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Abstract. We consider the model of Time Petri Nets where time is associated
with transitions. Two semantics for time elapsing can be considered: thegstro
one, for which all transitions are urgent, and the weak one, for which ¢ane
elapse arbitrarily. It is well known that many verification problems sucltha
marking reachability are undecidable with the strong semantics. In thig,pape
we focus on Time Petri Nets with weak semantics equipped with three differ-
ent memory policies for the firing of transitions. We prove that the reaittya
problem is decidable for the most common memory policy (intermediaig) an
becomes undecidable otherwise. Moreover, we study the relativessiypeness

of these memory policies and obtain partial and surprising results.

1 Introduction

Verification of timed and distributed systerfsr verification purposes.g.in the devel-
opment of embedded platforms, there is an obvious need fgidering time features
and the study of timed models has thus become increasinglgriamt. For distributed
systems, different timed extensions of Petri nets have pegposed which allow the
combination of an unbounded discrete structure with déinsevariables.

About time-elapsing policieShere are several ways to express urgency in timed sys-
tems, as discussed in [15]. In timed extensions of Petri, hets types of semantics
are considered for time elapsing. In theaksemantics, all time delays are allowed
whereas in thestrong one, all transitions are urgerite. time delays can not disable
transitions. While for models with finite discrete structsech as timed extensions
of bounded Petri nets or timed automata [3]), standard eati€in problems are decid-
able for both semantics, for models with infinite discreteicture, the choice of the
semantics has a deep influence on decidability issues. Btanice, in the model of
timed-arc Petri nets [5], where clocks are associated wkbris and which is equipped
with a weak semantics, many verification problems are dbtéd@overability, bound-
edness...). Indeed, this semantics entails for this modelotonicity properties which
allow the application of well-quasi-ordering techniquese [7, 2, 1]. Note however that
the reachability of a discrete marking is undecidable, avqn in [16]. On the other
side, in the model of Time Petri Nets [13] (TPN), where cloeke associated with
transitions, and which is commonly considered under a gtsmmantics, all the stan-
dard verification problems are known to be undecidable [9atural question, which
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had surprisingly no answer until now, as mentioned in a reservey on the topic [6],
is thus to study TPN under a weak semantics of time elapsiote Mhat due to the
semantics of TPN, there is no hope for monotonicity propstith this model.

Memory policies in TPNThe time-elapsing policy states which delays are allowed in
a configuration. The memory policy is concerned with the teesé clocks, and intu-
itively specifies, when firing a transition, which timing amfnations are preserved. In
the original model of Merlin [13], aintermediatesemantics was considered, meaning
that when firing a transition, any transition disabled by the consumption of tokens by
t is reinitialized. Two others memory policies have been mered in [4]: theatomic
and thepersistent atomidor both of them the firings of transitions are performechato
ically and the difference between them lies in consideringai a transition as newly
enabled by its own firing. While these policies can be thougltitemetic for the model

of TPN, the results we obtain show this is not the case.

Our contributionsWe are interested in the impact of the weak semantics on TRN. W
first study the decidability issues, and therefore have gbrgjuish the memory policy
considered. We prove that for TPN with weak intermediatezs#its, a discrete mark-
ing is reachable if and only if it is reachable in the undenyuntimed Petri net. As a
corollary, the problem of the marking reachability (andatsverability, boundedness)
is decidable for this model. More surprisingly, we also grélwat when changing the
memory policy this result does not hold anymore and the etifin problems become
undecidable (we encode a Minsky machine). We then compateweak time bisimi-
larity (weak stands here for silent transitions) the exgixespower of weak TPN look-
ing at the different memory policies. We first prove that tleesgstent atomic semantics
is strictly more expressive that the atomic semantics. To@ncerning the comparison
of atomic and intermediate memory policies, we prove thatttAnslation proposed
in [4] for the strong semantics is not correct (for weak amdrgy semantics). Finally,
we provide a TPN which allows to prove that the atomic sengari§ not included in
the intermediate one.

Related worksAs mentioned above, there are, up to our knowledge, only fexy
works considering TPN under a weak semantics. In [6] theasthave proven that the
weak intermediate semantics and the strong intermediatarg&s are incomparable.
In another line of work, [8] consider TPN under a semantic&ctviis a kind of com-
promise between the standard strong and weak semanticg.pftiéde translations
between this model and timed state machines.

2 Definitions

Let X be a finite alphabet. is the set of finite words oveX’. We noteX, = Y U {¢}
with € (the empty word) not irt. The setsN, Q, Q>¢, R andR>, are respectively the
sets of natural, rational, non-negative rational, real moa-negative real numbers. A
valuationv over a finite sef{ is a mapping irR<,. Forv € RZ, andd € Rx, v + d
denotes the valuation defined by+ d)(z) = v(z) + d. We note0 the valuation which
assigns to every clock € X the value0.

We introduce a notation to define intervals of reals withorzai bounds. We denote
by Bthe set{ <, <} x (QU{oo}) we will use to characterize the bounds of intervals. We



define the relation of satisfacti¢a of a bound <, a) by a real numbey, by y = (<, a)
if and only if y < a. We define the order on B by, forb; = (<;,a;) with ¢ € {1, 2}:

a, < as, Of,

bl C b2 — {al = a9 and <1€ {<} and ~2€ {S}

Furthermore, we denote iy C b, the fact thath; = b, or by = bs. Intuitively, a
larger bound for this order means that it is less restricamally, given two bounds
b1 C be, we haveVy € R,y = by = y = be. Given a finite set of bound®' C B,
we denote bymin(F') the boundb of F' minimal for the orderC. We also define an
addition between a bourid= (<, a) and a rationa € Q asb + q = (<,a + q).

We denote by3>( the restriction of3 to {<, <} x (Q>¢ U {oo}). We say that
apair] € B>y x B> is a non-emptyQ>o-interval if I = (b1, b2) with b, C b2 and
by # (<, 00). We denote b (Q>() the set of non-emptf)>-intervals ofR>. A real
numbery belongs to an interval = (b1, b2), denoted by € I, iff y |~ by andy = bs.
For instance, the intervdl, 2| is encoded as the pair of bounds, 1) and(<, 2).

2.1 Petrinets

Definition 1 (Labeled Petri Net (PN)).A Labeled Petri Net over the alphahBt is a
tuple (P, T, X.,*(.),(.)®, My, A) where:

— Pis afinite set ofplaces

— T is afinite set oftransitionswith P N T = ),

- *(.) € (N")T is thebackwardncidence mapping,
- ()* € (N?)T is theforwardincidence mapping,
— M, € N¥ is theinitial marking,

- A: T — X, is thelabeling function

As commonly in use in the literature, we wrlte(resp.t*) to denote the set of places
*t = {p € P|*t(p) > 0} (resp.t* = {p € P|t*(p) > 0}). The semantics of a PN
N = (P, T,X.,*(.),(.)%, My, A) is given by its associated labeled transition system
[N] = (NP, My, ¥.,=) where=C Q x X. x Q is the transition relation defined by
M =% M'iff 3t € Tst.A(t)=aAM >t ANM' = M — *t +t*. For convenience
we will sometimes also write, fare T, M == M’ if M > *tandM’ = M —*t+¢°.
We also writeM = M’ if there existsz € X. such thatM == M’. The relation="*
represents the reflexive and transitive closuresofWe denote byReach(N) the set
of reachable markings defined By/ € N | My =* M}.

It is well known that for PN the reachability problem whichnsists in determining
whether a given marking/ belongs toReach(N) is decidable; it has in fact been
proved independently in [12] and [11].

We introduce a last notation concerning Labeled Petri N&giteen a PNA/, a mark-
ing M of N and a multi-setA = (¢,. .., t,) of transitions ofA/, we write M 2 M
if and only if the multi-setA can be fired from\/, meaning that there exists an ordering
of transitions inA, represented as a permutatipof {1, ..., n}, such that the sequence

- t, t, ton e
of firings M =22 My =22 M, .. =224 M7 exists in[AV].



2.2 Timed Transition Systems

Timed transition systems describe systems which combswete and continuous evo-
lutions. They are used to define the behavior of timed systamb as Time Petri
Nets [13] or Timed Automata [3].

Definition 2 (Timed Transition System (TTS)). A timed transition systerover the
alphabetX. is a transition systen$ = (Q, g0, X, —), Where the transition relation
—C @ x (Z: UR>() x Q consists of continuous transitioqsﬂ ¢ (withd € R>),
and discrete transitiong = ¢ (witha € X.).

Moreover, we require the following standard propertiesiios :
— TIME-DETERMINISM : if ¢ 4, q' andgq LN q" with d € R, then¢’ = ¢”,
— 0-DELAY : ¢ 2 g,
— ADDITIVITY :if g LN q' andq’ 4, ¢" with d, d’ € R>, theng G, q’,
— CONTINUITY :if ¢ 4, ¢’, then for everyd’ andd” in R>( such thatd = d’' + d”,
there existg’” such thayy 4, q’ a q.

With these properties, aun of S can be defined as a finite sequence of moves

p=q0 2 g L% g I gl Y go. . g,y where discrete and continu-
ous transitions alternate. To such a run corresponds treltwordw = (a;, 7 )o<i<n
over Y. wherer; = Z;:O d; is the time at whichz; happens. We then denote by
Untimedw) the wordaga; .. . a, over the alphabel’. and byDuration(w) the du-
ration 7,,. We will sometimes apply, without possible ambiguitieggh notations to
runs writingUntimed p) andDuration(p). We might also describe the run writing di-
rectly go — ¢.1. Finally, because of the characteristics of the empty wonde will
consider in the sequel that for all timed wordsUntimedw) is either a word oves’
(which means without) or the empty word.

2.3 Time Petri Nets

Syntax. Introduced in [13], Time Petri nets (TPNs) associate a tinterval to each
transition of a Petri net.

Definition 3 (TPN). A Labeled Time Petri Net over the alphabgtis a tuple(P, T', X,
*(.), (1), My, A, T) where:

- (P,T,%.,%(.), ()%, Mo, A)isa PN,
— I:T — ZI(Q>0) associates with each transitiorfiging interval

In the sequel, we associate to an interval its left bound endght bound. More
generally, given a transitionof a TPN, we will denote byfi(t) (resp.ift(t)) the left
bound of I(t) (resp. the right bound of (¢)), standing for earliest firing time (resp.
latest firing time). We have henddt) = (eft(t), ift(t)). We also use the notion of
granularity of a TPN, which intuitively corresponds to thegision of the TPN, and is
defined as the least common multiple of denominators offnat) bounds of intervals.



Semantics.A configurationof a TPN is a painM,v), where M is a marking over
P, i.e. a mapping inN*, with M (p) the number of tokens in plage A transition
t is enabledin a markingM if M > *t. We denote byeEn(M) the set of enabled
transitions inM. The second component of the p&it/, v) is a valuation ovef, i.e.
a mapping inRZ,. Intuitively, for any enabled transitioh v(t) represents the amount
of time that has elapsed sintés enabled. An enabled transitiorcan be fired ifi/(¢)
belongs to the interval(¢). The marking obtained after this firing is as usual the new
markingM’ = M — *t + ¢*. Moreover, some valuations are reset and we say that the
corresponding transitions are newly enabled.

Different semantics can be chosen in order to realize theesets. This choice de-
pends of what is called thmemory policy For M € N andt,t € T such that
t € En(M) we define in different matters a predicdtenabledt’, M, t) which is true
if ¢ is newly enabledby the firing of transitiort from marking/, and false otherwise:

I: Theintermediate semantieonsiders that the firing of a transition is performed in
two steps : consuming the tokens'if) and then producing the tokensth In this
case, the newly enabled predicate, dendtthbled (¢', M, t), is defined by:

Tenabled(t', M, t) = (t' € EN(M —*t+t*) A (t' ¢ EN(M —*t) Vi =1"))

A: The atomic semanticgonsiders that the firing of a transition is obtained by an
atomic step. The corresponding predictgeaabled, (¢, M, t) is defined by:

Tenabled (t', M,t) = (' € En(M —*t+t*) A (' ¢ En(M) VvVt =1"))

PA: Thepersistent atomic semanticsnsiders that the firing of a transition is also ob-
tained by an atomic step. The difference with the previonsssgics appears only
whent = ¢'; in fact here the transition just being fired is not always iyesmabled.

Tenablegha(t', M, t) = (' € En(M —*t +t°) At' ¢ En(M))

Finally, as recalled in the introduction, there are two wafyetting the time elapse
in TPN. The first way, known as the&trong semanticds defined in such a matter that
time elapsing cannot disable a transition. Hence, whengpenbound of a firing inter-
val is reached then the transition must be fired or disabtedohtrast to that theveak
semanticgloes not make any restriction on the elapsing of time. Inwloigk, we focus
on the weak semantics of TPN.

Definition 4 (Weak semantics of a TPN)Lets € {I, A, PA}. The weals-semantics
of a TPNN = (P, T,%.,°*(.),(.)*, My, A, I) is a timed transition systefiV], =
(Q,q0, X-, —5) Wwhere@Q = NP x RZ |, g0 = (My, 0) and — consists of discrete and
continuous moves : a

— the discrete transition relation is defingd € X, by :

A(t) = a, and,
te En(M)AM =M —°*t+1t°* and,
v(t) € I(t), and,
vt' e T,
V() = {0 if Tenabled(t', M, t)
v(t') otherwise

(M,v) &, (M',V)iff 3t € T s.t.



— the continuous transition relation is defingd € R>( by :
(M,v) <, (M,V)iffv  =v+d

We also write a discrete transitidi/, v/) S (M’, V") to characterize the transi-

tion ¢t € T which allows the firing(M, v) ﬂs (M',v"). We extend this notation to

wordsé € (T'URx)*, which correspond to sequences of delays and transiticshs an
lead to a unique (if it exists) rup. We may write this rurp : (M, v) g, (M',v") and
useUntimed#) (resp.Duration(6)) to denote the wordJntimedp) (resp. to represent
the delayDuration(p)). Finally, for s € {I, A, PA}, we write (M,v) —, (M',V)

if there existsa € R U X. such that(M,v) %, (M’,v'). The relation—* de-
notes the reflexive and transitive closure-ef. For a TPNN with an initial marking

M, we define the following reachability sets according to thesidered semantics :
Reach(N)s = {(M,v) | (My,0) —* (M,v)}.

3 Decidability

3.1 Considered problems and known results

AssumeN = (P, T, X.,*(.),(.)®, My, A, I) is a TPN. In this section, we will consider
the following problems fox € {1, A, PA} :

(1) Themarking reachability problemgiven M € N, does there exist € RZ, such
that(M,v) € Reach(N)g ? -

(2) Themarking coverability problemgivenM € N¥, does there exist/’ € N and
v € RL suchthatV/’ > M and(M’,v) € Reach(N); ?

(3) The boundedness problemdoes there exist € N such that for all(M,v) €
Reach(N),andforallp € P, M(p) <b?

Itis well known that the "untimed” versions of these
ci Q\[O 0] problems are decidable in the case of Petri nets. In fact,
! as mentioned before the marking reachability problem
O ¢ is decidable for Petri nets [11,12] and the two other
problems can be solved using the Karp and Miller tree
whose construction is given in [10]. Furthermore, from
q [9], we know that these problems are all undecidable
when considering TPN with strong semantics no matter
HO q whether the semantics is intermediate, atomic or persis-
tent atomic. In fact a TPN with strong semantics can
simulate a Minsky machine. A Minsky machine manip-
ulates two integer variables andc, and is composed
of a finite number of instructions, each of these instruc-
tions being either an incrementatian:(c; := ¢; + 1) or a decrementation with a test to
zero @ : if ¢; = 0 gotoq’ elsec; := ¢; — 1; gotoq”’), wherei € {1,2} andgq, ¢/, ¢" are
some labels preceding each instruction. There is also aa$edoel ¢ from which the

[1,1]

Fig. 1. Encoding decremen-
tation with strong semantics.



machine cannot do anything. In [14], Minsky proved that théihg problem, which
consists in determining if the instruction labeled wjthis reachable, is undecidable.

It is easy to encode an incrementation using a TPN (or even) avith a transition
consuming a token in a place characterizing the currentrabstate and producing
a token in the next control state and in a place represerttiegncremented counter.
When encoding the decrementation with the test to zero, thagsemantics plays a
crucial role. This encoding is represented on Figure 1.dfehs a token in the place
c;, there is no way for the TPN to produce a token in the plgdsecause time cannot
elapse since the transition labeled with the intefua0] is firable. This construction
obviously fails with the weak semantics.

3.2 The peculiar case of TPN with weak intermediate semantic

We prove here that the undecidability results we had befoitheé case of TPN with
strong semantics do not hold anymore when considering tlag iéermediate seman-
tics. Before proving this we introduce some notations. FOPAN = (P, T, X, *(.),
(.)*, My, A, I), we denoteV'V the untimed PN obtained by removing frokithe com-
ponentl. Furthermore given a set of configuratiofisC N” x RZ  of A/, we denote
by Unt i me(C) the projection ofC over the seN?. Fors € {I, A, PA}, we have
by definition of the different semantics thdht i me(Reach(N),) € Reach(NV)
and as shown by the example given in Figure 1 this inclusiastrist in the case of
the strong semantics. When considering weak intermediate semantics, we prove
that from any sequence of transitiodsfirable in [A'V], we can effectively compute a
reordering ofA, and associated timestamps, leading to a correct r{V/éf.

Theorem 5. For all TPNV, Unt i me(Reach(N);) = Reach(\Y).

Proof. Let N' = (P, T, X.,*(.),(.)*, Mo, A, I) be a TPN. According to the previous
remark, we only have to prove thReach(N'Y) C Unt i me(Reach(N);). We con-
sider the transition systefoiVV] = (N, My, X., =) associated taVY and the TTS
[NM]r = (Q, q0, X, —) associated td/ under the weak intermediate semantics.
Let M, M; € NF be two markings of\VY such thatM =* M;. Consider a

multiset A of transitions of\ such thatl/ == M. We will show that there exists a
valuationv; € RZ such thatM,0) —3 (My,vy). The effective construction of this
run in [N is given by Algorithm 1. We will prove that this Algorithm cqmtes a
correct execution and that it finishes without returningrtiet.

First, analyzing the different steps of the Algorithm 1, vem@educe that:

Proposition 6. For all ¢ € N, if Timed-En; # () then we have:

. dit1 tit1
(1) (M;,v;) s (M;,v; +dit1) s (Mit1,Vig1),
(7)) vt' € Timed-En;, ;11 (t') | Ift(t).

Intuitively, when the seTimed-En; is not empty, at Line 7, the algorithm begins by
choosing transition with the closest relative earliesh§rtime (which can eventually
be negative if some transitions are already enabled). Tiheimposes a delay to fire this
transition that preserves the firability of all others titioss in Timed-En,. Due to the
weak semantics, from any configuration, the system can wgiaienount of time.



Proof. We assume thatimed-En; is not empty and we distinguish three cases accord-
ing to theif of Line 10 of the Algorithm 1:

— First case:e,,;n, < 0. This corresponds to a transition which is already enalbted.
this case, the value af;, ; is equal t00. Sincet belongs toTimed-En;, this en-
sures that is immediately firable, thus proving poif). Property(ii) immediately
follows from the definition ofTimed-En; sinced = 0 and since for alt’ € T', we
havev; 11 (t') = v;(t') + d orv;1(t') = 0 (if Tenabled (¢', M, t) = true).

— Second cas&,i, > 0 and<,;,€ {<}. This means that the left bound bft) is
closed. Then there exists a minimal detay- 0 such that;(¢t) + 0 € I(t). This
delay is in fact computed at linel, thus withd;;1 = § = e,;, and the fact that
we are considering the weak semantics, we have immedig}ely addition, using
the minimization criterion of Lin& we havevt’ € Timed-En;, eft(t) — v;(t) C
eft(t') — v;(t'). Since for any transitio’, eft(¢') C Ift(¢'), we deduce that we
have for anyt’ € Timed-En;, (<,d;4+1) C eft(t') — v4(t') C ift(t') — v;(t') and
applying the definition of£ we havey;(t') + d |= If¢t(¢’). Since for allt’ € T, we
havev; 1 (t") = v;(t') + d orv;41(t') = 0, we obtain the poingii).

— Third case:en, > 0 and<,,;,€ {<}. In this case the valuation; (t) does not
belong toI(¢), and the left bound of (¢) is strict. Intuitively, we have to delay a
bit more than the value,,,;,,. By construction of <,,,in, €min) @and(=<, L) We
have directly that;(t) € I(t) which allows us to deduce the poifi) since we can
let time elapse without constraint. We will now focus on pngpthe point(ii). By
definition of (<, I, ) (line 13), we have that for ald < § < I, and for any
t' € Timed-En;, v;(t') + 6 = Ift(t'). It remains to prove thal < d; 11 < lpin.
For any transitiong’, we haveeft(t') T Ifi(t'), consequently <,,in, €min) T
Ift(t") and, by defintion of(<, l;uin), (<min,lmin) & (Imin, <). Furthermore,
since<,,.»€ {<}, we deduce that<, e,;,in) # (<, lmin). Using the definition of
C, we obtaine, i, < lmin. CoOnsequentlye,nin + lnin)/2 < lmin, Which allows
us to deduce that for all € Timed-En;, v;(t') + d;+1 = Ift(¢'). And since for all
t' € T,we havey; 11 (t') = v;(t') + d orv;41(t") = 0, we obtain the poinii).

O
Second, we deduce from Proposition 6 the following property
Vie NVt e Ay, if My = M 22 theny, (1) = ift (1) 1)

The proof proceeds by induction éninitially, the property holds becausg = 0. For

1 > 0, pickt € A, such thatM; - M A:\{t‘; If Tenabled (¢, M;_1,t;) = true,
theny;(t) = 0 and the property holds. Otherwise, we haenabled (¢, M;_1,t;) =
false and since € En(M;), we get by definition that € En(M;_, — *t). In other
words, we have the inequality/;_; > °*t + °t; which allows us to swap the order
of t and¢; and then the following execution exists [WV] : M;_; L M/, N
M’ A:\{ti SinceA; = A;_1 \ {t;}, we can apply the induction hypothesis for 1
and getv;_1(t) | Ift(t). Thus,t € Timed-En,;_; and point(ii) of Proposition 6
entails thav; (t) = Ift(t), as desired.



Algorithm 1 Algorithm constructing a feasible timed ordering

Require: A marking M € N and a finite multi-seA of transitions s.tM =N

Ensure: Arun (M,0) 25,55, (M, 1) 25025, 02 0 (M, )

st.A= <t1,...,tn>
1:0:=0; Mo:=M; vp:=0; Ag= A
2: while A; # 0 do
A\t

3 Timed-En, := {t € A; | M; == M’ 22 andy, (1) = ife(1)}
4: if Timed-En; = 0 then
5: Return “Error”
6 else
7 (=mins €min) = min{eft(t') —v;(¥') | t' € Timed-En,}
8: Pickt € Timed-En; such thateft(t) — v;(t) = (dmin, <min)
9: tiv1 =1
10: if €min < 00r<min€ {<}then
11: di+1 = max(O, emm)
12: else
13: (=, lnin) = min{lft(t') — v;(t') | t' € Timed-En;}
14: di+1 = (emm -+ lmin)/2
15: end if
16: Ai+1 = Al \ {t}
17: (Mig1,vit1) is St (M, v;) itl—niij (Mg, vig1)
18: =1+ 1
19: endif
20: end while

We can now prove that Algorithm 1 never returns "Error”. Hoist we only have
to prove that for ali € N, A; # 0 implies Timed-En; # (). We proceed again by
induction on: € N. The property for = 0 is trivial sincery = 0. Leti > 1. Sincet;

has been choosen in the émed-En,_; andA; = A; 4 \ {¢;}, we haveM,;_, N
M; 2% Then there exists € A; such thatM; Ay Vi A:\{t; and the result follows
from property(1).

Finally, we have proven that\; # () implies Timed-En; # 0, thus the Algo-
rithm never returns "Error” and furthermore it always tenaties becausd is finite

and at each stepd;| < |A;+1|. Moreover, property(i) establishes the correction of
the constructed run ofN];. Hence if M; € Reach(NV), there exists a multiset

A = (t1,...,t,) such thatM N My, using the Algorithm 1, we can build a run

(Mo,O) d—1>]t—1>[ (Ml,lll) d—2>]t—2>1 Ce d—nqtl)] (Mnyyn) and by definition of the
different semantics, we havd,, = M;. O

Using the decidability results in the case of PN, we obtamftlowing corollary:

Corollary 7. The marking reachability, marking coverability and bouddess prob-
lems are decidable in the case of TPN with weak intermedatestics.



3.3 Undecidability for weak atomic and weak persistent atorit semantics

We consider now the case of the weak atomic and weak persitanic semantics. As
for the strong semantics, but with a more involved consipagtve will show that it is
possible to encode the behavior of a Minsky machine into a WiRNweak (persistent)
atomic semantics from which we will deduce the undecidghiésults.

[0,0] t5

Fig. 2. Encoding decrementation with weak atomic or persistent atomic semantics.

Encoding an incrementation can be done as in the strong siemarigure 2 shows
how to encode the instruction  if ¢; = 0 gotoq’ elsec; := ¢; — 1; gotog”’) using a
TPN with weak atomic or persistent atomic semantics. We nglaén the idea of this
encoding. We consider the two following cases for the neivshia Figure 2:

1. Assume that the only place which contains a token is theeglawhich means we
are in the case where the valuewpfis equal to0 (no token in place;). We have
the following sequence of transitions:

— the only transition which is firable id, so the net fires it;

— then onlyt2 can be fired, adding one token in plageand one in places;

— since there is only one token i the net can then only fire88 and then¢4 to
end up in a marking with a unique token in plage

2. Assume now that there is a token in placand that there is at least one token in
placec;. We are in the case where the valuecpis different of 0. We have the
following sequence of transitions:

— only the transitiort1 is firable, so the net fires it;

— afterwards the transitiot2 and the transition3 are firable, but note that if the
net chooses to fire3, it will reach a deadlock state where no more transitions
can be fired without having put a token in the plageor ¢, therefore we
assume that the transitiaf is first fired. It is possible not to firé3 because
we are considering the weak semantics (in the strong secsatite net would
have to firet3 first);

— after having fired2, the only transition which can be fired4S. In fact since
we are considering atomic (or persistent atomic) semarkiegiring oft2 does
not make newly enable and because of the time constraints linke¢and
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t3, t3 is not anymore firable. So the net firdgsconsuming the token ip2, p3
and two tokens ir; (at least one was present from the initial configuration and
the first firing oft2 added another one);
— finally the net ends in a configuration with one tokengihand the place;
contains one token less than in the initial configuration.
Since we can simulate a Minsky machine using a TPN with atamigersistent
atomic weak semantics, we deduce the following result

Theorem 8. The marking reachability, marking coverability and bouddess prob-
lems are undecidable for TPN with weak atomic or persistéoné semantics.

In comparison with what occurs in the case of the strong séozanhis result is
surprising, and it reveals the important role played by tleenory policy when consid-
ering the weak semantics. Recall that as we have seen gaitlethe strong semantics,
these problems are undecidable no matter which memoryypislchosen.

4 EXxpressiveness

4.1 Preliminaries
LetS = (Q, g0, X, —) be a TTS. We define the relatier C Q x (X UR>) x @ by:

—for d € Rxo, ¢ SN ¢’ iff there is a runp in S such thatp = ¢ = ¢ and
Untimed(w) = € and Duration(w) = d,
—fora € X, q — ¢ iff there is a runp in S such thatp = ¢ % ¢ and
Untimed(w) = a andDuration(w) = 0.
This allows us to define the following notion:

Definition 9 (Weak Timed Bisimulation). Let S; = (Q1,q}, Y., —1) and S =
(Q2,q2, Y-, —2) be two TTS and- be a binary relation over); x Q. ~ is a weak
timed bisimulation betwee$, and S; if and only if:

- ¢} =~ ¢3, and,

— fora € ¥ URs, if ¢ —1 ¢} and ifq; ~ ¢, then there existg, € Q, such that
G2 —o ¢b andq) ~ ¢b; conversely ify, ——, ¢} and if ¢, ~ ¢ then there exists
¢ € Qi such thay; <, ¢} andq} ~ gb.

Two TTSS; andS, areweak timed bisimilaif there exists a weak timed bisimu-
lation betweer; and.S;. We then writeS; =y Ss.

Definition 10 (Expressiveness w.r.t. Weak Timed Bisimilaty). The clas< of TTS
is more expressive that w.r.t. weak timed bisimilarity if for all TTS’ € C’ there is a
TTSS € C such thatS =~ S’. We writeC <yy, C’. If moreover there is & < C such
that there is naS” € C’ with S =, S, thenC is strictly more expressive that. We
then writeC <y, C'.

Fors € {I, A, PA}, we will denote by7 PN, the class of TTS induced by TPN
with s-semantics.

3 Note that one can also easily prove that weak intermediate TPN with readrarandecidable.

11



4.2 Atomic versus Persistent Atomic semantics

In [4], the authors prove that for TPN with strong semantibe, persistent atomic se-
mantics is more expressive than the atomic semantics. Wee fimere that this result
still holds in the case of the weak semantics.

———————————— N
!

A(t)

Fig. 3. From atomic to persistent atomic semantics.

Proposition 11. For all TPNA/, we can build a TPMW” such thafAV] 4 = [N'] pa.

Proof. Let N = (P, T, X.,*(.),(.)*, My, A, T) be a TPN ovet... Figure 3 represents
the construction of the TPW/". Formally, its set of place®” is equal toP U {p}, p? |
t € T} and its set of transition¥” contains two copies’ andt? of each transition
t € T. These copies are connected in the same way than the toartsisiin A, plus
additional edges to the places and p?, as depicted on Figure 3. Finally the initial
marking of N is M such that for allp € P, Mg(p) = My(p) and for allt € T,
M{(p}) = 1 andMj (p?) = 0.

We now consider the relatioR C (N” x RZ)) x (NF' x RZ,) between the
configurations of V] 4 and the ones diN’] p4 defined by(M, v)R(M’, /') iff:

— forallp € P, M(p) = M'(p) and for allt € T, M'(p}) + M'(p?) =1,
— forallt € T, foralli € {1,2}if t € En(M) andt’ € En(M’) thenv(t) = /(t).

Itis then easy to verify that the relatidn is a weak timed bisimulation. ad

We will now prove that the inclusion we obtain in the abovepasition is strict.
Therefore, we consider the TPN; represented on Figure 4.

Equipped with persistent atomic semantics, it acceptséhe s [ a,[0,1]

of timed words composed of lettesisoccurring before tima.

Intuitively, our proof will rely on the fact that a TPN has a fi-

nite memory, more or less one date for each transition. Beforig. 4. The TPNN;.

to prove this, we need a technical lemma which intuitivebtes that, for any mem-
ory policy, once the memories of transitions are contrgleeecutions can be delayed.
This constitutes a deep difference with the strong semsrftic which time elapsing is
limited in a global way.

Lemma 12. Lets € {I, A, PA} and consider a TPMW whose granularity isi. Letp

be a run in[A]; of the formp : (M, v) 220, (M,v+68) 2, -+ L2, such that

there exists a value > 0 verifying:
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(i) Yie {1,...,n}, t; € EN(M) = v(t;) <7,
(i) T+ < o5
o+ L
Then the sequengé : (M, v) &S (M, ") h, oo I isfirable in[N]s.

Proof. We introduce the following notations describing the pun
(M’V) 6>0 (M V+6) (Ml?yl) (M27V2) (M37V3) (anyn) t_n)s
(Mn-{-la Vn—f—l)-

We split the set of indice§l, . . ., n} into two disjoint subsetd o = {i € {1,...,n} |
vi(t;) = 0}, andlxo = {i € {1,...,n} | v;(t;) # 0}. These two sets contain respec-
tively the index of the transitions fired with a null (respeely non null) valuation.

We first show the following property:

Vi € I40,0 ! d]o !
i € Iz, <V1(Z)<2dan 10, d[
Consider the first part of this property. Note that these atidins are strictly positive
by definition of I, thus proving the left inequality. Consider now the righgguality,
and let: € I#) Since the sequendg. . .t; is instantaneous and follows a non null
delay stepy; is never newly enabled during ...¢;—; (otherwisey;(¢;) = 0). As a
consequence, we havg(t;) = v(t;) + 6, and by propertleea) and(iz) of p, we obtain
vi(t;) <7+ 6 < 54, as desired.

By definition of the granularityl, and since; is firable from(M;, v;), the inclusion

10, £[C I(t;) holds for anyi € L.

C I(t:) )

1
We consider now the rup’ : (M, v) Sta, (M,v 46+ &) = (My,0}) 2,
(Ma, vh) 25 (Mg, 1) -+ (M, ) 5 (My41,),.1). Note that the increasing of
the delay is possible because of the weak semantics: inrtbregsbne, the modification
of the delay step could be impossible. To prove that this seci is firable i\,
we proceed by contradiction. Assume there exists a posit®#1, . .., n} such that;
is not firable from(14;, v}), and pick the smallest position verifying this property. We

1Y

distinguish two cases:

1. If ¢ € I_o. Then we have/;(t;) = 0. Since the instantaneous sequence . ¢;
|mmed|ately follows inp the delay step > 0, t; is newly enabled by the firing
of t;...t;_1. Since this property only depends on discrete markingsclwh’re
preserved ino’, t; is also newly enabled by the firing of ...¢;_1 in p’. As a
consequence, we hawé(t;) = 0 = v;(t;), thus proving that is firable inp’,
yielding a contradiction.

2. If i € I4. Then we haves(t;) # 0. As already mentionned above, we have in
this case that; is never newly enabled during ...¢;_1 in o. Since the discrete
markings are preserved, this conclusion holds al$15 iAs a consequence, we have
vi(t;) = v(t;) + 6 andv(t;) = v(t;) + 6 + 55, what yieldsv)(t;) = v(t;) + 2.
Using Property(2), we obtainv;(t;) € I(t;), and thery; is firable from(M;, v}),
contradicting the assumption.

Finally, we have obtained a contradiction in both cases fiiaving thap’ is firable in

[[Nﬂs- O
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We then have the following proposition:

Proposition 13. There exists no TP/ (even unbounded) sfiN] 4 ~w [Ni]pa.

Proof. We consider the TP, represented on Figure 4. Assume there exists a TPN
N such thatffA]4 =w [Ni]pa. Denote byN the number of transitions o¥/, by

d its granularity, and consider a timed wotd = (a,7)(a,72) ... (a,7;) such that
Vi,l*% < 7T < Tit1 < 1,andk > N + 1.

This timed wordw is recognized byf\V1] p4 and there exists thus a run pV] 4
alongw. We denote it by and decompose it as follows :

0o di 01 ta 6 di 0ty 6 Ay 6 to
P TPATTTATTATTIATTA T TATTOAT ATTA T T AT TATTA

To obtain this decomposition we proceed as follows. We debgt! thei-th tran-
sition labelled bya. Then for each position, we isolate the last delay step occuring
before the transitiotf, (it exists sincer; > 7;_1) and denote it by/;. Then we gather all
the silent transitions occuring between this delay stepthedransition:’, and denote
this sequence bg;. The transitions betweeti~! and the delay step constitute the se-
quence’._, . In particular, the following properties hold for any pasiti : A(t}) = a,
Untimed,) = Untimed#.) = ¢, d; > 0, Duration(;) = 0, andt’, occurs at timer;.

We claim there exists an indexc {1,...,k} such that any transitiohappearing
in 0; t' has already appeared sing that ist also fired ind; tL 6 --- 0,1 ti=1 0. _,.

By contradiction, if it is not the case, then we can find, foy adexi € {1,...,k}, a
transition, denoted;, that never appears before. The choicé ekrifyingk > N + 1

then implies that there exist two positions# j such thatt; = t;, thus yielding a
contradiction. We can now fix an indéwerifying above described property.

We now show that Lemma 12 can be applied to the payt aésociated with the
sequencel; 0; ti. More precisely,(M,v) is the configuration reached after firing
Op---ti~1 0._,, the delays is equal tod;, the sequencg - - - t,, corresponds to; ¢,
andr is defined agr; — d;) — (1 — 53). In the atomic semantics, when a transition is
fired, its clock is reset if it is still enabled. This propesglows, together with timing
constraints on the word, to verify hypotheses:) and(ii) of the Lemma 12. Indeed,
since each transition if; ¢’ has been reset alortg ¢! 6] ---6._,, it has been reset
since timer;. Since the global time associated wi{th/, v/) is equal tor; — d;, these
valuations are bounded by above by the vdlye-d;) — 1 < (17, —d;) — (1 — 2—1d) =T,
Second, we have+6 = 7, — (1 — 55) < 55, as desired (this follows from the inequal-
ities1 — 55 < 7; < 1).

Finally, Lemma 12 thus allows to delay ¢ the firing of the sequenc® t.. In
particular, this will produce a letter at dater; + 5; > 1. The TTS[A] 4 thus accepts
a timed word not recognized ;] 4, providing a contradiction. a

Using the results of Propositions 11 and 13, we deduce the:
Theorem 14. TPN 4 <yy TPN p4.

4.3 About Atomic and Intermediate policies in weak and stroig semantics

In this subsection, we discuss the comparison of the intéiate2and atomic policies.
As we will see, the situation is more complex than in the presicomparison.
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On the inclusion off PA/; into 7PN 4. For the strong semantics, a construction has
been proposed in [4] to transform any TPN with intermediatigcp into an equivalent
(w.r.t. weak timed bisimilarity) TPN with atomic semantiésfirst attempt was thus to
adapt this construction for the weak semantics. But stgthis construction, we no-
ticed that it is erroneous (even for the strong semantics)p¥¥sent below an example
exhibiting the error.

No N3
D t')b,10,1]

D t',b,10,1]

t",a,[0,1] t*,e,[0,0]
t7a7 [07 1} pt

Fig. 5. A counter example to the construction of [4].

Example 1.Consider the neM> depicted on the left of Figure 5. The application of
the construction proposed in [4] leads to the Aéf depicted on the right of Fig-
ure 5. According to [4], we should have, under thteong semantics the relation
[Na]r =w [N3]a. However, it is easy to verify that in the TTBV3] 4 the timed
word w = (a,1)(a,1)(b,2) is accepted, whereas it is not[W:], thus proving that
the construction proposed in [4] is erroneous.

This example leaves open the question of the inclusich®Bf\; into 7PN 4 for
the strong semantics, and then for this semantics bothsiacia are left open. For weak
semantics, this inclusion is also open, but we show belotthigaconverse inclusion is
false.

Non inclusion of7PAN 4 into 7PN ;. We exhibit a

TPN with atomic semantics which can not be expressed b,[0,1]

in an equivalent way by any TPN with intermediate se-

mantics (with weak elapsing of time). This is formally

stated in the Proposition below. We consider the TPN

represented on Figure 6. Interpreted in weak atomic se- @; [0, 400

mantics, the firing of the-labelled transition does not  Fig. 6. The TPNAV;.

newly enable transition labelled by This transition

thus shares a token with transitianwhile preserving a time reference to the origin
of global time, what is impossible in intermediate semamtic

Proposition 15. There exists no TP (even unbounded) such tHat]; =y [N3] 4.

Proof. We proceed by contradiction and assume there exists sucN&/T,Rnd denote
by N its number of transitions, and hyits granularity. As in the proof of Proposi-
tion 13, we first exhibit a particular executiprof [A];:

Lemma 16. Let(7;)1<i<i be a set of timestamps such that forany i < k,1— 55 <
7; < Ti41 < landk > N + 1. There exists a rup in [A]; of the following form:

s 61 dy 01ty 07 0 di 07ty 0 On  dn  On ta O
e S e e e e T R e e e e R e bt b b g |
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such that for any position, A(t}) = a, the transitiont!, occurs at timer;, d; > 0,
Untimed#;) = Untimed ;) = Untimed#;’) = ¢, Duration(#;) = Duration(6/) = 0
and there exists a transitiotj, labelled byb, newly enabled by the last transition of
ti 9! and (immediately) firable from the configuration reacheeff’.

Proof. We present here the details of the construction of theprubhis construction
proceeds in three steps.

First step : construction of the structure of p. This step is the most involved
one. We deeply use the bisimulation property betwg&g] 4 and [N]; to build a
first sequence. Figure 7 illustrates this construction. shea arrow between two con-
figurations meens that these configurations are bisimilae. direction of this arrow
indicates which implication is used to obtain the bisimflaffrom [N3]4 to [N];,
or conversely). In this figure, we omit the indéxand A which should be associated
to each of the step. We now detail step by step how this Figrads. Initially, due to
weak semantics, the naf in intermediate semantics can choose to delayﬁ time
units. By bisimulation (and because there are no silensitians in\3), the same de-
lay leads to a bisimilar configuration {\V3] 4, thus indicated by a bottom-up dashed
arrow. From this configuration one can[iVs] 4 delayr; — (1 — ;) t.u.* and then
fire thea transition. By bisimulation, there exists a patHix] 7, written asu; -t} - u},
leading to a bisimilar configuration and such thatonly contains silent transitions and
is of duration exactlyr; — 7, t! is labelled bya, and} is labelled bye and has a
null duration. The bisimilarity is indicated by a top-dowaghed arrow since it is the
existence of a path ifW3] 4 that implies the existence of a pathiW];. Next, one
can fire instantaneouslyin [N3] 4 what implies the existence of a path - ¢} - o},
leading to a bisimilar configuration, and such thatando] are labelled by and of
null duration, and; is labelled byb. Then, we use the bisimulation property in the
converse direction : the configuration reached after théxpese, which is labelled by
e and of null duration, is still bisimilar with the configruati of [A3] 4 reached after
thea transition, as indicated by the bottom-up dashed arrowdtte path in[A/3] 4 of
null duration and labelled by is the empty path). Then the same reasoning is applied
from these two bisimilar configurations, and can be repeatiidrarily many times.

1

1— 5 _ _
2d T1 70 a T2 T1
HNJ]]A : (q70) - = (qa - Qild) . N g

Fig. 7. Using bisimulation to builg.

* We denote by the valuel — 2.
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Second step : definition of;, §; and d;. This step is much simpler. We simply split
the paths,; in three (eventually empty) parts. The durationupfs equal tor; — 7,1 >
0, thus we can consider the last positive delay step appeiaring and denote it byl;.
Then we simply writeu; = 0, - d; - 0.

Third step : definition of 8. In this last step, we will define the pafti as a prefix
of the pathu; - ;. This path possesses the following properties : its durasiawull, it is
labelled bys, and there exists @labelled transitiort! immediately firable after it. The
only property missing is that its last transition newly elealiransitiort;. To obtain this
property, we will show that we can find a prefix@f- o; having this additional property.
Therefore we prove the following lemma, specific to the imediate semantics:

Lemma 17. Let A" be a TPN, and consider an execution [@f];, denoted byp :

(My,v1) 257 (Mo, vg) 257 -+ (M, v0) 257 (Mpg1, vni1) — 1, such that for any

i€{l,...,n}, lenabled(t, M;,t;) = false.
Then, for anyi € {1,...,n}, the executiom; : (M;,v;) iqlq exists in[NV];.

Proof (of Lemma 17)By definition of the predicaté enabled, and since is newly
enabled by ne; and firable from(M,, 41, v,+1), we have that is enabled in every/;
and, because the sequeige. . t,, is instantaneous (no delay step).,.1(t) = v;(¢) for
anyi. Thus,t is firable from the configuratiof/;, v;). Moreover, we can notice, as
is enabled inV/;, thatfenabled (¢, M;,t;) = false implies thatt; is still enabled after
the firing oft from M;, and has not been newly enablédnabled (¢;, M;,t) = false.
As a consequence, is firable from the configuration reached after firinghus proving
the Lemma. O

Lemma 17 entails that there exists a transition in the sexpténu; - o; which newly
enables the transitiotj. Indeed, if it is not the case, the result of Lemma 17 implies
that after the firing ofu;, one can first fire the transitiofj, and immediately after fire
the transitiont!. This leads to the production of a letterafter the letterb, which
in impossible in[N3] 4, thus leading to a contradiction. Finally, we defiffeas the
(eventually empty it} is newly enabled by?) prefix of u - ; up to the first transition
that newly enableg . This concludes the proof of the existence of the sequgnced

We now return on the proof of Proposition.15rst, we claim that there exists an index
i € {1,...,k} such that any transitiohappearing irg; ¢, 6 has already been fired
since timer; that ist also appears it\; L 0} ---0,_1 0._,t:=1 6! ,0,. The reasonning
is similar to the one of the proof of Proposition 13: by codic#ion, if there exists no
such position, then we can find, for any index {1,...,k}, a transition, denotetl,
that never appears before. The choicé okrifying &k > N + 1 then implies that there
exist two positions # j such that; = t;, thus yielding a contradiction. We can now
fix an index: verifying the above described property.

We now show that Lemma 12 can be applied to the portiop afsociated with

the sequencé‘i»‘g—i>/—“>#>. More precisely, le{ M, v) be the configuration reached
after firing (1 — 55)6: ...t5"'0/"_,6;, the delays is equal tod;, the sequence - - - ,,

corresponds @t 0!, andr is defined agr; — d;) — (1 — 55). In the intermediate
semantics, when a transition is fired, its clock is resetiff gtill enabled. This property
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allows, together with timing constraints on the mrio verify hypothese&) and(ii) of
the Lemma 12. Indeed, we first have that each transitiéhif 0!’ has been reset since
time ;. Since the global time associated witlY, ) is equal tor; — d;, these valuations
are bounded by above by the valpe—d;) - < (1, —d;) — (1 — i) = 7. Second,
we haver +6 = 7, — (1 — 53) < 55, as desired (this follows from the inequalities
1— o <m<1).

Lemma 12 thus allows to delay gf time units the firing of thesequenégt?, 6.
Moreover, as the transitiorj is newly enabled by the last transition f 6., and can
be immediately firable aftet in p, we deduce that this immediate firing can also be
performed in the delayed execution. We thus obtain an eiecin [Nz with ab
action following anz action after timel, which is impossible iff\3] 4, thus yielding a

contradiction. a

5 Conclusion

We have studied in this paper the model of Time Petri Nets uadecak semantics of
time elapsing, allowing any delay transition. We have firstven that for the interme-
diate memory policy, the set of reachable markings coirscigigh the reachability set
of the underlying untimed Petri net. As a consequence, marification problems are
decidable for weak intermediate TPN. On the other hand, we peoven that the two
others memory policies, namely atomic and persistent atatiow to simulate Minsky
machines and thus are undecidable. Finally, we have stedigekssiveness and have
proven thati) the atomic semantics is strictly less expressive than theigtent atomic
one andi¢) the atomic semantics is not included in the intermediate one

In further work, we plan to investigate properties conasggnéxecutions of weak
intermediate TPN; such as time-optimal reachability, ok Idiodel checking. Indeed,
while discrete markings are the same, the executions dexatit from those accepted
by the underlying Petri net. Concerning expressivenessongcture that intermediate
and atomic semantics are uncomparable in general, and dbatlbd weak TPN are
strictly less expressive than timed automata (withoutriaves).
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