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We estimate the frequency of the patterns in the discretization of parabolas, when the resolution tends to zero. We deduce that local estimators of length almost never converge to the length for the parabolas.

Introduction

Length estimation is an important domain of Image Analysis (see [START_REF] Coeurjolly | A comparative evaluation of length estimators[END_REF] for a review). In this paper, we will consider the problem of estimating the length of a curve from its discretizations at different resolutions. In particular we are interested in the comportment of estimators when the resolution tends to zero. We also restrict our study to special estimators called "local estimators" which consist in considering patterns which are pieces of fixed length of the discretized curve. Local estimators simply consist to fix a weight to each pattern and summing these weights to obtain the estimation of length (See Fig. 4 for illustration). So, if we want to study the estimated length by local estimators when the resolution tends to zero, we have at first to study the number of occurrences of a pattern of the discretization of digital curves. In fact an asymptotic result about the occurrence number of patterns for discretized general curves looks to be a quite hard problem, because the discretization process is not a continuous process (the integer part function is not continuous), so the estimation of the occurrence number of patterns cannot be deduced from Mathematical Analysis arguments, but by Number Theory arguments. The two first authors of this paper have already made this study for segments in [START_REF] Tajine | On local definitions of length of digital curves[END_REF]. In this paper we continue this work by considering another class of curves, the parabolas.

The paper is organized as follows: Section 2 describes the notations used in this paper, Section 3 will be devoted to the study of the frequency of patterns in parabolas, and finally Section 4 will apply the results of this study to the local estimators of length of parabolas. Appendix A contains the detailed proofs which are not in the main part of this paper.

In this section we precise the notations that will be used in all the paper.

-For x ∈ R we denote by ⌊x⌋ (resp.⌈x⌉) the integer k such that k ≤ x < k + 1 (resp. k -1 < x ≤ k). -The fractional part of x is denoted x and is defined by x = ⌊x⌋ + x .

-For A, B ∈ Z, the discrete interval {A, A+1, . . . , B -1, B} is denoted A, B .

-Let m be a positive integer. A pattern of size m is a function ω from 0, m to Z such that ω(0) = 0 and ω(k + 1) ∈ {ω(k), ω(k) + 1} (see Fig. 1). The set of patterns of size m is denoted P m .

-If X and Y are two real numbers such that Y > 0 then X mod Y is the real number such that 0 ≤ X mod Y < Y and X-X mod Y Y ∈ Z. -For r ∈ R and E ⊂ R 2 , rE = {(rx, ry)|(x, y) ∈ E}. 

Frequency of patterns in Discrete Parabolas

Let a, b ∈ R such that a < b and a derivable function g : [a, b] → R which satisfies 0 ≤ g ′ (x) ≤ 1 for all x ∈ [a, b].
In all the following, for any r > 0 we use the notations:

• A r = ⌈ a r ⌉, B r = ⌊ b r ⌋, N r = B r -A r + 1, • C g r = r{(X, Y ) ∈ Z 2 | A r ≤ X ≤ B r and Y = ⌊ g(rX) r ⌋}.
The set C g r is the "naive" discretization of the graph of g at resolution r, and N r is its number of points.

Let m be a positive integer. The pattern at position X ∈ A r , B rm of size m of C g r , denoted ω g X,r,m is defined by:

ω g X,r,m (k) = ⌊ g(r(X + k)) r ⌋ -⌊ g(rX) r ⌋.
The frequency of a pattern ω of size m in C g r is defined by:

F g r (ω) = card{X ∈ A r , B r -m | ω g X,r,m = ω} N r -m .
The aim of this section is the study of F g r (ω) for some functions g. For this we will approximate the curve by its tangents which will also be discretized, so we need some notions about digital straight lines:

For u ∈ [0, 1] and v ∈ [0, 1), let us denote s u,v m the pattern of size m defined by: s u,v m (k) = ⌊uk + v⌋. A pattern of this form is called a digital segment of size m.

For any pattern ω,

P I(ω) = {(u, v) ∈ [0, 1] 2 | ⌊uk + v⌋ = ω(k) for any k ∈ 0, m }, pinf u (ω) = inf{v | (u, v) ∈ P I(ω)}, (1) psup 
u (ω) = sup{v | (u, v) ∈ P I(ω)}, (2) 
F L u (ω) = 0 if {v | (u, v) ∈ P I(ω)} = ∅ = psup u (ω) -pinf u (ω) otherwise.
P I(ω) is called the preimage of ω, it is nonempty if and only if ω is a digital segment. F L u (ω) is intuitively the frequency of the pattern ω in the discretized straight lines of slope u. (See [START_REF] Tajine | On local definitions of length of digital curves[END_REF][START_REF] Tajine | Digital segments and Hausdorff discretization[END_REF] for more details and [START_REF] Daurat | About the frequencies of some patterns in digital planes. Application to area estimators[END_REF] for the generalization to slopes of planes). In all the paper, the considered curves are parabolas corresponding to the function g(x) = αx 2 . We distinguish two cases: the case α irrational and the case α rational. In Subsection 3.1, we will see that for α irrational, the frequency F g r (ω) converges, when r is rational and tends to zero, to a quantity which can be expressed by using the function x → F L g ′ (x) (ω). In Subsection 3.2, we study the case α rational, but we do not succeed to prove a similar result as in the case α irrational. Nevertheless we obtain a weaker result (The Tangent Lemma).

Parabolas of equation y = αx 2 with α irrational

In this subsection we consider curves C g r for g defined on [a, b] by g(x) = αx 2 with α irrational, and 0 ≤ a < b ≤ 1 2α . This last hypothesis is needed to have 0

≤ g ′ (x) ≤ 1 for x ∈ [a, b].
The main result of this subsection is the following:

Theorem 1. If g(x) = αx 2 with α / ∈ Q then for any pattern ω we have

F g r (ω) ---→ r→0 r∈Q 1 b -a b a F L g ′ (x) (ω)dx (3) 
The rest of this subsection is devoted to the proof of this Theorem. The first needed lemma shows that the discretization of a curve and the discretization of its tangent are similar near the origin of the tangent and when the resolution tends to zero:

Lemma 1 (Tangent Lemma). If g is defined on [a, b] by g(x) = αx 2 with α irrational, and 0 ≤ a < b ≤ 1 2α then card{X ∈ A r , B r -m | ω g X,r,m = s g ′ (rX), g(rX) r m } N r -m ---→ r→0 r∈Q 0.
Lemma 1 is illustrated by Fig. 2. In the last lemma we consider r ∈ Q because its proof needs the irrationality of αr. Before starting the proof of Lemma 1 we need one more notation and two other lemmas. For X ∈ A r , B r , we define P r,k (X) by:

P r,k (X) = g(rX) r + g ′ (rX)k = αrX 2 + 2αkrX = αr((X + k) 2 -k 2 ).
This definition is motivated by the following lemma:

Lemma 2. If r < 1 αm 2 , then for any X we have ω g X,r,m = s g ′ (rX), g(rX)
r m if and only if for all k ∈ 0, m we have P r,k (X) < 1αrk 2 .

Proof.

ω g X,r,m (k) = ⌊ g(r(X + k)) r ⌋ -⌊ g(rX) r ⌋ = ⌊ g(rX) r + g ′ (rX)k + αrk 2 ⌋ -⌊ g(rX) r ⌋
We know that ⌊u

+ v⌋ = ⌊u⌋ + ⌊v⌋ iff u + v < 1. So ω g X,r,m (k) = ⌊ g(rX) r +g ′ (rX)k⌋-⌊ g(rX) r ⌋ iff g(rX)
r +g ′ (rX)k + αrk 2 < 1. With the hypothesis r < 1 αm 2 we have αrk 2 = αrk 2 . But:

⌊ g(rX) r +g ′ (rX)k⌋-⌊ g(rX) r ⌋ = ⌊ g(rX) r +g ′ (rX)k⌋-⌊ g(rX) r ⌋ = s g ′ (rX), g(rX) r m (k) So ω g X,r,m = s g ′ (rX), g(rX) r m iff for all k ∈ 0, m we have P r,k (X) < 1-αrk 2 . ⊓ ⊔ Lemma 3. Let I be an interval of [0, 1]. We have T r,k (I) ---→ r→0 r∈Q µ(I) where T r,k (I) = 1 N r card{X ∈ A r , B r | P r,k (X) ∈ I} and µ(I) is the usual length of I.
The proof of this lemma uses Weyl's argument, as in the proof of Theorem 1 of [START_REF] Tajine | On local definitions of length of digital curves[END_REF] or Appendix A.1 of [START_REF] Daurat | About the frequencies of some patterns in digital planes. Application to area estimators[END_REF], but extended to the quadratic case following the same ideas as in [5, p6-7]. It is given in Appendix A.1.

Proof of Lemma 1. We recall that ω g X,r,m = s

g ′ (rX), g(rX) r m iff for all k ∈ 0, m we have P r,k (X) < 1 -αrk 2 so: card{X ∈ A r , B r -m | ω g X,r,m = s g ′ (rX), g(rX) r m } N r -m ≤ N r N r -m m max k=0 T r,k (I r,k ) where I r,k = [1 -αrk 2 , 1), so it is sufficient to show that T r,k (I r,k ) ---→ r→0 r∈Q 0 for any k ∈ 0, m . Let ε > 0, there exists R 1 > 0 such that for any r < R 1 we have αrk 2 < ε 2 .
We know by Lemma 3 that there exists R 2 > 0 such that for any

r < R 2 we have T r,k (I R0,k ) ≤ µ(I R0,k ) + ε 2 . If r is such that r < min(R 1 , R 2 ), we have: S r,k (I r,k ) ≤ S r,k (I R1,k ) ≤ µ(I R1,k ) + ε 2 = αrk 2 + ε 2 ≤ ε 2 + ε 2 = ε
This finishes the proof of Lemma 1.

⊓ ⊔

Sketch of Proof of Theorem 1. We present here the main ideas of the proof of Theorem 1. The detailed proof is in Appendix A.2. By using Lemma 1 we know that F g r (ω) has the same limit as r tends to zero as:

G g r (ω) = card{X ∈ A r , B r -m | s g ′ (rX), g(rX) r m = ω} N r -m .
But s x,y m = ω is equivalent to (x, y ) ∈ P I(ω) so:

G g r (ω) = card{X ∈ A r , B r -m | (g ′ (rX), g(rX) r ) ∈ P I(ω)} N r -m
which has the same limit as H r (P I(ω)) where

H r (E) = card{X ∈ A r , B r | (g ′ (rX), g(rX) r ) ∈ E} B r -A r + 1
.

By applying Lemma 3 with k = 0 to the piece of the curve y = g(x) restricted to the domain g ′-1 (α 1 ) ≤ x ≤ g ′-1 (α 2 ), we can prove:

H r ([α 1 , α 2 ) × I) ---→ r→0 r∈Q g ′-1 (α 2 ) -g ′-1 (α 1 ) b -a µ(I)
So by approximating P I(ω) as the union of rectangles

n i=1 [y i-1 , y i ) × [pinf yi (ω), psup yi (ω))
we approximate H r (P I(ω)) by:

n i=1 g ′-1 (y i ) -g ′-1 (y i-1 ) b -a F L yi (ω) which is a Riemann sum for b a F L g ′ (x) (ω)dx. ⊓ ⊔ Corollary 1. If g(x) = αx 2 with α / ∈ Q, then for any pattern ω which is not a digital segment we have F g r (ω) ---→ r→0 r∈Q 0.
Numerical Application: We illustrate Theorem 1 with an example. Consider the curve

C defined y = g(x) = 1 √ 2 x 2 for x between a = 0 and b = 1 √ 2 ,
and the pattern ω of size m = 3 defined by (ω(0), ω(1), ω(2), ω(3)) = (0, 1, 2, 2). We will compute the limit of the frequency of ω when the resolution tends to zero.

First we can compute easily F L α (ω) because α → F L α (ω) is a continuous function which is affine between two m-Farey numbers (see [START_REF] Tajine | Digital segments and Hausdorff discretization[END_REF]). So we deduce:

F L α (ω) = 0 if α ∈ [0, 1 2 ] = 2α -1 if α ∈ [ 1 2 , 2 3 ] = 1 -α if α ∈ [ 2 3 , 1]
Theorem 1 proves that:

F g r (ω) ---→ r→0 r∈Q 1 b -a b a F L g ′ (x) (ω)dx = √ 2 1 √ 2 0 F L √ 2x (ω)dx = √ 2 2 3 √ 2 1 2 √ 2 (2 √ 2x -1)dx + 1 √ 2 2 3 √ 2 (1 - √ 2x)dx = 1 12
3.2 Parabolas of equation y = αx 2 with α rational Now we are interested in the case where α is rational. Theorem 1 can be generalized to α rational and to the irrational resolutions r because only the irrationality of αr is used in the proof of this theorem. On the contrary, in the case α rational and rational resolutions, the only result we will prove in this subsection is about the Tangent Lemma. Moreover, we must impose some restrictions about the resolution r and the interval [a, b] of definition of the parabola: rα = 1 p where p is a prime number ; a = 0 and b = 1 2α . In all this subsection we suppose that these conditions are satisfied. Actually, we do not succeed to prove the Tangent Lemma in the general case for α rational.

Let P r,k (X) = rα((X +k) 2 -k 2 ). We will prove that for any interval

I ⊂ [0, 1] lim r→0 1 rα is prime card{X ∈ A r , B r -k | P r,k (x) ∈ I} N r -k = µ(I) Definition 1.
Let p be a prime number and a be an integer number, we define the Legendre symbol ( a p ) of a relatively to p by 

( a p ) =    0 if p divides a 1 if
( n p )| < √ p log(p) Corollary 2. Let J = M, M + N be an integer interval. Then | card(J) 2 -card{y ∈ I | ( y p ) = 1}| < √ p log(p).
Lemma 4. Let α be a rational number and assume that a = 0 and b = 1 2α . Then, for any interval

I ⊂ [0, 1] lim r→0 card{X ∈ A r , B r -k | P r,k (X) ∈ I} N r -k = µ(I)
where the limit is taken on the r such that r > 0 and rα = 1 p where p is a prime number.

Proof. The function X → X 2 mod p from 1, p-1

2 to {Y | ( Y p ) = 1} is a bijection. Put H r = card{X ∈ A r , B r -k | P r,k (x) ∈ I} N r . Then H r = card{X ∈ k, ⌊ p 2 ⌋ | X 2 -k 2 p ∈ I} N r -k = 2card{X ∈ k, p-1 2 | X 2 mod p-k 2 p ∈ I} p + 1 -2k (4) 
Thus

card{X ∈ 1, p -1 2 | X 2 mod p ∈ J} = card{Y ∈ J | ( Y p ) = 1} where J = pI + k 2 . So |card{X ∈ k, p-1 2 | X 2 mod p ∈ J} -card{Y ∈ J | ( Y p ) = 1}| < k.
By using Pólya-Vinogradov inequality we have:

| card(J) 2 -card{X ∈ 1, p -1 2 | X 2 mod p ∈ J}| < √ p log(p) So, | card(J) 2 -card{X ∈ k, p-1 2 | X 2 mod p ∈ J}| < √ p log(p) + k. By (4) we have | 2 p + 1 -2k card(J) 2 - 2 p + 1 -2k card{X ∈ k, p -1 2 | X 2 mod p ∈ J}| < 2 √ p log(p) + 2k p + 1 -2k Thus, lim r→0 card{X ∈ A r , B r -k | P r,k (X) ∈ I} N r -k = µ(I) ⊓ ⊔
Theorem 2 (Tangent Lemma for rational slopes and special rational resolutions). For any rational α > 0 and any a, b such that 0 ≤ a < b ≤ 1 2α we have

card{X ∈ A r , B r -m | ω g X,r,m = s g ′ (rX), g(rX) r m } N r -m --------→ r→0 1 rα is prime 0 
Proof. The case where a = 0, b = 1 2α can be proved exactly in the same way as for Lemma 1 by using Lemma 4 instead of Lemma 3. Consider the general case [a, b] ⊂ [0, 1 2α ]. Then we know that:

card{X ∈ A r , B r -m | ω g X,r,m = s g ′ (rX), g(rX) r m } N r -m ≤ ⌊ 1 2αr ⌋ + 1 -m N r -m • card{X ∈ 0, ⌊ b r ⌋ -m | ω g X,r,m = s g ′ (rX), g(rX) r m } ⌊ 1 2αr ⌋ + 1 -m -------→ r→0 1 rα is prime 1 2α b -a • 0 = 0 because of the case a = 0, b = 1 2α
.

⊓ ⊔

Unfortunately we do not successfully generalize Theorem 1 to rational α and some rational resolutions even if experimentally Theorem 1 seems to be true in all the cases. ) converges when the resolution r is rational and tends to zero, to the length of the parabola only for a finite number of irrational numbers α.

Application to local estimators of length

Sketch of proof. For this proof we use the notation

[f (x)] b a = f (b) -f (a). It is easy to see that: l(p, g, r) - (b -a) m ω∈Pm p(ω)F ′ g r (ω) ---→ r→0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 C 1 2 C 1 4 r = 1 2 r = 1 4 C y = g(x) ω 2 ω 4 ω 2 ω 2 ω 1 ω 1 ω 2 ω 4 ω 4 ω 2 ω 2 ω 2 ω 2 ω 1 ω 3 ω 1 ω 1 ω 1 ω 3 b) a) p(ω 4 ) = 2.8 p(ω 2 ) = 2.2 p(ω 3 ) = 2.2 p(ω 1 ) = 2 ω ω ω ω
Fig. 3. Estimation of length of a curve from its discretization for two different resolutions: a) l(p, g, 1 2 ) = 1 2 (2p(ω 1 ) + 3p(ω 2 ) + 1p(ω 4 )) = 6.7, b) l(p, g, 1 4 ) = where

F ′ g r (ω) = card{X ∈ A r , B r -m ∩ (A r + mZ) | ω g X,r,m = ω} ⌊ Br -m-Ar m ⌋ .
Consider again the curve defined by g(x) = αx 2 for α / ∈ Q. The proof of Theorem 1 can be extended to prove that:

F ′ g r (ω) ---→ r→0 r∈Q 1 b -a b a F L g ′ (x) (ω)dx. So, l(p, g, r) ---→ r→0 r∈Q 1 m ω∈Pm p(ω) b a F L g ′ (x) (ω)dx.
(5)

We know that x → F L x (ω) is piecesewisely affine ( [START_REF] Tajine | Digital segments and Hausdorff discretization[END_REF]). From this property we deduce that we can partition the interval [0, 1 2b ] in a finite number of intervals (I k ) 0≤k≤n such that L est (α) = lim r→0 r∈Q l(p, g, r) is of the form A α + Bα + C on each interval I k . (See Appendix A.3 for the details).

Let L real (α) be the length of the parabola {(x, αx 2 ) | x ∈ [a, b]}. We have:

L real (α) = b a 1 + (2αx) 2 dx = x 1 + (2αx) 2 2 + arg sinh(2αx) 4α b a
Suppose that L real (α) = L est (α) for an infinite number of irrational numbers α, then there exists an interval I k of the previous partition of [0, 

αL real (α) = A + Bα 2 + Cα for all α ∈ [0, 1 2b ] 
We have: 2 ≈ 0.813172, this limit is different from the length of the parabola which is 1 2

∂(αL real (α) ∂α = b 1 + (2αb) 2 -a 1 + (2αa) 2 = b -a + 2(b 3 -a 3 )α 2 + o(α 2 ) when α → 0 But ∂(A+Bα
+ 1 4 √ 2 log(1+ √ 
2) ≈ 0.811612. Moreover Figure 4 shows how the length given by the estimator converges to its limit when the resolution tends to zero. It seems on this example that l(p, g, r) -L est = O(r). 

= 1 √ 2 x 2 , 0 ≤ x ≤ 1 √ 2 .

Conclusion and Perspectives

In this paper, we have proved some local properties of discretizations of parabolas: First we show that locally discretization of parabola and discretization of its tangent often coincide (Tangent Lemma: Lemmas 1 and Theorem 2). In particular, asymptotically, the local patterns of a discretized parabola are digital segments. From this, we also give an explicit formula for the limit of frequency of a pattern of a parabola when the resolution tends to zero (Theorem 1). This has the important consequence that we can know to what tend local estimators of length for the parabolas, moreover it can be proved that this limit is often different from the length of the curve. This work mainly brings two perspectives:

-The extension of Formula (3), which gives the limit of the frequency of pattern when the resolution tends to zero, to more general curves, in particular to the curves y = P (x) when P is a polynomial of degree greater than 2. -The application of this work for recognition of curve by just looking at patterns. For example, if the frequencies of patterns of a curve does not satisfy Theorem 1 then it is not a parabola of equation y = αx 2 . 

Granville

A Proofs

Additional notations -The distance between x and Z is denoted x . So x = min( x , 1x ).

-If z is complex number z denotes its conjugate, and Re(z) denotes its real part. -gcd(p, q) denotes the greatest common divisor of p and q.

A.1 Proof of Lemma 3

For any f ∈ L 1 ([0, 1]) we define:

S r,k (f ) = 1 N r Br X=Ar f ( P r,k (X) ).
so we have T r,k (I) = S r,k (χ I ) where χ I is the indicator function of I. We denote e(t) = e 2πit and e c (t) = e(ct).

Sublemma 5 For any c ∈ Z \ {0} we have S r,k (e c ) ---→

r→0 r∈Q 0. Proof. |S r,k (e c )| 2 = S r,k (e c )S r,k (e c ) = 1 N 2 r Ar≤X,Y ≤Br e c (P r,k (X))e c (P r,k (Y )) = 1 N r + 2 N 2 r Re   Ar≤X<Y ≤Br e c (P r,k (Y ) -P r,k (X))   Let us pose Y = X + h, we have P r,k (Y ) -P r,k (X) = rα(X + h) 2 + 2αk(X + H) -αrX 2 -2αkrX = P r,k (h) + 2αrXh So: |S r,k (e c )| 2 = 1 N r + 2 N 2 r Re Br-1 X=Ar Br-X h=1 e c (P r,k (h))e c (2αrXh) = 1 N r + 2 N 2 r Re Nr-1 h=1 Br-h X=Ar e c (P r,k (h))e c (2αrXh) = 1 N r + 2 N 2 r Re Nr-1 h=1 e c (P r,k (h)) Br-h X=Ar e c (2αrXh) Subsublemma 6 For any β ∈ R \ Z, u, v ∈ Z such that u ≤ v we have: v k=u e(βk) ≤ min(v -u + 1, 1 2 β 
).

Proof. ⊓ ⊔

v k=u e(βk) = e(βu) 1 -e(β(v -u + 1)) 1 -e(β) 
As Re(x) ≤ |x|, Subsublemma 6 shows that:

|S r,k (e c )| 2 ≤ 1 N r + 2 N 2 r Nr-1 h=1 min(N r , 1 2 2αrch ) (6) Subsublemma 7 Let C 0 ≥ 0, u ∈ R \ Q, N, p, q ∈ N which satisfy q ≤ C 0 N , |uq -p| ≤ 1 C0N , gcd(p, q) = 1. We have N -1 h=1 min(N, 1 2 uh ) ≤ 4(1 + C 0 ) N 2 q + N log q .
Proof.

N -1 h=1 min(N, 1 2 uh ) ≤ ⌊ N -1 q ⌋ H=0 qH+q h=qH+1 min(N, 1 2 uh ) 
But:

qH+q h=qH+1 min(N, 1 2 uh ) = q h=1 min(N, 1 2 u(qH + h) ) u(qH + h) = ( p + ε q )(qH + h) where ε = uq -p = pH + p q h + εH + εh q = p q h + εH + εh q
Let γ = (εH) mod 1 q , and k 0 such that εH = γ + k0 q . We have:

( p q h + εH) mod 1 = γ + i h q where i h = (ph + k 0 q) mod q. As gcd(p, q) = 1, {i h | h ∈ 1, q } = 0, q -1 . If i h < q 2 then u(qH + h) = γ + i h q + εh q ≥ γ + i h q - |ε|h q because x → x is Lipschitz continuous with constant 1 = γ + i h q - |ε|h q ≥ i h q -|ε| as h ≤ q ≥ i h q - 1 C 0 N . (7) 
Similarly if i h ≥ q 2 then u(qH + h) ≥ γ + i h q - |ε|h q = 1 -(γ + i h q ) - |ε|h q ≥ q -1 -i h q - 1 C 0 N . ( 8 
)
If we use the variable change h → i h for i h < q 2 , h → q -1i h for i h ≥ q 2 , the inequality min(N, 1 2 u(qH+h) ) ≤ N for i h = 0, 1, q -2, q -1, and the inequalities (7),(8) for the other i h , we deduce:

q h=1 min(N, 1 2 u(qH + h) ) ≤ 4N + 2 ⌊ q-1 2 ⌋ i=2 1 2 i q -1 C0N .
But 1 1-x ≤ 1 + 2x for x ∈ (0, 1 2 ]. So for i ≥ 2 we have:

1 i q -1 C0N = q i 1 1 -q iC0N ≤ q i 1 + 2 q iC 0 N because q iC 0 N ∈ (0, 1 2 ] as i ≥ 2 and q ≤ C 0 N ≤ 2 q i So q h=1 min(N, 1 2 u(qH + h) ) ≤ 4N + 2q ⌊ q-1 2 ⌋ i=2 1 i .
But:

⌊ q-1 2 ⌋ i=2 1 i = ⌊ q-1 2 ⌋ i=2 i i-1 1 i dt ≤ ⌊ q-1 2 ⌋ i=2 i i-1 1 t dt = ⌊ q-1 2 ⌋ 1 1 t dt = log(⌊ q -1 2 ⌋) So: N -1 h=1 min(N, 1 2 uh ) ≤ ⌊ N -1 q ⌋ + 1 4N + 2q log(⌊ q -1 2 ⌋) ≤ N q + 1 (4N + 2q log q) ≤ N q + C 0 N q (4N + 2q log q) because q ≤ C 0 N ≤ 4(1 + C 0 )(N 2 + N log q)
This finishes the proof of Subsublemma 7.

⊓ ⊔

In the following we suppose that r is rational. So αr is irrational, so by Dirichlet's principle ([11]) we know that there exist two coprime integers q r ≤ 2Nr αc(b-a) and p r such that |2αrcq rp r | ≤ αc(b-a)

2Nr . By Subsublemma 7 with C 0 = 2 αc(b-a) and Equation (6) we deduce:

|S r,k (e c )| 2 ≤ 1 N r + 8(1 + C 0 ) N 2 r N 2 r q + N r log q r ≤ 1 N r + 8(1 + C 0 ) q r + 8(1 + C 0 ) log q r N r
As N r ---→ r→0 +∞ and log qr Nr ≤ log(C0Nr)

Nr

---→ r→0 0, it remains to prove that q r ---→ r→0 +∞.

We have:

p r q r ≥ 2αrc - αc(b -a) 2N r We have N r ≥ ( b r -1) -( a r + 1) -1 = b-a-r r
. We suppose without loss of generality that r ≤ b-a 2 so N r ≥ b-a 2r , so p r q r ≥ 2αrcαrc > 0, so p r ≥ 1. We deduce: Now let:

1 q r ≤ p r q r ≤ 2αrc + 1 N r q r ≤ 2αrc + 1 N r So q r ≥
G g r (ω) = card{X ∈ A r , B r -m | s g ′ (rX), g(rX) r m = ω} N r -m .
By Lemma 1 we have

F g r (ω) -G g r (ω) ---→ r→0 r∈Q 0. (9) 
As y iy i-1 ≤ 1 n and α → pinf α (ω) and α → psup α (ω) are two piecewise affine functions which slope is between -m and 0, we have pinf yi-1 (ω) ≤ pinf yi (ω)+ m n and psup yi-1 (ω) ≤ psup yi (ω) + m n . So:

n i=1 [y i-1 , y i ) × [pinf yi (ω) + m n , psup yi (ω)) ⊂ P I(ω) ⊂ n i=1 [y i-1 , y i ] × [pinf yi (ω), psup yi (ω) + m n ) (12) Let F n,r = H r n i=1 [y i-1 , y i ) × [pinf yi (ω) + m n , psup yi (ω)) , F ′ n,r = H r n i=1 [y i-1 , y i ] × [pinf yi (ω), psup yi (ω) + m n ) .
So by Equation ( 12): F n,r ≤ H r (P I(ω)) ≤ F ′ n,r . By summing equations of the form (11) we obtain:

F n,r ---→ r→0 r∈Q n i=1 g ′-1 (y i ) -g ′-1 (y i-1 ) b -a F L yi (ω) - m n F ′ n,r ---→ r→0 r∈Q n i=1 g ′-1 (y i ) -g ′-1 (y i-1 ) b -a F L yi (ω) + m n Let F ′′ n = n i=1 g ′-1 (y i ) -g ′-1 (y i-1 ) b -a F L yi (ω).
(lim

r→0 r∈Q F n,r ) -F ′′ n = - n i=1 g ′-1 (y i ) -g ′-1 (y i-1 ) b -a m n = - n i=1 1 2α (y i -y i-1 ) b -a m n = - m(α e -α b ) 2α(b -a) 1 n Similarly (lim r→0 r∈Q F ′ n,r ) -F ′′ n = m(α e -α b ) 2α(b -a) 1 n .
Let z i = g ′-1 (y i ), we have

F ′′ n = n i=1 (z i -z i-1 ) F L g ′ (zi) (ω) b -a which is a Riemann sum of x → F L g ′ (x) (ω) b-a , but t → F L t (ω) is continuous ([3]
), so we have by [12, Chap. 5]:

F ′′ n ----→ n→∞ 1 b -a b a F L g ′ (x) (ω)dx
Let ε > 0, there exists N 1 such that for all n > N 1 we have

F ′′ n - 1 b -a b a F L g ′ (x) (ω)dx ≤ ε 3 .
There exists N 2 such that for any n > N 2 we have

m(α e -α b ) 2α(b -a) 1 n < ε 3 
Let N = max(N 1 , N 2 ) + 1. There exists R 1 > 0 such that for any rational r < R 1 we have:

|F N,r -(F ′′ N - m(α e -α b ) 2α(b -a) 1 N )| ≤ ε 3 .
There exists R 2 > 0 such that for any rational r < R 2 we have:

|F ′ N,r -(F ′′ N + m(α e -α b ) 2α(b -a) 1 N )| ≤ ε 3 .
Suppose that r < min(R 1 , R 2 ).

We have:

H r (P I(ω)) ≥ F n,r ≥ F ′′ N - m(α e -α b ) 2α(b -a) 1 N - ε 3 ≥ F ′′ N - ε 3 - ε 3 ≥ 1 b -a b a F L g ′ (x) (ω)dx - ε 3 - ε 3 - ε 3 = 1 b -a b a F L g ′ (x) (ω)dx -ε Similarly H r (P I(ω)) ≤ F ′ n,r ≤ 1 b -a b a F L g ′ (x) (ω)dx + ε, so H r (P I(ω)) ---→ r→0 r∈Q 1 b -a b a F L g ′ (x) (ω)dx
With (9) and (10) this proves Theorem 1.

⊓ ⊔

A.3 Proof of Theorem 3

It is easy to see that:

l(p, g, r) - (b -a) m ω∈Pm p(ω)F ′ g r (ω) ---→ r→0 0
where

F ′ g r = card{X ∈ A r , B r -m ∩ (A r + mZ) | ω g X,r,m = ω} ⌊ Br-m-Ar m ⌋ .
Consider again the curve defined by g(x) = αx 2 for α / ∈ Q. The proof of previous section can be extended to prove: (5)

F ′ g r ---→
Let F n the n-th Farey of order m. We know that x → F L x (ω) is affine on the intervals [F i , F i+1 ] ( [START_REF] Tajine | Digital segments and Hausdorff discretization[END_REF]). So for each i there exists u i , v i we have F L x (ω) = u i x + v i .

Let k α the smallest integer k such that 2αa ≤ F k and l α the biggest integer l such that F l ≤ 2αb. We deduce that ⊓ ⊔

Fig. 1 .

 1 Fig. 1. The 16 patterns of size m = 4. Only the encircled one are not digital segments.

Fig. 2 .

 2 Fig. 2. Comparison of the discretization of the curve and the discretization of its tangent : here we have ω g X,r,m = s g ′ (rX), g(rX) r

ATheorem 3 .

 3 local estimator is given by a weight function p from the set P m of patterns of size m to R. The estimated length of the curve y = g(x) where g : [a, b] → R at resolution r is given by: l(p, g, r) = r ⌊ Br -m-Ar m ⌋ k=0 p(ω g Ar+km,r,m ). Let a, b such that 0 ≤ a < b. The length estimated by a local estimator of a parabola y = αx 2 , x ∈ [a, b], (α ≤ 1 2b

1 4 (

 4 4p(ω ) + 5p(ω 2 ) + 2p(ω 3 ) + 2p(ω 4 )) = 7.1

2 Corollary 3 . 1 √ 2 x 2 1 √ 2 .

 2312212 +Cα) ∂α = 2Bα + C, so 2(b 3a 3 ) = 0 which is impossible if b > a. So the hypothesis that L real (α) = L est (α) for an infinite number of irrational α is absurd. ⊓ ⊔ Let a, b such that 0 ≤ a < b. The length estimated by a local estimator of a parabola y = αx 2 , x ∈ [a, b], does not converge when the resolution is rational and tends to zero, to the length of the curve for almost all α ∈ [0, 1 2b ]. Numerical application: Again, we take the curve y = g(x) = for x between a = 0 and b = Suppose that we consider the local estimator Chamfer 5-7-11 ([9]) with m = 2, p(000) = 2, p(001) = p(011) = 22 10 , p(012) = 28 10 . With Equation (13), we can prove that the estimation of the length of the parabola given by this local estimator converges to L est = 23 40 √

Fig. 4 .

 4 Fig. 4. Figure showing Convergence Speed of the Chamfer 5-7-11 to its limits for the parabola y = 1

  But |1e(β)| = |e( β 2 )(e(-β 2 )e( β 2 ))| = 2| sin(πβ)|. Moreover sin(πβ) ≥ 2 β (because sin(πx) ≥ 2x for x ∈ [0, 1 2 ]). So: With the clear inequality | v k=u e(βk)| ≤ vu + 1, it ends the proof of Subsublemma 6.

A. 2

 2 ends the proof of Sublemma 5. ⊓ ⊔ To finish the proof of Lemma 3 we must prove that S r,k (χ I ) ---→ r→0 r∈Q µ(I) where χ I is the indicator function of I. We have S r,k (e 0 ) = 1 and by Sublemma 5 S r,k (e c ) ---→ r→0 r∈Q0 for c = 0, so by Weyl's strategy (see for example[START_REF] Tajine | On local definitions of length of digital curves[END_REF] or[4, Appendix A.1]) we can prove Lemma 3.⊓ ⊔ Proof of Theorem 1

F

  L g ′ (x) (ω)dx.

F+ u lα αx 2 + v lα x b F lα 2α = 1 i=kα u i x 2 + 2 C 1 a 2 =

 22α12212 L g ′ (x) (ω)dx = F kα 2α a (u kα-1 (2αx) + v kα-1 )dx + (2αx) + v i )dx+ b F lα 2α (u lα (2αx) + v lα )dx = u kα-1 αx 2 + v kα-1 x A α,ω α + B α,ω α + C α,ωwhereA α,ω = 1 4 u kα-1 F 2 kα + 2v kα-1 F kα + lα-2v i x Fi+1 Fi u lα F 2 lα -2v lα F lα B α,ω = u lα b 2u kα-1 a α,ω = v lα bv kα-As k α and l α are constant on the intervals which contains no reals Fi 2a and Fi 2b , we can partition the interval [0,1 2b ] in a finite number of intervals (I k ) 0≤k≤n such that the functions α → A α,ω , B α,ω , C α,ω are constant on each interval I k .By (5), we have:lim r→0 r∈Q l(p, g, r) = A α α + B α α + C α (13)whereA α = 1 m ω∈Pm p(ω)A α,ω , B α = 1 m ω∈Pm p(ω)B α,ω , C α = 1 m ω∈Pm p(ω)C α,ω So L est (α) = lim r→0 r∈Q l(p, g, r) is of the form A α + Bα + C on each interval I k . Let L real (α) the true length of the parabola curve {(x, αx 2 ) | x ∈ [a, b]}. We have:Suppose that L real (α) = L est (α) for an infinite number of irrational α then there exists an interval I k of the previous partition of [0,1 2b ] such that L real (α) = L est (α) for an infinite number of irrational α ∈ I k . On I k we know that L est (α) has the form A α + Bα+ C. The functions α → αL real (α) and α → α( A α + Bα+ C) are holomorphic in a open set of C containing [0,1 2b ] and are equal for an infinite number of α ∈ I k ⊂ [0,1 2b ] so by Theorem on the zeros of holomorphic functions [8, Cha. 10] they are equal on [0,1 2b ]. So:αL real (α) = A + Bα 2 + Cα for all α ∈ [0real (α) ∂α = b 1 + (2αb) 2a 1 + (2αa) ba + 2(b 3a 3 )α 2 + o(α 2 ) when α → 0 22But ∂(A+Bα 2 +Cα) ∂α = 2Bα + C, so 2(b 3a 3 ) = 0 which is impossible if b > a. So the hypothesis that L real (α) = L est (α) for an infinite number of irrational α is absurd.
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In fact it is proved that P I(ω) is a triangle or a quadrangle.

Formulas (1),(2) do not define pinf and psup for α = α b , αe, we define these values just by continuity.

We have by definition of P I(ω) (and because ⌊ g(rX) r ⌋ = 0):

For any subset E of R 2 , we define:

The function g ′ is linear, so in particular is a bijection, we denote by g ′-1 its reciprocal function. We suppose that α > 0, so that g ′ is an increasing function. (g ′ (rX), g(rX) r

If we apply Lemma 3 with k = 0 to the piece of the curve y = g(x) restricted to the domain g ′-1 (α 1 ) ≤ x ≤ g ′-1 (α 2 ). we find:

N r H r (E)

We deduce that:

In [10] it is shown that

where α → pinf α (ω) and α → psup α (ω) are two piecewise affine functions which slope is between -m and 0.