM ) is ∇M -parallel.
Let us remark that since jM and the multiplication by i coincide in T 1,0M , they
define the same complex structure, which we will suppose T 1,0M to be canon-
ically endowed with. Then, since β̂ is by definition a complex linear morphism
from TMC to E, β(1,0) is also a complex linear morphism from T 1,0M to E.
Hence β(1,0) is a section of the complex vector bundle T ∗

1,0M ⊗C E. Therefore,
from equation (91), we deduce that η is a holomorphic section of H(M,E) if
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and only if β1,0 is a holomorphic section of T ∗
1,0M ⊗C E. In particular if M is

a Riemann surface, we deduce from (91), that

∂̂
b∇
η̂ = ∂̂

b∇
β(1,0) ◦ (Id− ijM ).

Now, we come back to our complex vector bundle (E, J,∇) and we recall a
theorem ([26]) which caracterizes when J̌ is integrable.

Theorem 5.2 Let (E, J,∇) → (M, jM ) be a complex vector over a complex
manifold, with a complex connection ∇. Then we will say that a holomorphic
structure E is compatible with ∇ (or that ∇ is adapted to E) if it is induced
by the almost complex structure J̌ (defined by lemma 5.4). In other words, a
section s ∈ C(E) is holomorphic with respect to E if and only if

∀Z ∈ T 1,0M, ∇̂Z̄s = 0.

An holomorphic structure E exists on E if and only if J̌ is integrable, and in this
case E is unique. Moreover J̌ is integrable if and only if the (0, 2)-component of
the curvature operator42 R of ∇ vanishes.

When M is of dimension 2, then the (0, 2)-component of the curvature operator
always vanishes so that E always admits a holomorphic structure compatible
with ∇, that we will call, following [9], the Koszul-Malgrange holomorphic struc-
ture induced by ∇. In the following, we suppose that a complex vector bundle
(E, J,∇) over a Riemann surface is always endowed with its Koszul-Malgrange
holomorphic structure.

Interpretation of the holomorphic harmonicity in terms of holomor-
phic 1-forms. Now we come back to the situation in the begining of 5.1.2.
More precisely, we consider (N, J) an almost complex manifold, with ∇ an
almost complex connection, (L, jL) a Riemann surface and f : L → N a map.
Then we apply what precedes to the complex vector bundle E = (f∗TN, f∗∇, f∗J)
over L (i.e. L plays the role of M and f the one of s with respect to the notation
of the previous paragraphs). We obtain a first theorem:

Proposition 5.5 Let f : (L, jM ) → (N, J) be a map from a Riemann surface
into an almost complex manifold. Let us set

η = df − Jdf ◦ jM .

Then η is a section of H(L, f∗TN), i.e. η ◦ jM = J ◦ η. Moreover f is holo-
morphically harmonic if and only if η is a holomorphic section of the complex
vector bundle H(L, f∗TN), i.e.

∂̄∇η′ = 0.

42i.e. the (0, 2)-component of the extension R̂ of R to Λ2T ∗MC by Ĉ-linearity.
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Proof. We write

d∇η = d∇ (df − Jdf ◦ jM )) = d∇ (df + ∗Jdf) = d∇df + Jd∇ ∗ df

so that we can conclude according to proposition 5.4 and proposition 5.1. This
completes the proof. �

We can give a caracterisation which looks like very closely to the one which
holds for harmonic maps ([9]):

Theorem 5.3 A map f : (L, jM ) → (N, J) from a Riemann surface into an
almost complex manifold, is holomorphically harmonic if and only if

∂̂
b∇
∂̂f = 0, (92)

i.e. ∂̂f is a holomorphic section of T ∗
1,0L⊗C f

∗TN .

Proof. Apply remark 5.4 to β = df and then use proposition 5.5 to prove that
∂̂f is a holomorphic section and proposition 5.3-(iv) to prove the equation (92).
�

5.2 The sigma model with a Wess-Zumino term

Here we present an interpretation of the holomorphic harmonicity in terms of
the sigma model with a Wess-Zumino term.

5.2.1 The general case of an almost Hermitian manifold

Proposition 5.6 Let (N, J,∇) be an almost complex manifold with an almost
connection ∇. Then J anticommutes with the torsion T of ∇ i.e.

T (X, JY ) = −JT (X,Y )

if and only if

T =
1

4
NJ and T (JX, Y ) = T (X, JY ),

where NJ denotes the torsion of J i.e its Nijenhuis tensor.

From now until the end of this section 5.2, we consider (N, J) an almost complex
manifold with an almost complex affine connection∇ and a∇-parallel Hermitian
metric h. Therefore (N, J, h) is an almost Hermitian manifold with a Hermitian
connection ∇.

Proposition 5.7 Let (N, J, h) be an almost Hermitian manifold with a Hermi-
tian connection ∇. Let us suppose that J anticommutes with the torsion T of
∇. Let us suppose also that the torsion of ∇ is totally skew-symmetric i.e.

T ∗(X,Y, Z) = 〈T (X,Y ), Z〉

95



is a 3-form. Lastly, we suppose that the torsion is ∇-parallel, i.e. ∇T ∗ = 0
which is equivalent to ∇T = 0. Then the 3-form

H(X,Y, Z) = T ∗(X,Y, JZ) = 〈T (X,Y ), JZ〉

is closed dH = 0.

Theorem 5.4 Let (N, J, h) be an almost Hermitian manifold with a Hermi-
tian connection ∇. Then, under the hyphothesis of the previous proposition,
the equation for holomorphically harmonic maps f : L → N is the equation of
motion (i.e. Euler-Lagrange equation) for the sigma model in N with the Wess-
Zumino term defined by the closed 3-form H. The action functional is given
by

S(f) = E(f) + SWZ(f) =
1

2

∫

L

|df |2dvolg +

∫

B

H,

where B is 3-submanifold (or indeed a 3-chain) in N whose boundary is f(L).

5.2.2 The example of a 3-symmetric space

Let us suppose now that N = G/G0 is a (locally) 3-symmetric space. We use
the notations of subsection 2.1.2. In particular, N is endowed with its canonical
almost complex structure J defined by (26).

Proposition 5.8 The canonical connection ∇0 in N commutes with the canon-
ical almost complex structure J

∇0J = 0.

Moreover, J anticommutes with the torsion T 0 of ∇0. Lastly, if N is Rieman-
nian, then ∇0 is metric and (N, J, h) is almost Hermitian for any G-invariant
metric h.43

Furthermore, the torsion of ∇0 is totally skew-symmetric if and only if h is
naturally reductive.

Now, we can conclude

Theorem 5.5 Let us suppose that the (locally) 3-symmetric space N = G/G0 is
Riemannian and naturally reductive. Let h be a G-invariant naturally reductive
metric on N . Then the equation for holomorphically harmonic maps f : L→ N
is the equation of motion (i.e. Euler-Lagrange equation) for the sigma model in
N with the Wess-Zumino term defined by the closed 3-form H, corresponding
to the canonical almost complex structure J and the canonical connection ∇0.

43chosen according to our convention explained in subsection 2.1.2: that is τm leaves invari-
ant the inner product defining h.
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5.3 Affine harmonic maps into reductive homogeneous spaces.

Let N = G/K be a reductive homogeneous space and g = k ⊕ m a reductive
decomposition of the Lie algebra g. We use the notations of section 1 (applied
to N = G/K instead of M = G/H).

Theorem 5.6 Let (L, j) be a Riemann surface and f : (L, j)→ N be a smooth
map, let F : L → G be a (local) lift of u and α = F−1.dF . Then the following
statements are equivalent:

(i) f is ∇t-harmonic for one t ∈ [0, 1].

(ii) f is ∇t-harmonic for every t ∈ [0, 1].

(iii) d ∗ αm + [αk ∧ ∗αm] = 0.

(iv) Im
(
∂̄α′

m + [α′′
k ∧ α′

m] + t[α′′
m ∧ α′

m]m
)

= 0, ∀t ∈ [0, 1].

In fact, the tension field τ t(f) of f with respect to ∇t is independent of t ∈ [0, 1].

Theorem 5.7 In the same situation as above, the following statements are
equivalent:

(i) f is strongly ∇t-harmonic for one t ∈ [0, 1] \ { 1
2}.

(ii) f is strongly ∇t-harmonic for every t ∈ [0, 1] \ { 1
2}.

(iii) ∂̄α′
m + [α′′

k ∧ α′′
m] + t[α′′

m ∧ α′
m]m = 0, ∀t ∈ [0, 1] \

{
1
2

}
.

(iv) f is ∇t-harmonic for one t ∈ [0, 1] and [αm ∧ αm]m = 0.

(iv) dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ S1, with αλ = λ−1α′

m + αk + λα′′
m.

Furthermore f is strongly ∇ 1
2 -harmonic if and only if it is ∇ 1

2 -harmonic: indeed
∇ 1

2 is torsion free.

Proof of theorem 5.6 The tension field τ t(f) of f with respect to ∇t is given
by

τ t(f) = ∗d∇t ∗ df = ∗AdF (d ∗ αm + [αk ∧ ∗αm] + t[αm ∧ ∗αm]m)

= ∗AdF (d ∗ αm + [αk ∧ ∗αm])

(see section 1.4 (especially equation (9)) and section 1.6). This proves the
equivalence between (i), (ii) and (iii). Then we conclude by remarking that

2 Im
(
∂̄α′

m + [α′′
k ∧ α′

m]
)

= d∗αm+[αk∧∗αm] and that [α′
m∧α′′

m]m =
1

2
[αm∧αm]m

is real. This completes the proof. �

Proof of theorem 5.7 We have for all ∈ [0, 1]

∂̄∇
t

∂f = AdF
(
∂̄α′

m + [α′′
k ∧ α′′

m] + t[α′′
m ∧ α′

m]m
)

(93)
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so that the ∇t-strongly harmonicity of f is written:

∂̄α′
m + [α′′

k ∧ α′′
m] + t[α′′

m ∧ α′
m]m = 0. (Stm)

Then the imaginary part of ∂̄∇
t

∂f = 0 gives us the ∇t-harmonicity whereas the
real part gives us

dαm + [αk ∧ αm] + t[αm ∧ αm]m = 0 (Re(t))

which is nothing but the lift of the torsion free equation: f∗T t = 0, where
T t = T∇t

. Moreover the projection on m of the Maurer-Cartan equation (on
α) gives us the structure equation

dαm + [αk ∧ αm] +
1

2
[αm ∧ αm]m = 0 [MC]m

which is nothing but (Re(1
2 )) (so that we recover that T

1
2 = 0) but (since it can

be written ((Re(0)) + 1
2 [αm ∧ αm]m = 0) it is also the lift of (the f -pullback of)

the equation expressing the canonical torsion T 0 in term of the Lie bracket (see
theorem 1.4 or equation (14)) :

T 0 + [ , ][m] = 0. (94)

which combining with the fact that the left hand side of (Re(t)) is the lift of
f∗T t, gives us back T t = (2t− 1)[ , ][m] (see (14)).

Hence according to (93) and [MC]m the strongly harmonicity for one t 6= 1

2
is equivalent to the harmonicity (imaginary part) and [αm ∧ αm]m = 0 (real
part (Re(t)) combining with [MC]m). We can also simply say that f is strongly
harmonic if and only if f is harmonic and torsion free i.e. [αm ∧ αm]m = 0
according to (14). This proves the equivalence between (i), (ii), and (iii). Now,
let us decompose the curvature of αλ, with respect to powers of λ:

dαλ +
1

2
[αλ ∧ αλ] = λ−1 (dα′

m + [αk ∧ α′
m])

+ (dαk +
1

2
[αk ∧ αk] +

1

2
[αm ∧ αm]k) +

1

2
[αm ∧ αm]m

λ (dα′′
m + [αk ∧ α′′

m])

hence using the fact that αλ is real (i.e. g-valued)

dαλ +
1

2
[αλ ∧ αλ] = 0⇔





dα′
m + [αk ∧ α′

m] = 0 (S0
m)

[MC]k
[αm ∧ αm]m = 0

⇔ .

Thus the zero curvature equation on αλ is equivalent to the strongly ∇0-
harmonicity, i.e. the strongly ∇t-harmonicity for all t ∈ [0, 1] \ { 1

2}. Finally
the last assertion is obvious. This completes the proof. �

We are led naturally to the following definitions.
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Definition 5.3 We will say that u : L → G/K is torsion free if u∗T t = 0 for
t ∈ [0, 1] \

{
1
2

}
(this equation does not depend on t).

Definition 5.4 In the situation described by theorem 5.7-(iv), we will say that
the g-valued 1-form on L, α, is solution of the the first elliptic system associated
to the reductive homogeneous space G/K, and that the corresponding geometric
map f is a geometric solution of this system.

Affine harmonic maps into symmetric spaces

Now, if we suppose in particular that N is (locally) symmetric, i.e. [m,m] ⊂
k, then all the connections ∇t, 0 ≤ t ≤ 1, coincide. Moreover, if N is also
Riemannian then these are equal to the Levi-Civita connection. Therefore we
obtain:

Corollary 5.1 The first elliptic integrable system associated to a (locally) sym-
metric space N = G/K is the equation for ∇0-harmonic maps f : L→ N . If N
is Riemannian this means that it is the equation for harmonic maps f : L→ N
(with respect to Levi-Civita in N).

5.4 Affine (holomorphically) harmonic maps into 3-symmetric
spaces

Let us suppose now that N = G/G0 is a (locally) 3-symmetric space. We use the
notations of section 2. N is endowed with its canonical almost complex structure
J defined by (26). We continue here the study begun in 2.3.2 concerning the
lowest order determined odd system.

Theorem 5.8 Let (L, j) be a Riemann surface and f : L → N a smooth map.
Let F : L → G be a (local) lift of f and α = F−1.dF . Then the following
statement are equivalent

(i) ∂̄α′
−1 + [α′′

0 ∧ α′
−1] + [α′′

1 ∧ α′
1] = 0 (S1)

(ii) ∂̄α′
1 + [α′′

0 ∧ α′
1] = 0 (S2)

(iii) f is holomorphically ∇1-harmonic:
[
(∇1)′′∂f

](1,0)
= 0.

(iv) f is anti-holomorphically ∇0-harmonic:
[
(∇0)′′∂f

](0,1)
= 0.

(v) f is a geometric solution of the second elliptic integrable system associated
to the (locally) 3-symmetric space G/G0:

dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ S1,

where αλ = λ−2α′
1 + λ−1α′

−1 + α0 + λα′′
1 + λ2α′′

−1.

99



Proof. The equivalence (i) ⇔ (ii) ⇔ (v) have been proved in 2.3.2. To prove
(i) ⇔ (iii): just take the (1, 0)-component in TNC of (93) for t = 1. Idem for
(ii) ⇔ (iv). This completes the proof. �

Now, additionning theorems 5.8, 5.7, 5.1 and proposition 5.1, we obtain

Corollary 5.2 The following statements are equivalent

(i) f is strongly ∇t-harmonic for one t ∈ [0, 1] \
{

1
2

}
.

(ii) f is ∇t-harmonic for one t ∈ [0, 1] and torsion free.

(iii) f is holomorphically ∇t-harmonic for one t ∈ [0, 1] and torsion free.

(iv) f is a geometric solution of the first elliptic system associated to the re-
ductive homogeneous space G/G0.

(v) f is a geometric solution of the second elliptic system associated to the
3-symmetric space G/G0, and moreover Re ([α1 ∧ α1]) = 0.

(vi) f is in the same time a geometric solution of the determined odd elliptic
systems (Syst(2, τ)) and (Syst(2, τ−1)).

Now, let us apply theorem 5.5 to the equivalence (iv) ⇔ (v) of theorem 5.8.

Theorem 5.9 The second elliptic integrable system associated to the 3-symmetric
space N = G/G0 is the equation of motion for the sigma model in N with the
Wess-Zumino term defined by the closed 3-form H, corresponding to the anti-
canonical almost complex structure −J and the canonical connection ∇0.

5.5 Affine vertically harmonic maps: general properties

Here we generalise the definition of vertical harmonicity for maps from a Rie-
mannian surface into an affine manifold.

Definition 5.5 Let (N,∇N ) be an affine manifold. Let us suppose that we
have a splitting TN = V ⊕ H. In other words N is endowed with a Pfaff
system (the vertical subbundle V) and with a connection on this Pfaff system.
Let s : (L, b)→ N be a smooth map from a Riemannian manifold (L, b) into N .
Then we set

τv(s) = Trb(∇vdvs) = ∗d∇v ∗ dvs,
where ∇ is the connection on T ∗L⊗s∗TN induced by the Levi-Civita connection
of L and ∇N ; and ∇v is its vertical component. We will say that s is affine
vertically harmonic with respect to ∇N or ∇N -vertically harmonic if τv(s) = 0.

Theorem 5.10 Let (L, j) be a Riemann surface and s : (L, j) → (N,∇N ) a
smooth map. Then we have

2 (∇′′)
v
∂vu = d∇

v

dvu+ id∇
v ∗ dvu,
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moreover d∇
v

dvu = u∗T v, where T v is the vertical torsion (see 4.1.3) and d∇
v ∗

dvu = τv(u)volb for any hermitian metric b in L. Therefore the following
statements are equivalent:

(i) (∇′′)
v
∂vu = 0

(ii) ∇v∂
∂z

(
∂vu
∂z

)
= 0, for any holomorphic local coordinate z = x+ iy (i.e. (x, y)

are conformal coordinates for any hermitian metric in L).

(iii) u is ∇v-vertically harmonic with respect to any hermitian metric in L
and vertically torsion free: u∗T v = 0 (i.e. T v(∂u∂x ,

∂u
∂y ) = 0 for any x, y

conformal coordinates).

We will say in this case that u is strongly ∇N -vertically harmonic.

5.6 Affine vertically harmonic maps into reductive homo-
geneous space

Let G be a Lie group, and K ⊂ H ⊂ G subgroups of G such that M = G/H
and H/K are reductive. We use the notations of 4.3.1 (but we do not suppose
a priori that the reductive homogeneous spaces are Riemannian).

Theorem 5.11 Let (L, j) be a Riemannian surface and f : L→ N = G/K be a
smooth map, F : L→ G a (local) lift of F and α = F−1.dF . Then the following
statement are equivalent:

(i) f is ∇t-vertically harmonic for one t ∈ [0, 1].

(ii) f is ∇t-vertically harmonic for all t ∈ [0, 1].

(iii) d ∗ αp + [αk ∧ ∗αp] = 0.

(iv) Im
(
∂̄α′

p + [α′′
k ∧ α′

p] + t[α′′
p ∧ α′

p]p
)

= 0, ∀t ∈ [0, 1].

The ∇t-vertical tension field τv,t(u), with respect of ∇t, is independent of t ∈
[0, 1].

Proof. We have

τvt (f) = ∗d∇t ∗ dvf = ∗AdF (d ∗ αp + [αk ∧ ∗αp] + t[αn ∧ ∗αp]p)

= ∗AdF (d ∗ αp + [αk ∧ ∗αp] + t[αp ∧ ∗αp]p)

since [m, p] ⊂ [m, h] ⊂ m

= ∗AdF (d ∗ αp + [αk ∧ ∗αp])

Moreover let us compute the complex second derivative:

(∇t)v ′′∂vf = ∗AdF (∂̄α′
p + [α′′

k ∧ α′
p] + [α′′

p ∧ α′
p]p).
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Then remark that [α′′
p ∧ α′

p]p =
1

2
[αp ∧ αp]p is in the real subspace p. This

completes the proof. �

Now, let f : L→ N be an arbitrary map from a Riemann surface into N . Then
the (f -pullback of the) vertical torsion with respect ot ∇t is

f∗T t,v = AdF (dαp + [αk ∧ αp] + t[α ∧ αp]p)

= f∗
(
T 0,v + t[φ ∧ φ][p]

)

where φ : TN → [p] is the projection on the vertical subbundle along the hori-
zontal subbundle [m]. Therefore

T t,v = T 0,v + t[φ ∧ φ][p].

Moreover, recall that, according to section 4.3.1, the projection on [p] of the
Maurer-Cartan equation gives us the homogeneous structure equation (see equa-
tions (65), (64) and footnote 23)

T 0,v = Φ− 1

2
[φ ∧ φ][p]

where Φ = −1

2
[ψ ∧ ψ][p] is the homogeneous curvature form and ψ : TN → [m]

is the projection on [m] along [p]. Then we have

T t,v = Φ +

(
t− 1

2

)
[φ ∧ φ][p].

Therefore

Theorem 5.12 Let us consider the same situation as in theorem 5.11.

• If f is flat then strongly ∇t-vertical harmonicity and torsion freedom, for f ,
do not depend on t, if t ∈ [0, 1] \

{
1
2

}
.

Moreover T
1
2 ,v = Φ so that (if f is flat) strongly vertical harmonicity and vertical

harmonicity with respect to ∇
1

2 are equivalent.

• If H/K is locally symmetric, i.e. [p, p] ⊂ k, then ∀t ∈ [0, 1], T t,v = Φ.
In particular, the ∇t-vertical torsion does not depend on t ∈ [0, 1], and thus
neither strongly harmonicity does.

Corollary 5.3 Let us suppose now that N = G/K is a (locally) 2k-symmetric
space and that M = G/H is the corresponding (locally) k-symmetric space.
Then the even minimal determined system (Syst(k, τ)) associated to N means
that the geometric map f : L → N is horizontally holomorphic and vertically
harmonic with respect to any affine connection ∇t, 0 ≤ t ≤ 1. Moreover the
horizontal holomorphicity implies the flatness of f and thus its vertical torsion
freedom (with respect to any connection ∇t, 0 ≤ t ≤ 1). More precisely the
(last) equation (Sk) of the system means

(∇t)v ′′∂vf = 0
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i.e. that f is strongly ∇t-vertically harmonic, so that its real part means that f
is vertically torsion free and its imaginary part that f is vertically harmonic.

The Riemannian case

Now, let us suppose that M is Riemannian, and then so is N . In other words, we
are in the situation described by 4.3.1. Let us consider the metric connections
in N :

met

∇ t = ∇0 + tBN , 0 ≤ t ≤ 1

with BN = [ , ][n] + UN and UN defined by equation (15).

For any AdK-invariant subspace l ⊂ n, we will denote by Ul : l × l → l the
bilinear symmetric map defined by

〈Ul(X,Y ), Z〉 = 〈[Z,X ]l, Y 〉+ 〈X, [Z, Y ]l〉 ∀X,Y ∈ l,

and by U[l] its extension to the subbundle [l] ⊂ TN . Then we have in particular

UN = U[n] and U = U[p]

where, let us recall it, U is defined by (61).

Now, let us project the definition equation of
met

∇ t in the vertical subbundle: we
obtain ∀V ∈ C(TN),

φ(
met

∇ tV ) = ∇0φV + tφ ◦ BN .

Moreover, according to 4.3.1, we have φ ◦ BN = φ∗B− Φ so that

φ(
met

∇ tV ) = ∇0φV + t(φ∗B− Φ)

and in particular ∀V ∈ C(V), ∀A ∈ TN ,

met

∇AtV = ∇0
AV + t

(
[φA, V ][p] + U[p](φA, V )

)
.

Then according to theorem 4.5 and remark 4.4 it follows:

Theorem 5.13 • If H/K is naturally reductive, then the connections defined

by the restriction to V of
met

∇ t,v, 0 ≤ t ≤ 1, are all φ-equivalent. Therefore

vertical harmonicity, with respect to
met

∇ t, is the same for all 0 ≤ t ≤ 1.

• If H/K is locally symmetric, then all the
met

∇ t,v, 0 ≤ t ≤ 1, coincide in V. In

particular strongly harmonicity is the same for all the connections
met

∇ t,
0 ≤ t ≤ 1.
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The vertical torsion of
met

∇ t. We have seen in 1.6 that the torsion of
met

∇ t is
the same as that of ∇t. Now let us see what happens for the vertical torsion.

The vertical torsion with respect to
met

∇ t,v,

met

T t,v = d
met
∇ t,v

φ

lifts into
dθp + [θk ∧ θp] + t[θn ∧ θp]p + t [Un(θn ∧ θp)]p ,

where as usually θ denotes the Maurer-Cartan form in G. We will prove that
the last term in the right hand side vanishes. Indeed we have ∀X,Y, Z ∈ g,

〈Un(Xn, Yp), Zp〉 = 〈[Zp, Xn]n, Yp〉 + 〈Xn, [Zp, Yp]n〉
= 〈[Zp, Xp]p, Yp〉 + 〈Xp, [Zp, Yp]p〉

since [p,m] ⊂ [h,m] ⊂ m, since [p, p] ⊂ h

= 〈Up(Xp, Yp), Zp〉.

(95)

Then [Un(θn ∧ θp)]p = Up(θp ∧ θp) = 0, because Up is symmetric. Therefore

met

T t,v = T t,v (96)

Corollary 5.4 In corollary 5.3, the affine connection ∇t can be replaced by the

metric connection
met

∇ t.

Remark 5.5 In particular for t = 1
2 , we recover theorem 4.12. Moreover, we

see that in general the value t = 1
2 , i.e. the Levi-Civita connections, plays a

special role according to theorem 5.12 and equation (96). Indeed for the Levi-

Civita connection, we always have
met

T
1
2 ,v = Φ, so that if f is flat, the strongly

harmonicity and the vertical harmonicity are equivalent.
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6 Appendix

6.1 Vertical harmonicity

Theorem 6.1 Let us consider the situation described by example 4.1 and sup-
pose that π : N →M is a Riemannian submersion and u : L→M is an isometry
. Then f : L→ N is vertically harmonic if and only if the corresponding section
f̃ : L→ u∗N is a harmonic section. Furthermore f : L→ N is harmonic if and
only if f̃ : L→ u∗N is harmonic and [τ(f)]Hu∗(TL)⊥ = 0 i.e. the component of the

tension field in the subspace of H corresponding by the isometry dπ|H to the nor-

mal bundle u∗(TL)⊥ in TM , vanishes, or equivalently [dπ(τ(f))]u∗(TL)⊥ = 0.

Proof. The Levi-Civita in u∗N is the orthogonal projection ofthe Levi-Civita
connection in L×N , on the tangent bundle T (u∗N). Let us determine this or-
thonormal projection. First let us express clearly what is the tangent subbundle
T (u∗N) in T (L×N).

T(l,n)(u
∗N) = {(ξ, η) ∈ T(l,n)L×N |du(ξ) = dπ(η)}.

Let us do some identifications. First an usual one: consider that TL is a
subbundle of TM|L (and forget the ”u∗” in u∗(TL)), secondly: we consider
that π∗TM = H, identifying these by the isometry dπ|H, so that we will

write H|π−1(L) = π∗TL ⊕ π∗TL⊥, where TL⊥ is the normal bundle of L in
M . Moreover, for any η ∈ TN|π−1(L) let us write its decomposition following

TNπ−1(L) = π∗TL⊕ π∗TL⊥ ⊕ Vπ−1(L) as

η = ηHTL + ηHTL⊥ + ηV .

Then under the previous identifications, we have

T(l,n)(u
∗N) = {(ξ, η) ∈ TlL× TnN |ηHTL = ξ, ηHTL⊥ = 0}

= {(ξ, ξ + ηV), ξ ∈ TlL, ηV ∈ Vn}.

This gives us a splitting T (u∗N) = Vu∗N ⊕Hu∗N where ∀(l, n) ∈ u∗N ,

Vu∗N
(l,n) = {0}×Vn and Hu∗N

(l,n) = TlL×Hn∩T(l,n)(u
∗N) = {(ξ, ξ) ∈ TlL×TlL}.

Let us determine the orthogonal of the tangent space T (u∗N):

(α, β) ∈
(
T(l,n)(u

∗N)
)⊥ ⇐⇒

∀(ξ, η) ∈ T(l,n)(u
∗N), 0 = 〈(ξ, η), (α, β)〉

= 〈ξ, α〉 + 〈η, β〉
= 〈ξ, α〉 + 〈ξ, βH

TL〉+ 〈0, βH
TL⊥〉+ 〈ηV , βV〉

= 〈ξ, α+ βH
TL〉+ 〈ηV , βV〉

⇐⇒ (α+ βH
TL, β

V) = 0.

Therefore (
T(l,n)(u

∗N)
)⊥

= {(−βH
TL, β), β ∈ Hn}.
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Decomposing each (a, b) ∈ T (L × N)|u∗N following the decomposition T (L ×
N)|u∗N = T (u∗N)⊕ T (u∗N)⊥: (a, b) = (ξ, η) + (α, β), then we obtain

{
a = ηHTL − βH

TL

b = (ηHTL + βH
TL) + βH

TL + ηV

so that this decomposition is therefore given by

(a, b) =

(
a+ bHTL

2
, a+ bHTL + bV

)
+

(
− (bHTL − a)

2
,
(bHTL − a)

2
+ bHTL⊥

)
.

Now, let us come back to our fonction f : L→ N and the corresponding section
f̃ : (L, b)→ u∗N . Then let us compute

u∗N

∇v dv f̃ =
u∗N

∇v (dl, df)V
u∗N

=
u∗N

∇v (0, dvf) =
(
[∇(0, dvf)]T (u∗N)

)Vu∗N

=
(
[(0,∇dvf)]T (u∗N)

)Vu∗N

=

(
1

2
(∇dvf)HTL,

1

2
(∇dvf)HTL +∇vdvf

)Vu∗N

= (0,∇vdvf)

Finally, we have proved
u∗N

∇v dv f̃ = ∇vdvf (97)

and by taking the trace, we obtain the first assertion of the theorem.
Now, in the same way we obtain

u∗N

∇ df̃ =

(
1

2
(∇df)HTL,

1

2
(∇df)HTL +∇vdf

)
(98)

so that f̃ : N → u∗N is harmonic if and only if [τ(f)]HTL = 0 and [τ(f)]V = 0.

Therefore f : L → N is harmonic if and only if f̃ : N → u∗N is harmonic and
[τ(f)]HTL⊥ = 0. This completes the proof. �

From the proof of theorem 6.1 (more precisely from (97) and (98)), we obtain:

Theorem 6.2 Let us consider the situation described by theorem 6.1. Then
f : L → N is superflat if and only if the corresponding section f̃ : L → u∗N is
superflat. Furthermore f : L→ N is totally geodesic if and only if f̃ : L→ u∗N
is totally geodesic and [∇df ]

H
TL⊥ = 0 (i.e. [dπ(∇df)]TL⊥ = 0).

Remark 6.1 The metric defined in example 4.1 in u∗N (and thus in theo-
rems 6.1 and 6.2, i.e. the metric induced by the product metric, is given by

|(ξ, η)|2 = 2|ξ|2 + |ηV |2 (99)
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whereas, when π : N → M is a Homogeneous fibre bundle, the metric in u∗N ,
considered as an Homogeneous fibre bundle, is defined in 4.2 by equation (57)
and is given by

|(ξ, η)|2 = |ξ|2 + |ηV |2. (100)

However, theorems 6.1 and 6.2 hold, of course, also with the metric (100).
Indeed, first remark that the theorems hold if we multiply the product metric
in L ×N by a constant factor. Then just apply these theorems with the same
(M, g) (and thus the same (L, u∗g)), N endowed with the new metric |·|2H+2|·|2V
(the old one being |·|2H+|·|2V ) and endow L×N with 1

2 times the product metric,

then the induced metric on u∗N is (100):
1

2
(|ξ|2 +(|ξ|2 +2|ηV |2)) = |ξ|2 + |ηV |2.
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