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Abstract. We consider the model of Time Petri Nets where time is associated
with transitions. Two semantics for time elapsing can be considered: the strong
one, for which all transitions are urgent, and the weak one, for which timecan
elapse arbitrarily. It is well known that many verification problems such as the
marking reachability are undecidable with the strong semantics. In this paper,
we focus on Time Petri Nets with weak semantics equipped with three differ-
ent memory policies for the firing of transitions. We prove that the reachability
problem is decidable for the most common memory policy (intermediate) and
becomes undecidable otherwise. Moreover, we study the relative expressiveness
of these memory policies and obtain partial and surprising results.

1 Introduction

Verification of timed and distributed systems.For verification purpose,e.g.in the devel-
opment of embedded platforms, there is an obvious need for considering time features
and the study of timed models has thus become increasingly important. For distributed
systems, different timed extensions of Petri nets have beenproposed which allow the
combination of an unbounded discrete structure with dense-time variables.

About time-elapsing policies.There are several ways to express urgency in timed sys-
tems, as discussed in [15]. In timed extensions of Petri nets, two types of semantics
are considered for time elapsing. In theweaksemantics, all time delays are allowed
whereas in thestrong one, all transitions are urgent,i.e. time delays cannot disable
transitions. While for models with finite discrete structure(such as timed extensions
of bounded Petri nets or timed automata [3]), standard verification problems are decid-
able for both semantics, for models with infinite discrete structure, the choice of the
semantics has a deep influence on decidability issues. For instance, in the model of
timed-arc Petri nets [5], where clocks are associated with tokens and which is equipped
with a weak semantics, many verification problems are decidable (coverability, bound-
edness...). Indeed, this semantics entails for this model monotonicity properties which
allow the application of well-quasi-ordering techniques,see [7, 2, 1]. Note however that
the reachability of a discrete marking is undecidable, as proven in [16]. On the other
side, in the model of Time Petri Nets [13] (TPN), where clocksare associated with
transitions, and which is commonly considered under a strong semantics, all the stan-
dard verification problems are known to be undecidable [9]. Anatural question, which
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had surprisingly no answer until now, as mentioned in a recent survey on the topic [6],
is thus to study TPN under a weak semantics of time elapsing. Note that due to the
semantics of TPN, there is no hope for monotonicity properties in this model.

Memory policies in TPN.The time-elapsing policy states which delays are allowed in
a configuration. The memory policy is concerned with the resets of clocks, and intu-
itively specifies, when firing a transition, which timing informations are preserved. In
the original model of Merlin [13], anintermediatesemantics was considered, meaning
that when firing a transitiont, any transition disabled by the consumption of tokens by
t is reinitialized. Two others memory policies have been considered in [4]: theatomic
and thepersistent atomic; for both of them the firings of transitions are performed atom-
ically and the difference between them lies in considering or not a transition as newly
enabled by its own firing. While these policies can be thought as cosmetic for the model
of TPN, the results we obtain show this is not the case.

Our contributions.We are interested in the impact of the weak semantics on TPN. We
first study the decidability issues, and therefore have to distinguish the memory policy
considered. We prove that for TPN with weak intermediate semantics, a discrete mark-
ing is reachable if and only if it is reachable in the underlying untimed Petri net. As a
corollary, the problem of the marking reachability (and also coverability, boundedness)
is decidable for this model. More surprisingly, we also prove that when changing the
memory policy this result does not hold anymore and the verification problems become
undecidable (we encode a Minsky machine). We then compare w.r.t. weak time bisimi-
larity (weak stands here for silent transitions) the expressive power of weak TPN look-
ing at the different memory policies. We first prove that the persistent atomic semantics
is strictly more expressive that the atomic semantics. Then, concerning the comparison
of atomic and intermediate memory policies, we prove that the translation proposed
in [4] for the strong semantics is not correct (for weak and strong semantics). Finally,
we provide a TPN which allows to prove that the atomic semantics is not included in
the intermediate one.

Related works.As mentioned above, there are, up to our knowledge, only veryfew
works considering TPN under a weak semantics. In [6] the authors have proven that the
weak intermediate semantics and the strong intermediate semantics are incomparable.
In another line of work, [8] consider TPN under a semantics which is a kind of com-
promise between the standard strong and weak semantics. They provide translations
between this model and timed state machines.

2 Definitions

Let Σ be a finite alphabet,Σ∗ is the set of finite words overΣ. We noteΣε = Σ ∪ {ε}
with ε (the empty word) not inΣ. The setsN, Q, Q≥0, R andR≥0 are respectively the
sets of natural, rational, non-negative rational, real andnon-negative real numbers. A
valuationv over a finite setX is a mapping inRX

≥0. Forv ∈ RX
≥0 andd ∈ R≥0, v + d

denotes the valuation defined by(v +d)(x) = v(x)+d. We note0 the valuation which
assigns to every clockx ∈ X the value0.

We introduce a notation to define intervals of reals with rational bounds. We denote
byB the set{<,≤}×(Q∪{∞}) we will use to characterize the bounds of intervals. We
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define the relation of satisfaction|= of a bound(≺, a) by a real numbery, byy |= (≺, a)
if and only if y ≺ a. We define the order⊏ onB by, for bi = (≺i, ai) with i ∈ {1, 2}:

b1 ⊏ b2 ⇐⇒

{

a1 < a2, or,
a1 = a2 and ≺1∈ {<} and ≺2∈ {≤}

Furthermore, we denote byb1 ⊑ b2 the fact thatb1 ⊏ b2 or b1 = b2. Intuitively, a
larger bound for this order means that it is less restrictive. Formally, given two bounds
b1 ⊑ b2, we have∀y ∈ R, y |= b1 ⇒ y |= b2. Given a finite set of boundsF ⊂ B,
we denote bymin(F ) the boundb of F minimal for the order⊑. We also define an
addition between a boundb = (≺, a) and a rationalq ∈ Q asb + q = (≺, a + q).

We denote byB≥0 the restriction ofB to {<,≤} × (Q≥0 ∪ {∞}). We say that
a pairI ∈ B≥0 × B≥0 is a non-emptyQ≥0-interval if I = (b1, b2) with b1 ⊏ b2 and
b2 6= (≤,∞). We denote byI(Q≥0) the set of non-emptyQ≥0-intervals ofR≥0. A real
numbery belongs to an intervalI = (b1, b2), denoted byy ∈ I, iff y 6|= b1 andy |= b2.
For instance, the interval]1, 2] is encoded as the pair of bounds(≤, 1) and(≤, 2).

2.1 Petri Nets

Definition 1 (Labeled Petri Net (PN)).A Labeled Petri Net over the alphabetΣε is a
tuple(P, T,Σε,

•(.), (.)
•
,M0, Λ) where:

– P is a finite set ofplaces,
– T is a finite set oftransitionswith P ∩ T = ∅,
– •(.) ∈ (NP )T is thebackwardincidence mapping,
– (.)

• ∈ (NP )T is theforward incidence mapping,
– M0 ∈ NP is theinitial marking,
– Λ : T → Σε is thelabeling function

As commonly in use in the literature, the vector•(t) (resp.(t)•) in NP is noted
•t (resp.t•). The semantics of a PNN = (P, T,Σε,

•(.), (.)
•
,M0, Λ) is given by its

associated labeled transition systemJN K = (NP ,M0, Σε,⇒) where⇒⊆ Q×Σε ×Q

is the transition relation defined byM
a

=⇒ M ′ iff ∃t ∈ T s.t.Λ(t) = a ∧ M ≥
•t ∧ M ′ = M − •t + t•. For convenience we will sometimes also write, fort ∈ T ,
M

t
=⇒ M ′ if M ≥ •t andM ′ = M − •t + t•. We also writeM ⇒ M ′ if there

existsa ∈ Σε such thatM
a

=⇒ M ′. The relation⇒∗ represents the reflexive and
transitive closure of⇒. We denote byReach(N ) the set of reachable markings defined
by {M ∈ NP | M0 ⇒∗ M}.

It is well known that for PN the reachability problem which consists in determining
whether a given markingM belongs toReach(N ) is decidable; it has in fact been
proved independently in [12] and [11].

We introduce a last notation concerning Labeled Petri Nets.Given a PNN , a mark-

ing M of N and a multi-set∆ = 〈t1, . . . , tn〉 of transitions ofN , we writeM
∆

=⇒ M ′

if and only if the multi-set∆ can be fired fromM , meaning that there exists an ordering
of transitions in∆, represented as a permutationϕ of {1, . . . , n}, such that the sequence

of firingsM
tϕ(1)
==⇒ M1

tϕ(2)
==⇒ M2 . . .

tϕ(n)
==⇒ M ′ exists inJN K.
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2.2 Timed Transition Systems

Timed transition systems describe systems which combine discrete and continuous evo-
lutions. They are used to define the behavior of timed systemssuch as Time Petri
Nets [13] or Timed Automata [3].

Definition 2 (Timed Transition System (TTS)). A timed transition systemover the
alphabetΣε is a transition systemS = (Q, q0, Σε,→), where the transition relation

→⊆ Q × (Σε ∪ R≥0) × Q consists of continuous transitionsq
d
−→ q′ (with d ∈ R≥0),

and discrete transitionsq
a
−→ q′ (with a ∈ Σε).

Moreover, we require the following standard properties forTTS :

– TIME-DETERMINISM : if q
d
−→ q′ andq

d
−→ q′′ with d ∈ R≥0, thenq′ = q′′,

– 0-DELAY : q
0
−→ q,

– ADDITIVITY : if q
d
−→ q′ andq′

d′

−→ q′′ with d, d′ ∈ R≥0, thenq
d+d′

−−−→ q′′,

– CONTINUITY : if q
d
−→ q′, then for everyd′ andd′′ in R≥0 such thatd = d′ + d′′,

there existsq′′ such thatq
d′

−→ q′′
d′′

−→ q′.

With these properties, arun of S can be defined as a finite sequence of moves

ρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→ q2 . . .
an−−→ qn+1 where discrete and continu-

ous transitions alternate. To such a run corresponds the timed wordw = (ai, τi)0≤i≤n

over Σε whereτi =
∑i

j=0 dj is the time at whichai happens. We then denote by
Untimed(w) the worda0a1 . . . an over the alphabetΣε and byDuration(w) the du-
ration τn. We will sometimes apply, without possible ambiguities, these notations to
runs writingUntimed(ρ) andDuration(ρ). We might also describe the run writing di-
rectly q0

w
−→ qn+1. Finally, because of the characteristics of the empty wordε, we will

consider in the sequel that for all timed wordsw, Untimed(w) is either a word overΣ
(which means withoutε) or the empty wordε.

2.3 Time Petri Nets

Syntax. Introduced in [13], Time Petri Nets associate a time interval to each transition
of a Petri net.

Definition 3 (Labeled Time Petri Net (TPN)). A Labeled Time Petri Net over the
alphabetΣε is a tuple(P, T,Σε,

•(.), (.)
•
,M0, Λ, I) where:

– (P, T,Σε,
•(.), (.)

•
,M0, Λ) is a PN,

– I : T 7→ I(Q≥0) associates with each transition afiring interval.

In the sequel, we associate to an interval its left bound and its right bound. More
generally, given a transitiont of a TPN, we will denote byeft(t) (resp.lft(t)) the left
bound ofI(t) (resp. the right bound ofI(t)), standing for earliest firing time (resp.
latest firing time). We have henceI(t) = (eft(t), lft(t)). We also use the notion of
granularityof a TPN, which intuitively corresponds to the precision of the TPN, and is
defined as the least common multiple of denominators of (rational) bounds of intervals.
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Semantics.A configurationof a TPN is a pair(M,ν), whereM is a marking over
P , i.e. a mapping inNP , with M(p) the number of tokens in placep. A transition
t is enabledin a markingM if M ≥ •t. We denote byEn(M) the set of enabled
transitions inM . The second component of the pair(M,ν) is a valuation overT , i.e.
a mapping inRT

≥0. Intuitively, for any enabled transitiont, ν(t) represents the amount
of time that has elapsed sincet is enabled. An enabled transitiont can be fired ifν(t)
belongs to the intervalI(t). The marking obtained after this firing is as usual the new
markingM ′ = M − •t + t•. Moreover, some valuations are reset and we say that the
corresponding transitions are newly enabled.

Different semantics can be chosen in order to realize these resets. This choice de-
pends of what is called thememory policy. For M ∈ NP and t, t′ ∈ T such that
t ∈ En(M) we define in different matters a predicate↑enabled(t′,M, t) which is true
if t′ is newly enabledby the firing of transitiont from markingM , and false otherwise:

I : The intermediate semanticsconsiders that the firing of a transition is performed in
two steps: consuming the tokens in•t, and then producing the tokens int•. In this
case, the newly enabled predicate, denoted↑enabledI(t′,M, t), is defined by:

↑enabledI(t
′,M, t) =

(

t′ ∈ En(M − •t + t•) ∧ (t′ /∈ En(M − •t) ∨ t = t′)
)

A: The atomic semanticsconsiders that the firing of a transition is obtained by an
atomic step. The corresponding predicate↑enabledA(t′,M, t) is defined by:

↑enabledA(t′,M, t) =
(

t′ ∈ En(M − •t + t•) ∧ (t′ /∈ En(M) ∨ t = t′)
)

PA: Thepersistent atomic semanticsconsiders that the firing of a transition is also ob-
tained by an atomic step. The difference with the previous semantics appears only
whent = t′; in fact here the transition just being fired is not always newly enabled.

↑enabledPA(t′,M, t) =
(

t′ ∈ En(M − •t + t•) ∧ t′ /∈ En(M)
)

Finally, as recalled in the introduction, there are two waysof letting the time elapse
in TPN. The first way, known as thestrong semantics, is defined in such a matter that
time elapsing cannot disable a transition. Hence, when the upper bound of a firing inter-
val is reached then the transition must be fired or disabled. In contrast to that theweak
semanticsdoes not make any restriction on the elapsing of time. In thiswork, we focus
on the weak semantics of TPN.

Definition 4 (Weak semantics of a TPN).Lets ∈ {I,A, PA}. The weaks-semantics
of a TPNN = (P, T,Σε,

•(.), (.)
•
,M0, Λ, I) is a timed transition systemJN Ks =

(Q, q0, Σε,→s) whereQ = NP ×RT
≥0, q0 = (M0,0) and→s consists of discrete and

continuous moves:

– the discrete transition relation is defined∀a ∈ Σε by:

(M,ν)
a
−→s (M ′, ν′) iff ∃t ∈ T s.t.































Λ(t) = a, and,
t ∈ En(M) ∧ M ′ = M − •t + t•, and,
ν(t) ∈ I(t), and,
∀t′ ∈ T,

ν′(t′) =

{

0 if ↑enableds(t′,M, t)
ν(t′) otherwise
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– the continuous transition relation is defined∀d ∈ R≥0 by:

(M,ν)
d
−→s (M,ν′) iff ν′ = ν + d

We also write a discrete transition(M,ν)
t
−→s (M ′, ν′) to characterize the transi-

tion t ∈ T which allows the firing(M,ν)
Λ(t)
−−−→s (M ′, ν′). We extend this notation to

wordsθ ∈ (T ∪ R≥0)
∗, which correspond to sequences of transitions and delays and

lead to a unique (if it exists) runρ. We may write this runρ : (M,ν)
θ
−→s (M ′, ν′) and

useUntimed(θ) (resp.Duration(θ)) to denote the wordUntimed(ρ) (resp. to represent
the delayDuration(ρ)). Finally, for s ∈ {I,A, PA}, we write (M,ν) →s (M ′, ν′)

if there existsa ∈ R≥0 ∪ Σε such that(M,ν)
a
−→s (M ′, ν′). The relation→∗

s de-
notes the reflexive and transitive closure of→s. For a TPNN with an initial marking
M0 we define the following reachability sets according to the considered semantics:
Reach(N )s = {(M,v) | (M0,0) →∗

s (M,v)}.

3 Decidability

3.1 Considered problems and known results

AssumeN = (P, T,Σε,
•(.), (.)

•
,M0, Λ, I) is a TPN. In this section, we will consider

the following problems fors ∈ {I,A, PA}:

(1) Themarking reachability problem: givenM ∈ NP , does there existν ∈ RT
≥0 such

that(M,ν) ∈ Reach(N )s ?
(2) Themarking coverability problem: givenM ∈ NP , does there existM ′ ∈ NP and

ν ∈ RT
≥0 such thatM ′ ≥ M and(M ′, ν) ∈ Reach(N )s ?

(3) The boundedness problem: does there existb ∈ N such that for all(M,ν) ∈
Reach(N )s and for allp ∈ P , M(p) ≤ b ?

It is well known that the ”untimed” versions of these

•q

q′′

ci

q′

[0, 0]

[1, 1]

Fig. 1. Encoding decremen-
tation with strong semantics.

problems are decidable in the case of Petri nets. In fact,
as mentioned before the marking reachability problem
is decidable for Petri nets [11, 12] and the two other
problems can be solved using the Karp and Miller tree
whose construction is given in [10]. Furthermore, from
[9], we know that these problems are all undecidable
when considering TPN with strong semantics no matter
whether the semantics is intermediate, atomic or persis-
tent atomic. In fact a TPN with strong semantics can
simulate a Minsky machine. A Minsky machine manip-
ulates two integer variablesc1 andc2 and is composed
of a finite number of instructions, each of these instruc-

tions being either an incrementation (q : ci := ci +1) or a decrementation with a test to
zero (q : if ci = 0 gotoq′ elseci := ci − 1; gotoq′′), wherei ∈ {1, 2} andq, q′, q′′ are
some labels preceding each instruction. There is also a special labelqf from which the

6



machine cannot do anything. In [14], Minsky proved that the halting problem, which
consists in determining if the instruction labeled withqf is reachable, is undecidable.

It is easy to encode an incrementation using a TPN (or even a PN), with a transition
consuming a token in a place characterizing the current control state and producing
a token in the next control state and in a place representing the incremented counter.
When encoding the decrementation with the test to zero, the strong semantics plays a
crucial role. This encoding is represented on Figure 1. If there is a token in the place
ci, there is no way for the TPN to produce a token in the placeq′ because time cannot
elapse since the transition labeled with the interval[0, 0] is firable. This construction
obviously fails with the weak semantics.

3.2 The peculiar case of TPN with weak intermediate semantics

We prove here that the undecidability results we had before in the case of TPN with
strong semantics do not hold anymore when considering the weak intermediate seman-
tics. Before proving this we introduce some notations. For aTPNN = (P, T,Σε,

•(.),
(.)

•
,M0, Λ, I), we denote byNU the untimed PN obtained by removing fromN the

componentI. Furthermore given a set of configurationsC ⊆ NP × RT
≥0 of N , we de-

note byUntime(C) the projection ofC over the setNP . Fors ∈ {I,A, PA}, we have
by definition of the different semantics thatUntime(Reach(N )s) ⊆ Reach(NU )
and as shown by the example given in Figure 1 this inclusion isstrict in the case of
the strong semantics. When considering theweak intermediate semantics, we prove
that from any sequence of transitions∆ firable inJNU K, we can effectively compute a
reordering of∆, and associated timestamps, leading to a correct run ofJN KI .

Theorem 5. For all TPNN , Untime(Reach(N )I) = Reach(NU ).

Proof. Let N = (P, T,Σε,
•(.), (.)

•
,M0, Λ, I) be a TPN. According to the previous

remark, we only have to prove thatReach(NU ) ⊆ Untime(Reach(N )I). We con-
sider the transition systemJNU K = (NP ,M0, Σε,⇒) associated toNU and the TTS
JN KI = (Q, q0, Σε,→I) associated toN under the weak intermediate semantics.

Let M,Mf ∈ NP be two markings ofNU such thatM ⇒∗ Mf . Consider a

multiset∆ of transitions ofN such thatM
∆

=⇒ Mf . We will show that there exists a
valuationνf ∈ RT

≥0 such that(M,0) →∗
I (Mf , νf ). The effective construction of this

run in JN KI is given by Algorithm 1. We will prove that this Algorithm computes a
correct execution and that it finishes without returning ”Error”.

First, analyzing the different steps of the Algorithm 1, we can deduce that:

Proposition 6. For all i ∈ N, if Timed-Eni 6= ∅ then we have:

(i) (Mi, νi)
di+1
−−−→I (Mi, νi + di+1)

ti+1
−−→I (Mi+1, νi+1),

(ii) ∀t′ ∈ Timed-Eni, νi+1(t
′) |= lft(t ′).

Intuitively, when the setTimed-Eni is not empty, at Line 7, the algorithm begins by
choosing a transition with the closest relative earliest firing time (which can eventually
be negative if some transitions are already enabled). Then,it chooses a delay to fire this
transition that preserves the firability of all others transitions inTimed-Eni. Due to the
weak semantics, from any configuration, the system can wait any amount of time.

7



Proof. We assume thatTimed-Eni is not empty and we distinguish three cases accord-
ing to theif of Line 10 of the Algorithm 1:

– First case:emin < 0. This corresponds to a transition which is already enabled.In
this case, the value ofdi+1 is equal to0. Sincet belongs toTimed-Eni, this en-
sures thatt is immediately firable, thus proving point(i). Property(ii) immediately
follows from the definition ofTimed-Eni sinced = 0 and since for allt′ ∈ T , we
haveνi+1(t

′) = νi(t
′) + d or νi+1(t

′) = 0 (if ↑enabledI(t′,M, t) = true).
– Second case:emin ≥ 0 and≺min∈ {<}. This means that the left bound ofI(t) is

closed. Then there exists a minimal delayδ ≥ 0 such thatνi(t) + δ ∈ I(t). This
delay is in fact computed at line11, thus withdi+1 = δ = emin and the fact that
we are considering the weak semantics, we have immediately(i). In addition, using
the minimization criterion of Line7 we have∀t′ ∈ Timed-Eni, eft(t) − νi(t) ⊑
eft(t ′) − νi(t

′). Since for any transitiont′, eft(t ′) ⊑ lft(t ′), we deduce that we
have for anyt′ ∈ Timed-Eni, (<, di+1) ⊑ eft(t ′) − νi(t

′) ⊑ lft(t ′) − νi(t
′) and

applying the definition of⊑ we haveνi(t
′) + d |= lft(t ′). Since for allt′ ∈ T , we

haveνi+1(t
′) = νi(t

′) + d or νi+1(t
′) = 0, we obtain the point(ii).

– Third case:emin ≥ 0 and≺min∈ {≤}. In this case the valuationνi(t) does not
belong toI(t), and the left bound ofI(t) is strict. Intuitively, we have to delay a
bit more than the valueemin. By construction of(≺min, emin) and(≺, lmin) we
have directly thatνi(t) ∈ I(t) which allows us to deduce the point(i) since we can
let time elapse without constraint. We will now focus on proving the point(ii). By
definition of (≺, lmin) (line 13), we have that for all0 ≤ δ < lmin, and for any
t′ ∈ Timed-Eni, νi(t

′) + δ |= lft(t ′). It remains to prove that0 ≤ di+1 < lmin.
For any transitionst′, we haveeft(t ′) ⊏ lft(t ′), consequently(≺min, emin) ⊏

lft(t ′) and, by defintion of(≺, lmin), (≺min, emin) ⊏ (≺, lmin). Furthermore,
since≺min∈ {≤}, using the definition of⊏, we obtainemin < lmin. Consequently
(emin + lmin)/2 < lmin, which allows us to deduce that for allt′ ∈ Timed-Eni,
νi(t

′) + di+1 |= lft(t ′). And since for allt′ ∈ T , we haveνi+1(t
′) = νi(t

′) + d or
νi+1(t

′) = 0, we obtain the point(ii).
⊓⊔

Second, we deduce from Proposition 6 the following property:

∀i ∈ N,∀t ∈ ∆i, if Mi
t

=⇒ M ′ ∆i\{t}
===⇒ thenνi(t) |= lft(t) (1)

The proof proceeds by induction oni. Initially, the property holds becauseν0 = 0. For

i > 0, pick t ∈ ∆i such thatMi
t

=⇒ M ′ ∆i\{t}
===⇒. If ↑enabledI(t,Mi−1, ti) = true,

thenνi(t) = 0 and the property holds. Otherwise, we have↑enabledI(t,Mi−1, ti) =
false and sincet ∈ En(Mi), we get by definition thatt ∈ En(Mi−1 − •t). In other
words, we have the inequalityMi−1 ≥ •t + •ti which allows us to swap the order

of t and ti and then the following execution exists inJNU K : Mi−1
t

=⇒ M ′
i−1

ti=⇒

M ′ ∆i\{t}
===⇒. Since∆i = ∆i−1 \ {ti}, we can apply the induction hypothesis fori − 1

and getνi−1(t) |= lft(t). Thus,t ∈ Timed-Eni−1 and point(ii) of Proposition 6
entails thatνi(t) |= lft(t), as desired.
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Algorithm 1 Algorithm constructing a feasible timed ordering

Require: A markingM ∈ NP and a finite multi-set∆ of transitions s.t.M
∆

=⇒

Ensure: A run (M,0)
d1−→I

t1−→I (M1, ν1)
d2−→I

t2−→I . . .
dn−−→I

tn−→I (Mn, νn)
s.t.∆ = 〈t1, . . . , tn〉

1: i := 0; M0 := M ; ν0 := 0; ∆0 = ∆
2: while ∆i 6= ∅ do

3: Timed-Eni := {t ∈ ∆i | Mi

t
=⇒ M ′ ∆i\{t}

===⇒ andνi(t) |= lft(t)}
4: if Timed-Eni = ∅ then
5: Return “Error”
6: else
7: (≺min, emin) := min{eft(t ′) − νi(t

′) | t′ ∈ Timed-Eni}
8: Pickt ∈ Timed-Eni such thateft(t) − νi(t) = (≺min, emin)
9: ti+1 := t

10: if emin < 0 or≺min∈ {<} then
11: di+1 := max(0, emin)
12: else
13: (≺, lmin) := min{lft(t ′) − νi(t

′) | t′ ∈ Timed-Eni}
14: di+1 := (emin + lmin)/2
15: end if
16: ∆i+1 := ∆i \ {t}

17: (Mi+1, νi+1) is s.t(Mi, νi)
di+1
−−−→I

ti+1
−−−→I (Mi+1, νi+1)

18: i := i + 1
19: end if
20: end while

We can now prove that Algorithm 1 never returns ”Error”. For this, we only have
to prove that for alli ∈ N, ∆i 6= ∅ implies Timed-Eni 6= ∅. We proceed again by
induction oni ∈ N. The property fori = 0 is trivial sinceν0 = 0. Let i > 1. Sinceti

has been choosen in the setTimed-Eni−1 and∆i = ∆i−1 \ {ti}, we haveMi−1
ti=⇒

Mi
∆i=⇒. Then there existst ∈ ∆i such thatMi

t
=⇒ M ′ ∆i\{t}

===⇒ and the result follows
from property(1).

Finally, we have proven that∆i 6= ∅ implies Timed-Eni 6= ∅, thus the Algo-
rithm never returns ”Error” and furthermore it always terminates because∆0 is finite
and at each step|∆i+1| < |∆i|. Moreover, property(i) establishes the correction of
the constructed run ofJNKI . Hence ifMf ∈ Reach(NU ), there exists a multiset

∆ = 〈t1, . . . , tn〉 such thatM0
∆

=⇒ Mf , using the Algorithm 1, we can build a run

(M0,0)
d1−→I

t1−→I (M1, ν1)
d2−→I

t2−→I . . .
dn−→I

tn−→I (Mn, νn) and by definition of the
different semantics, we haveMn = Mf . ⊓⊔

Using the decidability results in the case of PN, we obtain the following corollary:

Corollary 7. The marking reachability, marking coverability and boundedness prob-
lems are decidable in the case of TPN with weak intermediate semantics.

9



3.3 Undecidability for weak atomic and weak persistent atomic semantics

We consider now the case of the weak atomic and weak persistent atomic semantics. As
for the strong semantics, but with a more involved construction, we will show that it is
possible to encode the behavior of a Minsky machine into a TPNwith weak (persistent)
atomic semantics from which we will deduce the undecidability results.

•q

[0, 0]

t1

p1
[1, 1]

t2

p2

ci

[0, 0]

t3

[0, 0] t5

2 p4

[0, 0]

t4 q′

p3

q′′

Fig. 2.Encoding decrementation with weak atomic or persistent atomic semantics.

Encoding an incrementation can be done as in the strong semantics. Figure 2 shows
how to encode the instruction (q : if ci = 0 gotoq′ elseci := ci − 1; gotoq′′) using a
TPN with weak atomic or persistent atomic semantics. We now explain the idea of this
encoding. We consider the two following cases for the net shown in Figure 2:

1. Assume that the only place which contains a token is the placeq, which means we
are in the case where the value ofci is equal to0 (no token in placeci). We have
the following sequence of transitions:

– the only transition which is firable ist1, so the net fires it;
– then onlyt2 can be fired, adding one token in placeci and one in placep3;
– since there is only one token inci the net can then only firet3 and thent4 to

end up in a marking with a unique token in placeq′.
2. Assume now that there is a token in placeq and that there is at least one token in

placeci. We are in the case where the value ofci is different of0. We have the
following sequence of transitions:

– only the transitiont1 is firable, so the net fires it;
– afterwards the transitiont2 and the transitiont3 are firable, but note that if the

net chooses to firet3, it will reach a deadlock state where no more transitions
can be fired without having put a token in the placeq′ or q′′, therefore we
assume that the transitiont2 is first fired. It is possible not to firet3 because
we are considering the weak semantics (in the strong semantics, the net would
have to firet3 first);

– after having firedt2, the only transition which can be fired ist5. In fact since
we are considering atomic (or persistent atomic) semantics, the firing oft2 does
not make newly enabledt3 and because of the time constraints linked tot2 and

10



t3, t3 is not anymore firable. So the net firest5 consuming the token inp2, p3
and two tokens inci (at least one was present from the initial configuration and
the first firing oft2 added another one);

– finally the net ends in a configuration with one token inq′′ and the placeci

contains one token less than in the initial configuration.

Since we can simulate a Minsky machine using a TPN with atomicor persistent
atomic weak semantics, we deduce the following result3:

Theorem 8. The marking reachability, marking coverability and boundedness prob-
lems are undecidable for TPN with weak atomic or weak persistent atomic semantics.

In comparison with what occurs in the case of the strong semantics, this result is
surprising, and it reveals the important role played by the memory policy when consid-
ering the weak semantics. Recall that as we have seen earlier, with the strong semantics,
these problems are undecidable no matter which memory policy is chosen.

4 Expressiveness

4.1 Preliminaries

Let S = (Q, q0, Σε,→) be a TTS. We define the relation→֒⊆ Q× (Σ ∪R≥0)×Q by:

– for d ∈ R≥0, q
d

−֒→ q′ iff there is a runρ in S such thatρ = q
w
−→ q′ and

Untimed(w) = ε andDuration(w) = d,
– for a ∈ Σ, q

a
−֒→ q′ iff there is a runρ in S such thatρ = q

w
−→ q′ and

Untimed(w) = a andDuration(w) = 0.

This allows us to define the following notion:

Definition 9 (Weak Timed Bisimulation). Let S1 = (Q1, q
1
0 , Σε,→1) and S2 =

(Q2, q
2
0 , Σε,→2) be two TTS and≈ be a binary relation overQ1 × Q2. ≈ is a weak

timed bisimulation betweenS1 andS2 if and only if:

– q1
0 ≈ q2

0 , and,
– for a ∈ Σ ∪ R≥0, if q1

a
−֒→1 q′1 and if q1 ≈ q2 then there existsq′2 ∈ Q2 such that

q2
a

−֒→2 q′2 andq′1 ≈ q′2; conversely ifq2
a

−֒→2 q′2 and if q1 ≈ q2 then there exists

q′1 ∈ Q1 such thatq1
a

−֒→1 q′1 andq′1 ≈ q′2.

Two TTSS1 andS2 areweak timed bisimilarif there exists a weak timed bisimu-
lation betweenS1 andS2. We then writeS1 ≈W S2.

Definition 10 (Expressiveness w.r.t. Weak Timed Bisimilarity). The classC of TTS
is more expressive thanC′ w.r.t. weak timed bisimilarity if for all TTSS′ ∈ C′ there is a
TTSS ∈ C such thatS ≈W S′. We writeC ≤W C′. If moreover there is aS ∈ C such
that there is noS′ ∈ C′ with S ≈W S′, thenC is strictly more expressive thanC′. We
then writeC <W C′.

For s ∈ {I,A, PA}, we will denote byT PN s the class of TTS induced by TPN
with s-semantics.

3 Note that one can also easily prove that weak intermediate TPN with read arcs are undecidable.
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4.2 Atomic versus Persistent Atomic semantics

In [4], the authors prove that for TPN with strong semantics,the persistent atomic se-
mantics is more expressive than the atomic semantics. We prove here that this result
still holds in the case of the weak semantics.

t
Λ(t)
I(t)

input places

output places

t1

Λ(t)
I(t)

t2

Λ(t)
I(t)

•p1
t p2

t

input places

output places

Fig. 3. From atomic to persistent atomic semantics.

Proposition 11. For all TPNN , we can build a TPNN ′ such thatJN KA ≈W JN ′KPA.

Proof. Let N = (P, T,Σε,
•(.), (.)

•
,M0, Λ, I) be a TPN overΣε. Figure 3 represents

the construction of the TPNN ′. Formally, its set of placesP ′ is equal toP ∪ {p1
t , p

2
t |

t ∈ T} and its set of transitionsT ′ contains two copiest1 and t2 of each transition
t ∈ T . These copies are connected in the same way as the transitiont is in N , plus
additional edges to the placesp1

t andp2
t , as depicted on Figure 3. Finally the initial

marking ofN ′ is M ′
0 such that for allp ∈ P , M ′

0(p) = M0(p) and for all t ∈ T ,
M ′

0(p
1
t ) = 1 andM ′

0(p
2
t ) = 0.

We now consider the relationR ⊆ (NP × RT
≥0) × (NP ′

× RT ′

≥0) between the
configurations ofJN KA and the ones ofJN ′KPA defined by(M,ν)R(M ′, ν′) iff:

– for all p ∈ P , M(p) = M ′(p) and for allt ∈ T , M ′(p1
t ) + M ′(p2

t ) = 1,
– for all t ∈ T , for all i ∈ {1, 2} if t ∈ En(M) andti ∈ En(M ′) thenν(t) = ν′(ti).

It is then easy to verify that the relationR is a weak timed bisimulation. ⊓⊔

We will now prove that the inclusion we obtain in the above proposition is strict.
Therefore, we consider the TPNN1 represented on Figure 4.

a, [0, 1]

Fig. 4.The TPNN1.

Equipped with persistent atomic semantics, it accepts the set
of timed words composed of lettersa occurring before time1.
Intuitively, our proof will rely on the fact that a TPN has a fi-
nite memory, more or less one date for each transition. Before
to prove this, we need a technical lemma which intuitively states that, for any mem-
ory policy, once the memories of transitions are controlled, executions can be delayed.
This constitutes a deep difference with the strong semantics, for which time elapsing is
limited in a global way.

Lemma 12. Let s ∈ {I,A, PA} and consider a TPNN whose granularity isd. Letρ

be a run inJN Ks of the formρ : (M,ν)
δ>0
−−→s (M,ν + δ)

t1−→s · · ·
tn−→s, such that

there exists a valueτ ≥ 0 verifying:

12



(i) ∀i ∈ {1, . . . , n}, ti ∈ En(M) ⇒ ν(ti) ≤ τ ,
(ii) τ + δ < 1

2d

Then the sequenceρ′ : (M,ν)
δ+ 1

2d−−−→s (M,ν′)
t1−→s · · ·

tn−→s is firable inJN Ks.

Proof. We introduce the following notations describing the runρ:

(M,ν)
δ>0
−−→s (M,ν + δ) = (M1, ν1)

t1−→s (M2, ν2)
t2−→s (M3, ν3) · · · (Mn, νn)

tn−→s

(Mn+1, νn+1).

We split the set of indices{1, . . . , n} into two disjoint subsets,I=0 = {i ∈ {1, . . . , n} |
νi(ti) = 0}, andI6=0 = {i ∈ {1, . . . , n} | νi(ti) 6= 0}. These two sets contain respec-
tively the index of the transitions fired with a null (respectively non null) valuation.

We first show the following property:

∀i ∈ I6=0, 0 < νi(ti) <
1

2d
and]0,

1

d
[⊆ I(ti) (2)

Consider the first part of this property. Note that these valuations are strictly positive
by definition ofI6=0, thus proving the left inequality. Consider now the right inequality,
and leti ∈ I 6=0. Since the sequencet1 . . . ti is instantaneous and follows a non null
delay step,ti is never newly enabled duringt1 . . . ti−1 (otherwiseνi(ti) = 0). As a
consequence, we haveνi(ti) = ν(ti) + δ, and by properties(i) and(ii) of ρ, we obtain
νi(ti) ≤ τ + δ < 1

2d
, as desired.

By definition of the granularityd, and sinceti is firable from(Mi, νi), the inclusion
]0, 1

d
[⊆ I(ti) holds for anyi ∈ I6=0.

We consider now the runρ′ : (M,ν)
δ+ 1

2d−−−→s (M,ν + δ + 1
2d

) = (M1, ν
′
1)

t1−→s

(M2, ν
′
2)

t2−→s (M3, ν
′
3) · · · (Mn, ν′

n)
tn−→s (Mn+1, ν

′
n+1). Note that the increasing of

the delay is possible because of the weak semantics: in the strong one, the modification
of the delay step could be impossible. To prove that this sequence is firable inJN Ks,
we proceed by contradiction. Assume there exists a positioni ∈ {1, . . . , n} such thatti
is not firable from(Mi, ν

′
i), and pick the smallest position verifying this property. We

distinguish two cases:

1. If i ∈ I=0. Then we haveνi(ti) = 0. Since the instantaneous sequencet1 . . . ti
immediately follows inρ the delay stepδ > 0, ti is newly enabled by the firing
of t1 . . . ti−1. Since this property only depends on discrete markings, which are
preserved inρ′, ti is also newly enabled by the firing oft1 . . . ti−1 in ρ′. As a
consequence, we haveν′

i(ti) = 0 = νi(ti), thus proving thatti is firable inρ′,
yielding a contradiction.

2. If i ∈ I6=0. Then we haveνi(ti) 6= 0. As already mentioned above, we have in
this case thatti is never newly enabled duringt1 . . . ti−1 in ρ. Since the discrete
markings are preserved, this conclusion holds also inρ′. As a consequence, we have
νi(ti) = ν(ti) + δ andν′

i(ti) = ν(ti) + δ + 1
2d

, what yieldsν′
i(ti) = ν(ti) + 1

2d
.

Using Property(2), we obtainν′
i(ti) ∈ I(ti), and thenti is firable from(Mi, ν

′
i),

contradicting the assumption.

Finally, we have obtained a contradiction in both cases, thus proving thatρ′ is firable in
JN Ks. ⊓⊔
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We then have the following proposition:

Proposition 13. There exists no TPNN (even unbounded) s.t.JN KA ≈W JN1KPA.

Proof. We consider the TPNN1 represented on Figure 4. Assume there exists a TPN
N such thatJN KA ≈W JN1KPA. Denote byN the number of transitions ofN , by
d its granularity, and consider a timed wordw = (a, τ1)(a, τ2) . . . (a, τk) such that
∀i, 1 − 1

2d
< τi < τi+1 < 1, andk ≥ N + 1.

This timed wordw is recognized byJN1KPA and there exists thus a run ofJN KA

alongw. We denote it byρ and decompose it as follows :

ρ :
θ0−→A

d1−→A
θ1−→A

t1a−→A

θ′

1−→A · · ·
di−→A

θi−→A

ti
a−→A

θ′

i−→A · · ·
dk−→A

θk−→A

tk
a−→A

To obtain this decomposition we proceed as follows. We denote bytia thei-th tran-
sition labelled bya. Then for each positioni, we isolate the last delay step occuring
before the transitiontia (it exists sinceτi > τi−1) and denote it bydi. Then we gather all
the silent transitions occuring between this delay step andthe transitiontia, and denote
this sequence byθi. The transitions betweenti−1

a and the delay step constitute the se-
quenceθ′i−1. In particular, the following properties hold for any position i : Λ(tia) = a,
Untimed(θi) = Untimed(θ′i) = ε, di > 0, Duration(θi) = 0, andtia occurs at timeτi.

We claim there exists an indexi ∈ {1, . . . , k} such that each transitiont appearing
in θi tia has already been fired sinceθ0, i.e.t also appears inθ1 t1a θ′1 · · · θi−1 ti−1

a θ′i−1.
By contradiction, if it is not the case, then we can find, for each indexi ∈ {1, . . . , k}, a
transition, denotedti, that never appears before. The choice ofk verifying k ≥ N + 1
then implies that there exist two positionsi 6= j such thatti = tj , thus yielding a
contradiction. We can now fix an indexi verifying the above described property.

We now show that Lemma 12 can be applied to the part ofρ associated with the
sequencedi θi tia. More precisely,(M,ν) is the configuration reached after firing
θ0 · · · t

i−1
a θ′i−1, the delayδ is equal todi, the sequencet1 · · · tn corresponds toθi tia,

andτ is defined as(τi − di) − (1 − 1
2d

). In the atomic semantics, when a transition is
fired, its clock is reset if it is still enabled. This propertyallows, together with timing
constraints on the wordw, to verify hypotheses(i) and(ii) of the Lemma 12. Indeed,
since each transition inθi tia has been reset alongθ1 t1a θ′1 · · · θ

′
i−1, it has been reset

since timeτ1. Since the global time associated with(M,ν) is equal toτi − di, these
valuations are bounded by above by the value(τi−di)−τ1 ≤ (τi−di)−(1− 1

2d
) = τ .

Second, we haveτ + δ = τi − (1− 1
2d

) < 1
2d

, as desired (this follows from the inequal-
ities1 − 1

2d
< τi < 1).

Finally, Lemma 12 thus allows to delay of12d
the firing of the sequenceθi tia. In

particular, this will produce a lettera at timeτi + 1
2d

> 1. The TTSJN KA thus accepts
a timed word not recognized byJN1KPA, providing a contradiction. ⊓⊔

Using the results of Propositions 11 and 13, we deduce that:

Theorem 14. T PNA <W T PNPA.

4.3 About Atomic and Intermediate policies in weak and strong semantics

In this subsection, we discuss the comparison of the intermediate and atomic policies.
As we will see, the situation is more complex than in the previous comparison.
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On the inclusion ofT PN I into T PNA. For thestrong semantics, a construction has
been proposed in [4] to transform any TPN with intermediate policy into an equivalent
(w.r.t. weak timed bisimilarity) TPN with atomic semantics. A first attempt was thus to
adapt this construction for the weak semantics. But studying this construction, we no-
ticed that it is erroneous (even for the strong semantics). We present below an example
exhibiting the error.

t′, b, [0, 1]

t, a, [0, 1]

••p

N2

t′−, b, [0, 1]

t′+, ε, [0, 0]

t−, a, [0, 1] t+, ε, [0, 0]

••p

pt

pt′

N ′
2

Fig. 5.A counter example to the construction of [4].

Example 1.Consider the netN2 depicted on the left of Figure 5. The application of
the construction proposed in [4] leads to the netN ′

2 depicted on the right of Fig-
ure 5. According to [4], we should have, under thestrong semantics, the relation
JN2KI ≈W JN ′

2KA. However, it is easy to verify that in the TTSJN ′
2KA the timed

word w = (a, 1)(a, 1)(b, 2) is accepted, whereas it is not inJN2KI , thus proving that
the construction proposed in [4] is erroneous.

This example leaves open the question of the inclusion ofT PN I into T PNA for
the strong semantics, and then for this semantics both inclusions are left open. For weak
semantics, this inclusion is also open, but we show below that the converse inclusion is
false.
Non inclusion ofT PNA into T PN I . We exhibit a

b, [0, 1]

a, [0,+∞[

•q

Fig. 6.The TPNN3.

TPN with atomic semantics which cannot be expressed
in an equivalent way by any TPN with intermediate se-
mantics (with weak elapsing of time). This is formally
stated in the Proposition below. We consider the TPN
represented on Figure 6. Interpreted in weak atomic se-
mantics, the firing of thea-labelled transition does not
newly enable transition labelled byb. This transition
thus shares a token with transitiona while preserving a time reference to the origin
of global time, what is impossible in intermediate semantics.

Proposition 15. There exists no TPNN (even unbounded) such thatJN KI ≈W JN3KA.

Proof. We proceed by contradiction and assume there exists such a TPN N , and denote
by N its number of transitions, and byd its granularity. As in the proof of Proposi-
tion 13, we first exhibit a particular executionρ of JN KI :

Lemma 16. Let(τi)1≤i≤k be a set of timestamps such that for any1 ≤ i ≤ k, 1− 1
2d

<
τi < τi+1 < 1 andk ≥ N + 1. There exists a runρ in JN KI of the following form:

ρ :
1− 1

2d−−−→I
θ1−→I

d1−→I

θ′

1−→I

t1a−→I

θ′′

1−→I · · ·
θi−→I

di−→I

θ′

i−→I

ti
a−→I

θ′′

i−→I · · ·
θn−→I

dn−→I

θ′

n−→I

tn
a−→I

θ′′

n−→I
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such that for any positioni, Λ(tia) = a, the transitiontia occurs at timeτi, di > 0,
Untimed(θi) = Untimed(θ′i) = Untimed(θ′′i ) = ε, Duration(θ′i) = Duration(θ′′i ) = 0,
and there exists a transitiontib, labelled byb, newly enabled by the last transition of
tia θ′′i and (immediately) firable from the configuration reached after θ′′i .

Proof. We present here the details of the construction of the runρ. This construction
proceeds in three steps.

First step : construction of the structure of ρ. This step is the most involved
one. We deeply use the bisimulation property betweenJN3KA and JN KI to build a
first sequence. Figure 7 illustrates this construction. A dashed arrow between two con-
figurations meens that these configurations are bisimilar. The direction of this arrow
indicates which implication is used to obtain the bisimilarity (from JN3KA to JN KI ,
or conversely). In this figure, we omit the indexI andA which should be associated
to each of the step. We now detail step by step how this Figure reads. Initially, due to
weak semantics, the netN in intermediate semantics can choose to delay1 − 1

2d
time

units. By bisimulation (and because there are no silent transitions inN3), the same de-
lay leads to a bisimilar configuration inJN3KA, thus indicated by a bottom-up dashed
arrow. From this configuration one can inJN3KA delayτ1 − (1 − 1

2d
) time units4 and

then fire thea transition. By bisimulation, there exists a path inJN KI , written asu1t
1
au′

1,
leading to a bisimilar configuration and such thatu1 only contains silent transitions and
is of duration exactlyτ1 − τ0, t1a is labelled bya, andu′

1 is labelled byε and has a
null duration. The bisimilarity is indicated by a top-down dashed arrow since it is the
existence of a path inJN3KA that implies the existence of a path inJN KI . Next, one can
fire instantaneouslyb in JN3KA what implies the existence of a pathσ1t

1
bσ

′
1, leading to

a bisimilar configuration, and such thatσ1 andσ′
1 are labelled byε and of null duration,

andtib is labelled byb. Then, we use the bisimulation property in the converse direction:
the configuration reached after the prefixσ1, which is labelled byε and of null dura-
tion, is still bisimilar with the configruation ofJN3KA reached after thea transition, as
indicated by the bottom-up dashed arrow (the only path inJN3KA of null duration and
labelled byε is the empty path). Then the same reasoning is applied from these two
bisimilar configurations, and can be repeated arbitrarily many times.

JN KI :

JN3KA :

(M0, 0)

(q, 0)

(M0, 1 − 1

2d
)

(q, 1 − 1

2d
)

1 − 1

2d

1 − 1

2d τ1 − τ0 a

u1 t1a u′
1

b

σ1

t1b
σ′

1

τ2 − τ1 a

u2 t2a u′
2

b

σ2

t2b
σ′

2

Fig. 7.Using bisimulation to buildρ.

4 We denote byτ0 the value1 − 1

2d
.
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Second step : definition ofθi, θ′i and di. This step is much simpler. We simply split
the pathsui in three (eventually empty) parts. The duration ofui is equal toτi−τi−1 >
0, thus we can consider the last positive delay step appearingin ui, and denote it bydi.
Then we simply writeui = θi · di · θ

′
i.

Third step : definition of θ′′i . In this last step, we will define the pathθ′′i as a prefix
of the pathu′

i ·σi. This path possesses the following properties : its duration is null, it is
labelled byε, and there exists ab labelled transitiontib immediately firable after it. The
only property missing is that its last transition newly enables transitiontib. To obtain this
property, we will show that we can find a prefix ofu′

i ·σi having this additional property.
Therefore we prove the following lemma, specific to the intermediate semantics:

Lemma 17. Let N be a TPN, and consider an execution ofJN KI , denoted byρ :

(M1, v1)
t1−→I (M2, v2)

t2−→I · · · (Mn, vn)
tn−→I (Mn+1, vn+1)

t
−→I , such that for any

i ∈ {1, . . . , n}, ↑enabledI(t,Mi, ti) = false.

Then, for anyi ∈ {1, . . . , n}, the executionρi : (Mi, vi)
t
−→I

ti−→I exists inJN KI .

Proof (of Lemma 17).By definition of the predicate↑enabledI , and sincet is newly
enabled by noti and firable from(Mn+1, vn+1), we have thatt is enabled in everyMi

and, because the sequencet1 . . . tn is instantaneous (no delay step),vn+1(t) = vi(t) for
anyi. Thus,t is firable from the configuration(Mi, vi). Moreover, we can notice, asti
is enabled inMi, that↑enabledI(t,Mi, ti) = false implies thatti is still enabled after
the firing oft from Mi, and has not been newly enabled:↑enabledI(ti,Mi, t) = false.
As a consequence,ti is firable from the configuration reached after firingt, thus proving
the Lemma. ⊓⊔

Lemma 17 entails that there exists a transition in the sequencetiau′
iσi which newly

enables the transitiontib. Indeed, if it is not the case, the result of Lemma 17 implies
that after the firing ofui, one can first fire the transitiontib, and immediately after fire
the transitiontia. This leads to the production of a lettera after the letterb, which
in impossible inJN3KA, thus leading to a contradiction. Finally, we defineθ′′i as the
(eventually empty iftib is newly enabled bytia) prefix ofu′

i · σi up to the first transition
that newly enablestib. This concludes the proof of the existence of the sequenceρ. ⊓⊔

We now return on the proof of Proposition 15. First, we claim that there exists an index
i ∈ {1, . . . , k} such that each transitiont appearing inθ′i tia θ′′i has already been fired
since timeτ1, i.e. t also appears inθ′1 t1a θ′′1 · · · θi−1 θ′i−1t

i−1
a θ′′i−1θi. The reasonning

is similar to the one of the proof of Proposition 13: by contradiction, if there exists no
such position, then we can find, for each indexi ∈ {1, . . . , k}, a transition, denotedti,
that never appears before. The choice ofk verifying k ≥ N + 1 then implies that there
exist two positionsi 6= j such thatti = tj , thus yielding a contradiction. We can now
fix an indexi verifying the above described property.

We now show that Lemma 12 can be applied to the portion ofρ associated with

the sequence
di−→

θ′

i−→
ti
a−→

θ′′

i−→. More precisely, let(M,ν) be the configuration reached
after firing(1 − 1

2d
)θ1 . . . ti−1

a θ′′i−1θi, the delayδ is equal todi, the sequencet1 · · · tn
corresponds toθ′it

i
aθ′′i , andτ is defined as(τi − di) − (1 − 1

2d
). In the intermediate

semantics, when a transition is fired, its clock is reset if itis still enabled. This property
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allows, together with timing constraints on the runρ, to verify hypotheses(i) and(ii) of
the Lemma 12. Indeed, we first have that each transition inθ′i tia θ′′i has been reset since
timeτ1. Since the global time associated with(M,ν) is equal toτi−di, these valuations
are bounded by above by the value(τi − di)− τ1 ≤ (τi − di)− (1− 1

2d
) = τ . Second,

we haveτ + δ = τi − (1 − 1
2d

) < 1
2d

, as desired (this follows from the inequalities
1 − 1

2d
< τi < 1).

Lemma 12 thus allows to delay of12d
time units the firing of thesequenceθ′i tia θ′′i .

Moreover, as the transitiontib is newly enabled by the last transition oftia θ′′i , and can
be immediately firable afterθ′′i in ρ, we deduce that this immediate firing can also be
performed in the delayed execution. We thus obtain an execution in JN KI with a b
action following ana action after time1, which is impossible inJN3KA, thus yielding a
contradiction. ⊓⊔

5 Conclusion

We have studied in this paper the model of Time Petri Nets under a weak semantics of
time elapsing, allowing any delay transition. We have first proven that for the interme-
diate memory policy, the set of reachable markings coincides with the reachability set
of the underlying untimed Petri net. As a consequence, many verification problems are
decidable for weak intermediate TPN. On the other hand, we have proven that the two
others memory policies, namely atomic and persistent atomic, allow to simulate Minsky
machines and thus are undecidable. Finally, we have studiedexpressiveness and have
proven that(i) the atomic semantics is strictly less expressive than the persistent atomic
one and(ii) the atomic semantics is not included in the intermediate one.

In further work, we plan to investigate properties concerning executions of weak
intermediate TPN; such as time-optimal reachability, or LTL model checking. Indeed,
while discrete markings are the same, the executions are different from those accepted
by the underlying Petri net. Concerning expressiveness, weconjecture that intermediate
and atomic semantics are uncomparable in general, and that bounded weak TPN are
strictly less expressive than timed automata (without invariants).
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