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Limit theorems for nonlinear functionals of
Volterra processes via white noise analysis

by Sébastien Darses∗, Ivan Nourdin† and David Nualart‡§

Boston University, Université Paris VI and University of Kansas

Abstract: By means of white noise analysis, we prove some limit theorems for

nonlinear functionals of a given Volterra process. In particular, our results apply

to fractional Brownian motion (fBm), and should be compared with the classical

convergence results of the eighties by Breuer, Dobrushin, Giraitis, Major, Surgailis

and Taqqu, as well as the recent advances concerning the construction of a Lvy

area for fBm by Coutin, Qian and Unterberger.

1 Introduction

Fix T > 0, and let B = (Bt)t>0 be a fractional Brownian motion with Hurst
index H ∈ (0, 1), defined on some probability space (Ω,B, P ). Assume that
B is the completed σ-field generated by B. Fix an integer k > 2 and, for
ε > 0, consider

Gε = ε−k(1−H)

∫ T

0
hk

(Bu+ε −Bu

εH
)
du. (1.1)

Here, and in the rest of this paper,

hk(x) = (−1)k ex
2/2 d

k

dxk

(
e−x2/2

)
(1.2)

stands for the kth Hermite polynomial. We have h2(x) = x2 − 1, h3(x) =
x3 − 3x, and so on.

Since the seminal works [3, 6, 7, 19, 20] by Breuer, Dobrushin, Giraitis,
Major, Surgailis and Taqqu, the three following convergence results are clas-
sical:

• If H < 1 − 1
2k , then

(
(Bt)t∈[0,T ], ε

k(1−H)− 1
2Gε

) Law−−−→
ε→0

(
(Bt)t∈[0,T ], N

)
, (1.3)
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where N ∼ N
(
0, T ×k!

∫ T
0 ρk(x)dx

)
is independent of B, with ρ(x) =

1
2

(
|x+ 1|2H + |x− 1|2H − 2|x|2H

)
.

• If H = 1 − 1
2k , then

(
(Bt)t∈[0,T ],

Gε√
log(1/ε)

)
Law−−−→
ε→0

(
(Bt)t∈[0,T ], N

)
, (1.4)

where N ∼ N
(
0, T × 2k!(1 − 1

2k )k(1 − 1
k )k
)

is independent of B.

• If H > 1 − 1
2k , then

Gε
L2(Ω)−−−−→
ε→0

Z
(k)
T , (1.5)

where Z
(k)
T denotes the Hermite random variable of order k, see Section

4.1 for its definition.

Combining (1.3) with the fact that sup0<ε61E
[
|εk(1−H)− 1

2Gε|p
]
< ∞

for all p > 1 (use the boundedness of Var(εk(1−H)− 1
2Gε) and a classical

hypercontractivity argument), we have, for all η ∈ L2(Ω) and if H < 1− 1
2k ,

εk(1−H)− 1
2E[η Gε] −−−→

ε→0
E(η N) = E(η)E(N) = 0

(a similar statement holds in the critical case H = 1 − 1
2k ). This means

that εk(1−H)− 1
2Gε converges weakly in L2(Ω) to zero. Then the following

question arises. Is there a normalization of Gε ensuring that it converges
weakly towards a non-zero limit when H 6 1− 1

2k? If yes, what can be said
about the limit? The first purpose of the present paper is to provide an
answer to this question in the framework of white noise analysis.

In [14], it is shown that, for all H ∈ (0, 1), the time derivative Ḃ (called
the fractional white noise) is a distribution in the sense of Hida. We also
refer to Bender [1], Biagini et al. [2] and references therein for further works
on the fractional white noise.

Since we have E(Bu+ε − Bu)2 = ε2H , observe that Gε defined in (1.1)
can be rewritten as

Gε =

∫ T

0

(
Bu+ε −Bu

ε

)⋄k

du, (1.6)

where (. . .)⋄k denotes the kth Wick product. In Proposition 9 below, we will
show that, for all H ∈

(
1
2 − 1

k , 1
)
,

lim
ε→0

∫ T

0

(
Bu+ε −Bu

ε

)⋄k

du =

∫ T

0
Ḃ⋄k

u du, (1.7)
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where the limit is in the (S)∗ sense.
In particular, we observe two different types of asymptotic results for Gε

when H ∈
(

1
2 − 1

k , 1− 1
2k

)
: convergence (1.7) in (S)∗ to a Hida distribution,

and convergence (1.3) in law to a normal law, with rate ε
1
2
−k(1−H). On

the other hand, when H ∈
(
1 − 1

2k , 1
)

we obtain from (1.5) that the Hida

distribution
∫ T
0 Ḃ⋄k

s ds turns out to be the square integrable random variable

Z
(k)
T , which is also an interesting result by itself.

In Proposition 4 the convergence (1.7) in (S)∗ is proved for a general
class of Volterra processes of the form

∫ t

0
K(t, s)dWs, t > 0, (1.8)

where W stands for a standard Brownian motion, provided the kernel K
satisfies some suitable conditions, see Section 3.

We also provide a simple proof of the convergence (1.3) based on the
recent general criterion for the convergence in distribution to a normal law
of a sequence of multiple stochastic integrals established by Nualart and
Peccati [15] and by Peccati and Tudor [17], which avoids the classical method
of moments.

In two recent papers [9, 10], Marcus and Rosen have obtained central
and non-central limit theorems for a functional of the form (1.1), where B
is a mean zero Gaussian process with stationary increments such that the
covariance function of B, defined by σ2(|t − s|) = Var(Bt − Bs), is either
convex (plus some additional regularity conditions), or concave, or given by
σ2(h) = hr with 1 < r < 2. These theorems include the convergence (1.3),
and unlike our simple proof, are based on the method of moments.

In a second part of the paper we develop a similar analysis for func-
tionals of two independent fractional Brownian motions (or more generally,
Volterra processes), related to the Lévy area. More precisely, consider two
independent fractional Brownian motions B(1) and B(2) with (for simplicity)
the same Hurst index H ∈ (0, 1). We are interested in the convergence, as
ε→ 0, of

G̃ε :=

∫ T

0
B(1)

u

B
(2)
u+ε −B

(2)
u

ε
du (1.9)

and

Ğε :=

∫ T

0

(∫ u

0

B
(1)
v+ε −B

(1)
v

ε
dv

)
B

(2)
u+ε −B

(2)
u

ε
du. (1.10)

Note that G̃ε coincides with the ε-integral associated to the forward Russo-
Vallois integral

∫ T
0 B(1)d−B(2), see e.g. [18] and references therein. In the
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last decade, the convergences of G̃ε and Ğε (or of related families of ran-

dom variables) have been intensively studied. Since ε−1
∫ u
0 (B

(1)
v+ε − B

(1)
v )dv

converges pointwise to B
(1)
u for any u, we could think that the asymptotic

behaviors of G̃ε and Ğε are very close as ε → 0. Surprisingly, this is not
the case. Actually, only the result for Ğε agrees with the seminal result by
Coutin and Qian [4] (that is, we have convergence of Ğε in L2(Ω) if and
only if H > 1/4) and with the recent result by Unterberger [21] (that is,
adequably renormalized, Ğε converges in law if H < 1/4). More precisely:

• If H < 1/4, then

(
(B

(1)
t , B

(2)
t )t∈[0,T ], ε

1
2
−2HĞε

) Law−−−→
ε→0

(
(B

(1)
t , B

(2)
t )t∈[0,T ], N

)
, (1.11)

where N ∼ N
(
0, T σ̆2

H

)
is independent of (B(1), B(2)) and

σ̆2
H =

1

4(2H + 1)(2H + 2)

∫

R

(
|x+ 1|2H + |x− 1|2H − 2|x|2H

)

×
(
2|x|2H+2 − |x+ 1|2H+2 − |x− 1|2H+2

)
dx.

• If H = 1/4, then

(
(B

(1)
t , B

(2)
t )t∈[0,T ],

Ğε√
log(1/ε)

) Law−−−→
ε→0

(
(B

(1)
t , B

(2)
t )t∈[0,T ], N

)
, (1.12)

where N ∼ N
(
0, T/8

)
is independent of (B(1), B(2)).

• If H > 1/4 then

Ğε
L2(Ω)−−−−→
ε→0

∫ T

0
B(1)

u ⋄ Ḃ(2)
u du =

∫ T

0
B(1)

u dB(2)
u . (1.13)

• For all H ∈ (0, 1), we have

Ğε
(S)∗−−−→
ε→0

∫ T

0
B(1)

u ⋄ Ḃ(2)
u du. (1.14)

But, for G̃ε, we have in contrast:

• If H < 1/2, then

(
(B

(1)
t , B

(2)
t )t∈[0,T ], ε

1
2
−HG̃ε

) Law−−−→
ε→0

(
(B

(1)
t , B

(2)
t )t∈[0,T ], N×S

)
, (1.15)

where

S =

√∫ ∞

0

(
|x+ 1|2H + |x− 1|2H − 2|x|2H

)
dx×

∫ T

0
(B

(1)
u )2du

and N ∼ N (0, 1) independent of (B(1), B(2)).
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• If H > 1/2 then

G̃ε
L2(Ω)−−−−→
ε→0

∫ T

0
B(1)

u ⋄ Ḃ(2)
u du =

∫ T

0
B(1)

u dB(2)
u . (1.16)

• For all H ∈ (0, 1), we have

G̃ε
(S)∗−−−→
ε→0

∫ T

0
B(1)

u ⋄ Ḃ(2)
u du. (1.17)

Finally, we study the convergence, as ε→ 0, of the so-called ε-covariation
(following the terminology of [18]) defined by

Ĝε :=

∫ T

0

B
(1)
u+ε −B

(1)
u

ε
× B

(2)
u+ε −B

(2)
u

ε
du, (1.18)

and we get:

• If H < 3/4, then

(
(B

(1)
t , B

(2)
t )t∈[0,T ], ε

3
2
−2HĜε

) Law−−−→
ε→0

(
(B

(1)
t , B

(2)
t )t∈[0,T ], N

)
, (1.19)

with N ∼ N (0, T σ̂2
H ) independent of independent of B(1), B(2)) and

σ̂2
H =

1

4

∫

R

(
|x+ 1|2H + |x− 1|2H − 2|x|2H

)2
dx.

• If H = 3/4, then

(
(B

(1)
t , B

(2)
t )t∈[0,T ],

Ĝε√
log(1/ε)

) Law−−−→
ε→0

(
(B

(1)
t , B

(2)
t )t∈[0,T ], N

)
, (1.20)

with N ∼ N (0, 9T/32) independent of B(1), B(2)).

• If H > 3/4 then

Ĝε
L2(Ω)−−−−→
ε→0

∫ T

0
Ḃ(1)

u ⋄ Ḃ(2)
u du. (1.21)

• For all H ∈ (0, 1), we have

Ĝε
(S)∗−−−→
ε→0

∫ T

0
Ḃ(1)

u ⋄ Ḃ(2)
u du. (1.22)

The paper is organized as follows. In Section 2, we introduce some
preliminaries on white noise analysis. Section 3 is devoted to the study, by
using the language and the tools of the previous section, of the asymptotic
behaviors of Gε, G̃ε and Ĝε in the (more general) context where B is a
Volterra process. Section 4 is concerned with the fractional Brownian motion
case. In Section 5 (resp. Section 6), we prove (1.3) and (1.4) (resp. (1.11),
(1.12), (1.15), (1.19) and (1.20)).
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2 White noise functionals

In this section, we present some preliminaries on white noise analysis. The
classical point of view of the white noise distribution theory is to endow the
space of tempered distributions S ′(R) with a Gaussian measure P such that,
for any rapidly decreasing function η ∈ S(R),

∫

S′(R)
ei〈x,η〉

P(dx) = e−
|η|20
2 .

Here, | · |0 denotes the norm in L2(R) and 〈·, ·〉 the dual pairing between
S ′(R) and S(R). The existence of such a measure is ensured by Minlos
theorem [8].

In this way we can consider the probability space (Ω,B,P) where Ω =
S ′(R). The pairing 〈x, ξ〉 can be extended, using the norm of L2(Ω), to any
function ξ ∈ L2(R). Then, Wt = 〈·,1[0,t]〉 is a two-sided Brownian motion
(by convention 1[0,t] = −1[t,0] if t < 0) and, for any ξ ∈ L2(R),

〈·, ξ〉 =

∫ ∞

−∞
ξdW = I1(ξ)

is the Wiener integral of ξ.
Let Φ ∈ L2(Ω). The classical Wiener chaos expansion of Φ says that

there is a sequence of symmetric square integrable functions φn ∈ L2(Rn)
such that

Φ =

∞∑

n=0

In(φn), (2.23)

where In denotes the multiple stochastic integral.

2.1 The space of Hida distributions

Let us recall some basic facts about tempered distributions. Let (ξn)∞n=0 be
the orthonormal basis of L2(R) formed by the Hermite functions given by

ξn(x) = π−
1
4 (2nn!)−

1
2 e−x2/2hn(x), x ∈ R, (2.24)

for hn the Hermite polynomials defined in (1.2). The following two facts
are immediately checked: (a) there exists a constant K1 > 0 such that

‖ξn‖∞ 6 K1(n+ 1)−1/12; (b) since ξ′n =
√

n
2 ξn−1 −

√
n+1

2 ξn+1, there exists

a constant K2 > 0 such that ‖ξ′n‖∞ 6 K2 n
5/12.

Consider the positive self-adjoint operator A (whose inverse is Hilbert-

Schmidt) given by A = − d2

dx2 + (1 + x2). We have Aξn = (2n + 2)ξn.
For any p ≥ 0, define the space Sp(R) as the domain of the closure of

Ap. Endowed with the norm |ξ|p := |Apξ|0, it is a Hilbert space. Note that
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the norm | · |p can be expressed as follows, if one uses the orthonormal basis
(ξn)

|ξ|2p =
∞∑

n=0

〈ξ, ξn〉2(2n + 2)2p.

We denote by S ′
p(R) the dual of Sp(R). The norm in S′

p(R) is given by (see
Lemma 1.2.8 p.7 in [16])

|ξ|2−p =

∞∑

n=0

|〈ξ,A−pξn〉|2 =

∞∑

n=0

〈ξ, ξn〉2(2n + 2)−2p,

for any ξ ∈ S ′
p(R). One can show that the projective limit of the spaces

Sp(R), p > 0, is S(R), and the inductive limit of the spaces Sp(R)′, p ≥ 0,
is S ′(R), and

S(R) ⊂ L2(R) ⊂ S ′(R)

is a Gel’fand triple.
Now we can introduce the Gel’fand triple

(S) ⊂ L2(Ω) ⊂ (S)∗,

through the second quantization operator Γ(A). This is an unbounded and
densely defined operator on L2(Ω) given by

Γ(A)Φ =

∞∑

n=0

In(A⊗nφn),

where Φ has the Wiener chaos expansion (2.23). If p > 0, we denote by
(S)p the space of random variables Φ ∈ L2(Ω) with Wiener chaos expansion
(2.23) such that

‖Φ‖p
p := E

[
|Γ(A)pΦ|2

]
=

∞∑

n=0

n!|φn|2p <∞.

In the above formula |φn|p denotes the norm in Sp(R)⊗n. The projective
limit of the spaces (S)p, p > 0, is called the space of test functions and is
denoted by (S). The inductive limit of the spaces (S)−p, p > 0, is called
the space of Hida distributions and is denoted by (S)∗. The elements of
(S)∗ are called Hida distributions. The main example is the time derivative
of the Brownian motion defined as Ẇt = 〈·, δt〉. One can show that that
|δt|−p <∞ for some p > 0.

We denote by ≪ Φ,Ψ ≫ the dual pairing associated with the spaces
(S) and (S)∗. On the other hand (see Theorem 3.1.6 p.36 in [16]), for any
Φ ∈ (S)∗ there exist φn ∈ S(Rn)′ such that

≪ Φ,Ψ ≫=

∞∑

n=0

n!〈φn, ψn〉,
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where Ψ =
∑∞

n=0 In(ψn) ∈ (S). Moreover there exists p > 0 such that:

‖Φ‖2
−p =

∞∑

n=0

n!|φn|2−p.

Then, with a convenient abuse of notation, we say that Φ has a generalized
Wiener chaos expansion of the form (2.23).

2.2 The S-transform

A useful tool to characterize elements in (S)∗ is the S-transform. The Wick
exponential of a Wiener integral I1(η), η ∈ L2(R), is defined by

: eI1(η) := eI1(η)−|η|20/2.

Then, the S-transform of an element Φ ∈ (S)∗ is defined by

S(Φ)(ξ) =≪ Φ, : eI1(ξ) :≫,

where ξ ∈ S(R). One can easily see that the S-transform is injective on
(S)∗.

When Φ ∈ L2(Ω) then S(Φ)(ξ) = E[Φ : eI1(ξ) :]. For instance, the
S-transform of the Wick exponential is

S(: eI1(η) :)(ξ) = e〈η,ξ〉.

Also, S(Wt)(ξ) =
∫ t
0 ξ(s)ds and S(Ẇt)(ξ) = ξ(t).

Suppose that Φ ∈ (S)∗ has a generalized Wiener chaos expansion of the
form (2.23). Then, for any ξ ∈ S(R),

S(Φ)(ξ) =
∞∑

n=0

〈φn, ξ
⊗n〉,

where the series converges absolutely (see Lemma 3.3.5 p.49 in [16]).
The Wick product of two functionals Ψ =

∑∞
n=0 In(ψn) and Φ =

∑∞
n=0 In(φn)

belonging to (S)∗ is defined as

Ψ ⋄ Φ =

∞∑

n,m=0

In+m(ψn ⊗ φm).

It can be proved that Ψ ⋄Φ ∈ (S)∗. The following is an important property
of the S-transform

S(Φ ⋄ Φ)(ξ) = S(Φ)(ξ)S(Ψ)(ξ). (2.25)

If Ψ, Φ and Ψ ⋄ Φ belong to L2(Ω), we have E[Ψ ⋄ Φ] = E[Ψ]E[Φ].
We have the following useful characterization theorem:
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Theorem 1 A function F is the S-transform of an element Φ ∈ (S)∗ if and
only if the following conditions are satisfied:

1. For any ξ, η ∈ S, z 7→ F (zξ + η) is holomorphic on C,

2. There exist non negative numbers K,a and p such that for all ξ ∈ S,

|F (ξ)| 6 K exp(a|ξ|2p).

Proof. See Theorem 8.2 p.79 and Theorem 8.10 p.91 in [8].

In order to study the convergence of a sequence in (S)∗, we can use its
S-transform thanks to the following theorem:

Theorem 2 Let Φn ∈ (S)∗ and Sn = S(Φn). Then Φn converges in (S)∗ if
and only if the following conditions are satisfied:

1. limn→∞ Sn(ξ) exists for each ξ ∈ S,

2. There exist non negative numbers K,a and p such that for all n ∈ N,
ξ ∈ (S),

|Sn(ξ)| 6 K exp(a|ξ|2p).

Proof. See Theorem 8.6 p.86 in [8].

3 Limit theorems for Volterra processes

3.1 One-dimensional case

Consider a Volterra process B = (Bt)t>0 of the form

Bt =

∫ t

0
K(t, s)dWs, (3.26)

where K(t, s) satisfies
∫ t
0 K(t, s)2ds < ∞ for all t > 0, and W is the Brow-

nian motion defined on the white noise probability space introduced in the
last section. Notice that the S-transform of the random variable Bt is given
by

S(Bt)(ξ) =

∫ t

0
K(t, s)ξ(s)ds, (3.27)

for any ξ ∈ S(R). We introduce the following assumptions on the kernel K:

(H1) K is continuously differentiable on {0 < s < t < ∞} and, for any
t > 0, we have

∫ t

0

∣∣∣∣
∂K

∂t
(t, s)

∣∣∣∣ (t− s)ds <∞;

9



(H2) k(t) =
∫ t
0 K(t, s)ds is continuously differentiable on (0,∞).

Consider the operator K+ defined by

K+ξ(t) = k′(t)ξ(t) +

∫ t

0

∂K

∂t
(t, r)(ξ(r) − ξ(t))dr,

where t > 0 and ξ ∈ S(R). From Theorem 1, it follows that the linear map-
ping ξ → K+ξ(t) is the S-transform of a Hida distribution. More precisely,
according to [14], define the function

C(t) = |k′(t)| +
∫ t

0

∣∣∣∣
∂K

∂t
(t, r)

∣∣∣∣ (t− r)dr, t > 0, (3.28)

and observe that the following estimates hold (recall the definition (2.24) of
ξn)

|K+ξ(t)| 6 C(t)(‖ξ‖∞ + ‖ξ′‖∞)

6 C(t)

∞∑

n=0

|〈ξ, ξn〉|(‖ξn‖∞ + ‖ξ′n‖∞)

6 C(t)M

∞∑

n=0

|〈ξ, ξn〉|(n + 1)5/12

6 C(t)M

√√√√
∞∑

n=0

|〈ξ, ξn〉|2(2n + 2)17/6

√√√√
∞∑

n=0

(n+ 1)−2

= C(t)M |ξ|17/12, (3.29)

for some constants M > 0 whose values are not always the same from one
line to another.

We have the following preliminary result.

Lemma 3 Fix an integer k > 1. Let B be a Volterra process with kernel K
satisfying the conditions (H1) and (H2). Assume moreover that C defined

by (3.28) belongs to Lk([0, T ]). Then the function ξ 7→
∫ T
0 (K+ξ(s))

kds is the

S-transform of an element of (S)∗. This element is denoted by
∫ T
0 Ḃ⋄k

u du.

Proof. We use Theorem 1. Condition (1) therein is immediately checked
while, for condition (2), we just write, by using (3.29):

∣∣∣∣
∫ T

0
(K+ξ(s))

kds

∣∣∣∣ 6
∫ T

0
|K+ξ(s)|kds 6 M |ξ|17/12

∫ T

0
Ck(s)ds.

Fix an integer k ≥ 1, and consider the following additional condition.

10



(Hk
3
) The maximal functionD(t) = sup0<ε6ε0

1
ε

∫ t+ε
t C(s)ds belongs to Lk([0, T ])

for any T > 0, and for some ε0 > 0.

We can now state the main result of this section.

Proposition 4 Fix an integer k > 1. Let B be a Volterra process with
kernel K satisfying the conditions (H1), (H2) and (Hk

3
). Then the following

convergence holds:

∫ T

0

(
Bu+ε −Bu

ε

)⋄k

du
(S)∗−−−→
ε→0

∫ T

0
Ḃ⋄k

u du.

Proof. Fix ξ ∈ S(R) and set

Sε(ξ) = S

(∫ T

0

(
Bu+ε −Bu

ε

)⋄k

du

)
(ξ).

From linearity and property (2.25) of the S-transform, we obtain

Sε(ξ) =

∫ T

0

(S(Bu+ε −Bu)(ξ))k

εk
du. (3.30)

Equation (3.27) yields

S(Bu+ε −Bu)(ξ) =

∫ u+ε

0
K(u+ ε, r)ξ(r)dr−

∫ u

0
K(u, r)ξ(r)dr. (3.31)

We claim that
∫ u+ε

0
K(u+ ε, r)ξ(r)dr −

∫ u

0
K(u, r)ξ(r)dr =

∫ u+ε

u
K+ξ(s)ds. (3.32)

Indeed, we can write

∫ u+ε

u
K+ξ(s)ds =

∫ u+ε

u
k′(s)ξ(s)ds

+

∫ u+ε

u

(∫ s

0

∂K

∂s
(s, r)(ξ(r) − ξ(s))dr

)
ds

= A(1)
u +A(2)

u . (3.33)

We have, using Fubini’s theorem

A(2)
u = −

∫ u+ε

u
ds

∫ s

0
dr
∂K

∂s
(s, r)

∫ s

r
dθ ξ′(θ)

= −
∫ u+ε

0
dθ ξ′(θ)

∫ θ

0
dr (K(u+ ε, r) −K(θ ∨ u, r)) . (3.34)
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This can be rewritten as

A(2)
u = −

∫ u

0
(K(u+ ε, r) −K(u, r)) (ξ(u) − ξ(r))dr

−
∫ u+ε

u
dθξ′(θ)

∫ θ

0
dr (K(u+ ε, r) −K(θ, r)) . (3.35)

On the other hand, integration by parts yields

A(1)
u = ξ(u+ ε)

∫ u+ε

0
K(u+ ε, r)dr (3.36)

−ξ(u)
∫ u

0
K(u, r)dr −

∫ u+ε

u
dsξ′(s)

∫ s

0
drK(s, r).

Therefore adding (3.36) and (3.35) yields

A(1)
u +A(2)

u = ξ(u+ ε)

∫ u+ε

0
K(u+ ε, r)dr − ξ(u)

∫ u

0
K(u, r)dr

−
∫ u

0
(K(u+ ε, r) −K(u, r)) (ξ(u) − ξ(r))dr

−
∫ u+ε

u
dθξ′(θ)

∫ θ

0
K(u+ ε, r)dr. (3.37)

Notice that, by integrating by parts:

−
∫ u+ε

u
dθξ′(θ)

∫ θ

0
K(u+ ε, r)dr = −ξ(u+ ε)

∫ u+ε

0
K(u+ ε, r)dr

+ξ(u)

∫ u

0
K(u+ ε, r)dr +

∫ u+ε

u
K(u+ ε, r)ξ(r)dr. (3.38)

Thus, substituting (3.38) into (3.37) we obtain

A(1)
u +A(2)

u =

∫ u+ε

0
K(u+ ε, r)ξ(r)dr −

∫ u

0
K(u, r)ξ(r)dr,

which completes the proof of (3.32). As a consequence, from (3.30)-(3.32)
we obtain

Sε(ξ) =

∫ T

0

(
1

ε

∫ u+ε

u
K+ξ(s)ds

)k

du.

On the other hand, using (3.29) and the definition of the maximal function
D, we get

sup
0<ε6ε0

∣∣∣∣
1

ε

∫ u+ε

u
K+ξ(s)ds

∣∣∣∣
k

6 Mk|ξ|k17/12 sup
0<ε6ε0

(
1

ε

∫ u+ε

u
C(s)ds

)k

= Mk|ξ|k17/12D
k(u). (3.39)
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Therefore, using Hypothesis (Hk
3
) and the Dominated Convergence Theo-

rem, we have

lim
ε→0

Sε(ξ) =

∫ T

0
(K+ξ(s))

kds. (3.40)

Moreover, since |Sε(ξ)| 6 Mk|ξ|k17/12

∫ T
0 Dk(u)du for all 0 < ε 6 ε0, see

(3.39), conditions (1) and (2) in Proposition 4 are fullfilled. Consequently,

ε−k
∫ T
0 (Bu+ε −Bu)⋄kdu converges in (S∗) as ε→ 0.

To finish the proof, it suffices to remark that the right-hand side of (3.40)

is, by definition (see indeed Lemma 3), the S-transform of
∫ T
0 Ḃ⋄k

s ds.

In [14], it is proved that, under some additional hypotheses, the mapping
t→ Bt is differentiable from (0,∞) to (S)∗ and that its derivative, denoted
by Ḃt, is a Hida distribution whose S-transform is K+ξ(t).

3.2 Bidimensional case

Let W = (Wt)t∈R be a two-sided Brownian motion defined in the white noise
probability space (S ′(R),B,P). We can consider two independent standard

Brownian motions as follows: for t > 0, we set W
(1)
t = Wt and W

(2)
t = W−t.

In this section, we consider a bidimensional process B = (B
(1)
t , B

(2)
t )t>0,

where B(1) and B(2) are independent Volterra processes of the form

B
(i)
t =

∫ t

0
K(t, s)dW (i)

s , t > 0, i = 1, 2. (3.41)

For simplicity only, we work with the same kernel K for the two components.
First, using exactly the same lines of reasoning as in the proof of Lemma

3, we get the following result.

Lemma 5 Let B = (B
(1)
t , B

(2)
t )t>0 be given as above, with a kernel K sat-

isfying the conditions (H1) and (H2). Assume morever that C defined by
(3.28) belongs to L2([0, T ]) for any T > 0. Then we have the following
results.

1. The function ξ 7→
∫ T
0

(∫ u
0 K+ξ(−y)dy

)
K+ξ(u)du is the S-transform

of an element of (S)∗ denoted by
∫ T
0 B

(1)
u ⋄ Ḃ(2)

u du.

2. The function ξ 7→
∫ T
0 K+ξ(−u)K+ξ(u)du is the S-transform of an

element of (S)∗ denoted by
∫ T
0 Ḃ

(1)
u ⋄ Ḃ(2)

u du.

Now, we can state the following result.
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Proposition 6 Let B = (B
(1)
t , B

(2)
t )t>0 be given as above, with a kernel K

satisfying the conditions (H1), (H2) and (H2
3
). Then the following conver-

gences hold.

∫ T

0
B(1)

u

B
(2)
u+ε −B

(2)
u

ε
du

(S)∗−−−→
ε→0

∫ T

0
B(1)

u ⋄ Ḃ(2)
u du,

∫ T

0

(∫ u

0

B
(1)
v+ε −B

(1)
v

ε
dv

)
B

(2)
u+ε −B

(2)
u

ε
du

(S)∗−−−→
ε→0

∫ T

0
B(1)

u ⋄ Ḃ(2)
u du,

∫ T

0

B
(1)
u+ε −B

(1)
u

ε
× B

(2)
u+ε −B

(2)
u

ε
du

(S)∗−−−→
ε→0

∫ T

0
Ḃ(1)

u ⋄ Ḃ(2)
u du.

Proof. Set

G̃ε =

∫ T

0
B(1)

u

B
(2)
u+ε −B

(2)
u

ε
du =

∫ T

0
B(1)

u ⋄ B
(2)
u+ε −B

(2)
u

ε
du.

From linearity and property (2.25) of the S-transform, we have

S(G̃ε)(ξ) =
1

ε

∫ T

0
S(B(1)

u )(ξ)S(B
(2)
u+ε −B(2)

u )(ξ)du,

so that

S(G̃ε)(ξ) =

∫ T

0

(∫ u

0
K+ξ(−y)dy

)(
1

ε

∫ u+ε

u
K+ξ(x)dx

)
du.

Therefore, using (3.29), (3.39), we can write

|S(G̃ε)(ξ)| 6 M2|ξ|217/12

∫ T

0

(∫ u

0
C(t)dt

)
D(u)du

6 M2|ξ|217/12

∫ T

0

(∫ u

0
D(t)dt

)
D(u)du

=
1

2
M2|ξ|217/12

(∫ T

0
D(u)du

)2

6
T

2
M2|ξ|217/12

∫ T

0
D2(u)du.

Hence, by the Dominated Convergence Theorem, we get

lim
ε→0

S(G̃ε)(ξ) =

∫ T

0

(∫ u

0
K+ξ(−y)dy

)
K+ξ(u)du. (3.42)

The right-hand side of (3.42) is the S-transform of
∫ T
0 B

(1)
u ⋄ Ḃ(2)

u du, due to
Lemma 5. Therefore, by Theorem 2, we obtain the desired result in point
(1).

The proofs of the other two convergences follow exactly the same lines
of reasoning, and are left to the reader.
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4 Fractional Brownian motion case

4.1 One-dimensional case

Consider a (one-dimensional) fractional Brownian motion (fBm)B = (Bt)t>0

of Hurst index H ∈ (0, 1). This means that B is a zero mean Gaussian pro-
cess with covariance function

RH(t, s) = E(BtBs) =
1

2
(t2H + s2H − |t− s|2H).

It is well-known that B is a Volterra process. More precisely, see [5], B has
the form (3.26), with the kernel K(t, s) = KH(t, s) given by

KH(t, s) = cH

[(
t(t− s)

s

)H− 1
2

− (H − 1

2
)s

1
2
−H

∫ t

s
uH− 3

2 (u− s)H− 1
2 du

]
.

Here, cH is a constant depending only on H. Observe that

∂KH

∂t
(t, s) = cH(H − 1

2
)(t− s)H− 3

2

(s
t

) 1
2
−H

for t > s > 0. (4.43)

Denote by E the set of all R-valued step functions defined on [0,∞).
Consider the Hilbert space H obtained by closing E with respect to the
inner product

〈1[0,u],1[0,v]〉H = E(BuBv).

The mapping 1[0,t] 7→ Bt can be extended to an isometry ϕ 7→ B(ϕ) between

H and the Gaussian space H1 associated with B. Also, write H⊗k to indicate
the kth tensor product of H. When H > 1/2, the inner product in the space
H can be written as follows, for any ϕ, ψ ∈ E :

〈φ,ψ〉H = H(2H − 1)

∫ ∞

0

∫ ∞

0
φ(s)ψ(s′)|s− s′|2H−2dsds′.

By approximation, this extends immediately to any ϕ, ψ ∈ S(R) ∪ E .
We will make use of the multiple integrals with respect to B (we refer to

[13] for a detailed account on the properties of these integrals). For every
k > 1, let Hk be the kth Wiener chaos of B, that is the closed linear subspace
of L2(Ω) generated by the random variables {hk(B(ϕ)), ϕ ∈ H, ‖ϕ‖

H
= 1},

where hk is the kth Hermite polynomial (1.2). For any k > 1, the mapping
Ik(ϕ

⊗k) = hk(B(ϕ)) provides a linear isometry between the symmetric ten-
sor product H⊙k (equipped with the modified norm

√
k! ‖·‖

H⊗k) and the kth
Wiener chaos Hk.

Following [12], let us now introduce the Hermite random variable Z
(k)
T

mentioned in (1.5). Fix T > 0, and let k > 1 be an integer. The family
(ϕε)ε>0, defined by

ϕε = ε−k

∫ T

0
1⊗k

[u,u+ε]du, (4.44)
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satisfies

lim
ε,η→0

〈ϕε, ϕη〉H⊗k

= Hk(2H − 1)k
∫

[0,T ]2
|s− s′|(2H−2)kdsds′ = ck,H T (2H−2)k+2,(4.45)

with ck,H = Hk(2H−1)k

(Hk−k+1)(2Hk−2k+1) . This implies that ϕε converges, as ε tends

to zero, to an element of H⊗k. The limit, denoted by πk
1[0,T ]

, can be charac-

terized as follows. For any ξi ∈ S(R), i = 1, . . . , k, we have

〈πk
1[0,T ]

, ξ1 ⊗ . . .⊗ ξk〉H⊗k

= lim
ε→0

〈ϕε, ξ1 ⊗ . . .⊗ ξk〉H⊗k

= lim
ε→0

ε−k

∫ T

0
du

k∏

i=1

〈1[u,u+ε], ξi〉H

= lim
ε→0

ε−kHk(2H − 1)k
∫ T

0
du

k∏

i=1

∫ u+ε

u
ds

∫ T

0
dr|s− r|2H−2ξi(r)

= Hk(2H − 1)k
∫ T

0
du

k∏

i=1

∫ T

0
dr|u− r|2H−2ξi(r).

We define the kth Hermite random variable by Z
(k)
T = Ik(π

k
1[0,T ]

). Note

that, by using the isometry formula for multiple integrals and since Gε =

Ik(ϕε), the convergence (1.5) is just a corollary of our construction of Z
(k)
T .

Moreover, by (4.45), we have

E
[
(Z

(k)
T )2

]
= ck,H × t(2H−2)k+2.

We will need the following preliminary result.

Lemma 7 1. The fBm B verifies the assumptions (H1), (H2) and (Hk
3
)

if and only if H ∈
(

1
2 − 1

k , 1
)
.

2. If H ∈
(

1
2 − 1

k , 1
)
, then

∫ T
0 Ḃ⋄k

u du is a well-defined element of (S)∗ (in
the sense of Lemma 3).

3. Assume H > 1
2 . Then

∫ T
0 Ḃ⋄k

u du belongs to L2(Ω) if and only if H >
1 − 1

2k .

Proof. (1) Since

k′(t) = k′H(t) = (H +
1

2
)c1(H)tH− 1

2 (4.46)
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and

∫ t

0

∣∣∣∣
∂KH

∂t
(t, s)

∣∣∣∣ (t−s)ds =

∣∣∣∣
∫ t

0

∂KH

∂t
(t, s)(t− s)ds

∣∣∣∣ = c2(H) tH+ 1
2 , (4.47)

for some constants c1(H) and c2(H), we immediately see that assumptions
(H1) and (H2) are satisfied for all H ∈ (0, 1). So, it remains to focus on
assumption (Hk

3
). For all H ∈ (0, 1), we have

sup
0<ε6ε0

1

ε

∫ t+ε

t
sH−1/2ds 6 tH− 1

2 ∨ (t+ ε0)
H− 1

2 , (4.48)

and

sup
0<ε6ε0

1

ε

∫ t+ε

t
sH+1/2ds 6 (t+ ε0)

H+1/2. (4.49)

Consequently, since
∫ T
0 tkH−k/2dt is finite when H > 1

2 − 1
k , we deduce from

(4.46)–(4.49) that (Hk
3
) holds in this case. Now, assume that H 6

1
2 − 1

k .
Using the fact that D(t) ≥ C(t) we obtain

∫ T

0
Dk(t)dt ≥

∫ T

0
Ck(t)dt = (H +

1

2
)kc1(H)k

∫ T

0
tkH− k

2 dt = ∞.

So, in this case, assumption (Hk
3
) is not verified.

(2) This fact is immediate to prove, combine indeed the previous point with
Lemma 3.
(3) By definition of

∫ T
0 Ḃ⋄k

u du, see Lemma 3, it is equivalent to show that

the distribution τk
1[0,T ]

, defined through the identity
∫ t
0 Ḃ

⋄k
s ds = Ik(τ

k
1[0,t]

),

can be represented as a function belonging to L2([0, T ]k). We can write

〈τk
1[0,T ]

, ξ1 ⊗ · · · ⊗ ξk〉 =

∫ T

0
K+ξ1(s) · · ·K+ξk(s)ds

=

∫ T

0
ds

k∏

i=1

∫ s

0

∂KH

∂s
(s, r)ξi(r)dr,

for any ξ1, . . . , ξk ∈ S(R). Observe that K+ξ(s) =
∫ s
0

∂KH

∂s (s, r)ξ(r)dr be-
cause KH(s, s) = 0 for H > 1/2. Using Fubini Theorem, we deduce that
the distribution τk

1[0,T ]
can be represented as the function

τk
1[0,T ]

(x1, . . . , xk) = 1[0,T ]k(x1, . . . , xk)

×
∫ T

max(x1,...,xk)

∂KH

∂s
(s, x1) · · ·

∂KH

∂s
(s, xk)ds.
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Then we obtain

∥∥∥τk
1[0,T ]

∥∥∥
2

L2([0,T ]k)
=

∫

[0,T ]k

∫ T

max(x1,...,xk)

∫ T

max(x1,...,xk)

∂KH

∂s
(s, x1) · · ·

∂KH

∂s
(s, xk)

×∂KH

∂s
(r, x1) · · ·

∂KH

∂s
(r, xk)dsdrdx1 · · · dxk

=

∫

[0,T ]2

(∫ r∧s

0

∂KH

∂s
(s, x)

∂KH

∂s
(r, x)dx

)k

drds.

Using the equality (4.43) and the same computations as in [13] p.278, we
obtain for s < r,

∫ s

0

∂KH

∂s
(s, x)

∂KH

∂r
(r, x)dx = H(2H − 1)(r − s)2H−2. (4.50)

Therefore

‖τk
1[0,T ]

‖2
L2([0,T ]k) = (H(2H − 1))k

∫ T

0

∫ T

0
|r − s|2Hk−2kdrds.

We immediately check that ‖τk
1[0,T ]

‖2
L2([0,T ]k)

<∞ if and only if 2Hk− 2k >

−1, that is H > 1 − 1
2k . Thus, in this case the Hida distribution

∫ T
0 Ḃ⋄k

s ds
is a square integrable random variable with

E

[(∫ T

0
Ḃ⋄k

s ds

)2
]

= ‖τk
1[0,T ]

‖2
L2([0,T ]k) = ck,H × T 2Hk−2k+2.

Remark 8 According to our result, the two distributions τk
1[0,T ]

and πk
1[0,T ]

should coincide when H > 1/2. We can check this fact by means of elemen-
tary arguments. Let ξi ∈ S(R), i = 1, . . . , k. From (3.32), we deduce:

〈1[u,u+ε], ξi〉H =

∫ u+ε

u
K+ξi(s)ds,

and then

lim
ε→0

1

ε
〈1[u,u+ε], ξi〉H = K+ξi(u).

Using (3.39) with k = 1 for each ξi, and applying the Dominated Conver-
gence Theorem since the fractional Brownian motion satisfies the assumption
(Hk

3
) when H ∈

(
1
2 − 1

k , 1
)
, we get, for ϕε defined in (4.44):

lim
ε→0

〈ϕε, ξ1 ⊗ . . . ⊗ ξk〉H⊗k =

∫ T

0
K+ξ1(u) · · ·K+ξk(u)du,

which yields τk
1[0,T ]

= πk
1[0,T ]

.
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We can now state the main result of this section.

Proposition 9 Let k > 2 be an integer. If H > 1
2 − 1

k (note that this
condition is immaterial for k = 2), the random variable

Gε =

∫ T

0

(
Bu+ε −Bu

ε

)⋄k

du = ε−k(1−H)

∫ T

0
hk

(Bu+ε −Bu

εH
)
du

converges in (S∗), as ε → 0, to the Hida distribution
∫ T
0 Ḃ⋄k

u du. Moreover,
Gε converges in L2(Ω) if and only if H > 1 − 1

2k . In this case, the limit is∫ T
0 Ḃ⋄k

u du = Z
(k)
T .

Proof. The first point follows directly from Proposition 4 and Lemma 7
(point 1). On the other hand, we already know, see (1.5), that Gε converges

in L2(Ω) to Z
(k)
T when H > 1 − 1

2k . This implies that, when H > 1 −
1
2k ,

∫ T
0 Ḃ⋄k

s ds must be a square integrable random variable equal to Z
(k)
T .

Assume now that H 6 1 − 1
2k . From the proof of (1.3) and (1.4) below, it

follows that E(G2
ε) tends to +∞ as ε tends to zero, so Gε does not converge

in L2(Ω).

4.2 Bidimensional case

Let B(1) and B(2) denote two independent fractional Brownian motions of
(same) Hurst index H ∈ (0, 1), defined by the stochastic integral represen-
tation (3.41) as in Section 3.2.

By combining Lemma 7 (point 1 with k = 2) and Lemma 5, we have the
following preliminary result.

Lemma 10 For all H ∈ (0, 1), the Hida distributions
∫ T
0 B

(1)
u ⋄ Ḃ(2)

u du and∫ T
0 Ḃ

(1)
u ⋄ Ḃ(2)

u du are well-defined elements of (S)∗ (in the sense of Lemma
5).

We can now state the following result.

Proposition 11 1. For all H ∈ (0, 1), G̃ε defined by (1.9) converges in

(S∗), as ε → 0, to the Hida distribution
∫ T
0 B

(1)
u ⋄ Ḃ(2)

u du. Moreover,

G̃ε converges in L2(Ω) if and only if H > 1/2.

2. For all H ∈ (0, 1), Ğε defined by (1.10) converges in (S∗), as ε → 0,

to the Hida distribution
∫ T
0 B

(1)
u ⋄ Ḃ(2)

u du. Moreover, Ğε converges in
L2(Ω) if and only if H > 1/4.

3. For all H ∈ (0, 1), Ĝε defined by (1.18) converges in (S∗), as ε → 0,

to the Hida distribution
∫ T
0 Ḃ

(1)
u ⋄ Ḃ(2)

u du. Moreover, Ĝε converges in
L2(Ω) if and only if H > 3/4.
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Proof. (1) The first point follows directly from Proposition 6 and Lemma
7 (point 1 with k = 2). Assume that H < 1/2. From the proof of Theorem
12 below, it follows that E(G̃2

ε) → ∞ as ε tends to zero, so G̃ε does not
converge in L2(Ω). Assume that H = 1/2. By a classical result by Russo
and Vallois (see e.g. the survey [18]), and since we are in this case in a
martingale setting, we have that G̃ε converges in L2(Ω) to the Itô’s integral∫ T
0 B

(1)
u dB

(2)
u . Finally, assume that H > 1/2. For ε, η > 0, we have

E(G̃εG̃η) =
1

εη

∫

[0,T ]2
ρε,η(u− u′)RH(u, u′)dudu′,

where

ρε,η(x) =
1

2
[|x+ ε|2H + |x− η|2H − |x|2H − |x+ ε− η|2H ]. (4.51)

Remark that, as ε and η tend to zero, the quantity (εη)−1ρε,η(u − u′) con-
verges pointwise to (and is bounded by) H(2H − 1)|u − u′|2H−2. Then, by
Dominated Convergence Theorem, it follows that E(G̃εG̃η) converges to

H(2H − 1)

∫

[0,T ]2
|u− u′|2H−2RH(u, u′)dudu′

as ε, η → 0, with
∫
[0,T ]2 |u − u′|2H−2|RH(u, u′)|dudu′ < ∞ since H > 1/2.

Hence, G̃ε converges in L2(Ω).
(2) The first point follows directly from Proposition 6 and Lemma 7 (point
1 with k = 2). Assume that H 6 1/4. From the proof of Theorem 13 below,
it follows that E(Ğ2

ε) → ∞ as ε tends to zero, so Ğε does not converge in
L2(Ω). Assume that H > 1/4. For ε, η > 0, we have

E(ĞεĞη) =
1

ε2η2

∫

[0,T ]2
dudu′ρε,η(u− u′)

∫ u

0
ds

∫ u′

0
ds′ρε,η(s− s′),

with ρε,η given by (4.51). Remark that, as ε and η tend to zero, the quantity
(εη)−1ρε,η(u − u′) converges pointwise to H(2H − 1)|u − u′|2H−2, whereas

(εη)−1
∫ u
0 ds

∫ u′

0 ds′ρε,η(s − s′) converges pointwise to RH(u, u′). Then, it

follows that E(ĞεĞη) converges to

−H
2

(2H − 1)

∫

[0,T ]2
|u−u′|4H−2dudu′ +H

∫ T

0
u2H(u2H−1 + (T −u)2H−1)du

as ε, η → 0, and each integral is finite since H > 1/4. Hence, Ğε converges
in L2(Ω).
(3) Once again, the first point follows from Proposition 6 and Lemma 7
(point 1 with k = 2). Assume that H 6 3/4. From the proof of Theorem
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14 below, it follows that E(Ĝ2
ε) → ∞ as ε tends to zero, so Ĝε does not

converge in L2(Ω). Assume now that H > 3/4. For ε, η > 0, we have

E(ĜεĜη) =
1

ε2η2

∫

[0,T ]2
ρε,η(u− u′)2dudu′,

with ρε,η given by (4.51). Since the quantity (εη)−1ρε,η(u − u′) converges
pointwise to (and is bounded by) H(2H − 1)|u−u′|2H−2, we have, by Dom-
inated Convergence Theorem, that E(ĜεĜη) converges to

H2(2H − 1)2
∫

[0,T ]2
|u− u′|4H−4dudu′

as ε, η → 0, with
∫
[0,T ]2 |u − u′|4H−4dudu′ < ∞ since H > 3/4. Hence, Ĝε

converges in L2(Ω).

5 A simple proof of convergences (1.3) and (1.4)

In this section we provide a simple proof these convergences by means of a
recent criterion for the weak convergence of sequences of multiple stochastic
integrals established in [15] and [17]. We refer to [9] for a the proof in the
case of more general Gaussian processes using different kind of tools.

Let us first recall the aforementioned criterion. We continue to use the
notation introduced in Section 4.1. Also, let {ei, i > 1} denote a complete
orthonormal system in H. Given f ∈ H⊙k and g ∈ H⊙l, for every r =
0, . . . , k∧ l, the contraction of f and g of order r is the element of H⊗(k+l−2r)

defined by

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . .⊗ eir〉H⊗r ⊗ 〈g, ei1 ⊗ . . . ⊗ eir〉H⊗r .

(Notice that f ⊗0 g = f ⊗ g equals the tensor product of f and g while,
for k = l, f ⊗k g = 〈f, g〉H⊗k .) Fix k > 2, and let (Fε)ε>0 be a family of
the form Fε = Ik(φε) for some φε ∈ H⊙k. Assume that the variance of Fε

converges as ε → 0 (to σ2, say). The criterion by Nualart and Peccati [15]

asserts that Fε
Law−→ N ∼ N (0, σ2) if and only if ‖φε ⊗r φε‖H⊗(2k−2r) → 0 for

any r = 1, . . . , k − 1. In this case, due to the result proved by Peccati and
Tudor [17], actually we have automatically that

(Bt1 , . . . , Btk , Fε)
Law−→ (Bt1 , . . . , Btk , N),

for all tk > . . . > t1 > 0, with N ∼ N (0, σ2) independent of B.
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For x ∈ R, set

ρ(x) =
1

2

(
|x+ 1|2H + |x− 1|2H − 2|x|2H

)
, (5.52)

and notice that ρ(u − v) = E
[
(Bu+1 − Bu)(Bv+1 − Bv)

]
for all u, v > 0,

and that
∫

R
|ρ(x)|kdx is finite if and only if H < 1 − 1

2k (since ρ(x) ∼
H(2H − 1)|x|2H−2 as |x| → ∞)

We now proceed with the proof of (1.3). The proof of (1.4) would follow
similar arguments.

Proof of (1.3). Because εk(1−H)− 1
2Gε can be expressed as a kth multiple

Wiener integral we can use the criterion by Nualart and Peccati. By the
scaling property of the fBm, it is actually equivalent to consider the family
of random variables (Fε)ε>0, where

Fε =
√
ε

∫ T/ε

0
hk(Bu+1 −Bu)du.

Step 1: Convergence of the variance. We can write

E(F 2
ε ) = εk!

∫ T/ε

0
du

∫ T/ε

0
dsρ(u− s)k

= εk!

∫ T/ε

−T/ε
ρ(x)k(T/ε − |x|)dx,

where the function ρ is defined in (5.52). Therefore, by the Dominated
Convergence Theorem,

lim
ε↓0

E(F 2
ε ) = Tk!

∫

R

ρ(x)kdx.

Step 2: Convergence of the contractions. Observe that the random vari-
able hk(Bu+1−Bu) coincides with the multiple stochastic integral Ik(1

⊗k
[u,u+1]).

Therefore Fε = Ik(φε), where φε =
√
ε
∫ T/ε
0 1⊗k

[u,u+1]du. Let r ∈ {1, . . . , k−1}.
We have

φε ⊗r φε = ε

∫ T/ε

0

∫ T/ε

0

(
1
⊗(k−r)
[u,u+1] ⊗ 1

⊗(k−r)
[s,s+1]

)
ρ(u− s)rduds.

As a consequence, ‖φε ⊗r φε‖2
H⊗(2k−2r) equals to

ε2
∫

[0,T/ε]4
ρ(u− s)rρ(u′ − s′)rρ(u− u′)k−rρ(s − s′)k−rdsds′dudu′.

Making the change of variables x = u − s, y = u′ − s′ and z = u − u′, we
obtain that ‖φε ⊗r φε‖2

H⊗(2k−2r) is less than

Aε = ε

∫

Dε

|ρ(x)|r|ρ(y)|r|ρ(z)|k−r|ρ(y + z − x)|k−rdxdydz,

22



where Dε = [−T/ε, T/ε]3. Consider the decomposition

Aε = ε

∫

Dε∩{|x|∨|y|∨|z|6K}
|ρ(x)|r|ρ(y)|r|ρ(z)|k−r|ρ(y + z − x)|k−rdxdydz

+ε

∫

Dε∩{|x|∨|y|∨|z|>K}
|ρ(x)|r|ρ(y)|r|ρ(z)|k−r|ρ(y + z − x)|k−rdxdydz

= Bε,K + Cε,K .

Clearly, for any fixed K > 0, the term Bε,K tends to zero because ρ is a
bounded function. On the other hand, we have

Dε ∩ {|x| ∨ |y| ∨ |z| > K} ⊂ Dε,K,x ∪Dε,K,y ∪Dε,K,z,

where Dε,K,x = {|x| > K} ∩ {|y| 6 T/ε} ∩ {|z| 6 T/ε} (and a similar
definition for Dε,K,y and Dε,K,z). Set

Cε,K,x = ε

∫

Dε,K,x

|ρ(x)|r|ρ(y)|r|ρ(z)|k−r|ρ(y + z − x)|k−rdxdydz.

By Hölder’s inequality, we have

Cε,K,x 6 ε

(∫

Dε,K,x

|ρ(x)|k|ρ(y)|kdxdydz
) r

k

×
(∫

Dε,K,x

|ρ(z)|k|ρ(y + z − x)|kdxdydz
)1− r

k

6 2T

(∫

R

|ρ(t)|kdt
)2− r

k

(∫

|x|>K
|ρ(x)|kdx

) r
k

−→
K→∞

0.

Similarly, we prove that Cε,K,y → 0 and Cε,K,z → 0 as K → ∞. Finally, it
suffices to choose K large enough in order to get the desired result, that is
‖φε ⊗r φε‖H⊗(2k−2r) → 0 as ε→ 0.

Step 3: Proof of the first point. By Step 1, the family

(
(Bt)t∈[0,T ], ε

1
2
−2HGε

)

is tight in C([0, T ]) × R. By Step 2, we also have the convergence of the
finite dimensional distributions, as a byproduct of Nualart and Peccati [15]
and Peccati and Tudor [17] criterions (see indeed the preliminaries at the
beginning of the section). Hence, the proof of the first point is complete.
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6 Convergences in law for some functionals related
to the Lévy area of the fractional Brownian mo-

tion

Let B(1) and B(2) denote two independent fractional Brownian motions of
Hurst index H ∈ (0, 1). Recall the definition (1.9) of G̃ε:

G̃ε =

∫ T

0
B(1)

u

B
(2)
u+ε −B

(2)
u

ε
du.

Theorem 12 Convergence in law (1.15) holds.

Proof. We fix H < 1/2. The proof is divided into several steps.

Step 1: Computing the variance of ε
1
2
−HG̃ε.

By using the scaling properties of the fBm, observe first that ε
1
2
−HG̃ε

has the same law as

F̃ε = ε1/2+H

∫ T/ε

0
B(1)

u

(
B

(2)
u+1 −B(2)

u

)
du. (6.53)

For ρ(x) = 1
2

(
|x+ 1|2H + |x− 1|2H − 2|x|2H

)
, we have

E(F̃ 2
ε ) = ε1+2H

∫ T/ε

0
du

∫ T/ε

0
dsRH(u, s)ρ(u− s)

= Aε −Bε,

where

Aε = ε1+2H

∫ T/ε

0
duu2H

∫ T/ε

0
ds ρ(u− s),

Bε = ε1+2H

∫ T/ε

0
du

∫ u

0
ds (u− s)2Hρ(u− s).

For the term Bε we can write

Bε = ε2H

∫ T/ε

0
x2Hρ(x)(T − εx)dx.

The integral
∫∞
0 x2Hρ(x)dx is convergent forH < 1/4, while

∫ T/ε
0 x2Hρ(x)dx

diverges as −1
8 log(1/ε) for H = 1/4 and as H(2H−1)T 4H−1ε1−4H for 1/4 <

H < 1/2. The integral
∫ T/ε
0 x2H+1ρ(x)dx diverges as H(2H − 1)T 4Hε−4H .

Therefore

lim
ε→0

Bε = 0.
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For Aε, we write

Aε = ε1+2H

∫ T/ε

0
duu2H

∫ T/ε

0
ds ρ(u− s)

= ε1+2H

(∫ T/ε

0
duu2H

∫ u

0
ds ρ(u− s) +

∫ T/ε

0
duu2H

∫ T/ε

u
ds ρ(u− s)

)

=
1

2H + 1

∫ T/ε

0
ρ(x)

(
T 2H+1 − (εx)2H+1 + (T − εx)2H+1

)
dx.

Hence, by Dominated Convergence Theorem, we have

lim
ε→0

Aε =
2T 2H+1

2H + 1

∫ ∞

0
ρ(x)dx,

so that

lim
ε→0

ε1−2HE[G̃2
ε] = lim

ε→0
E[F̃ 2

ε ] =
2T 2H+1

2H + 1

∫ ∞

0
ρ(x)dx,

Step 2: Showing the convergence in law in (1.15).
By the previous step, the distributions of the family

(
(B

(1)
t , B

(2)
t )t∈[0,T ], ε

1
2
−HG̃ε

)
ε>0

are tight in C([0, T ]2) × R, and it suffices to show the convergence of the
finite dimensional distributions. We need to show that, for any λ ∈ R, any
0 < t1 6 . . . 6 tk, any θ1, . . . , θk ∈ R and any µ1, . . . , µk ∈ R, we have

lim
ε↓0

E
[
e
i
Pk

j=1 θjB
(1)
tj e

i
Pk

j=1 µjB
(2)
tj eiλε

1
2−H

eGε ]

= E

[
e
− 1

2
Var
“

Pk
j=1 µjB

(2)
tj

”]
E

[
e
i
Pk

j=1 θjB
(1)
tj e−

λ2S2

2

]
,

(6.54)

where S =

√
2
∫∞
0 ρ(x)dx

∫ T
0 (B

(1)
u )2du. We can write

E
[
e
i
Pk

j=1 θjB
(1)
tj e

i
Pk

j=1 µjB
(2)
tj eiλε

1
2−H

eGε ]

= E
[
e
i
Pk

j=1 θjB
(1)
tj E[e

i
Pk

j=1 µjB
(2)
tj eiλε

1
2−H

eGε |B(1)]
]

= E


ei

Pk
j=1 θjB

(1)
tj e

−λ ε
1
2−H Pk

j=1 µj

R T

0
B

(1)
u E

 

B
(2)
tj

×
B

(2)
u+ε

−B
(2)
u

ε

!

du

×e−
λ2

2
ε1−2H

R

[0,T ]2 B
(1)
u B

(1)
v ρε(u−v)dudv

e
− 1

2
Var
“

Pk
j=1 µjB

(2)
tj

”]
,
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with ρε(x) = 1
2

(
|x+ ε|2H + |x− ε|2H − 2|x|2H

)
. Observe that

∫

[0,T ]2
B(1)

u B(1)
v ρε(u− v)dudv > 0

because ρε(u−v) = E
[
(B

(2)
u+ε−B

(2)
u )(B

(2)
v+ε −B

(2)
v )
]

is a covariance function.
Moreover, for any fixed t > 0, we have

∫ T

0
B(1)

u E

(
B

(2)
t × B

(2)
u+ε −B

(2)
u

ε

)
du

=
1

2

∫ T

0
B(1)

u

(
(u+ ε)2H − u2H

ε
+

|t− u|2H − |t− u− ε|2H

ε

)
du

a.s.−→
ε→0

H

∫ T

0
B(1)

u

(
u2H−1 − |t− u|2H−1

)
du.

Since H < 1/2, this implies that

e
−λ ε

1
2−H Pk

j=1 µj

R T
0 B

(1)
u E

 

B
(2)
tj

×
B

(2)
u+ε

−B
(2)
u

ε

!

du
a.s.−→
ε→0

1.

Hence, to get (6.54), it suffices to show that

E

[
e
i
Pk

j=1 θjB
(1)
tj e

−λ2

2
ε1−2H

R

[0,T ]2
B

(1)
u B

(1)
v ρε(u−v)dudv

]
−→
ε→0

E

[
e
i
Pk

j=1 θjB
(1)
tj e−

λ2

2
S2

]
.

(6.55)

We have

Cε := E


exp


i

k∑

j=1

θjB
(1)
tj

− λ2

2
ε1−2H

∫

[0,T ]2
B(1)

u B(1)
v ρε(u− v)dudv






= E


exp


i

k∑

j=1

θjB
(1)
tj

− λ2 ε1−2H

∫ T

0
B(1)

u

(∫ u

0
B

(1)
u−xρε(x)dx

)
du






= E


exp


i

k∑

j=1

θjB
(1)
tj

− λ2 ε1−2H

∫ T

0
ρε(x)

(∫ T

x
B(1)

u B
(1)
u−xdu

)
dx






= E


exp


i

k∑

j=1

θjB
(1)
tj

− λ2

∫ T/ε

0
ρ(x)

(∫ T

εx
B(1)

u B
(1)
u−εxdu

)
dx




 ,

the last inequality coming from the relation ρε(x) = ε2Hρ(x/ε). By Domi-

26



nated Convergence Theorem, we get that

Cε −→
ε→0

E


exp


i

k∑

j=1

θjB
(1)
tj

− λ2

∫ ∞

0
ρ(x)dx×

∫ T

0
(B(1)

u )2du






= E


exp


i

k∑

j=1

θjB
(1)
tj

− λ2

2
S2




 ,

that is (6.55). The proof of the theorem is done.

Recall the definition (5.52) of ρ, and the definition of Ğε:

Ğε =

∫ T

0

(∫ u

0

B
(1)
v+ε −B

(1)
v

ε
dv

)
B

(2)
u+ε −B

(2)
u

ε
du.

Theorem 13 Convergences in law (1.11) and (1.12) hold.

Proof. We only show the first convergence, the proof of the second one
being very similar. By using the scaling properties of the fBm, observe first
that ε

1
2
−2HĞε has the same law as

F̆ε =
√
ε

∫ T/ε

0

(∫ u

0

(
B

(1)
v+1 −B(1)

v

)
dv

)(
B

(2)
u+1 −B(2)

u

)
du.

Now, we fix H < 1/4 and the proof is divided into several steps.

Step 1: Computing the variance of F̆ε. We can write

E(F̆ 2
ε ) = ε

∫

[0,T/ε]2
dudu′ρ(u− u′)

∫ u

0
dv

∫ u′

0
dv′ρ(v − v′),

with ρ(x) = 1
2

(
|x+ 1|2H + |x− 1|2H − 2|x|2H

)
. We have

∫ u

0
dv

∫ u′

0
dv′ρ(v − v′) =

Ψ(u− u′) − Ψ(u) − Ψ(u′) + 2

2(2H + 1)(2H + 2)
,

where

Ψ(x) = 2|x|2H+2 − |x+ 1|2H+2 − |x− 1|2H+2. (6.56)

Consider first the contribution of the term Ψ(u− u′). We have

lim
ε→0

ε

∫

[0,T/ε]2
ρ(u− u′)Ψ(u− u′)dudu′ = T

∫

R

ρ(x)Ψ(x)dx.
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Notice that ρ(x) ∼ H(2H − 1)|x|2H−2 and Ψ(x) ∼ −(2H + 2)(2H + 1)|x|2H

as |x| → ∞, so that
∫

R
|ρ(x)Ψ(x)|dx < ∞ because H < 1/4. On the other

hand, we have

ε

∫

[0,T/ε]2
ρ(u− u′)Ψ(u)dudu′ = ε

∫ T/ε

0
duΨ(u)

∫ u

u−T/ε
dxρ(x)

and this converges to zero as ε→ 0. Indeed, since ρ(x) ∼ H(2H−1)x2H−2 as
x→ ∞, we have

∫∞
u ρ(x)dx ∼ Hu2H−1 as u→ ∞; hence, since

∫
R
ρ(x)dx =

0, H < 1/4 and Ψ(u) ∼ −(2H + 2)(2H + 1)u2H as u→ ∞, we have

lim
u→∞

Ψ(u)

∫ u

−∞
ρ(x)dx = − lim

u→∞
Ψ(u)

∫ ∞

u
ρ(x)dx = 0.

Also, we have

lim
ε→0

ε

∫

[0,T/ε]2
ρ(u− u′)dudu′ =

∫

R

ρ(x)dx = 0.

Therefore, limε→0E(F̆ 2
ε ) = σ̆2

H .

Step 2: Showing the convergence in law (1.11). We first remark that,

by Step 1, the laws of the family
(
(B

(1)
t , B

(2)
t )t∈[0,T ], ε

1
2
−2HĞε

)
ε>0

are tight.
Therefore, we only have to prove the convergence of the finite-dimensional
laws. Moreover, by the main result of Peccati and Tudor [17], it suffices to
prove that

ε
1
2
−2HĞε

Law
= F̆ε

Law−→ N (0, T σ̆2
H) as ε→ 0. (6.57)

We have

E(eiλF̆ε) = E

(
exp

{
−λ

2ε

2

∫

[0,T/ε]2
(B

(2)
u+1 −B(2)

u )(B
(2)
u′+1 −B

(2)
u′ )

×
(∫ u

0

∫ u′

0
ρ(v − v′)dvdv′

)
dudu′

})
.

Since ρ(v − v′) = E
[
(B

(1)
v+1 − B

(1)
v )(B

(1)
v′+1 − B

(1)
v )
]

is a covariance function,
observe that the quantity inside the exponential in the right-hand side of
the previous identity is negative. Hence, since x 7→ exp

(
− λ2

2 x+

)
is contin-

uous and bounded by 1 on R, (6.57) will be a consequence of the following
convergence:

Aε
law−→ T σ̆2

H as ε→ 0, (6.58)

with

Aε := ε

∫

[0,T/ε]2
(Bu+1−Bu)(Bu′+1−Bu′)

(∫ u

0

∫ u′

0
ρ(v − v′)dvdv′

)
dudu′,
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B denoting a fractional Brownian motion of Hurst index H. The proof of
(6.58) will be done by showing that the expectation (resp. the variance) of
Aε tends to T σ̆2

H (resp. zero). By Step 1, observe that

E(Aε) = E(F̆ 2
ε ) → T σ̆2

H

as ε→ 0. Now, we want to show that the variance of Aε converges to zero.
Making the change of variable s = uε and t = u′ε yields

Aε = ε−1

∫

[0,T ]2
(Bs/ε+1−Bs/ε)(Bt/ε+1−Bt/ε)

(∫ s/ε

0

∫ t/ε

0
ρ(v − v′)dvdv′

)
dsdt,

which has the same distribution as

Cε = ε−1−2H

∫

[0,T ]2
(Bs+ε −Bs)(Bt+ε −Bt)

(∫ s/ε

0

∫ t/ε

0
ρ(u− u′)dudu′

)
dsdt

= ε−1−2H

∫

[0,T ]2
(Bs+ε −Bs)(Bt+ε −Bt)Λε(s, t)dsdt,

where Λε(s, t) =
∫ s/ε
0

∫ t/ε
0 ρ(u− u′)dudu′. This can be written as

Cε = ε−1−2H

∫

R2

BsBtΣε(s, t)dsdt,

where

Σε(s, t) = 1[ε,T+ε](s)1[ε,T+ε](t)Λε(s− ε, t− ε) − 1[0,T ](s)1[ε,T+ε](t)Λε(s, t− ε)

−1[ε,T+ε](s)1[0,T ](t)Λε(s− ε, t) + 1[0,T ](s)1[0,T ](t)Λε(s, t).

(6.59)

Moreover,

Cε − E(Cε) = ε−1−2HI2

(∫

R2

1[0,s] ⊗ 1[0,t]Σε(s, t)dsdt

)
,

where I2 is the double stochastic integral with respect to B. Therefore,

Var(Cε) = 2ε−2−4H

∥∥∥∥
∫

R2

1[0,s] ⊗ 1[0,t]Σε(s, t)dsdt

∥∥∥∥
2

H⊗2

= 2ε−2−4H

∫

R4

RH(s, s′)RH(t, t′)Σε(s, t)Σε(s
′, t′)dsdtds′dt′.

Taking into account that the partial derivatives ∂RH

∂s and ∂RH

∂t are integrable,
we can write

Var(Cε) = 2ε−2−4H

∫

R4

(∫ s

0

∂RH

∂σ
(σ, s′)dσ

)(∫ t′

0

∂RH

∂τ
(t, τ)dτ

)

×Σε(s, t)Σε(s
′, t′)dsdtds′dt′.
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Hence, by integrating by parts, we get

Var(Cε) = 2ε−2−4H

∫

R4

∂RH

∂s
(s, s′)

∂RH

∂t′
(t, t′)

×
(∫ s

0
×Σε(σ, t)dσ

)(∫ t′

0
Σε(s

′, τ)dτ

)
dsdtds′dt′.

From (6.59) we obtain

∫ s

0
Σε(σ, t)dσ = 1[0,T ](s)

(
1[0,ε](t) − 1[T,T+ε](t)

) ∫ s

s−ε
Λε(σ, t− ε)dσ.

In the same way

∫ t′

0
Σε(s

′, τ)dτ = 1[0,T ](t
′)
(
1[0,ε](s

′) − 1[T,T+ε](s
′)
) ∫ t′

t′−ε
Λε(s

′ − ε, τ)dτ.

As a consequence,

Var(Cε) = 2ε−2−4H

∫

R4

∂RH

∂s
(s, s′)

∂RH

∂t′
(t, t′)

(∫ s

s−ε
Λε(σ, t− ε)dσ

)

×
(∫ t′

t′−ε
Λε(s

′ − ε, τ)dτ

)
1[0,T ](s)

(
1[0,ε](t) − 1[T,T+ε](t)

)

×1[0,T ](t
′)
(
1[0,ε](s

′) − 1[T,T+ε](s
′)
)
dsdtds′dt′

=
4∑

i=1

H i
ε,

where

H1
ε =

∫ T

0

∫ ε

0

∫ ε

0

∫ T

0
Gε(s, t, s

′, t′)dsdtds′dt′,

H2
ε = −

∫ T

0

∫ T+ε

T

∫ ε

0

∫ T

0
Gε(s, t, s

′, t′)dsdtds′dt′,

H3
ε = −

∫ T

0

∫ ε

0

∫ T+ε

T

∫ T

0
Gε(s, t, s

′, t′)dsdtds′dt′,

H4
ε =

∫ T

0

∫ T+ε

0

∫ T+ε

0

∫ T

0
Gε(s, t, s

′, t′)dsdtds′dt′,

and

Gε(s, t, s
′, t′) = 2ε−2−4H ∂RH

∂s
(s, s′)

∂RH

∂t′
(t, t′)

×
(∫ s

s−ε
Λε(σ, t− ε)dσ

)(∫ t′

t′−ε
Λε(s

′ − ε, τ)dτ

)
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We only consider the term H1
ε , because the other ones can be handled in

the same way. We have, with Ψ given by (6.56),

Λε(s, t) =

∫ s/ε

0

∫ t/ε

0
ρ(u− u′)dudu′ =

Ψ(s−t
ε ) − Ψ(s

ε) − Ψ( t
ε) + 2

2(2H + 1)(2H + 2)
.

Notice that
∣∣∣∣Ψ(

s− t

ε
)

∣∣∣∣ ≤ ε−2H−2
∣∣2|s − t|2H+2 − |s− t+ ε|2H+2 − |s− t− ε|2H+2

∣∣

6 Cε−2H ,

for any s, t ∈ [0, T ]. Therefore, |Λε(s, t)| 6 Cε−2H , and we obtain the
following estimate

∣∣Gε(s, t, s
′, t′)

∣∣ 6 Cε−8H
(
s2H−1 + |s− s′|2H−1

) (
t′2H−1 + |t− t′|2H−1

)
.

As a consequence,

∣∣H1
ε

∣∣ 6

∫ T

0

∫ ε

0

∫ ε

0

∫ T

0

∣∣Gε(s, t, s
′, t′)

∣∣ dsdtds′dt′

6 Cε−8H

∫ T

0

∫ ε

0

∫ ε

0

∫ T

0

(
s2H−1 + |s− s′|2H−1

)

×
(
t′2H−1 + |t− t′|2H−1

)
dsdtds′dt′

6 Cε2−8H ,

which converges to zero because H < 1
4 .

Recall the definition (1.18) of Ĝε:

Ĝε =

∫ T

0

B
(1)
u+ε −B

(1)
u

ε
× B

(2)
u+ε −B

(2)
u

ε
du.

We have the following result.

Theorem 14 Convergences (1.19) and (1.20) hold.

Proof. We use the same trick as in [11, Remark 1.3, point 4]. Let β and β̃
be two independent one-dimensional fractional Brownian motions of index
H. Set B(1) = (β + β̃)/

√
2 and B(2) = (β − β̃)/

√
2. It is easily checked

that B(1) and B(2) are also two independent fractional Brownian motions of

31



index H. Moreover, we have

ε
3
2
−2HĜε

=
1

2
ε

3
2
−2H

∫ T

0

(
βu+ε − βu

ε

)2

du− 1

2
ε

3
2
−2H

∫ T

0

(
β̃u+ε − β̃u

ε

)2

du

=
1

2
√
ε

∫ T

0

(
βu+ε − βu

εH

)2

du− 1

2
√
ε

∫ T

0

(
β̃u+ε − β̃u

εH

)2

du

=
1

2
√
ε

∫ T

0
h2

(
βu+ε − βu

εH

)
du− 1

2
√
ε

∫ T

0
h2

(
β̃u+ε − β̃u

εH

)
du

(6.60)

The proof of the desired convergences in law are now direct consequences
of the convergence (1.3) with k = 2, taking into account that β and β̃ are
independent.

Remark 15 As a byproduct of the decomposition (6.60), and taking into

account (1.5) for k = 2, we get that
∫ T
0 Ḃ

(1)
u ⋄ Ḃ(2)

u du and
(
Z

(2)
T − Z̃

(2)
T

)
/2

have the same law when H > 3/4, where Z̃
(2)
T stands for an independent

copy of the Hermite random variable Z
(2)
T .
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