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Abstract
This paper presents a new procedure based on bond graph for-
malism for solving an optimal control problem. The proposed
procedure concerns the optimal control of linear time invari-
ant MIMO systems where the integral performance index is
based on inputs and an error between a specified output and
the actual output. The proof uses the Pontryagin Maximum
Principle applied to the port-Hamiltonian formulation of the
system.

INTRODUCTION
The work described in this paper is a continuation of work

that was started by some of the present authors and which
was presented for the first time at the previous ICBGM
conference in New Orleans [1]. The main idea of these
research works is to introduce an optimization problem
formulation into bond graph language with the perspective
of coupling this to a sizing methodology of mechatronic
systems. This methodology of sizing on dynamic and energy
criteria using bond graph language was developed at the
Laboratoire d’Automatique Industrielle [12].

Initially these research works started by giving a bond
graph representation of a certain category of optimal control
problem and they were restricted to linear time invariant
SISO systems before they were extended to linear time
invariant MIMO systems. The procedure for building the
bond graph representation corresponding to the given optimal
control problem has been given in[3]; it enables the set of
differential-algebraic equations, that analytically gives the
solution to the optimal control problem, to be supplied. In fact
the obtained equations are derived graphically by assigning
the bicausality to this augmented bond graph representation,
skipping the analytical developments usually involved by
the application of the Pontryagin Maximum Principle. A
simple numerical method for solving the problem of finding

the costate initial conditions from the initial set of boundary
conditions has been implemented and is given in [4].

As a primary investigation, we focused on a performance
index of the optimal control problem that corresponded to
input and dissipative energy minimization. This is expressed
as the integral of a quadratic form of the state space vector
and the control input to be determined. Here we extend
the procedure of the bond graph construction of an optimal
control problem to another performance index, the one
that corresponds to output trajectory following. Thus the
performance index may be expressed as a quadratic form
of error to minimize between a specified output and the
actual output. The control variable is also taken into account
by means of a weighting factor. Boundary conditions are
supposed fixed, in particular for both final time and final
state, and finally no constraint exists on either inputs or states.

The next section recalls our first proposition for the bond
graph construction of an optimal control problem where the
performance index corresponds to dissipative energy. Section
3 gives an extension of this proposition for the problem of
following a reference trajectory, and the procedure for obtain-
ing the corresponding augmented bond graph representation.
The proof of its effectiveness is based on the Pontryagin prin-
ciple applied to the port-Hamiltonian formulation of the sys-
tem [5]. We show on a simple example that by applying this
graphical procedure we can obtain the same result as the one
that we would get by making the classical analytic develop-
ments. Finally we conclude this paper by giving some com-
ments and perspectives for future research. Additionally,an
appendix gives bases on the bicausality concept for the bond
graph exploitation that gives the optimal control system.

RECALL: DISSIPATIVE ENERGY MINI-
MIZATION

We give in this section the principal result of the previous
work concerning the bond graph construction of an optimal
control problem correponding to input and dissipative energy
minimization [3]:



Proposition 1: for all optimal control problems of a lin-
ear time invariant MIMO system, with input and dissipation-
based on the integral performance index of the form (1) and
with given boundary conditions; we can build, from the bond
graph representation of the system under study (Fig. 1), an
augmented bond graph representation (Fig. 2) where its bi-
causal exploitation enables the system of equations that pro-
vide the optimal solution to be derived.

V =
∫ tf

t0

1
2

(

uuuT
i ·R

−1
u ·uuuiii +Pdiss

)

dt (1)

whereRu is the control weighted matrix,I is the identity ma-
trix, Pdiss is the dissipation power expressed as the inner prod-
uct of the power conjugate vectors of the R-elements (Pdiss=
eeeT

R · fff R). A multibond graph notation has been adopted [8]. In
this notation GJS stands for Generalized Junction Structure.
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Figure 1. Model bond graph
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Figure 2. Generic bond graph representation of dissipative
energy minimization problem

EXTENTION: PROBLEM OF FOLLOWING
A REFERENCE TRAJECTORY

Knowing a trajectory defined by{yr (t)}t∈[t0,t f ], wheret0
and t f indicates a horizon of fixed state, The problem is to
determine the controlui , such that for allx0 initial states, the
output erroryo(t)−yr(t) remains bounded. This problem can
be formalized like a problem of quadratic error minimization
on the time boundary[t0, t f ]:

V = min
u

∫ tf

t0

1
2

[

uuuiii(((ttt)))
T ·R−1

u ·uuuiii(((ttt))) (2)

+(yyyooo(((ttt)))−−−yyyrrr(((ttt))))
T ·Q ·

(

yyyooo(((ttt)))−−−yyyrrr(((ttt)))
)

]

dddttt

Where Q is a weight matrix assumed diagonal, and the
solution of this problem can be obtained by the following
proposition:

Proposition 2: for all optimal control problems of a
linear time invariant MIMO system, with input and error-
based integral performance index of the form (3) and with
given boundary conditions; we can build from the bond
graph representation of the system under study (Fig. 1),
an augmented bond graph representation (Fig. ) where its
bicausal exploitation enables the system of equations that
provide the optimal solution to be derived.

The construction steps of this augmented bond graph rep-
resentation of the given optimal control problem can be given
according to the following procedure:
Procedure:

1. For each control to be optimally determined, add to the
model bond graph an R-element characterized by the
factor of the square input term in the performance in-
dex. This R-element is connected to a junction inserted
onto the control source bond and corresponding to the
nature of the control variable i.e. a 0 (resp. 1)-junction
for an effort (resp. flow).

2. Duplicate the model bond graph with its parameters ex-
cept for the R-elements. For the R-elements correspond-
ing to the model dissipation phenomena, the characteris-
tic matrices are transposed and their signs reversed. For
the R-elements added at step 1, the characteristic ma-
trices are the negative identity matrices. The duplicated
representation is hereafter calledoptimizing bond graph.

3. For each control to be optimally determined, couple the
corresponding R-elements respectively in the model and
optimizingbond graphs by adding the identity matrix as
the lower extra diagonal submatrix.

4. Replace in the optimizing bond graph the effort detectors
by flow sources and the flow detectors by effort sources.
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Figure 3. Generic bond graph representation of the output error minimization problem

These sources are the error between a specified output
and the actual output multiplied by the coefficientQ.

5. Replace in the model bond graph the source elements
involved in the optimal controls by double detectors and
mirror them by double sources at the same place on the
optimizing bond graph. The double sources impose both
null efforts and flows.

6. Assign bicausality to the obtained bond graph. Bicausal-
ity propagates from the double sources to the double de-
tectors and through the R-elements added at step 1. The
analytical exploitation of the bicausal bond graph repre-
sentation obtained provides the system equations and the
optimal control solutions to the given initial problem.

DEMONSTRATION
This section proves that the bond graph representation ob-

tained by the above procedure corresponds well to the given
optimal control problem. The proof is based on the port-
Hamiltonian system concept [5],[6] that has been proven to
be the geometric counterpart of the graphical bond graph rep-
resentation.

Port-Hamiltonian system
Consider a system with the total stored energy represented

by its HamiltonianH (xxx) expressed in this case as a quadratic

form of xxx (equation 3):

H (xxx) =
1
2

xxxT ·H ·xxx (3)

where the Hessian matrixH is symmetric and definite posi-
tive. The port-Hamiltonian model with the hypothesis frame-
work of a linear time-invariant system is given by (4) [6].















ẋxx = [J−S] · ∂H(xxx)
∂xxx +gi ·uuuiii +go ·uuuooo

yyyiii = gT
i ·

∂H(xxx)
∂xxx

yyyooo = gT
o ·

∂H(xxx)
∂xxx

(4)

WhereJ, gi andgo are constant matrices associated to junc-
tion structure transformations in the bond graph,S= gR ·RR ·
gT

R is a constant matrix related to the dissipation phenomena
wheregR is a matrix associated to the junction structure trans-
formation between the storage and the R-elements.uuui andyyyi
are the power conjugate variable vectors at the source ports
of the system, anduuuo andyyyo are the power conjugate variable
vectors at the detector ports of the system. Theg0 ·uo term,
though it is null, is conserved to keep a trace of the equation
structure and it will help to interpret some terms in what fol-
lows. A canonical bond graph representation of equation (4)
is given in Fig. 1 wherexxxTTT =

[

xxxTTT
C xxxTTT

I

]

[7].
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Figure 4. Canonical bond graph representation for a port-
Hamiltonian system

Application of the Pontryagin Maximum Prin-
ciple on the port-Hamiltonian system

We consider the integral performance index in the form of
output error and input minimization:

V =
∫ tf

t0

1
2

(

uuuT
iii ·R

−1
u ·uuuiii +(yyyooo−−−yyyrrr)

T ·Q · (yyyooo−−−yyyrrr)
)

dt (5)

The bond graph implementation of the control weighted ma-
trix is displayed in Fig. 4. The Pontryagin function applied
to the port-Hamiltonian system (4) with the integral perfor-
mance index (5) gives:

Hp =
1
2

uuuT
i ·R

−1
u ·uuuiii +

1
2
(((yyyooo−−−yyyrrr)))

TTT ···Q ··· (((yyyooo−−−yyyrrr))) (6)

+λλλT ·
[

[J−S] ·H ·xxx+gi ·uuuiii +go ·uuuooo

]

whereλλλ is the vector of co-state variables usually called La-
grange multipliers of the associated constrained variational
problem. The set of differential-algebraic equations (7) pro-
vides the optimal solution forxxx, λλλ anduuuiii















ẋxx =
∂Hp(xxx,,,λλλ,,,uuuiii)

∂λλλ

λ̇λλ = −
∂Hp(xxx,,,λλλ,,,uuuiii)

∂xxx
∂Hp(xxx,,,λλλ,,,uuuiii)

∂uuui
= 000

(7)

We obtain:

ẋxx = [J−S] ·H ·xxx+gi ·uuuiii +go ·uuuooo (8)

λ̇λλ = H ·
[

J+gR ·RT
R ·gT

R

]

·λλλ−H ·go ·Q · (((yyyooo−−−yyyrrr))) (9)

R−1
u ·uuuiii +

[

λλλT ·gi

]T
= 000 (10)

While equation (8) can be derived from the Fig. 4 bond graph
representation, the key issue of the bond graph formulation
of an optimal control problem resides in the translation of
equations (9) and (10) into this language.
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Figure 5. Bond graph translation of the equation ˙xλ

Before introducing the bond graph translation of this equa-
tion, the variable mappingxxxλ = H−1 · λλλ is carried out. This
gives :

ẋxxλ =
[

J+ST]

·H ·xxxλλλ +go ·uuuλλλ (11)

with uuuλλλ = Q · (yyyrrr −−−yyyooo)

The reason for this variable mapping is that the co-state
vectorλλλ is analog to co-energy variables in bond graph lan-
guage while the vectorxxxλ is analog to the energy variables. It
is not difficult to see that the expression (11) is closely analog
to the expression of the state equations (8). In consequence
Fig. 4 can be reproduced to represent the equation (11)(Fig.
5), where the power variableQ · (yyyrrr −−−yyyooo) takes the same role
as the one of the power variableuuuo.

The same development given in [3] for proving proposition
1 can be applied to treat the rest of the demonstration. Thus
the equation (10), which corresponds to the Euler equation
with respect to the control vectoruuui , can be interpreted as
an effort vector balance between a vector stemming from the
control vectoruuuiii in the original system and a vector coming
from the vectorλλλ through the junction structure characterized
bygi . This balance is translated by mirroring in theoptimizing
bond graphthe part of the model bond graph located between
the junction structure and the energy supply source (figure 6)
and likewise by a concatenation of the multiport R-elements
into a global multiport R-element characterized by the matrix
(12).

(

Ru 0
I −I

)

(12)

Now by imposing simultaneously the null 2-flow vector bal-
ance and a null effort vector on theoptimizing bond graph
0-junction array (figure 6), the Euler equations with respect
to theuuui components (10) are verified, as the following devel-
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Figure 6. Bond graph translation of Euler equation with re-
spect touuui (10)

opment proves, using the vector notations of figure 6:

from the second vector characteristic of the R-element:
eeeopt = fff − fff opt
from the null effort vector balance:
fff opt = −gT

i ·λλλ
from the first vector characteristic of the R-element:
fff = R−1

u ·eee= R−1
u ·uuuiii

then:
R−1

u ·uuuiii +gT
i ·λλλ = 000

Finally the bond graph element that enables both a null ef-
fort vector and a 2-flow vector balance to be imposed on a
0-junction array is a multiport double source null effort vec-
tor and null flow vector. It is connected to the 0-junction array
of the figure 6 bond graph. Such an element initializes a bi-
causality [10] propagation in the bond graph and thus requires
the presence likewise of a multiport double detector [12],[11].
In the mathematical formulation of the optimal control de-
sign problem, the role of the control vectoruuui is changed into
an output vector. In this way the multiport double detector
replaces the original multiport MSe element in the figure 4
bond graph. The final generic bond graph representation of
the given optimal control problem is thus obtained (fig. ).

EXAMPLE

u

R LL
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Figure 7. DC motor model
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Figure 8. DC motor bond graph representation

The DC motor model is presented in Fig. 7. It consists of
the armature circuit composed of a voltage sourceu, a resis-
tance R and an inductance L. The electromechanical coupling
is characterized by the torque constant kc and on the mechan-
ical side, the rotor inertia Jm and viscous friction on the rotor
(parameter bm). The model is linear and in the optimal con-
trol context, with the given initial conditions at t0 and the final
conditions at tf , we aim at determiningu which minimizes at
the same time some dissipative energy and output error. Let
the following integral performance index be:

V =
∫ tf

t0

1
2

(

u2

Ru
+PR +(Ωm−Ωr)

2
)

dt (13)

whereRu is a control weighted factor,PR is the electrical
power dissipation andΩm−Ωr is the tracking error between
the actual output and the specified output.

The bond graph representation of this DC motor model is
given in Fig. 8. It shows the MSe element for the voltage
source, two I-elements for the two energy storage phenom-
ena respectively associated to the magnetic energy and kinetic
energies of the rotor. Two R-elements for the dissipation phe-
nomena respectively in the electrical circuit and on the rotor.
The GY-element represents the electro-mechanical coupling.

The application of both proposition 1 and proposition 2
provides the Fig. bond graph representation. The bicausality
assignment as shown on the Fig. bond graph which enables
the optimal control system (14) to be obtained.











































ṗ1 = −R
L p1−

kc
Jm

p2−
Ru
L pλ1

ṗ2 = kc
L p1−

bm
Jm

p2

ṗλ1
= −R

L p1 + R
L pλ1

− kc
Jm

pλ2

ṗλ2
= kc

L pλ1
+ bm

Jm
pλ2

+Ωr −Ωm

u = −Ru
L pλ1

y = Ωm = 1
Jm

p2

(14)

The application of the Pontryagin Maximum Principle leads
to the same result compared to the bond graph graphical ap-
proach for deriving the equations.
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Figure 9. Bond graph representation of the DC motor optimal control problem

CONCLUSION
In this paper an extension of the originating procedure for

representing the optimal control problems into bond graph
with the new performance index has been given. The appli-
cation of the procedure was restricted to an optimal control
problem where the performance index corresponded to dissi-
pative energy minimization. Now it has been adapted to deal
with output error minimization as a performance index. Start-
ing from the bond graph of the model, object of the optimal
control problem, these procedures enable an augmented bond
graph to be set up. This augmented bond graph, consisting
of the original model representation coupled to anoptimiz-
ing bond graph, furnishes, by its bicausal exploitation, the
set of differential-algebraic equations that analytically give
the solution to the optimal control problem. The key idea of
the proof is to apply the Pontryagin Maximum Principle to a
generic port-Hamiltonian system. The Port-Hamiltonian sys-
tem is an analytical expression of the dynamic equations gov-
erning a model that clearly mathematically reflects the energy
topology of the system model. we showed with the help of a
DC motor example that we can combine both of the two pro-
cedures for solving an optimal control problem with a mul-
tiobjective in cost function, this proves the potentialityfor a
systematization of bond graph construction representing the
optimal control formulation and the model for which the con-
trol is designed. Therefore the work still remaining is to cou-
ple these procedures to a sizing methodology based on an in-
verse model approach, this is one of the authors’ objectivesin
the future.
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APPENDIX: BICAUSALITY
The bicausality concept [9] is an extension of the causal-

ity concept corresponding to a strict mathematical point of
view on a power bond. Considering figure 10-a acausal bond
graph representation of a power bond, this can be viewed as a
graphical representation of a power connection between two
subsystem power ports, thus constraining the power variables
(effort and flow) to be identical. The mathematical represen-
tation of this power port connection can be expressed by the
two implicit equations :

{

e1−e2 = 0
f1− f2 = 0

Causality corresponds to the organisation of these two equa-
tions with a strong physical interpretation and gives both as-
signment possibilities of the figure 10-b causal power bonds.
However inspection of the previous implicit equations show
that from a strict mathematical point of view, it is possibleto
have two other calculus schemes displayed in the figure 10-
c so-calledbicausalpower bonds. This assignment is has no
physical interpretation. It only means that both power vari-
ables are mathematically determined at the same time by the

e1

f1

e2

f2

{

e1 := e2

f2 := f1

{

e2 := e1

f1 := f2

{

e1 := e2

f1 := f2

{

e2 := e1

f2 := f1

(a)

(b)

(c)

Figure 10. Power bond (a) acausal, (b) in causal assignment,
and (c) in bicausal assignment

e

e

f

f
(a)

(b)

E,F
¨SeSf

DeDf

u,y

e := E
f := F

u := e
y := f

Figure 11. (a) Double source, (b) double sensor

same subsystem set of equations. Interest of using bicausal-
ity, and thus this assignment, becomes obvious for deriving
inverse models [10, 11, 12]. In the bicausity assignment the
stroke is split in two half-strokes, one dedicated to the effort
assignment (half arrow opposite side), and the other one ded-
icated to the flow assignment (half arrow side).

It remains now to introduce a couple of new elements in
the representation that on one side initiate a bicausality as-
signment, and on the other side, properly terminates this bi-
causal assignment. The element from which bicausality starts
is a double source (see Fig. 11-a) and the element where bi-
causality terminates is a double sensor (see Fig. 11-b).

Concerning the bond graph bicausal affectation, the ele-
ment constraints are the same as for the causality assignment.
The difference resides in the fact that effort and flow assign-
ments are now uncoupled. In the bicausal bond graph, bi-
causality and causality coexist but jonction constraints show
that two bicausal paths cannot be adjacent. Finally bicausality
is assigned from one double source to a double sensor which
means that these elements are present necessarly by pairs.


