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Keywords: Optimal control, output error minimization, the costate initial conditions from the initial set of boanyl
Pontryagin Maximum Principle, port-Hamiltonian system, conditions has been implemented and is given in [4].
bicausality.
As a primary investigation, we focused on a performance
Abstract index of the optimal control problem that corresponded to
This paper presents a new procedure based on bond graph fanput and dissipative energy minimization. This is expeglss
malism for solving an optimal control problem. The proposedas the integral of a quadratic form of the state space vector
procedure concerns the optimal control of linear time invar and the control input to be determined. Here we extend
ant MIMO systems where the integral performance index ighe procedure of the bond graph construction of an optimal
based on inputs and an error between a specified output amdntrol problem to another performance index, the one
the actual output. The proof uses the Pontryagin Maximumnthat corresponds to output trajectory following. Thus the
Principle applied to the port-Hamiltonian formulation bt  performance index may be expressed as a quadratic form
system. of error to minimize between a specified output and the
actual output. The control variable is also taken into aotou
by means of a weighting factor. Boundary conditions are
INTRODUCTION supposed fixed, in particular for both final time and final
The work described in this paper is a continuation of workstate, and finally no constraint exists on either inputsatest
that was started by some of the present authors and which
was presented for the first time at the previous ICBGM The next section recalls our first proposition for the bond
conference in New Orleans [1]. The main idea of theseyraph construction of an optimal control problem where the
research works is to introduce an optimization problemperformance index corresponds to dissipative energyiddect
formulation into bond graph language with the perspective3 gives an extension of this proposition for the problem of
of coupling this to a sizing methodology of mechatronic following a reference trajectory, and the procedure foabt
systems. This methodology of sizing on dynamic and energjhg the corresponding augmented bond graph representation
criteria using bond graph language was developed at thghe proof of its effectiveness is based on the Pontryagim pri
Laboratoire d’Automatique Industrielle [12]. ciple applied to the port-Hamiltonian formulation of thessy
tem [5]. We show on a simple example that by applying this
Initially these research works started by giving a bondgraphical procedure we can obtain the same result as the one
graph representation of a certain category of optimal obntr that we would get by making the classical analytic develop-
problem and they were restricted to linear time invariantments. Finally we conclude this paper by giving some com-
SISO systems before they were extended to linear timenents and perspectives for future research. Additionatty,
invariant MIMO systems. The procedure for building the appendix gives bases on the bicausality concept for the bond
bond graph representation corresponding to the given aptim graph exploitation that gives the optimal control system.
control problem has been given in[3]; it enables the set of
differential-algebraic equations, that analytically egvthe
solution to the optimal control problem, to be supplied datf RECALL: DISSIPATIVE ENERGY MINI-
the obtained equations are derived graphically by ass@gninM|ZAT|ON
the bicausality to this augmented bond graph representatio We give in this section the principal result of the previous
skipping the analytical developments usually involved bywork concerning the bond graph construction of an optimal
the application of the Pontryagin Maximum Principle. A control problem correponding to input and dissipative gner
simple numerical method for solving the problem of finding minimization [3]:



EXTENTION: PROBLEM OF FOLLOWING
Proposition 1: for all optimal control problems of a lin- A REFERENCE TRAJECTORY
ear time invariant MIMO system, with input and dissipation-  Knowing a trajectory defined byy; (t)}te[tg,tf]’ wheretg
based on the integral performance index of the form (1) andynqt; indicates a horizon of fixed state, The problem is to
with given bounda_ry conditions; we can build, from t_he bondgetermine the contral;, such that for alk, initial states, the
graph representation of the system under study (Fig. 1), albutput erroty,(t) — y; (t) remains bounded. This problem can

augmented bond graph representation (Fig. 2) where its bipe formalized like a problem of quadratic error minimizatio
causal exploitation enables the system of equations theat pr o, the time boundarito, t;]:

vide the optimal solution to be derived

t o1 B
V:/tf%(uiT'RJl'Ui-l-Pdiss)dt (1) VZmL}n/to é[ui(t)T'Rul'ui(t) @)
0 .
whereRy is the control weighted matrix,is the identity ma- +(Yo(t) =Y, (t))T Q- (yo(t) —Y (t))} dt

trix, Pyissis the dissipation power expressed as the inner prod-
uct of the power conjugate vectors of the R-elemeRig{= . . . )
el fz). Amultibond graph notation has been adopted [8]. InWhere Q is a weight matrix assumed diagonal, and the

this notation GJS stands for Generalized Junction Strectur S°|Uti°’_1t,°f this problem can be obtained by the following
proposition:

a
Proposition 2: for all optimal control problems of a
linear time invariant MIMO system, with input and error-

based integral performance index of the form (3) and with
u; Uo given boundary conditions; we can build from the bond
IMSeﬁ [GJS] .?Df graph representation of the system under study (Fig. 1),
Yi o an augmented bond graph representation (Fig. ) where its
bicausal exploitation enables the system of equations that
provide the optimal solution to be derived

IR:RR The construction steps of this augmented bond graph rep-
resentation of the given optimal control problem can bermive
Figure 1. Model bond graph according to the following procedure:
Procedure:

1. For each control to be optimally determined, add to the

na model bond graph an R-element characterized by the
%[ (2H oM ) |y factor o_f the square input term in the perfo.rma.nce in-
0 0Xc dex. This R-element is connected to a junction inserted

u onto the control source bond and corresponding to the
IDeIny: 00—~ [GJS] nature of the control variable i.e. a 0 (resp. 1)-junction

for an effort (resp. flow).
er||fr 2. Duplicate the model bond graph with its parameters ex-
( Ry O ) R R: RR 0 cept for the R-elements. For the R-elements correspond-
Lol "\ 3[Rr+RE] —REK ing to the model dissipation phenomena, the characteris-
H tic matrices are transposed and their signs reversed. For
0 the R-elements added at step 1, the characteristic ma-
trices are the negative identity matrices. The duplicated
Bebf——— 00—~ GJS o L
0 QgT A ! ] representation is hereafter callgptimizing bond graph
% | A Ac| %e 3. For each control to be optimally determined, couple the
corresponding R-elements respectively in the model and
na optimizingbond graphs by adding the identity matrix as

Figure 2. Generic bond graph representation of dissipative the lower extra diagonal submatrix.

energy minimization problem 4. Replace in the optimizing bond graph the effort detectors
by flow sources and the flow detectors by effort sources.
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Figure 3. Generic bond graph representation of the output error nitiaition problem

These sources are the error between a specified outptdrm of X (equation 3):
and the actual output multiplied by the coeffici€nt

5. Replace in the model bond graph the source elements H(x) = EXT.H X ()
involved in the optimal controls by double detectors and
mirror them by double sources at the same place on the
optimizing bond graphThe double sources impose both

where the Hessian matriA is symmetric and definite posi-
null efforts and flows.

tive. The port-Hamiltonian model with the hypothesis frame

) ) ) ) . work of a linear time-invariant system is given by (4) [6].
6. Assign bicausality to the obtained bond graph. Bicausal-

ity propagates from the double sources to the double de-

tect0r§ and thrqugh the R-elements added at step 1. The x=[J-9 GF‘;)((X> 4G Ui +go-Uo
analytical exploitation of the bicausal bond graph repre- T H(X)
sentation obtained provides the system equations and the Yi=0 - o )
optimal control solutions to the given initial problem. Yo=0- "';S‘)
DEMONSTRATION Whereld, g; andg, are constant matrices associated to junc-

This section proves that the bond graph representation olion structure transformations in the bond grapk; gr- Rr -
tained by the above procedure corresponds well to the givegy, is a constant matrix related to the dissipation phenomena
optimal control problem. The proof is based on the port-wheregr is a matrix associated to the junction structure trans-
Hamiltonian system concept [5],[6] that has been proven tdormation between the storage and the R-elemantandy,
be the geometric counterpart of the graphical bond graph remre the power conjugate variable vectors at the source ports
resentation. of the system, and, andy, are the power conjugate variable

vectors at the detector ports of the system. Gheu, term,
. ) though it is null, is conserved to keep a trace of the equation
Port-Hamiltonian system structure and it will help to interpret some terms in what fol

Consider a system with the total stored energy representddws. A canonical bond graph representation of equation (4)

by its HamiltonianH (x) expressed in this case as a quadraticis given in Fig. 1 where™ = [xT xT][7].
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Figure 4. Canonical bond graph representation for a port—':Igure 5. Bond graph translation of the equatigp
Hamiltonian system

Before introducing the bond graph translation of this equa-

Application of the Pontryagin Maximum Prin-  tjon, the variable mapping, = H1- A is carried out. This
ciple on the port-Hamiltonian system gives :
We consider the integral performance index in the form of
output error and input minimization:
¢ %, = [J+ST] ' H-X) +0o-Uy (11)
1T p T
V= | SRS U (Yo=Y Q- (Yo—Yr) dt (5)
L]
. . . ithuy=Q-(y, —
The bond graph implementation of the control weighted ma- with Uy = Q- (yr _y°) ) o
trix is displayed in Fig. 4. The Pontryagin function applied ~The reason for this variable mapping is that the co-state

to the port-Hamiltonian system (4) with the integral perfor VectorA is analog to co-energy variables in bond graph lan-
mance index (5) gives: guage while the vectox, is analog to the energy variables. It

is not difficult to see that the expression (11) is closehama
T S T to the expression of the state equations (8). In consequence
Hp = P Ryt + 2(y° ¥e) Q- (Yo—¥r) ©) Fig. 4 can be reproduced to represent the equation (11)(Fig.
T, [[J — S 'H-X+g Ui+ o Uo] 5), where the power variabi@ - (Y, —Y,) takes the same role
as the one of the power variahlg.

whereA is the vector of co-state variables usually called La- The same development given in [3] for proving proposition
grange multipliers of the associated constrained variatio 1 can be applied to treat the rest of the demonstration. Thus
problem. The set of differential-algebraic equations (&-p the equation (10), which corresponds to the Euler equation
vides the optimal solution fax, A andu; with respect to the control vectas, can be interpreted as
an effort vector balance between a vector stemming from the
X= %{‘U') control vectory; in the original system and a vector coming
A — _ OHp(xA.u) 7) from the_vectoﬁ\ thrpugh the junction_stru_ctur_e cha_ragt_erized
B (XA t) 0x by gi. This balance is translated by mirroring in thygimizing
pT.' =0 bond graphthe part of the model bond graph located between
the junction structure and the energy supply source (figure 6

We obtain: gnd likewise by a concatenation of the mu!tiport R-ele.ments
X=[J—S-H X+ G Ui + o Uo ®) |(rit20)a global multiport R-element characterized by the iratr
}-\:H.[‘H-gR.RE.gE].}\—H.go.Q.(yo_yr) 9) (Ru 0 > (12)
Ry Ui+ [AT«gi}T:O (10) C

While equation (8) can be derived from the Fig. 4 bond grapHNow by imposing simultaneously the null 2-flow vector bal-
representation, the key issue of the bond graph formulatioance and a null effort vector on tleptimizing bond graph

of an optimal control problem resides in the translation ofO-junction array (figure 6), the Euler equations with respec
equations (9) and (10) into this language. to theu; components (10) are verified, as the following devel-
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) : ) ) Figure 8. DC motor bond graph representation
Figure 6. Bond graph translation of Euler equation with re-

spect toy; (10)
The DC motor model is presented in Fig. 7. It consists of
the armature circuit composed of a voltage sourca resis-
opment proves, using the vector notations of figure 6: tance R and an inductance L. The electromechanical coupling
is characterized by the torque constapakd on the mechan-
from the second vector characteristic of the R-element: 5 side, the rotor inertiaand viscous friction on the rotor

€opt=f — fop (parameter k). The model is linear and in the optimal con-
from the null effort vector balance: trol context, with the given initial conditions atand the final
fopt: *giT')‘ conditions atg#, we aim at determining which minimizes at
from the first vector characteristic of the R-element: the same time some dissipative energy and output error. Let
f=RTe=R; -y the following integral performance index be:
then: ,
—1 4. T _ t

Ru Ui +¢; A=0 V= f1<u+PR+(Qm—Qr)2)dt (13)

to 2 RU

Finally the bond graph element that enables both a null ef- . : : .
fort vector and a 2-flow vector balance to be imposed on y hereR, is a control weighted factoRk is the electrical

. ; : . wer dissipation an@, — Q, is the tracking error between
O-junction array is a multiport double source null effortve power dissipation ant, r is the tracking error betwee

. : : the actual output and the specified output.
tor and null flow vector. It is connected to the O-junctioresrr . . .
: S . The bond graph representation of this DC motor model is
of the figure 6 bond graph. Such an element initializes a bi- . -
. S .~'given in Fig. 8. It shows the MSe element for the voltage
causality [10] propagation in the bond graph and thus reguir

: : . r wo |-elements for the two ener r henom-
the presence likewise of a multiport double detector [14],[ source, t 0 l-eleme t§ or the two ene oy storage p 1eno
. : . ena respectively associated to the magnetic energy antikine
In the mathematical formulation of the optimal control de-

sign problem, the role of the control vectaris changed into energies of the rotor. Two R-elements for the dissipatiosph

. ; nomena respectively in the electrical circuit and on therot
an output vector. In this way the multiport double detector . .
The GY-element represents the electro-mechanical cayplin

replaces the original multiport MSe element in the figure 4 The application of both proposition 1 and proposition 2

bond graph. The final generic bond graph representation of _ . . ) : .
the given optimal control problem is thus obtained (fig. ). provides the Fig. bond graph representation. The bicaysali

assignment as shown on the Fig. bond graph which enables
the optimal control system (14) to be obtained.

EXAMPLE _ o ) o
PL=—[P1— 3 P2— TP
R L P2 = %pl—%”]pz
] YYYY 3 PA, = *%pﬁr%pxl*%l% (14)
b Pr; = E Py + 52 Pr + Qr — Qm
u TC) Ke u=—Rp,
” y:Qm:ipz

H\k

The application of the Pontryagin Maximum Principle leads
_ to the same result compared to the bond graph graphical ap-
Figure 7. DC motor model proach for deriving the equations.
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Figure 9. Bond graph representation of the DC motor optimal controbfgm
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APPENDIX: BICAUSALITY same subsystem set of equations. Interest of using bicausal
The bicausality concept [9] is an extension of the causally: and thus this assignment, becomes obvious for deriving

ity concept corresponding to a strict mathematical point ofVerse models [10, 11, 12]. In the bicausity assignment the
view on a power bond. Considering figure 10-a acausal bong("OKe iS split in two half-strokes, one dedicated to thereff
graph representation of a power bond, this can be viewed asasSignment (half arrow opposite side), and the other one ded
graphical representation of a power connection between twt?ated to t_he flow ass_lgnment (half arrow side). i
subsystem power ports, thus constraining the power vasabl |t 'émains now to introduce a couple of new elements in
(effort and flow) to be identical. The mathematical representN€ representation that on one side initiate a bicausasty a

tation of this power port connection can be expressed by th&lgnment, and on the other side, properly terminates this bi
two implicit equations : causal assignment. The element from which bicausalitysstar

is a double source (see Fig. 11-a) and the element where bi-
e—6=0 causality terminates is a double sensor (see Fig. 11-b).
{ fi—f,=0 Concerning the bond graph bicausal affectation, the ele-
ment constraints are the same as for the causality assignmen
Causality corresponds to the organisation of these two-equd he difference resides in the fact that effort and flow assign
tions with a strong physical interpretation and gives bath a ments are now uncoupled. In the bicausal bond graph, bi-
signment possibilities of the figure 10-b causal power bondscausality and causality coexist but jonction constraihitsas
However inspection of the previous implicit equations showthat two bicausal paths cannot be adjacent. Finally bidiyisa
that from a strict mathematical point of view, it is possitdle  is assigned from one double source to a double sensor which
have two other calculus schemes displayed in the figure 10neans that these elements are present necessarly by pairs.
¢ so-callecbicausalpower bonds. This assignment is has no
physical interpretation. It only means that both power -vari
ables are mathematically determined at the same time by the



