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Abstract. We consider the model of Time Petri Nets where time is associated
with transitions. Two semantics for time elapsing can be considered: the strong
one, for which all transitions are urgent, and the weak one, for which timecan
elapse arbitrarily. It is well known that many verification problems such as the
marking reachability are undecidable with the strong semantics. In this paper,
we focus on Time Petri Nets with weak semantics equipped with three differ-
ent memory policies for the firing of transitions. We prove that the reachability
problem is decidable for the most common memory policy (intermediate) and
becomes undecidable otherwise. Moreover, we study the relative expressiveness
of these memory policies and obtain partial results.

1 Introduction

For verification purpose,e.g. in the development of embedded platforms, there is an
obvious need for considering time features and the study of timed models has thus
become increasingly important. For distributed systems, different timed extensions of
Petri nets have been proposed which allow the combination ofan unbounded discrete
structure with dense-time variables.

There are several ways to express urgency in timed systems, as discussed in [16].
In timed extensions of Petri nets, two types of semantics areconsidered for time elaps-
ing. In theweaksemantics, all time delays are allowed whereas in thestrongone, all
transitions are urgent,i.e. time delays cannot disable transitions. While for models with
finite discrete structure (such as timed extensions of bounded Petri nets or timed au-
tomata [3]), standard verification problems are decidable for both semantics, for mod-
els with infinite discrete structure, the choice of the semantics has a deep influence on
decidability issues. In this work, we consider the model of Time Petri Nets [14] (TPN)
where clocks are associated with transitions, and which is commonly considered un-
der a strong semantics. In this model, all the standard verification problems are known
to be undecidable [10]. On the other hand, in the model of timed-arc Petri nets [5],
where clocks are associated with tokens and which is equipped with a weak semantics,
many verification problems are decidable (coverability, boundedness...). Indeed, this
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semantics entails for this model monotonicity properties which allow the application
of well-quasi-ordering techniques, see [8, 2, 1]. Note however that the reachability of a
discrete marking is undecidable, as proven in [17]. A natural question, which had sur-
prisingly no answer until now, as mentioned in a recent survey on the topic [7], is thus
to study TPN under a weak semantics of time elapsing.

The time-elapsing policy states which delays are allowed ina configuration. The
memory policy is concerned with the resets of clocks, and intuitively specifies, when
firing a transition, which timing informations are preserved. The original model of Mer-
lin [14] is equipped with anintermediatesemantics which considers the intermediary
marking bewteen consumption and production. Two others memory policies have been
considered in [4] (theatomicand thepersistent atomic) in which the firings of transi-
tions are performed atomically. While these policies can be thought as cosmetic for the
model of TPN, the results we obtain show this is not the case.

We are interested in the impact of the weak semantics on TPN, distinguishing be-
tween the different memory policies. We first study the decidability issues, and prove
that for TPN with weak intermediate semantics, a discrete marking is reachable if and
only if it is reachable in the underlying untimed Petri net. As a corollary, the problem
of the marking reachability (and also coverability, boundedness) is decidable for this
model. More surprisingly, we also prove that when changing the memory policy this
result does not hold anymore and the verification problems become undecidable. In
this work, we only consider untimed verification problems and we plan to study timed
versions in future work. We then compare w.r.t. weak time bisimilarity (weak stands
here for silent transitions) the expressive power of weak TPN looking at the different
memory policies. We first prove that the persistent atomic semantics is strictly more ex-
pressive that the atomic semantics. Then, concerning atomic and intermediate memory
policies, we provide a TPN which shows that the atomic semantics is not included in
the intermediate one.

Related works.As mentioned above, there are, up to our knowledge, only veryfew
works considering TPN under a weak semantics. In [7] the authors have proven that the
weak intermediate semantics and the strong intermediate semantics are uncomparable.
In another line of work, [9] considers TPN under a semantics which is a kind of com-
promise between the standard strong and weak semantics. They provide translations
between this model and timed state machines.

2 Definitions

Let Σ be a finite alphabet,Σ∗ is the set of finite words overΣ. We noteΣτ = Σ ∪{τ}
whereτ /∈ Σ represents internal actions.ǫ will represent the empty word. The setsN, Q,
Q≥0, R andR≥0 are respectively the sets of natural, rational, non-negative rational, real
and non-negative real numbers. Avaluationv over a finite setX is a mapping inRX

≥0.
Forv ∈ RX

≥0 andd ∈ R≥0, v+d denotes the valuation defined by(v+d)(x) = v(x)+d.
We note0 the valuation which assigns to everyx ∈ X the value0.

As commonly in use for Time Petri Nets, we will associate rational intervals with
transitions. Note that we could handle intervals with bounds given as real numbers if
we abstract the problem of comparison of real numbers. We consider the setI(Q≥0) of
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non-empty intervals(a, b) with non-negative rational boundsa, b ∈ Q≥0. We consider
both open and closed bounds, and also allow a right open infinite bound as in[2,+∞[.

2.1 Petri Nets

Definition 1 (Labeled Petri Net (PN)).A Labeled Petri Net over the alphabetΣτ is a
tuple(P, T,Στ , •(.), (.)

•
,M0, Λ) where:

– P is a finite set ofplaces,
– T is a finite set oftransitionswith P ∩ T = ∅,
– •(.) ∈ (NP )T is thebackwardincidence mapping,
– (.)

• ∈ (NP )T is theforward incidence mapping,
– M0 ∈ NP is theinitial marking,
– Λ : T → Στ is thelabeling function

As commonly in use in the literature, the vector•(t) (resp.(t)•) in NP is noted
•t (resp.t•). The semantics of a PNN = (P, T,Στ , •(.), (.)

•
,M0, Λ) is given by its

associated labeled transition systemJN K = (NP ,M0, Στ ,⇒) where⇒⊆ NP × Στ ×

NP is the transition relation defined byM
a

=⇒ M ′ iff ∃t ∈ T s.t.Λ(t) = a ∧ M ≥
•t ∧ M ′ = M − •t + t•. For convenience we will sometimes also write, fort ∈ T ,
M

t
=⇒ M ′ if M ≥ •t andM ′ = M − •t + t•. We also writeM ⇒ M ′ if there

existsa ∈ Στ such thatM
a

=⇒ M ′. The relation⇒∗ represents the reflexive and
transitive closure of⇒. We denote byReach(N ) the set of reachable markings defined
by {M ∈ NP | M0 ⇒∗ M}.

It is well known that for PN the reachability problem which consists in determining
whether a given markingM belongs toReach(N ) is decidable; it has in fact been
proved independently in [13] and [12].

We introduce a last notation concerning Labeled Petri Nets.Given a PNN , a mark-

ing M of N and a multi-set∆ = 〈t1, . . . , tn〉 of transitions ofN , we writeM
∆

|=⇒ M ′

if and only if the multi-set∆ can be fired fromM , meaning that there exists an ordering
of transitions in∆, represented as a permutationϕ of {1, . . . , n}, such that the sequence

of firingsM
tϕ(1)
==⇒ M1

tϕ(2)
==⇒ M2 . . .

tϕ(n)
==⇒ M ′ exists inJN K.

2.2 Timed Transition Systems

Timed transition systems describe systems which combine discrete and continuous evo-
lutions. They are used to define the behavior of timed systemssuch as Time Petri
Nets [14] or Timed Automata [3].

Definition 2 (Timed Transition System (TTS)). A timed transition systemover the
alphabetΣτ is a transition systemS = (Q, q0, Στ ,→), where the transition relation
→⊆ Q × (Στ ∪ R≥0) × Q consists of discrete transitionsq

a
−→ q′ (with a ∈ Στ )

representing an instantaneous action, and continuous transitions q
d
−→ q′ (with d ∈

R≥0) representing the passage ofd units of time.

Moreover, we require the following standard properties forTTS :
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– TIME-DETERMINISM : if q
d
−→ q′ andq

d
−→ q′′ with d ∈ R≥0, thenq′ = q′′,

– 0-DELAY : q
0
−→ q,

– ADDITIVITY : if q
d
−→ q′ andq′

d′

−→ q′′ with d, d′ ∈ R≥0, thenq
d+d′

−−−→ q′′,

– CONTINUITY : if q
d
−→ q′, then for everyd′ andd′′ in R≥0 such thatd = d′ + d′′,

there existsq′′ such thatq
d′

−→ q′′
d′′

−→ q′.

With these properties, arun of S can be defined as a finite sequence of movesρ =

q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→ q2 . . .
an−−→ qn+1 where discrete and continuous transitions

alternate. To such a run corresponds the timed wordw = (ai, ηi)0≤i≤n overΣτ where
ηi =

∑i
j=0 dj is the time at whichai happens. We then denote byUntimed(w) the

projection of the worda0a1 . . . an over the alphabetΣ and byDuration(w) the duration
ηn. Note that in the wordUntimed(w) the symbolτ does not appear. We will sometimes
apply, without possible ambiguities, these notations to runs writing Untimed(ρ) and
Duration(ρ). We might also describe the run writing directlyq0

w
−→ qn+1.

2.3 Time Petri Nets

Syntax. Introduced in [14], Time Petri Nets associate a time interval with each transi-
tion of a Petri net.

Definition 3 (Labeled Time Petri Net (TPN)). A Labeled Time Petri Net over the
alphabetΣτ is a tuple(P, T,Στ , •(.), (.)

•
,M0, Λ, I) where:

– (P, T,Στ , •(.), (.)
•
,M0, Λ) is a PN,

– I : T 7→ I(Q≥0) associates with each transition afiring interval.

In the sequel, we associate with an interval its left bound and its right bound. More
generally, given a transitiont of a TPN, we will denote byeft(t) (resp.lft(t)) the left
bound ofI(t) (resp. the right bound ofI(t)), standing for earliest firing time (resp. latest
firing time). We have henceI(t) = (eft(t), lft(t)).

Semantics.A configurationof a TPN is a pair(M,ν), whereM is amarkingoverP ,
i.e. a mapping inNP , with M(p) the number of tokens in placep. A transitiont is
enabledin a markingM if M ≥ •t. We denote byEn(M) the set of enabled transitions
in M . The second component of the pair(M,ν) is a valuation overEn(M), i.e. a
mapping inR

En(M)
≥0 . Intuitively, for each enabled transitiont in M , ν(t) represents the

amount of time that has elapsed sincet is enabled. An enabled transitiont can be fired
if ν(t) belongs to the intervalI(t). The marking obtained after this firing is as usual the
new markingM ′ = M − •t + t•. Moreover, some valuations are reset and we say that
the corresponding transitions are newly enabled.

Different semantics can be chosen in order to realize these resets. This choice de-
pends of what is called thememory policy. For M ∈ NP and t, t′ ∈ T such that
t ∈ En(M) we define in different matters a predicate↑enableds(t′,M, t) with s ∈
{I,A, PA} which is true ift′ is newly enabledby the firing of transitiont from mark-
ing M , and false otherwise. This predicate indicates whether we need to reset the clock
of t′ after firing the transitiont at the markingM .
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I : The intermediate semanticsconsiders that the firing of a transition is performed
in two steps: consuming the tokens in•t, and then producing the tokens int•.
Intuitively, it resets the clocks oft and of the transitions that could not be fired in
parallel witht from the markingM . Formally, the predicate↑enabledI(t′,M, t) is
defined by:

↑enabledI(t
′,M, t) =

(

t′ ∈ En(M − •t + t•) ∧ (t′ /∈ En(M − •t) ∨ t = t′)
)

A: The atomic semanticsconsiders that the firing of a transition is obtained by an
atomic step. It resets the clocks oft and of the transitionst′ which are not enabled
atM . The corresponding predicate↑enabledA(t′,M, t) is defined by:

↑enabledA(t′,M, t) =
(

t′ ∈ En(M − •t + t•) ∧ (t′ /∈ En(M) ∨ t = t′)
)

PA: Thepersistent atomic semanticsbehaves as the atomic semantics except that it does
not reset the clock oft.

↑enabledPA(t′,M, t) =
(

t′ ∈ En(M − •t + t•) ∧ t′ /∈ En(M)
)

Finally, as recalled in the introduction, there are two waysof letting the time elapse
in TPN. The first way, known as thestrong semantics, is defined in such a matter that
time elapsing cannot disable a transition. Hence, when the upper bound of a firing inter-
val is reached then the transition must be fired or disabled. In contrast to that theweak
semanticsdoes not make any restriction on the elapsing of time. In thiswork, we focus
on the weak semantics of TPN.

Definition 4 (Weak semantics of a TPN).Lets ∈ {I,A, PA}. The weaks-semantics
of a TPNN = (P, T,Στ , •(.), (.)

•
,M0, Λ, I) is a timed transition systemJN Ks =

(Q, q0, Στ ,→s) whereQ = NP × R
En(M)
≥0 , q0 = (M0,0) and→s consists of discrete

and continuous moves:

– the discrete transition relation is defined∀a ∈ Στ by:

(M,ν)
a
−→s (M ′, ν′) iff ∃t ∈ T s.t.































Λ(t) = a, and,
t ∈ En(M) ∧ M ′ = M − •t + t•, and,
ν(t) ∈ I(t), and,
∀t′ ∈ En(M ′),

ν′(t′) =

{

0 if ↑enableds(t′,M, t)
ν(t′) otherwise

– the continuous transition relation is defined∀d ∈ R≥0 by:

(M,ν)
d
−→s (M,ν′) iff ν′ = ν + d

We also write a discrete transition(M,ν)
t
−→s (M ′, ν′) to characterize the transi-

tion t ∈ T which allows the firing(M,ν)
Λ(t)
−−−→s (M ′, ν′). We extend this notation to

wordsθ ∈ (T ∪ R≥0)
∗, which correspond to sequences of transitions and delays and
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lead to a unique (if it exists) runρ. We may write this runρ : (M,ν)
θ
−→s (M ′, ν′) and

useUntimed(θ) (resp.Duration(θ)) to denote the wordUntimed(ρ) (resp. to represent
the delayDuration(ρ)). Finally, for s ∈ {I,A, PA}, we write (M,ν) →s (M ′, ν′)

if there existsa ∈ Στ ∪ R≥0 such that(M,ν)
a
−→s (M ′, ν′). The relation→∗

s de-
notes the reflexive and transitive closure of→s. For a TPNN with an initial marking
M0 we define the following reachability sets according to the considered semantics:
Reach(N )s = {(M,v) | (M0,0) →∗

s (M,v)}.

Example 1.We illustrate the impact of the three memory policies in weaksemantics.

Consider the net depicted on Figure 1, and the execution

t2, c, [0, 1]

t1, a, [0,+∞[

•p

Fig. 1.The TPNN1.

(M,0)
1
−→s (M,1)

a
−→s (M,v) whereM(p) = 1. With the

intermediate semantics, both clocks are reset as in the in-
termediate marking, the placep is empty. With the atomic
semantics, the clock associated witht2 is not reset and the
clock associated witht1 is reset because it corresponds to
the fired transition. Finally, with the persistent atomic se-
mantics no clock is reset.

3 Decidability

3.1 Considered problems and known results

AssumeN = (P, T,Στ , •(.), (.)
•
,M0, Λ, I) is a TPN. In this section, we will consider

the following problems fors ∈ {I,A, PA}:

(1) Themarking reachability problem: givenM ∈ NP , does there existν ∈ R
En(M)
≥0

such that(M,ν) ∈ Reach(N )s ?
(2) Themarking coverability problem: givenM ∈ NP , does there existM ′ ∈ NP and

ν ∈ R
En(M ′)
≥0 such thatM ′ ≥ M and(M ′, ν) ∈ Reach(N )s ?

(3) The boundedness problem: does there existb ∈ N such that for all(M,ν) ∈
Reach(N )s and for allp ∈ P , M(p) ≤ b ?

It is well known that the ”untimed” versions of these problems are decidable in the
case of Petri nets. In fact, as mentioned before the marking reachability problem is de-
cidable for Petri nets [12, 13] and the two other problems canbe solved using the Karp
and Miller tree whose construction is given in [11].

From [10], we know that these problems are all undecidable when considering TPN
with strong semantics no matter whether the semantics is intermediate, atomic or per-
sistent atomic. In fact a TPN with strong semantics can simulate a Minsky machine.
A Minsky machine manipulates two integer variablesc1 andc2 and is composed of a
finite number of instructions, each of these instructions being either an incrementation
(q : ci := ci + 1) or a decrementation with a test to zero (q : if ci = 0 goto q′ else
ci := ci − 1; gotoq′′), wherei ∈ {1, 2} andq, q′, q′′ are some labels preceding each
instruction. There is also a special labelqf from which the machine cannot do anything.
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In [15], Minsky proved that the halting problem, which consists in determining if the
instruction labeled withqf is reachable, is undecidable.

It is easy to encode an incrementation using a TPN (or even a PN), with a transition
consuming a token in a place characterizing the current control state and producing a
token in the next control state and in a place representing the incremented counter.

When encoding the decrementation with the test to

•q

q′′

ci

q′

[0, 0]

[1, 1]

Fig. 2. Encoding decremen-
tation with strong semantics.

zero, the strong semantics plays a crucial role. This en-
coding is represented on Figure 2. If there is a token in
the placeci, there is no way for the TPN to produce a
token in the placeq′ because time cannot elapse since
the transition labeled with the interval[0, 0] is firable.
The example of the Figure 2 shows that the strong time
semantics allows to encode priorities (between transi-
tions in conflict) and thus to encode inhibitor arcs. This
construction obviously fails with the weak semantics.

3.2 The peculiar case of TPN with weak intermediate semantics

We prove here that the undecidability results we had before in the case of TPN with
strong semantics do not hold anymore when considering the weak intermediate seman-
tics. Before proving this we introduce some notations. For aTPNN = (P, T,Στ , •(.),
(.)

•
,M0, Λ, I), we denote byNU the untimed PN obtained by removing fromN the

componentI. Furthermore given a set of configurationsC ⊆ NP × RT
≥0 of N , we de-

note byUntime(C) the projection ofC over the setNP . Fors ∈ {I,A, PA}, we have
by definition of the different semantics thatUntime(Reach(N )s) ⊆ Reach(NU )
and as shown by the example given in Figure 2 this inclusion isstrict in the case of
the strong semantics. When considering theweak intermediate semantics, we prove
that from any sequence of transitions∆ firable inJNU K, we can effectively compute a
reordering of∆, and associated timestamps, leading to a correct run ofJN KI .

Theorem 5. For all TPNN , Untime(Reach(N )I) = Reach(NU ).

According to the previous remark, we only have to prove thatReach(NU ) ⊆
Untime(Reach(N )I). Therefore, we first state the following property expressing that
if we reduce the intervals associated with transitions, this restricts the set of reachable
configurations:

Lemma 6. LetN , N ′ be two TPN identical except on their last component associating
intervals to transitions, say respectivelyI andI ′. If we haveI ′(t) ⊆ I(t) for anyt ∈ T ,
thenReach(N ′)I ⊆ Reach(N )I .

In the sequel, we will consider TPN in which intervals are reduced to singletons. That is
we haveI(t) = [eft(t), lft(t)] with eft(t) = lft(t) for all transitionst ∈ T . The proof
of the result in this particular case thus entails the resultin the general case. Before to
proceed we introduce additional definitions for TPN.
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Given a TPNN , a markingM of N and ∆ a multiset of transitions ofN , we

define the setCandidate(M,∆) = {t ∈ ∆ | M
t
⇒ M ′

∆\t

|=⇒}. We will then say that a
configuration(M,ν) is compatiblewith a multiset∆ iff:

M
∆

|=⇒ and∀t ∈ Candidate(M,∆), ν(t) ≤ lft(t).

We now prove the following proposition, which intuitively states how to turn a
sequence of transitions in the untimed Petri net into a timedexecution of the TPN.

Proposition 7. LetN be a TPN with singleton intervals and(M,ν) be a configuration
of N compatible with some multiset of transitions∆. Then, for any transitiont ∈
Candidate(M,∆) such thatδ(t) = lft(t) − ν(t) is minimal (among the transitions of
Candidate(M,∆)), we have:

(i) (M,ν)
δ(t)
−−→I (M,ν + δ(t))

t
−→I (M ′, ν′),

(ii) (M ′, ν′) is compatible with∆′ = ∆ \ t,

Proof. Let t ∈ Candidate(M,∆) be such that for allt′ ∈ Candidate(M,∆), we have
lft(t) − ν(t) = δ(t) ≤ δ(t′) = lft(t ′) − ν(t′).

(i) First the time elpasing transition(M,ν)
δ(t)
−−→I (M,ν + δ(t)) is possible as we

consider the weak semantics. Second, the discrete transition (M,ν + δ(t))
t
−→I

(M ′, ν′) is also possible asν(t) + δ(t) = lft(t) by definition ofδ(t), and since
the intervals associated with transitions are all singletons.

(ii) To prove compatibility, first note thatM ′
∆′

|=⇒ becauset ∈ Candidate(M,∆).
Second, lett′ ∈ Candidate(M ′,∆′). We distinguish two cases according to the
value of the predicate↑enabledI(t,M, t′):

– If ↑enabledI(t,M, t′) is true, then we haveν′(t′) = 0 and the result follows.
– Otherwise, the definition of↑enabledI(t,M, t′) implies thatM ≥ •t + •t′.

As a consequence, we haveM
t′

⇒
t
⇒. Then ast′ ∈ Candidate(M ′,∆ \ t) we

get thatt′ ∈ Candidate(M,∆). Due to the minimality ofδ(t) among the set
Candidate(M,∆), we obtainν′(t′) = ν(t′) + δ(t) ≤ ν(t′) + δ(t′) = lft(t ′)
as desired.

This concludes the proof. ⊓⊔

The inclusionReach(NU ) ⊆ Untime(Reach(N )I) in the case of TPN with sin-
gleton intervals easily follows from this result. Indeed, consider some reachable mark-
ing M in Reach(NU ). There exists a sequence of transitions that leads toM from
M0, we represent it through some multiset∆. As initially all clock valuations are null
in JN KI , the configuration(M0,0) is thus compatible with∆. An induction on the size
of ∆, together with Proposition 7, thus gives the result. Note that Proposition 7 de-
scribes an effective procedure to compute a timed executionof JN KI : simply consider
the transitions that are candidates, and choose one with theearliest deadline.

Using the decidability results in the case of PN, we obtain the following corollary:

Corollary 8. The marking reachability, marking coverability and boundedness prob-
lems are decidable in the case of TPN with weak intermediate semantics.
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3.3 Undecidability for weak atomic and weak persistent atomic semantics

We consider now the case of the weak atomic and weak persistent atomic semantics. As
for the strong semantics, but with a more involved construction, we will show that it is
possible to encode the behavior of a Minsky machine into a TPNwith weak (persistent)
atomic semantics from which we will deduce the undecidability results. The TPN we
build contains a place for each counterci with i ∈ {1, 2} and a place for each labelq of
the considered Minsky machine. Furthermore, when executing the net, we will preserve
the invariant that there is a single place corresponding to alabelq which is marked.

•q

[0, 0]

t1

p1
[1, 1]

t2

p2

ci

[0, 0]

t3

[0, 0] t5

2 p4

[0, 0]

t4 q′

p3

q′′

Fig. 3.Encoding decrementation with weak atomic or persistent atomic semantics.

Encoding an incrementation can be done as in the strong semantics. Figure 3 shows
how to encode the instruction (q : if ci = 0 gotoq′ elseci := ci − 1; gotoq′′) using a
TPN with weak atomic or persistent atomic semantics. We now explain the idea of this
encoding. We consider the two following cases for the net shown in Figure 3:

1. Assume that the only place which contains a token is the placeq, which means we
are in the case where the value ofci is equal to0 (no token in placeci). The net
then can only fire the sequence of transitionst1, t2, t3 and thent4 and finally it
reaches a configuration where the only marked place isq′.

2. Assume now that there is a token in placeq and that there is at least one token in
placeci. We are in the case where the value ofci is different of0. We have the
following sequence of transitions:

– only the transitiont1 is firable, so the net fires it;
– afterwards the transitiont2 and the transitiont3 are firable. In fact, since we

are considering weak semantics the deadline oft3 can be ignored thus making
time passage in order to firet2. Note that if the net chooses to firet3, it will
reach a deadlock state where no more transitions can be fired without having
put a token in the placeq′ or q′′, therefore we assume that the transitiont2 is
first fired;

– after having waiting one time unit and firingt2, the only transition which can
be fired ist5. In fact since we are considering atomic (or persistent atomic)
semantics, firingt2 does not maket3 newly enabled, whereas the weak inter-
mediate semantics would have reset the clock associated tot3. So the net fires
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t5 consuming the token inp2, p3 and two tokens inci (at least one was present
from the initial configuration and the first firing oft2 added another one);

– finally the net ends in a configuration with one token inq′′ and the placeci

contains one token less than in the initial configuration.

The above construction allows to reduce the halting problemfor Minsky machine
to the marking coverability problem for weak (persistent) atomic semantics. From this
we can also deduce the undecidability for the marking reachability and boundedness
problems. Hence:

Theorem 9. The marking reachability, marking coverability and boundedness prob-
lems are undecidable for TPN with weak atomic or weak persistent atomic semantics.

In comparison with what occurs in the case of the strong semantics, this result is
surprising, and it reveals the important role played by the memory policy when consid-
ering the weak semantics. Recall that as we have seen earlier, with the strong semantics,
these problems are undecidable no matter which memory policy is chosen.

Finally, in the above construction, we can replace the edgesbetweenp2 and t2
by a read arc. Consequently, the considered problems are also undecidable for weak
intermediate TPN with read arcs, unlike what happens for timed-arc Petri nets [6].

4 Expressiveness

4.1 Preliminaries

Let S = (Q, q0, Στ ,→) be a TTS. We define the relation→֒⊆ Q× (Σ ∪R≥0)×Q by:

– for d ∈ R≥0, q
d

−֒→ q′ iff there is a runρ in S such thatρ = q
w
−→ q′ and

Untimed(w) = ε andDuration(w) = d,

– for a ∈ Σ, q
a

−֒→ q′ iff there is a runρ in S such thatρ = q
w
−→ q′ and

Untimed(w) = a andDuration(w) = 0.

This allows us to define the following notion:

Definition 10 (Weak Timed Bisimulation). Let S1 = (Q1, q
1
0 , Στ ,→1) and S2 =

(Q2, q
2
0 , Στ ,→2) be two TTS and∼ be a binary relation overQ1 × Q2. ∼ is a weak

timed bisimulation betweenS1 andS2 if and only if:

– q1
0 ∼ q2

0 , and,

– for a ∈ Σ ∪ R≥0, if q1
a

−֒→1 q′1 and if q1 ∼ q2 then there existsq′2 ∈ Q2 such that

q2
a

−֒→2 q′2 andq′1 ∼ q′2; conversely ifq2
a

−֒→2 q′2 and if q1 ∼ q2 then there exists

q′1 ∈ Q1 such thatq1
a

−֒→1 q′1 andq′1 ∼ q′2.

Two TTSS1 andS2 areweak timed bisimilarif there exists a weak timed bisimu-
lation betweenS1 andS2. We then writeS1 ≈ S2.

10



Definition 11 (Expressiveness w.r.t. Weak Timed Bisimilarity). The classC of TTS
is less expressive thanC′ w.r.t. weak timed bisimilarity if for all TTSS ∈ C there is a
TTSS′ ∈ C′ such thatS ≈ S′. We writeC ⊑ C′. If moreover there is aS′ ∈ C′ such
that there is noS ∈ C with S ≈ S′, thenC is strictly less expressive thanC′. We then
write C ⊏ C′.

For s ∈ {I,A, PA}, we will denote byT PN s the class of TTS induced by TPN
with s-semantics.

4.2 Atomic versus Persistent Atomic semantics

In [4], the authors prove that for TPN with strong semantics,the persistent atomic se-
mantics is more expressive than the atomic semantics. We prove here that this result
still holds in the case of the weak semantics. Intuitively, as it is shown on Figure 4,
from a TPN with atomic semantics, we build another TPN in which we duplicate each
transition. During an execution of this last TPN, at most oneof the transitions obtained
after duplication is enabled, and when it is fired it cannot beenabled again at the next
step whereas the other one can. This trick allows us to simulate the atomic semantics
with the persistent atomic one.

t

Λ(t)
I(t)

input places

output places

t1

Λ(t)
I(t)

t2

Λ(t)
I(t)

•p1
t p2

t

input places

output places

Fig. 4. From atomic to persistent atomic semantics.

Proposition 12. For all TPNN , we can build a TPNN ′ such thatJN KA ≈ JN ′KPA.

Proof. LetN = (P, T,Στ , •(.), (.)
•
,M0, Λ, I) be a TPN overΣτ . Figure 4 represents

the construction of the TPNN ′. Formally, its set of placesP ′ is equal toP ∪ {p1
t , p

2
t |

t ∈ T} and its set of transitionsT ′ contains two copiest1 and t2 of each transition
t ∈ T . These copies are connected in the same way as the transitiont is in N , plus
additional edges to the placesp1

t andp2
t , as depicted on Figure 4. Finally the initial

marking ofN ′ is M ′
0 such that for allp ∈ P , M ′

0(p) = M0(p) and for all t ∈ T ,
M ′

0(p
1
t ) = 1 andM ′

0(p
2
t ) = 0.

We now consider the relation∼⊆ (NP ×RT
≥0)× (NP ′

×RT ′

≥0) between the config-
urations ofJN KA and the ones ofJN ′KPA defined by(M,ν) ∼ (M ′, ν′) iff:

– for all p ∈ P , M(p) = M ′(p) and for allt ∈ T , M ′(p1
t ) + M ′(p2

t ) = 1,
– for all t ∈ T , for all i ∈ {1, 2} if t ∈ En(M) andti ∈ En(M ′) thenν(t) = ν′(ti).

It is then easy to verify that the relation∼ is a weak timed bisimulation. ⊓⊔
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We will now prove that the inclusion we obtain in the above proposition is strict. But
before, we address a technical point which we will use to delay some sequences of
transitions in weak TPN.

Lemma 13. Let s ∈ {I,A, PA} and consider a TPNN such thatb is the smallest
positive upper bound of the intervals ofN . Let ρ be a run inJN Ks of the formρ :

(M,ν)
δ>0
−−→s (M,ν + δ)

t1−→s · · ·
tn−→s, such that there exists a valueη ≥ 0 verifying:

(i) ∀i ∈ {1, . . . , n}, ti ∈ En(M) ⇒ ν(ti) ≤ η,
(ii) η + δ < b

2

Then the sequenceρ′ : (M,ν)
δ+ b

2−−−→s (M,ν′)
t1−→s · · ·

tn−→s is firable inJN Ks.

Proof. We introduce the following notations describing the runρ:

(M,ν)
δ>0
−−→s (M,ν + δ) = (M1, ν1)

t1−→s (M2, ν2)
t2−→s (M3, ν3) · · · (Mn, νn)

tn−→s

(Mn+1, νn+1).

We split the set of indices{1, . . . , n} into two disjoint subsets,I=0 = {i ∈ {1, . . . , n} |
νi(ti) = 0}, andI6=0 = {i ∈ {1, . . . , n} | νi(ti) 6= 0}. These two sets contain respec-
tively the index of the transitions fired with a null (respectively non null) valuation.

We first show the following property:

∀i ∈ I6=0, 0 < νi(ti) <
b

2
and[νi(ti), b[⊆ I(ti) (1)

Consider the first part of this property. Note that these valuations are strictly positive
by definition ofI6=0, thus proving the left inequality. Consider now the right inequality,
and leti ∈ I 6=0. Since the sequencet1 . . . ti is instantaneous and follows a non null
delay step,ti is never newly enabled duringt1 . . . ti−1 (otherwiseνi(ti) = 0). As a
consequence, we haveνi(ti) = ν(ti) + δ, and by properties(i) and(ii) of ρ, we obtain
νi(ti) ≤ η + δ < b

2 , as desired.
By definition of b, and sinceti is firable from(Mi, νi), the inclusion[νi(ti), b[⊆

I(ti) holds for anyi ∈ I6=0.

We consider now the runρ′ : (M,ν)
δ+ b

2−−−→s (M,ν + δ + b
2 ) = (M1, ν

′
1)

t1−→s

(M2, ν
′
2)

t2−→s (M3, ν
′
3) · · · (Mn, ν′

n)
tn−→s (Mn+1, ν

′
n+1). Note that the increasing of

the delay is possible because of the weak semantics: in the strong one, the modification
of the delay step could be impossible. To prove that this sequence is firable inJN Ks,
we proceed by contradiction. Assume there exists a positioni ∈ {1, . . . , n} such thatti
is not firable from(Mi, ν

′
i), and pick the smallest position verifying this property. We

distinguish two cases:

1. If i ∈ I=0. Then we haveνi(ti) = 0. Since the instantaneous sequencet1 . . . ti
immediately follows inρ the delay stepδ > 0, ti is newly enabled by the firing
of t1 . . . ti−1. Since this property only depends on discrete markings, which are
preserved inρ′, ti is also newly enabled by the firing oft1 . . . ti−1 in ρ′. As a
consequence, we haveν′

i(ti) = 0 = νi(ti), thus proving thatti is firable inρ′,
yielding a contradiction.

12



2. If i ∈ I6=0. Then we haveνi(ti) 6= 0. As already mentioned above, we have in
this case thatti is never newly enabled duringt1 . . . ti−1 in ρ. Since the discrete
markings are preserved, this conclusion holds also inρ′. As a consequence, we have
νi(ti) = ν(ti) + δ andν′

i(ti) = ν(ti) + δ + b
2 , what yieldsν′

i(ti) = ν(ti) + b
2 .

Using Property(1), we obtainν′
i(ti) ∈ I(ti), and thenti is firable from(Mi, ν

′
i),

contradicting the assumption.

Finally, we have obtained a contradiction in both cases, thus proving thatρ′ is firable in
JN Ks. ⊓⊔

We now consider the TPNN2 represented on Figure 5. Equipped
a, [0, 1]

Fig. 5.The TPNN2.

with persistent atomic semantics, it accepts the set of timed
words composed of lettersa occurring before time1. We will
prove that this timed language cannot be accepted by any TPN
equipped with the weak atomic semantics.

Proposition 14. There exists no TPNN (even unbounded) s.t.JN KA ≈ JN2KPA.

Proof. Assume there exists a TPNN such thatJN KA ≈ JN2KPA. Denote byN the
number of transitions ofN , by b the smallest positive upper bound of the intervals of
N , and consider a timed wordw = (a, η1)(a, η2) . . . (a, ηk) such that∀i, 1− b

2 < ηi <
ηi+1 < 1, andk ≥ N + 1.

This timed wordw is recognized byJN1KPA and there exists thus a run ofJN KA

alongw. We denote it byρ and decompose it as follows :

ρ :
θ0−→A

d1−→A
θ1−→A

t1a−→A

θ′

1−→A · · ·
di−→A

θi−→A

ti
a−→A

θ′

i−→A · · ·
dk−→A

θk−→A

tk
a−→A

To obtain this decomposition we proceed as follows. We denote bytia thei-th tran-
sition labelled bya. Then for each positioni, we isolate the last delay step occuring
before the transitiontia (it exists sinceηi > ηi−1) and denote it bydi. Then we gather
all the internal transitions occuring between this delay step and the transitiontia, and
denote this sequence byθi. The transitions betweenti−1

a and the delay step consti-
tute the sequenceθ′i−1. In particular, the following properties hold for any position i :
Λ(tia) = a, Untimed(θi) = Untimed(θ′i) = ε, di > 0, Duration(θi) = 0, andtia occurs
at timeηi.

We claim there exists an indexi ∈ {1, . . . , k} such that each transitiont appearing
in θi tia has already been fired sinceθ0, i.e.t also appears inθ1 t1a θ′1 · · · θi−1 ti−1

a θ′i−1.
By contradiction, if it is not the case, then we can find, for each indexi ∈ {1, . . . , k}, a
transition, denotedti, that never appears before. The choice ofk verifying k ≥ N + 1
then implies that there exist two positionsi 6= j such thatti = tj , thus yielding a
contradiction. We can now fix an indexi verifying the above described property.

We now show that Lemma 13 can be applied to the part ofρ associated with the
sequencedi θi tia. More precisely,(M,ν) is the configuration reached after firing
θ0 · · · ti−1

a θ′i−1, the delayδ is equal todi, the sequencet1 · · · tn corresponds toθi tia,
andη is defined as(ηi − di) − (1 − b

2 ). In the atomic semantics, when a transition is
fired, its clock is reset if it is still enabled. This propertyallows, together with timing
constraints on the wordw, to verify hypotheses(i) and(ii) of the Lemma 13. Indeed,
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since each transition inθi tia has been reset alongθ1 t1a θ′1 · · · θ
′
i−1, it has been reset

since timeη1. Since the global time associated with(M,ν) is equal toηi − di, these
valuations are bounded by above by the value(ηi −di)− τ1 ≤ (ηi −di)− (1− b

2 ) = η.
Second, we haveη+δ = ηi−(1− b

2 ) < b
2 , as desired (this follows from the inequalities

1 − b
2 < ηi < 1).

Finally, Lemma 13 thus allows to delay ofb
2 the firing of the sequenceθi tia. In

particular, this will produce a lettera at timeηi + b
2 > 1. The TTSJN KA thus accepts

a timed word not recognized byJN2KPA, providing a contradiction. ⊓⊔

Using the results of Propositions 12 and 14, we deduce that:

Theorem 15. T PNA ⊏ T PNPA.

4.3 About Atomic and Intermediate policies in weak and strong semantics

In this subsection, we discuss the comparison of the intermediate and atomic policies.
As we will see, the situation is more complex than in the previous comparison.

On the inclusion ofT PN I into T PNA. For thestrong semantics, a construction has
been proposed in [4] to transform any TPN with intermediate policy into an equivalent
(w.r.t. weak timed bisimilarity) TPN with atomic semantics. A first attempt was thus to
adapt this construction for the weak semantics. But studying this construction, we no-
ticed that it is erroneous (even for the strong semantics). We present below an example
exhibiting the error.

t′, c, [0, 1]

t, a, [0, 1]

••p

N3

t′−, c, [0, 1]

t′+, τ, [0, 0]

t−, a, [0, 1] t+, τ, [0, 0]

••p

pt

pt′

N
′

3

Fig. 6.A counter example to the construction of [4].

Example 2.Consider the netN3 depicted on the left of Figure 6. The application of
the construction proposed in [4] leads to the netN ′

3 depicted on the right of Figure 6.
According to [4], we should have, under thestrong semantics, the relationJN3KI ≈
JN ′

3KA. However, it is easy to verify that in the TTSJN ′
3KA the letterc can be read

after 2 times units (with the timed word(a, 1)(a, 1)(τ, 1)(τ, 1)(c, 2)) whereas it is not
possible inJN3KI , thus proving that the construction proposed in [4] is erroneous.

This example leaves open the question of the inclusion ofT PN I into T PNA for
the strong semantics, and then for this semantics both inclusions are left open. For weak
semantics, this inclusion is also open, but we show below that the converse inclusion is
false.
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Non inclusion ofT PNA into T PN I . We exhibit a TPN with atomic semantics which
cannot be expressed in an equivalent way by any TPN with intermediate semantics (with
weak elapsing of time). This is formally stated in the Proposition below. We consider
the TPNN1 represented on Figure 1. Interpreted in weak atomic semantics, the firing of
thea-labelled transition does not newly enable transition labelled by c. This transition
thus shares a token with transitiona while preserving a time reference to the origin of
global time, what is impossible in intermediate semantics.

Proposition 16. There exists no TPNN (even unbounded) such thatJN KI ≈ JN1KA.

Proof. We proceed by contradiction and assume there exists such a TPN N , and denote
by N its number of transitions, andb the smallest positive upper bound of its intervals.
As in the proof of Proposition 14, we first exhibit a particular executionρ of JN KI :

Lemma 17. Let (ηi)1≤i≤k be a set of timestamps such that for any1 ≤ i ≤ k, 1− b
2 <

ηi < ηi+1 < 1 andk ≥ N + 1. There exists a runρ in JN KI of the following form:

ρ :
1− b

2−−−→I
θ1−→I

d1−→I

θ′

1−→I

t1a−→I

θ′′

1−→I · · ·
θi−→I

di−→I

θ′

i−→I

ti
a−→I

θ′′

i−→I · · ·
θn−→I

dn−→I

θ′

n−→I

tn
a−→I

θ′′

n−→I

such that for any positioni, Λ(tia) = a, the transitiontia occurs at timeηi, di > 0,
Untimed(θi) = Untimed(θ′i) = Untimed(θ′′i ) = ε, Duration(θ′i) = Duration(θ′′i ) = 0,
and there exists a transitiontic, labelled byc, newly enabled by the last transition of
tia θ′′i and (immediately) firable from the configuration reached after θ′′i .

Proof. We present here the details of the construction of the runρ. This construction
proceeds in three steps.

First step : construction of the structure of ρ. This step is the most involved
one. We deeply use the bisimulation property betweenJN1KA and JN KI to build a
first sequence. Figure 7 illustrates this construction. A dashed arrow between two con-
figurations meens that these configurations are bisimilar. The direction of this arrow
indicates which implication is used to obtain the bisimilarity (from JN1KA to JN KI ,
or conversely). In this figure, we omit the indexI andA which should be associated to
each of the step. We now detail step by step how this Figure reads. Initially, due to weak
semantics, the netN in intermediate semantics can choose to delay1− b

2 time units. By
bisimulation (and because there are no silent transitions inN1), the same delay leads to
a bisimilar configuration inJN1KA, thus indicated by a bottom-up dashed arrow. From
this configuration one can inJN1KA delayη1 − (1 − b

2 ) time units3 and then fire the
a transition. By bisimulation, there exists a path inJN KI , written asu1t

1
au′

1, leading
to a bisimilar configuration and such thatu1 only contains silent transitions and is of
duration exactlyη1 −η0, t1a is labelled bya, andu′

1 is labelled with internal actions and
has a null duration. The bisimilarity is indicated by a top-down dashed arrow since it is
the existence of a path inJN1KA that implies the existence of a path inJN KI . Next, one
can fire instantaneouslyc in JN1KA what implies the existence of a pathσ1t

1
cσ

′
1, leading

to a bisimilar configuration, and such thatσ1 andσ′
1 are labelled by internal actions and

of null duration, andtic is labelled byc. Then, we use the bisimulation property in the
converse direction: the configuration reached after the prefix σ1, which is labelled by

3 We denote byη0 the value1 − b

2
.
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internal actions and of null duration, is still bisimilar with the configruation ofJN1KA

reached after thea transition, as indicated by the bottom-up dashed arrow (theonly path
in JN1KA of null duration and labelled by internal actions is the empty path). Then the
same reasoning is applied from these two bisimilar configurations, and can be repeated
arbitrarily many times.

JN KI :

JN1KA :

(M0, 0)

(q, 0)

(M0, 1 − b

2
)

(q, 1 − b

2
)

1 − b

2

1 − b

2 η1 − η0 a

u1 t1a u′

1

c

σ1

t1c
σ′

1

η2 − η1 a

u2 t2a u′

2

c

σ2

t2c
σ′

2

Fig. 7.Using bisimulation to buildρ.

Second step : definition ofθi, θ′i and di. This step is much simpler. We simply split
the pathsui in three (eventually empty) parts. The duration ofui is equal toηi−ηi−1 >
0, thus we can consider the last positive delay step appearingin ui, and denote it bydi.
Then we simply writeui = θi · di · θ

′
i.

Third step : definition of θ′′i . In this last step, we will define the pathθ′′i as a prefix
of the pathu′

i ·σi. This path possesses the following properties : its duration is null, it is
labelled by internal actions, and there exists ac labelled transitiontic immediately firable
after it. The only property missing is that its last transition newly enables transitiontic.
To obtain this property, we will show that we can find a prefix ofu′

i · σi having this ad-
ditional property. Therefore we prove the following lemma,specific to the intermediate
semantics:

Lemma 18. Let N be a TPN, and consider an execution ofJN KI , denoted byρ :

(M1, v1)
t1−→I (M2, v2)

t2−→I · · · (Mn, vn)
tn−→I (Mn+1, vn+1)

t
−→I , such that for any

i ∈ {1, . . . , n}, ↑enabledI(t,Mi, ti) = false.

Then, for anyi ∈ {1, . . . , n}, the executionρi : (Mi, vi)
t
−→I

ti−→I exists inJN KI .

Proof (of Lemma 18).By definition of the predicate↑enabledI , and sincet is newly
enabled by noti and firable from(Mn+1, vn+1), we have thatt is enabled in everyMi

and, because the sequencet1 . . . tn is instantaneous (no delay step),vn+1(t) = vi(t) for
anyi. Thus,t is firable from the configuration(Mi, vi). Moreover, we can notice, asti
is enabled inMi, that↑enabledI(t,Mi, ti) = false implies thatti is still enabled after
the firing oft from Mi, and has not been newly enabled:↑enabledI(ti,Mi, t) = false.
As a consequence,ti is firable from the configuration reached after firingt, thus proving
the Lemma. ⊓⊔
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Lemma 18 entails that there exists a transition in the sequencetiau′
iσi which newly

enables the transitiontic. Indeed, if it is not the case, the result of Lemma 18 implies
that after the firing ofui, one can first fire the transitiontic, and immediately after fire
the transitiontia. This leads to the production of a lettera after the letterc, which
in impossible inJN1KA, thus leading to a contradiction. Finally, we defineθ′′i as the
(eventually empty iftic is newly enabled bytia) prefix ofu′

i · σi up to the first transition
that newly enablestic. This concludes the proof of the existence of the sequenceρ. ⊓⊔

We now return on the proof of Proposition 16. First, we claim that there exists an index
i ∈ {1, . . . , k} such that each transitiont appearing inθ′i tia θ′′i has already been fired
since timeη1, i.e. t also appears inθ′1 t1a θ′′1 · · · θi−1 θ′i−1t

i−1
a θ′′i−1θi. The reasonning

is similar to the one of the proof of Proposition 14: by contradiction, if there exists no
such position, then we can find, for each indexi ∈ {1, . . . , k}, a transition, denotedti,
that never appears before. The choice ofk verifying k ≥ N + 1 then implies that there
exist two positionsi 6= j such thatti = tj , thus yielding a contradiction. We can now
fix an indexi verifying the above described property.

We now show that Lemma 13 can be applied to the portion ofρ associated with

the sequence
di−→

θ′

i−→
ti
a−→

θ′′

i−→. More precisely, let(M,ν) be the configuration reached
after firing (1 − b

2 )θ1 . . . ti−1
a θ′′i−1θi, the delayδ is equal todi, the sequencet1 · · · tn

corresponds toθ′it
i
aθ′′i , andη is defined as(ηi − di) − (1 − b

2 ). In the intermediate
semantics, when a transition is fired, its clock is reset if itis still enabled. This property
allows, together with timing constraints on the runρ, to verify hypotheses(i) and(ii)
of the Lemma 13. Indeed, we first have that each transition inθ′i tia θ′′i has been reset
since timeτ1. Since the global time associated with(M,ν) is equal toηi − di, these
valuations are bounded by above by the value(ηi−di)−η1 ≤ (ηi−di)− (1− b

2 ) = η.
Second, we haveη+δ = ηi−(1− b

2 ) < b
2 , as desired (this follows from the inequalities

1 − b
2 < τi < 1).

Lemma 13 thus allows to delay ofb2 time units the firing of thesequenceθ′i tia θ′′i .
Moreover, as the transitiontic is newly enabled by the last transition oftia θ′′i , and can
be immediately firable afterθ′′i in ρ, we deduce that this immediate firing can also be
performed in the delayed execution. We thus obtain an execution in JN KI with a c
action following ana action after time1, which is impossible inJN1KA, thus yielding a
contradiction. ⊓⊔

5 Conclusion

We have studied in this paper the model of Time Petri Nets under a weak semantics of
time elapsing, allowing any delay transition. We have first proven that for the interme-
diate memory policy, the set of reachable markings coincides with the reachability set
of the underlying untimed Petri net. As a consequence, many verification problems are
decidable for weak intermediate TPN. On the other hand, we have proven that the two
other memory policies, namely atomic and persistent atomic, allow to simulate Minsky
machines and thus are undecidable. Finally, we have studiedexpressiveness and have
proven that(i) the atomic semantics is strictly less expressive than the persistent atomic
one and(ii) the atomic semantics is not included in the intermediate one.
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In further work, we plan to investigate properties concerning executions of weak
intermediate TPN; such as time-optimal reachability, or LTL model checking. Indeed,
while discrete markings are the same, the executions are different from those accepted
by the underlying Petri net. Concerning expressiveness, weconjecture that intermediate
and atomic semantics are uncomparable in general, and that bounded weak TPN are
strictly less expressive than timed automata (without invariants).
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