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Abstract. We consider the model of Time Petri Nets where time is associated
with transitions. Two semantics for time elapsing can be considered: thegstro
one, for which all transitions are urgent, and the weak one, for which ¢ane
elapse arbitrarily. It is well known that many verification problems sulhe
marking reachability are undecidable with the strong semantics. In thig,pape
we focus on Time Petri Nets with weak semantics equipped with three differ-
ent memory policies for the firing of transitions. We prove that the rdaititya
problem is decidable for the most common memory policy (intermediatt) an
becomes undecidable otherwise. Moreover, we study the relativessiypeness

of these memory policies and obtain partial results.

1 Introduction

For verification purposeg.g.in the development of embedded platforms, there is an
obvious need for considering time features and the studynwéd models has thus
become increasingly important. For distributed systenfferdnt timed extensions of
Petri nets have been proposed which allow the combinati@nafnbounded discrete
structure with dense-time variables.

There are several ways to express urgency in timed systentis@ussed in [16].
In timed extensions of Petri nets, two types of semanticeangidered for time elaps-
ing. In theweaksemantics, all time delays are allowed whereas insthengone, all
transitions are urgenitge. time delays cannot disable transitions. While for model# wit
finite discrete structure (such as timed extensions of bediiRetri nets or timed au-
tomata [3]), standard verification problems are decidatébth semantics, for mod-
els with infinite discrete structure, the choice of the setmarhas a deep influence on
decidability issues. In this work, we consider the modeliofid Petri Nets [14] (TPN)
where clocks are associated with transitions, and whiclomsnsonly considered un-
der a strong semantics. In this model, all the standard watidin problems are known
to be undecidable [10]. On the other hand, in the model of diaue Petri nets [5],
where clocks are associated with tokens and which is eqdipjith a weak semantics,
many verification problems are decidable (coverabilityifmedness...). Indeed, this
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semantics entails for this model monotonicity propertidsciv allow the application
of well-quasi-ordering techniques, see [8, 2, 1]. Note haw¢hat the reachability of a
discrete marking is undecidable, as proven in [17]. A natguastion, which had sur-
prisingly no answer until now, as mentioned in a recent suorethe topic [7], is thus
to study TPN under a weak semantics of time elapsing.

The time-elapsing policy states which delays are allowed @onfiguration. The
memory policy is concerned with the resets of clocks, anditimely specifies, when
firing a transition, which timing informations are presatvéhe original model of Mer-
lin [14] is equipped with arintermediatesemantics which considers the intermediary
marking bewteen consumption and production. Two others engpolicies have been
considered in [4] (the@tomicand thepersistent atomicin which the firings of transi-
tions are performed atomically. While these policies carmbeght as cosmetic for the
model of TPN, the results we obtain show this is not the case.

We are interested in the impact of the weak semantics on TRNnguishing be-
tween the different memory policies. We first study the dability issues, and prove
that for TPN with weak intermediate semantics, a discretekimg is reachable if and
only if it is reachable in the underlying untimed Petri nes @& corollary, the problem
of the marking reachability (and also coverability, bouthtiess) is decidable for this
model. More surprisingly, we also prove that when changigrhemory policy this
result does not hold anymore and the verification problemt®ine undecidable. In
this work, we only consider untimed verification problemsl are plan to study timed
versions in future work. We then compare w.r.t. weak timentilarity (weak stands
here for silent transitions) the expressive power of weakl Tédking at the different
memory policies. We first prove that the persistent atomicasdics is strictly more ex-
pressive that the atomic semantics. Then, concerning atana intermediate memory
policies, we provide a TPN which shows that the atomic seitsig not included in
the intermediate one.

Related worksAs mentioned above, there are, up to our knowledge, only fewy
works considering TPN under a weak semantics. In [7] theaaathave proven that the
weak intermediate semantics and the strong intermediatargtecs are uncomparable.
In another line of work, [9] considers TPN under a semantib&kvis a kind of com-
promise between the standard strong and weak semanticg.pfbiede translations
between this model and timed state machines.

2 Definitions

Let X be a finite alphabet.* is the set of finite words oveX. We noteX, = Y U {r}
wherer ¢ X represents internal actioreswill represent the empty word. The s&tsQ,
Q>0, R andR > are respectively the sets of natural, rational, non-negational, real
and non-negative real numbersvAluationv over a finite sefX is a mapping irfR<,,.
Forv € RE andd € Rx, v+d denotes the valuation defined by+d) (z) = v(z)+d.
We note0 the valuation which assigns to every= X the value0.

As commonly in use for Time Petri Nets, we will associateaadil intervals with
transitions. Note that we could handle intervals with baugiten as real numbers if
we abstract the problem of comparison of real numbers. Wsigenthe sef (Q) of



non-empty intervalga, b) with non-negative rational boundsb € Q. We consider
both open and closed bounds, and also allow a right opentmfiound as in2, +oo].

2.1 Petri Nets

Definition 1 (Labeled Petri Net (PN)).A Labeled Petri Net over the alphahBt is a
tuple (P, T, X.,*(.),(.)*, My, A) where:

— Pis afinite set ofplaces

— T'is afinite set otransitionswith PN T = §,

- *(.) € (N")T is thebackwardncidence mapping,
- ()°® € (N?)T is theforwardincidence mapping,
— M, € N¥ is theinitial marking,

— A:T — X, is thelabeling function

As commonly in use in the literature, the vectdt) (resp.(¢)*) in N” is noted
*t (resp.t®). The semantics of a PN = (P, T, X,,*(.),(.)*, My, A) is given by its
associated labeled transition systgn] = (NP, My, ¥, , =) where=C NF x ¥ x
N¥ is the transition relation defined by == M'iff 3t € Tst.A(t) = a A M >
*t NM' = M — *t + t*. For convenience we will sometimes also write, for T,
M == M'if M > *tand M’ = M — °t + t*. We also writeM = M’ if there
existsa € X, such thatM == M’. The relation=* represents the reflexive and
transitive closure of>-. We denote byReach (V) the set of reachable markings defined
by {M € N¥ | My =* M}.

It is well known that for PN the reachability problem whichnsists in determining
whether a given marking/ belongs toReach(\) is decidable; it has in fact been
proved independently in [13] and [12].

We introduce a last notation concerning Labeled Petri N&iteen a PNA/, a mark-

A
ing M of N and a multi-setA = (¢4, ..., t,) of transitions of\/, we write M = M’

if and only if the multi-setA can be fired from\/, meaning that there exists an ordering
of transitions inA, represented as a permutatipof {1, ..., n}, such that the sequence

. ty te, to(n .
of firings M -3 M, =22, M. .. =20 A exists in[A].

2.2 Timed Transition Systems

Timed transition systems describe systems which combswete and continuous evo-
lutions. They are used to define the behavior of timed systaumb as Time Petri
Nets [14] or Timed Automata [3].

Definition 2 (Timed Transition System (TTS)). A timed transition systerover the
alphabetX’; is a transition systen$ = (Q, o, >, —), Where the transition relation
—C @ x (X, URsq) x Q consists of discrete transitions = ¢’ (with a € X)

representing an instantaneous action, and continuoussitems ¢ 4, q (withd €
R>) representing the passage @ftinits of time.

Moreover, we require the following standard propertiesTos :
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— TIME-DETERMINISM : if ¢ 4, q' andgq 4, ¢" with d € R, then¢g’ = ¢”,

— 0-DELAY : ¢q LR q,

— ADDITIVITY :if ¢ 4, ¢’ andq’ 4, q" with d, d’ € R>, theng dtd’, q”,

— CONTINUITY :if ¢ 4, q', then for everyd’ andd” in R>( such thatd = d’ + d”,
there existg” such thayy L q"’ 4, q.

With these properties, @n of S can be defined as a finite sequence of mgves

Q02 qh g g 2 gy 2 g,1 where discrete and continuous transitions
alternate. To such a run corresponds the timed woed (a;, 7;)o<i<n Over X, where

n; = Z;:O d; is the time at whichu; happens. We then denote bintimedw) the
projection of the wordiya; . . . a,, Over the alphabeX’ and byDuration(w) the duration
7 Note that in the wordJntimedw) the symbol- does not appear. We will sometimes
apply, without possible ambiguities, these notations twsrwriting Untimedp) and
Duration(p). We might also describe the run writing directly > q,,1.

2.3 Time Petri Nets

Syntax. Introduced in [14], Time Petri Nets associate a time intewith each transi-
tion of a Petri net.

Definition 3 (Labeled Time Petri Net (TPN)). A Labeled Time Petri Net over the
alphabety, is a tuple(P, T, X, *(.), (.)*, Mo, A, I) where:

- (Pa T, 2, .(')7 (').7 My, A) isa PN,
— I:T — ZI(Q>o) associates with each transitionfiging interval

In the sequel, we associate with an interval its left bourdliemright bound. More
generally, given a transitionof a TPN, we will denote byft(¢) (resp.lft(t)) the left
bound ofi(¢) (resp. the right bound df(t)), standing for earliest firing time (resp. latest
firing time). We have hencg(t) = (eft(t), Ift(t)).

Semantics.A configurationof a TPN is a pai(M, v), whereM is amarkingover P,
i.e. a mapping inN”, with M (p) the number of tokens in plage A transitiont is
enabledn a marking)M if M > *t. We denote b¥n(M) the set of enabled transitions
in M. The second component of the p&i¥/, ) is a valuation oveEn()M), i.e. a
mapping in]RE”éM). Intuitively, for each enabled transitiarin M, v(t) represents the
amount of time that has elapsed sirtde enabled. An enabled transitiorwan be fired
if v(¢) belongs to the interval(t). The marking obtained after this firing is as usual the
new markingM’ = M — *t + t*. Moreover, some valuations are reset and we say that
the corresponding transitions are newly enabled.

Different semantics can be chosen in order to realize thesets. This choice de-
pends of what is called thmemory policy For M € NP andt,t € T such that
t € En(M) we define in different matters a predicdtenabled(t’, M, t) with s €
{I, A, PA} which is true ift’ is newly enabledy the firing of transitiort from mark-
ing M, and false otherwise. This predicate indicates whetherere o reset the clock
of ¢/ after firing the transition at the marking\/.



I: Theintermediate semantiasonsiders that the firing of a transition is performed
in two steps: consuming the tokens 9n and then producing the tokens .
Intuitively, it resets the clocks afand of the transitions that could not be fired in
parallel witht from the marking)/. Formally, the predicatgéenabled (¢, M, t) is
defined by:

Tenabled(t', M,t) = (¢’ € EN(M —*t +t*) A (' ¢ EN(M —*t) Vi =1"))

A: The atomic semanticgonsiders that the firing of a transition is obtained by an
atomic step. It resets the clocksiodnd of the transitiong which are not enabled
at M. The corresponding predicatenabled, (¢, M, t) is defined by:

Tenabled (t', M, t) = (t' € EN(M —*t+t*) A (' ¢ En(M) VvVt =1))

PA: Thepersistent atomic semantibghaves as the atomic semantics except that it does
not reset the clock of

Tenabledb4(t', M, t) = (t' € En(M —*t +t*) At' ¢ En(M))

Finally, as recalled in the introduction, there are two waf/etting the time elapse
in TPN. The first way, known as thetrong semanticds defined in such a matter that
time elapsing cannot disable a transition. Hence, whengpenbound of a firing inter-
val is reached then the transition must be fired or disabfedontrast to that theveak
semanticgloes not make any restriction on the elapsing of time. Inwioik, we focus
on the weak semantics of TPN.

Definition 4 (Weak semantics of a TPN)Lets € {I, A, PA}. The weals-semantics
of a TPNN = (P, T,X.,°(.),(.)*, Mo, A, I) is a timed transition systefi\], =
(Q, qo, ¥r, —s) WhereQ = N x R';no(M), qo = (Mo, 0) and — consists of discrete
and continuous moves:

— the discrete transition relation is defined € X', by:

A(t) = a, and,
t cEN(M)AM' = M —*t +t°*, and,
v(t) € I(t), and,
vt' € En(M’),
i /
V(1) = {0 if Tenabled(t', M, t)

(M,v) &, (M',V)iff 3t € T s.t.

v(t') otherwise

— the continuous transition relation is defingd € R by:
(M,v) L, (M) iff v/ =v+d

We also write a discrete transitiqi/, v) -, (M’, ') to characterize the transi-

tion ¢t € T which allows the firing(M, v) ﬂs (M',v"). We extend this notation to

wordsé € (T'URxg)*, which correspond to sequences of transitions and delays an



lead to a unique (if it exists) rup. We may write this rurp : (M, v) is (M',v") and
useUntimed#) (resp.Duration(6)) to denote the word)ntimedp) (resp. to represent
the delayDuration(p)). Finally, for s € {I, A, PA}, we write (M,v) —, (M)
if there existsa € X, U R>q such that(M,v) %, (M’,v'). The relation—* de-
notes the reflexive and transitive closure-ef. For a TPNA with an initial marking
M, we define the following reachability sets according to thasitered semantics:

Reach(N), = {(M,v) | (My,0) —* (M,v)}.

Example 1.We illustrate the impact of the three memory policies in weatantics.

Consider the net depicted on Figure 1, and the execution
P t2,¢,10,1] (M, 0) 5, (M,1) %, (M,v) whereM (p) = 1. With the
intermediate semantics, both clocks are reset as in the in-
termediate marking, the plageis empty. With the atomic
semantics, the clock associated wighis not reset and the
clock associated withl is reset because it corresponds to
Fig. 1. The TPNA;. the fired transition. Finally, with the persistent atomie se

mantics no clock is reset.

t1,a, [0, +o0]

3 Decidability

3.1 Considered problems and known results

AssumeN = (P, T,X.,*(.),(.)*, Mo, A, I) is a TPN. In this section, we will consider
the following problems fok € {I, A, PA}:

1) The marking reachability problemgiven M € N, does there exist € REMM)
>0

such that{ M, v) € Reach(N), ?

(2) Themarking coverability problemgiven M € N¥, does there exist/’ € N* and
ve RE’B(M ) such that\’ > M and(M’,v) € Reach(\), ?

(3) The boundedness problemdoes there exist € N such that for all(M,v) €
Reach(N) andforallp € P, M(p) <b?

It is well known that the "untimed” versions of these probkeare decidable in the
case of Petri nets. In fact, as mentioned before the markiaghability problem is de-
cidable for Petri nets [12, 13] and the two other problemshmsolved using the Karp
and Miller tree whose construction is given in [11].

From [10], we know that these problems are all undecidablenrdonsidering TPN
with strong semantics no matter whether the semanticsasnmadiate, atomic or per-
sistent atomic. In fact a TPN with strong semantics can sateud Minsky machine.
A Minsky machine manipulates two integer variablgsandc,; and is composed of a
finite number of instructions, each of these instructionadpeither an incrementation
(¢ : ¢; == ¢; + 1) or a decrementation with a test to zerp:(if ¢; = 0 gotoq’ else
¢; := ¢; — 1; gotoq”), wherei € {1,2} andgq, ¢’, ¢” are some labels preceding each
instruction. There is also a special lahglfrom which the machine cannot do anything.



In [15], Minsky proved that the halting problem, which castsiin determining if the
instruction labeled witly s is reachable, is undecidable.

It is easy to encode an incrementation using a TPN (or even)avitk a transition
consuming a token in a place characterizing the currentabstiate and producing a
token in the next control state and in a place representmgittremented counter.

When encoding the decrementation with the testto .
zero, the strong semantics plays a crucial role. This en-
coding is represented on Figure 2. If there is a token in q’
the placec;, there is no way for the TPN to produce a
token in the placeg’ because time cannot elapse since ¢ [0,0]
the transition labeled with the intervél, 0] is firable. /
The example of the Figure 2 shows that the strong time (1,1] e
semantics allows to encode priorities (between transi-
tions in conflict) and thus to encode inhibitor arcs. Thikig. 2. Encoding decremen-
construction obviously fails with the weak semantics. tation with strong semantics.

3.2 The peculiar case of TPN with weak intermediate semantic

We prove here that the undecidability results we had befoitheé case of TPN with
strong semantics do not hold anymore when considering tlag wéermediate seman-
tics. Before proving this we introduce some notations. FOPAIN = (P, T, X, *(.),
()%, My, A, I), we denote by\V'V the untimed PN obtained by removing froki the
component’. Furthermore given a set of configuratiofisC N” x RZ, of A, we de-
note byUnt i me(C) the projection of” over the seN”. Fors € {I, A, PA}, we have
by definition of the different semantics thant i ne(Reach(N),) € Reach(NY)
and as shown by the example given in Figure 2 this inclusiastrist in the case of
the strong semantics. When considering Wesak intermediate semantics, we prove
that from any sequence of transitiodsfirable in [A/V], we can effectively compute a
reordering ofA, and associated timestamps, leading to a correct r{iVéf.

Theorem 5. For all TPNV, Unt i me(Reach(N);) = Reach(\Y).

According to the previous remark, we only have to prove Raach(NY) C
Unt i me(Reach(N);). Therefore, we first state the following property expregsirat
if we reduce the intervals associated with transitions tbstricts the set of reachable
configurations:

Lemma 6. Let\/, A/ be two TPN identical except on their last component assiogiat
intervals to transitions, say respectivdlyandI’. If we havel’ (t) C I(¢) foranyt € T,
thenReach(N’); € Reach(N);.

In the sequel, we will consider TPN in which intervals areuset to singletons. That is
we havel (t) = [eft(t), ift(t)] with eft(t) = Ift(¢) for all transitionst € T. The proof
of the result in this particular case thus entails the raaulie general case. Before to
proceed we introduce additional definitions for TPN.



Given a TPNA/, a markingM of A" and A a multiset of transitions ofV’, we

A\t
define the se€Candidaté M, A) = {t ¢ A | M L M =>}. We will then say that a
configuration(M, v) is compatiblewith a multisetA iff:

A
M = andvt € Candidat¢ M, A), v(t) < Ift(t).

We now prove the following proposition, which intuitivelyases how to turn a
sequence of transitions in the untimed Petri net into a timextution of the TPN.

Proposition 7. Let N be a TPN with singleton intervals anid/, v/) be a configuration
of A/ compatible with some multiset of transitioas Then, for any transitiort &
Candidaté M, A) such thaté(t) = Ift(t) — v(¢) is minimal (among the transitions of
Candidaté M, A)), we have:

() (M) 2, (M, v+ 6(t) Sy (M7, 0),
(i) (M’,v") is compatible withA’ = A\ ¢,

Proof. Lett € Candidat¢), A) be such that for al¥’ € Candidaté M, A), we have
Ife(t) —v(t) =6(t) <o) = Ift(t) — v(t').
3(t)

(#) First the time elpasing transitidd/,v) —; (M,v + §(t)) is possible as we
consider the weak semantics. Second, the discrete t@mé6il, v + §(t)) L,
(M',v') is also possible as(t) + §(t) = Ift(¢) by definition ofé(¢), and since
the intervals associated with transitions are all singisto

(i4) To prove compatibility, first note that/’ \:> because € Candidat¢)M, A).
Second, let’ € CandidatéM’, A"). We distinguish two cases according to the
value of the predicatéenabled (¢, M, t'):

— If Tenabled (¢, M, t') is true, then we have' (t (t") = 0 and the result follows.
— Otherwise, the def|n|t|0n ofenabled (¢, M, ') implies thatM > *¢ + *t'.

As a consequence, we havé LL Thenag' ¢ CandidatéM’, A\ t) we
get thatt’ € Candidaté M, A). Due to the minimality of(¢) among the set
Candidatg¢ M, A), we obtain/(t') = v(t') + 0(t) < v(t') + (t') = Ife(t)
as desired.

This concludes the proof. ad

The inclusionReach(A'Y) C Unt i me(Reach(/N);) in the case of TPN with sin-
gleton intervals easily follows from this result. Indeednsider some reachable mark-
ing M in Reach(N'Y). There exists a sequence of transitions that lead® trom
My, we represent it through some multisét As initially all clock valuations are null
in [A]1, the configuratior{ M/, 0) is thus compatible wit\. An induction on the size
of A, together with Proposition 7, thus gives the result. Nott troposition 7 de-
scribes an effective procedure to compute a timed execofi@//];: simply consider
the transitions that are candidates, and choose one witteitiest deadline.

Using the decidability results in the case of PN, we obtamftlowing corollary:

Corollary 8. The marking reachability, marking coverability and bouddess prob-
lems are decidable in the case of TPN with weak intermedatestics.



3.3 Undecidability for weak atomic and weak persistent atorit semantics

We consider now the case of the weak atomic and weak persigtenic semantics. As
for the strong semantics, but with a more involved consimactve will show that it is
possible to encode the behavior of a Minsky machine into a iWRNweak (persistent)
atomic semantics from which we will deduce the undecidghbitsults. The TPN we
build contains a place for each countgwith i € {1,2} and a place for each labgbf
the considered Minsky machine. Furthermore, when exegtiie net, we will preserve
the invariant that there is a single place correspondindabel ¢ which is marked.

1

q

Fig. 3. Encoding decrementation with weak atomic or persistent atomic semantics.

Encoding an incrementation can be done as in the strong siesarigure 3 shows
how to encode the instruction € if ¢; = 0 gotoq’ elsec; := ¢; — 1; gotog”’) using a
TPN with weak atomic or persistent atomic semantics. We nquaén the idea of this
encoding. We consider the two following cases for the netvshia Figure 3:

1. Assume that the only place which contains a token is theeglawhich means we
are in the case where the value®fis equal to0 (no token in place:;). The net
then can only fire the sequence of transitiohst2, t3 and thent4 and finally it
reaches a configuration where the only marked plageé is

2. Assume now that there is a token in placand that there is at least one token in
placec;. We are in the case where the valuecpis different of 0. We have the
following sequence of transitions:

— only the transitiort1 is firable, so the net fires it;

— afterwards the transitiot2 and the transition3 are firable. In fact, since we
are considering weak semantics the deadlin @fan be ignored thus making
time passage in order to fit@. Note that if the net chooses to fit8, it will
reach a deadlock state where no more transitions can be fitedut/having
put a token in the placg or ¢”, therefore we assume that the transiti@ris
first fired,;

— after having waiting one time unit and firing, the only transition which can
be fired ist5. In fact since we are considering atomic (or persistent &tpm
semantics, firing2 does not make3 newly enabled, whereas the weak inter-
mediate semantics would have reset the clock associatéd $m the net fires



t5 consuming the token ip2, p3 and two tokens im; (at least one was present
from the initial configuration and the first firing 62 added another one);

— finally the net ends in a configuration with one tokerythand the place;
contains one token less than in the initial configuration.

The above construction allows to reduce the halting probfenMinsky machine
to the marking coverability problem for weak (persistetitynaic semantics. From this
we can also deduce the undecidability for the marking reziihlpand boundedness
problems. Hence:

Theorem 9. The marking reachability, marking coverability and bouddess prob-
lems are undecidable for TPN with weak atomic or weak pemsisitomic semantics.

In comparison with what occurs in the case of the strong séozanhis result is
surprising, and it reveals the important role played by tleenory policy when consid-
ering the weak semantics. Recall that as we have seen gaitlethe strong semantics,
these problems are undecidable no matter which memoryypislchosen.

Finally, in the above construction, we can replace the edgdseenp2 and¢2
by a read arc. Consequently, the considered problems arauatiecidable for weak
intermediate TPN with read arcs, unlike what happens foedirarc Petri nets [6].

4 Expressiveness

4.1 Preliminaries

LetS = (Q, g0, X7, —) be a TTS. We define the relatierC Q x (Y UR>() x Q by:

—for d € Ry, ¢ SN ¢’ iff there is a runp in S such thatp = ¢ = ¢ and
Untimed(w) = ¢ and Duration(w) = d,

—fora € X, q — ¢ iff there is a runp in S such thatp = ¢ % ¢ and
Untimed(w) = a and Duration(w) = 0.

This allows us to define the following notion:

Definition 10 (Weak Timed Bisimulation). Let S; = (Q1, 43, Xr, —1) and Sy =
(Qa2,q3, X, —2) be two TTS and- be a binary relation over); x Q. ~ is a weak
timed bisimulation betwee$ andS; if and only if:

- q(l) ~ q(Q), and,

— fora € ¥ URs, if g1 —1 ¢} and ifq; ~ ¢o then there existg, € Q, such that
G2 —o ¢b andq) ~ ¢b; conversely ifg, ——, ¢ and if ¢ ~ ¢, then there exists
¢; € Q: such thay; ——; ¢} andg} ~ ¢b.

Two TTSS; andS, areweak timed bisimilaif there exists a weak timed bisimu-
lation betweert; andSs;. We then writeS; ~ S,.
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Definition 11 (Expressiveness w.r.t. Weak Timed Bisimilatly). The clasC of TTS
is less expressive thai w.r.t. weak timed bisimilarity if for all TTS € C there is a
TTSS’ € ¢’ such thatS ~ S’. We writeC C C’. If moreover there is &’ € C’ such
that there is naS € C with S ~ S’, then( is strictly less expressive thal. We then
writeC C C'.

Fors € {I, A, PA}, we will denote byZ PN, the class of TTS induced by TPN
with s-semantics.

4.2 Atomic versus Persistent Atomic semantics

In [4], the authors prove that for TPN with strong semantibe, persistent atomic se-
mantics is more expressive than the atomic semantics. Wee givere that this result

still holds in the case of the weak semantics. Intuitively,itais shown on Figure 4,

from a TPN with atomic semantics, we build another TPN in Whiee duplicate each

transition. During an execution of this last TPN, at most ofihe transitions obtained
after duplication is enabled, and when it is fired it cannoebabled again at the next
step whereas the other one can. This trick allows us to simti& atomic semantics
with the persistent atomic one.

/i nput pl aces)

Fig. 4. From atomic to persistent atomic semantics.

Proposition 12. For all TPN A/, we can build a TPNV’ such thaf N4 = [N'] pa.

Proof. Let N = (P, T,%,,*(.),(.)*, My, A, I) be a TPN over,. Figure 4 represents
the construction of the TPW”. Formally, its set of place®”’ is equal toP U {p}, p? |
t € T} and its set of transition¥” contains two copies' andt? of each transition
t € T. These copies are connected in the same way as the transitian A/, plus
additional edges to the place$ and p?, as depicted on Figure 4. Finally the initial
marking of A is M|, such that for allp € P, M{(p) = My(p) and for allt € T,
Mi(p}) = 1 and Mg (p}) = 0.

We now consider the relationC (N” x RZ ) x (N*' x RZ,) between the config-
urations of[A'] 4 and the ones dfN'] p 4 defined by(M, v) ~ (M’ V) iff:

— forallp € P, M(p) = M'(p) and for allt € T, M’(p;) + M’ (p?) =1,
— forallt € T, foralli € {1,2}if t € En(M) andt’ € En(M’) thenv(t) = v/ (t%).

It is then easy to verify that the relatienis a weak timed bisimulation. a0
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We will now prove that the inclusion we obtain in the abovepasition is strict. But
before, we address a technical point which we will use toydstane sequences of
transitions in weak TPN.

Lemma 13. Lets € {I, A, PA} and consider a TPNV such thatb is the smallest

positive upper bound of the intervals &f. Let p be a run in[N]; of the formp :
>0

(M,v) — (M,v+9) t—1>s e t—">5, such that there exists a valye> 0 verifying:
(1) Vie{l,...,n}, t; e EN(M) = v(t;) <n,
(i) n+6<?
b
Then the sequenge : (M, v) 2., (M, ') ‘s, .. ‘o is firable in[\],.

Proof. We introduce the following notations describing the yun
6>0 t1

(M,v) 2%, (M,v+6) = (My, 1) 2oy (Ma, 1) 2y (M, vs) -+ (M, vy) ~
(Mn+17 VnJrl)-

We split the set of indice§l, . . ., n} into two disjoint subsetd_o = {i € {1,...,n} |
vi(t;) = 0}, andl,o = {i € {1,...,n} | v;(t;) # 0}. These two sets contain respec-
tively the index of the transitions fired with a null (respeely non null) valuation.

We first show the following property:

Vi€ Lo, 0 < vi(t;) < g and[v; (t;), b[C I(t:) (1)

Consider the first part of this property. Note that these atams are strictly positive
by definition of .o, thus proving the left inequality. Consider now the righeguality,
and leti € I.y. Since the sequendg .. .t; is instantaneous and follows a non null
delay stepy; is never newly enabled during ...¢;—; (otherwisey;(t;) = 0). As a
consequence, we havg(t;) = v(t;) + 6, and by propertiesi) and(ii) of p, we obtain
vi(t;) <n+48 < &, as desired.

By definition of b, and since; is firable from (M, v;), the inclusion[v;(¢;), b[C
I(t;) holds for anyi € Iz.

b
We consider now the rup’ : (M,v) H—§>3 (M,v+6+4 %) = (M,v)) 4,

(Ma, vh) LN (M3,v5) -+ (M,,v)],) In, (My41,v,,1). Note that the increasing of

the delay is possible because of the weak semantics: inrttregsbne, the modification
of the delay step could be impossible. To prove that this secgi is firable ifA];,
we proceed by contradiction. Assume there exists a posit®f1, . .., n} such that;

is not firable from(1;, v}), and pick the smallest position verifying this property. We
distinguish two cases:

1. If ¢ € I_o. Then we have/;(t;) = 0. Since the instantaneous sequence . ¢;
immediately follows inp the delay step > 0, ¢; is newly enabled by the firing
of t;...t;_1. Since this property only depends on discrete markingschvhre
preserved iny’, t; is also newly enabled by the firing of ...¢;,_; in p’. As a
consequence, we hawé(t;) = 0 = v;(t;), thus proving that; is firable inp’,
yielding a contradiction.
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2. If i € I.. Then we have/;(t;) # 0. As already mentioned above, we have in
this case that; is never newly enabled during ...¢;,_1 in p. Since the discrete
markings are preserved, this conclusion holds algé.iAs a consequence, we have
vi(t;) = v(t;) + d andvi(t;) = v(t;) + 6 + g what yieldsv,(t;) = v(t;) + g
Using Property(1), we obtainv;(t;) € I(t;), and thery; is firable from(M;, v}),
contradicting the assumption.

Finally, we have obtained a contradiction in both cases fraving thap’ is firable in

[[A/—ﬂs- O

We now consider the TP, represented on Figure 5. Equipped

with persistent atomic semantics, it accepts the set ofdime J a, |0, 1]

words composed of letteksoccurring before time. We will

prove that this timed language cannot be accepted by any TPN

equipped with the weak atomic semantics. Fig.5.The TPNA.

Proposition 14. There exists no TPN/ (even unbounded) sf{N] 4 = [Na2] pa.

Proof. Assume there exists a TPN such thaffA']4 ~ [N2]pa. Denote byN the
number of transitions al, by b the smallest positive upper bound of the intervals of
N, and consider a timed word = (a,71)(a,n2) . .. (a,m,) such thai, 1 — 2 < n; <
Ni+1 < 1,andk > N + 1.

This timed wordw is recognized byJ\1]r4 and there exists thus a run p¥] 4
alongw. We denote it by and decompose it as follows :

0 di 61ty 0] di 6, t. 6 de O, th
PimPATTATTIIATTOATTA T TOAT AT OATTA T T AT PATTA

To obtain this decomposition we proceed as follows. We dehgt thei-th tran-
sition labelled bya. Then for each position, we isolate the last delay step occuring
before the transition! (it exists since); > n,_;) and denote it byl;. Then we gather
all the internal transitions occuring between this del@psind the transitiorf, and
denote this sequence Igy. The transitions betweetj~! and the delay step consti-
tute the sequena#_,. In particular, the following properties hold for any pasit i :
A(th) = a, Untimedd;) = Untimed#.) = ¢, d; > 0, Duration(¢;) = 0, andt’, occurs
at timen);,.

We claim there exists an indéxc {1, ..., k} such that each transitiarappearing
in 6; t!, has already been fired sinég i.e.t also appears ith t. 0} --- 0,1 t:71 6/_,.

By contradiction, if it is not the case, then we can find, faztemdexi € {1,...,k}, a
transition, denoted;, that never appears before. The choicé ekrifying k > N + 1
then implies that there exist two positions# j such thatt; = t;, thus yielding a
contradiction. We can now fix an indéwerifying the above described property.

We now show that Lemma 13 can be applied to the payt aésociated with the
sequencel; 0; ti. More precisely,(M,v) is the configuration reached after firing
Op---ti-1 0._,, the delays is equal tod;, the sequencg - - - t,, corresponds td; ti,
andn is defined agn; — d;) — (1 — 2). In the atomic semantics, when a transition is
fired, its clock is reset if it is still enabled. This propegiows, together with timing
constraints on the word, to verify hypothesesi) and (i) of the Lemma 13. Indeed,
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since each transition if; ¢’ has been reset alorfg ¢! 0} ---6;_,, it has been reset
since timer;. Since the global time associated with/, v) is equal ton;, — d;, these
valuations are bounded by above by the vdlge-d;) — 7 < (n; —d;) — (1— %) =n.
Second, we have+6 =7, — (1— g) < g as desired (this follows from the inequalities
1-— g < < 1).

Finally, Lemma 13 thus allows to delay @fthe firing of the sequencg t. In
particular, this will produce a letter at timen; + g > 1. The TTS|N] 4 thus accepts
a timed word not recognized Q5] p.4, providing a contradiction. O

Using the results of Propositions 12 and 14, we deduce that:
Theorem 15. 7PN 4, C TPNpa.

4.3 About Atomic and Intermediate policies in weak and strom semantics

In this subsection, we discuss the comparison of the intdiaite=and atomic policies.
As we will see, the situation is more complex than in the presicomparison.

On the inclusion o PN into 7PN 4. For thestrong semantics a construction has
been proposed in [4] to transform any TPN with intermediatigcp into an equivalent
(w.r.t. weak timed bisimilarity) TPN with atomic semantiésfirst attempt was thus to
adapt this construction for the weak semantics. But stglthis construction, we no-
ticed that it is erroneous (even for the strong semantics)p¥¥sent below an example
exhibiting the error.

t'", ¢ [0,1]

Na
t'*,7,10,0]

D t',c,[0,1]

t,a,[0,1]

Fig. 6. A counter example to the construction of [4].

Example 2.Consider the netVs depicted on the left of Figure 6. The application of
the construction proposed in [4] leads to the Aétdepicted on the right of Figure 6.
According to [4], we should have, under tegong semantics the relation\3]; ~
[Ni]a. However, it is easy to verify that in the TT[BV;] 4 the letterc can be read
after 2 times units (with the timed woi(d, 1)(a, 1)(, 1)(7, 1)(c, 2)) whereas it is not
possible in[Aj3];, thus proving that the construction proposed in [4] is exmrs.

This example leaves open the question of the inclusich B\ ; into 7PN 4 for
the strong semantics, and then for this semantics bothdimeis are left open. For weak
semantics, this inclusion is also open, but we show belotthigaconverse inclusion is
false.
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Non inclusion of7 PN 4 into 7PN ;. We exhibit a TPN with atomic semantics which
cannot be expressed in an equivalent way by any TPN withnredrate semantics (with
weak elapsing of time). This is formally stated in the Prafas below. We consider
the TPNA/; represented on Figure 1. Interpreted in weak atomic sensattie firing of
the a-labelled transition does not newly enable transition llaldeby c. This transition
thus shares a token with transitiarwhile preserving a time reference to the origin of
global time, what is impossible in intermediate semantics.

Proposition 16. There exists no TP/ (even unbounded) such thgt/']; ~ [N1] 4.

Proof. We proceed by contradiction and assume there exists sucNaT,Rnd denote
by N its number of transitions, aridthe smallest positive upper bound of its intervals.
As in the proof of Proposition 14, we first exhibit a partiaudaecutionp of [N]:

Lemma 17. Let(n;)1<i<x be a set of timestamps such that fordny ¢ < k, 1 — g <
n; < mi+1 < landk > N + 1. There exists a rup in [N] of the following form:
=83 61 dy 61 to 67 0 di 0 ty 6F On  dn O ta 6]

P[] T[T [T [T T[]
such that for any position, A(t}) = a, the transitiont; occurs at timey;, d; > 0,
Untimed#;) = Untimed ;) = Untimed§;) = ¢, Duration(#;) = Duration(6) = 0,
and there exists a transitiotj, labelled byc, newly enabled by the last transition of
t! 9! and (immediately) firable from the configuration reacheeff’.

Proof. We present here the details of the construction of theprubhis construction
proceeds in three steps.

First step : construction of the structure of p. This step is the most involved
one. We deeply use the bisimulation property betwggh] 4 and [N]; to build a
first sequence. Figure 7 illustrates this construction. shéa arrow between two con-
figurations meens that these configurations are bisimilae direction of this arrow
indicates which implication is used to obtain the bisimflaffrom [A7]4 to [N,
or conversely). In this figure, we omit the indé&and A which should be associated to
each of the step. We now detail step by step how this Figudsréaitially, due to weak
semantics, the nét’ in intermediate semantics can choose to delay? time units. By
bisimulation (and because there are no silent transitiong ), the same delay leads to
a bisimilar configuration ifV:] 4, thus indicated by a bottom-up dashed arrow. From
this configuration one can ip\V;]4 delayn; — (1 — £) time unit$ and then fire the
a transition. By bisimulation, there exists a path[ik’];, written asu;t.u/, leading
to a bisimilar configuration and such that only contains silent transitions and is of
duration exactly); — o, t! is labelled byu, andw is labelled with internal actions and
has a null duration. The bisimilarity is indicated by a tapath dashed arrow since it is
the existence of a path {oV; ] 4 that implies the existence of a path[itv] ;. Next, one
can fire instantaneoustyin [V;] 4 what implies the existence of a patit!lo], leading
to a bisimilar configuration, and such thgtando are labelled by internal actions and
of null duration, and? is labelled byc. Then, we use the bisimulation property in the
converse direction: the configuration reached after théxpeg, which is labelled by

® We denote by, the valuel — 2.
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internal actions and of null duration, is still bisimilartwithe configruation of ;] 4
reached after the transition, as indicated by the bottom-up dashed arrondtiepath

in [V1] a of null duration and labelled by internal actions is the gymgth). Then the
same reasoning is applied from these two bisimilar configama, and can be repeated
arbitrarily many times.

Nlo

i~ "o a 2 — a

o1 — — |
tl\ | 0.2\\ )
¢ /\V 2\ !
o1 te \s‘
o5

Fig. 7. Using bisimulation to builgb.

Second step : definition of;, ¢ and d;. This step is much simpler. We simply split
the paths.; in three (eventually empty) parts. The durationpfs equal ton; —n;—1 >
0, thus we can consider the last positive delay step appeiarimg and denote it byl;.
Then we simply writew; = 6; - d; - 6.

Third step : definition of 8. In this last step, we will define the pafti as a prefix
of the pathu; - ;. This path possesses the following properties : its durasiawull, it is
labelled by internal actions, and there existdabelled transitiort’. immediately firable
after it. The only property missing is that its last trarmitinewly enables transitiaf.
To obtain this property, we will show that we can find a prefix.pf o; having this ad-
ditional property. Therefore we prove the following lemrapecific to the intermediate
semantics:

Lemma 18. Let N/ be a TPN, and consider an execution [¢f];, denoted byp :
(M, v1) 4, (M, v2) L2, < (M, vp) Iny, (Mp11,vn+1) £,;, such that for any
i€ {l,...,n}, tenabled(t, M;,t;) = false.

Then, for anyi € {1,...,n}, the executiop; : (M;,v;) iqt'%[ exists in[\];.

Proof (of Lemma 18)By definition of the predicaté¢ enabled, and since is newly
enabled by ne; and firable from(M,, 41, v,+1), we have that is enabled in every/;
and, because the sequence. . ¢, is instantaneous (no delay step),.1 (t) = v;(t) for
any:. Thus,t is firable from the configuratiotM;, v;). Moreover, we can notice, as
is enabled inV/;, thatTenabled (¢, M;, t;) = false implies thatt; is still enabled after
the firing oft from M;, and has not been newly enablédnabled (¢;, M;,t) = false.
As a consequenceg, is firable from the configuration reached after firinghus proving
the Lemma. a0
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Lemma 18 entails that there exists a transition in the sezpién’o; which newly
enables the transitioti.. Indeed, if it is not the case, the result of Lemma 18 implies
that after the firing ofu;, one can first fire the transitiofi, and immediately after fire
the transitiont!. This leads to the production of a letterafter the letterc, which
in impossible in[N:] 4, thus leading to a contradiction. Finally, we defiffeas the
(eventually empty it is newly enabled by ) prefix of u - o; up to the first transition
that newly enables.. This concludes the proof of the existence of the sequence

We now return on the proof of Proposition.Jrst, we claim that there exists an index
i € {1,...,k} such that each transitionappearing ir¢; t ¢! has already been fired
since timen,, i.e.t also appears ifl; t. 0] ---0,_1 0;_,t'=1 0 ,0;. The reasonning
is similar to the one of the proof of Proposition 14: by codicéion, if there exists no
such position, then we can find, for each index {1,. .., k}, a transition, denotet],
that never appears before. The choicé okrifying & > N + 1 then implies that there
exist two positions # j such that; = t;, thus yielding a contradiction. We can now
fix an index: verifying the above described property.

We now show that Lemma 13 can be applied to the portiop aésociated with
the sequencedbe—%t_“)%. More precisely, le{ M, v) be the configuration reached
after firing (1 — )6, ...t. 16/ ,0;, the delays is equal tod;, the sequence, - - - ¢,,
corresponds ta;t’ 6/, andn is defined agn; — d;) — (1 — £). In the intermediate
semantics, when a transition is fired, its clock is resetiff #till enabled. This property
allows, together with timing constraints on the rurto verify hypotheses:) and (i7)
of the Lemma 13. Indeed, we first have that each transitia#f # 6/ has been reset
since timer;. Since the global time associated with/, v) is equal ton; — d;, these
valuations are bounded by above by the vdlye-d;) —n, < (9, —d;) — (1 — g) = 1.
Second, we havg+6§ = n; —(1— %) < £, as desired (this follows from the inequalities
1-t<r<).

Lemma 13 thus allows to delay gftime units the firing of thesequenégt, 6.
Moreover, as the transitiori is newly enabled by the last transition€f ¢/, and can
be immediately firable aftet! in p, we deduce that this immediate firing can also be
performed in the delayed execution. We thus obtain an execin [N]z with ac
action following anu action after timel, which is impossible ifA\] 4, thus yielding a
contradiction. O

5 Conclusion

We have studied in this paper the model of Time Petri Nets uadecak semantics of
time elapsing, allowing any delay transition. We have firsiven that for the interme-
diate memory policy, the set of reachable markings coirscigigh the reachability set
of the underlying untimed Petri net. As a consequence, marification problems are
decidable for weak intermediate TPN. On the other hand, we peoven that the two
other memory policies, namely atomic and persistent atoafimw to simulate Minsky
machines and thus are undecidable. Finally, we have stedigicssiveness and have
proven thati) the atomic semantics is strictly less expressive than thegtent atomic
one andii) the atomic semantics is not included in the intermediate one
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In further work, we plan to investigate properties conasgnéxecutions of weak
intermediate TPN; such as time-optimal reachability, ok Idiodel checking. Indeed,
while discrete markings are the same, the executions dexetit from those accepted
by the underlying Petri net. Concerning expressivenessongecture that intermediate
and atomic semantics are uncomparable in general, and dbatlbd weak TPN are
strictly less expressive than timed automata (withoutriaves).
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