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MINIMAL BLOW-UP SOLUTIONS TO THE MASS-CRITICAL INHOMOGENEOUS NLS EQUATION

We consider the mass-critical focusing nonlinear Schrödinger equation in the presence of an external potential, when the nonlinearity is inhomogeneous. We show that if the inhomogeneous factor in front of the nonlinearity is sufficiently flat at a critical point, then there exists a solution which blows up in finite time with the maximal (unstable) rate at this point. In the case where the critical point is a maximum, this solution has minimal mass among the blow-up solutions. As a corollary, we also obtain unstable blow-up solutions of the mass-critical Schrödinger equation on some surfaces. The proof is based on properties of the linearized operator around the ground state, and on a full use of the invariances of the equation with an homogeneous nonlinearity and no potential, via time-dependent modulations.

1. Introduction 1.1. Setting of the problem and main result. We consider the equation

i∂ t u + ∆u -V (x)u + g(x)|u| 4/d u = 0, x ∈ R d , (1.1) 
u |t=0 = u 0 ∈ H 1 R d
where d = 1 or d = 2, g and V are real smooth functions on R d , bounded as well as their derivatives, and g is positive at least in an open subset of R d . We investigate blowing up solutions to (1.1). One of the applications that we have in mind is the study of finite time blow-up for solutions to the nonlinear Schrödinger equation on surfaces. The link between these two problems is detailed in §1.3 below.

First, let us recall some classical arguments (see e.g. [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]). The nonlinearity is energy-subcritical, so for any initial condition u 0 ∈ H 1 , there exists a maximal interval of existence ]T -(u 0 ), T + (u 0 )[, and a solution u of (1.1) such that u ∈ C(]T -, T + [, H 1 ). Furthermore if T + < +∞, then lim t→T+ ∇u(t) L 2 = +∞. The mass M = u(t) 2 L 2 and the energy

E = 1 2 |∇u(t, x)| 2 + 1 2 V (x)|u(t, x)| 2 - 1 4 d + 2 g(x)|u(t, x)| 4 d +2 dx
are independent of t ∈]T -, T + [. We consider the ground state Q, which is (up to translations) the unique positive solution of the equation

∆Q + Q 1+4/d = Q, x ∈ R d .
Recall that Q is C ∞ , radial, and exponentially decreasing at infinity. Furthermore, Q is the critical point for the Gagliardo-Nirenberg inequality ( [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF])

(1.2) ψ 2+4/d L 2+4/d C ∇ψ 2 L 2 ψ 4/d L 2 , ∀ψ ∈ H 1 R d .
In the homogeneous case V = 0, g = 1, the equation 

(
t d/2 Q x t ,
that blows up at time t = 0, and such that ∇u(t) L 2 ≈ 1 t as t → 0. A classical argument shows, as a consequence of (1.2) that this is the minimal mass solution blowing-up in finite time (see [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF]).

When equation (1.3) is perturbed in such a way that the pseudo-conformal transformation is no longer valid, there are only few known examples of blow-up solutions with the same growth rate. Consider the same equation (1.3) posed on an open subset of R d (with Dirichlet or Neumann boundary conditions) or on a flat torus. Then one can construct blow-up solutions as perturbation of S(t, x) with an exponentially small error when t → 0: see [START_REF] Ogawa | Blow-up of H 1 solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity[END_REF] for d = 1 and [START_REF] Burq | Two singular dynamics of the nonlinear Schrödinger equation on a plane domain[END_REF] for d = 2. The proof relies on a fixed point argument around a truncation of S(t, x). The linear term is considered as a source term, and is controlled in spaces of functions decaying exponentially in time. This approach was first used in [START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF] to construct solutions with several blow-up points.

The recent work [START_REF] Krieger | On stability of pseudo-conformal blowup for L 2critical Hartree NLS[END_REF] is devoted to a 4-dimensional mass critical Hartree equation, with an inhomogeneous kernel. In the corresponding homogeneous case, when the Hartree term is (|x| -2 * |u| 2 )u, (1.4) leaves the equation invariant, yielding a blow-up solution analogous to S(t, x). Under the assumption that the perturbation vanishes at some large order at the blow-up point, a pseudo-conformal, minimal mass blowup solution of the perturbed equation is constructed. In this case, the solution is only a polynomial perturbation of the explicit ground state pseudo-conformal blow-up solution, and the proof of [START_REF] Ogawa | Blow-up of H 1 solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity[END_REF] and [START_REF] Burq | Two singular dynamics of the nonlinear Schrödinger equation on a plane domain[END_REF] is no longer valid. The construction of [START_REF] Krieger | On stability of pseudo-conformal blowup for L 2critical Hartree NLS[END_REF] relies on an adaptation of an argument of Bourgain and Wang [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF].

In the general setting of (1.1), the strategy of [START_REF] Ogawa | Blow-up of H 1 solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity[END_REF] and [START_REF] Burq | Two singular dynamics of the nonlinear Schrödinger equation on a plane domain[END_REF] does not work either unless both g and V are constant around the blow-up point. The argument of Bourgain and Wang is easy to adapt and gives, as in [START_REF] Krieger | On stability of pseudo-conformal blowup for L 2critical Hartree NLS[END_REF], a minimal mass solution under strong flatness conditions on g and V at the blow-up point (see Remark 1.5 and Section 2). These flatness conditions and the concentration of the solution at the blow-up point imply that the terms induced by g and V are small at the blowup time. Our goal is to weaken as much as possible these conditions: we construct blow-up solutions for any bounded potential V with bounded derivatives, assuming only a vanishing condition to the order 2 on g -g(x 0 ) at the blow-up point x 0 . We assume for simplicity that x 0 = 0 and that g(0) = 1, the general case x 0 ∈ R d , g(x 0 ) > 0 follows by space translation and scaling. For s 0, we denote

Σ s = ψ ∈ H s R d |x| s ψ ∈ L 2 R d = H s R d ∩ F H s R d ,
and we shall drop the index for Σ 1 . Our main result is the following:

Theorem 1.1. Let d = 1 or d = 2 and V ∈ C 2 (R d ; R), g ∈ C 4 (R d ; R). Assume that ∂ β V ∈ L ∞ for |β| 2, ∂ α g ∈ L ∞
for |β| 4, and

(1.5) g(0) = 1 ; ∂g ∂x j (0) = ∂ 2 g ∂x j ∂x k (0) = 0, 1 j, k d.

Then there exist T > 0, u ∈ C(]0, T [, Σ) solution of (1.1) on ]0, T [ such that (1.6) 

F (H 1 ) -→ t→0 + 0, with S 2 (t, x) = e -itV (0) e i |x| 2 4t -iθ( 1 t ) t d/2 Q x t .
Note that in this formula, we do not control the Ḣ1 -norm, for which a better control of λ and x(t) would be needed.

As explained below, we construct the blow-up solution as a perturbation of the solution S 2 (t, x). The flatness condition on g implies that the new perturbative terms induced by the inhomogeneity g are small as t tends to 0.

Remark 1.3. The pseudo-conformal blow-up regime of Theorem 1.1, where the blow-up rate ∇u(t) L 2 is of order 1/t around t = 0, is unstable and non-generic, as opposed to the blow-up regime at a rate log(| log |t||) t 1/2 highlighted (in space dimension 1) by G. Perelman [START_REF] Perelman | On the formation of singularities in solutions of the critical nonlinear Schrödinger equation[END_REF] (see also [START_REF]The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation[END_REF]). This log-log regime was shown to be generic in all dimensions, under a spectral assumption if d 2, in a series of papers of F. Merle and P. Raphaël (see e.g [START_REF] Merle | On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation[END_REF][START_REF] Raphaël | Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation[END_REF]). This assumption was checked in the case d 4, and the main properties of the log-log regime persist for d = 5 (see [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF]). Theorem 1.1 may also be seen as a structural stability property for the pseudo-conformal blow-up regime: this regime persists under some perturbations of the equation.

Remark 1.4. Note that (1.6) implies u(t) 2 2 = Q 2 2 .
If we assume furthermore that |g| 1, the solution constructed in Theorem 1.1 has minimal mass for blowup. This is consistent with the conjecture that the non-generic blow-up occurs at the boundary of the manifold of all blowing-up solutions. Note also that g may not remain everywhere positive: we consider a localized phenomenon.

Remark 1.5. Establishing Theorem 1.1 is much easier if we assume that V -V (0) and g -g(0) vanish to high order at x = 0. This is the analogue of Theorem 1 of [START_REF] Krieger | On stability of pseudo-conformal blowup for L 2critical Hartree NLS[END_REF] in the context of Hartree equation. In Section 2, we give, in this less general setting, a short proof of (1.6) which is an adaptation of [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF] and simplifies the argument of [START_REF] Krieger | On stability of pseudo-conformal blowup for L 2critical Hartree NLS[END_REF]. In this case we can assume that θ(τ ) = τ , λ(t) = t and x(t) = 0. The first equality should also hold (in view of the recent work [START_REF] Raphaël | Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS[END_REF]) in the general context of Theorem 1.1. The main difficulty of the proof of Theorem 1.1 under the general assumption is to combine the strategy of [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF] with modulation theory to relax the high order flatness assumption to the weaker assumption (1.5). This difficulty already appears in [START_REF]Non-generic blow-up solutions for the critical focusing NLS in 1-d[END_REF] in a more delicate context (see below).

We next discuss two particular cases. If g ≡ 1, our theorem shows that for any real-valued smooth potential V which is bounded on R d as well as all its derivatives, for any point x 0 ∈ R d , there exists a solution of

i∂ t u + ∆u -V (x)u + |u| 4/d u = 0
blowing-up at x 0 at a pseudo-conformal rate. Little is known about blow-up solutions for this equation, except in some particular cases (where V is unbounded) where algebraic miracles provide a good understanding: if V is linear in x, Avron-Herbst formula shows that V does not change the blow-up rate ( [START_REF] Carles | Nonlinear Schrödinger equations with Stark potential[END_REF]). If V (x) = ±ω 2 |x| 2 , V changes the blow-up time, but not the blow-up rate ( [START_REF] Carles | Nonlinear Schrödinger equations with repulsive harmonic potential and applications[END_REF]). Our result shows that the S(t) blow-up rate remains for any bounded potential (e.g. obtained after truncating the above potential).

Equation (1.1) in the case V ≡ 0 was studied by F. Merle in [START_REF]Nonexistence of minimal blow-up solutions of equations iut = -∆uk(x)|u| 4/N u in R N[END_REF]. Assume for the sake of simplicity that

g(0) = 1 and ∀x = 0, |g(x)| < 1.
In this case, g attains its maximum at 0. In [START_REF]Nonexistence of minimal blow-up solutions of equations iut = -∆uk(x)|u| 4/N u in R N[END_REF], it is shown, assuming g ∈ C 1 , V = 0, and an additional bound on g and its derivative, that for any mass

M > Q 2 L 2
and close to Q 2 L 2 there exists a blow-up solution u of (1.1) such that u 0 2 L 2 = M . It is also shown that a critical mass blow-up solution must concentrate at the critical point 0. Furthermore, if there exists α ∈]0, 1[ such that g satisfies

(1.7) ∇g(x) • x -|x| 1+α
for small x, then there is no critical mass solution. Note that this assumption implies that g is not C 2 . The existence of minimal mass blow-up solutions for g which do not satisfy (1. 7) is left open in [START_REF]Nonexistence of minimal blow-up solutions of equations iut = -∆uk(x)|u| 4/N u in R N[END_REF]. Theorem 1.1 answers positively to this question for smooth g, except in the critical case ∇g(0) = 0 and ∇ 2 g(0) = 0, which includes the case α = 1 in (1.7). After our article was written, P. Raphaël and J. Szeftel [START_REF] Raphaël | Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS[END_REF] have shown the existence of a minimal mass blow-up solution in the case where the matrix ∇ 2 g(0) is non-degenerated. The strategy of the proof borrows arguments due to the pioneering works of Y. Martel [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], Y. Martel and F. Merle [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF]. The authors also show a difficult and strong uniqueness result: this solution is (up to phase invariance and time translation) the only minimal mass solution. This is in the spirit of the work by F. Merle [START_REF]Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power[END_REF] for (1.3) (see also [START_REF] Hmidi | Blowup theory for the critical nonlinear Schrödinger equations revisited[END_REF], and [START_REF] Banica | Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain[END_REF] for partial results in the case of a plane domain) Under the assumption ∇ 2 g(0) = 0, the authors of [START_REF] Raphaël | Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS[END_REF] conjecture that the set of minimal mass solutions is parametrized by two additional parameters, the energy and the asymptotic momentum. Our goal here is to give a simple construction of critical-mass pseudo-conformal blow-up solutions in curved geometries (see §1.3) and we do not address the issue of classification of these solutions.

We do not address either the question of the existence of non-generic blowup solutions of (1.1) with supercritical mass. Examples of such solutions were constructed in [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF] for equation (1.3) in space dimensions 1 and 2 and in [START_REF] Krieger | On stability of pseudo-conformal blowup for L 2critical Hartree NLS[END_REF] for the case of Hartree nonlinearity in space dimension 4. In both cases a supercritical mass blow-up solution is obtained, up to a small remainder, as the sum of a minimal mass blow-up solution and a solution that vanishes to some order at the origin at the blow-up time. It should be possible to adapt our method to construct the same type of solutions. Note that our case is of course simpler than the one of Hartreetype nonlinearity, where the non-local character of the nonlinearity appears as an important issue in this construction.

Let us mention the conjecture, stated in [START_REF] Perelman | On the formation of singularities in solutions of the critical nonlinear Schrödinger equation[END_REF], that there is a codimension one submanifold of initial data of equation (1.3) in H 1 leading to pseudo-conformal blow-up. In [START_REF]Non-generic blow-up solutions for the critical focusing NLS in 1-d[END_REF] J. Krieger and W. Schlag constructed, for this equation in space dimension 1, a set of initial data leading to this type of blow-up. This set is, in spirit, of codimension 1 in a space Σ N (N large), without being, rigorously speaking, a submanifold of this space. The proof of [START_REF]Non-generic blow-up solutions for the critical focusing NLS in 1-d[END_REF] requires a full use of the modulations, and also very delicate dispersive estimates for the linearized operator. This type of result is out of reach by our method. As a drawback, the method of [START_REF]Non-generic blow-up solutions for the critical focusing NLS in 1-d[END_REF] can only deal with functions with a very high regularity, whereas our fixed point, relying on energy estimates, is essentially at an H d/2+ level. Our argument should in particular work in dimensions d 3, although the lack of regularity of the nonlinearity might become an issue in high dimensions. Let us mention although the works [START_REF] Krieger | Stable manifolds for all monic supercritical nonlinear Schrödinger equations in one dimension[END_REF][START_REF]On the focusing critical semi-linear wave equation[END_REF][START_REF] Beceanu | A centre-stable manifold for the focussing cubic NLS in R 1+3[END_REF][START_REF]A centre-stable manifold in H 1/2 for the H 1/2 critical NLS[END_REF] devoted to the constructions of stable manifolds around solitons or stationary solutions for other equations.

1.2. Strategy of the proof. The key ingredient of the proof is a result of M. Weinstein [START_REF]Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] on the properties of the linearized NLS operator around the ground state, which implies that the instability of the linearized equation is only polynomial, not exponential.

We first consider, as in [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF], the pseudo-conformal transformation (1.4). Thus u is a solution to (1.1) on ]0, T [ if and only if v is solution to the following equation on 1 T , +∞ :

(1.8)

i∂ t v + ∆ v - 1 t 2 V x t v + g x t | v| 4/d v = 0.
Intuitively, for large time, the potential term is negligible (it belongs to L 1 t L ∞ x , hence it is short range in the sense of [START_REF] Dereziński | Scattering theory of quantum and classical N-particle systems[END_REF]), and the inhomogeneity can be approximated by its value at the origin. Therefore, a good asymptotic model for (1.8) should be given by the solution (with the same behavior as t → +∞) to the "standard" mass-critical focusing nonlinear Schrödinger equation (1.3). We want to construct a blow-up solution to (1.1) by constructing a solution v to (1.8) which behaves like the solitary wave e it Q(x) (which solves (1.3)) as t → +∞. In the case g = 1, there is a huge literature concerning the existence and stability of solitary waves associated to (1.8) when the potential 1/t 2 V (x/t) is replaced by a time independent potential: therefore, these results seem of no help to study the blow-up phenomenon.

In a first approximation, we look for a solution of the form

(1.9) v = e it (Q + h).
Therefore v is a solution of (1.8) if and only if

(1.10) i∂ t h + ∆h -h - 1 t 2 V x t (Q + h) + g x t |Q + h| 4/d (Q + h) -Q 1+4/d = 0.
Consider the linearized operator near Q

(1.11) Lf := -∆f + f - 2 d + 1 Q 4/d f - 2 d Q 4/d f .
In [START_REF]Modulational stability of ground states of nonlinear Schrödinger equations[END_REF], it is shown that the semi-group e itL is bounded in the orthogonal space of a 2d+4 dimensional space S, the space of secular modes, where it grows polynomially. This allows us to construct the solution h of (1.10) as a fixed point in a space of functions that decay polynomially as t → +∞. Namely, we can write (1.10) as

(1.12) i∂ t h -Lh = R(h),
where R(h) is, roughly speaking, the sum of a source term involving Q, V and g, of a similar linear term where Q is replaced by h, and of a term which is nonlinear in h. The latter is essentially harmless, since we expect h to be small. The first two terms can be proved small provided that we require a sufficient vanishing for V and g -1 at the origin to balance the polynomial growth of the semi-group e itL on S. This approach is sketched in §2 below. Note that even though intuitively, it is natural to expect 1/t 2 V (x/t) and g(x/t) -1 to be negligible for large time, proving this requires the nontrivial bounds on e itL shown in [START_REF]Modulational stability of ground states of nonlinear Schrödinger equations[END_REF], since the S(t) behavior is unstable. In the case where V and g -1 are not too flat at the origin, more information is needed.

In order to loosen the assumptions on the local behavior of V and g near the origin, we use all the invariances associated to (1.3) to neutralize as many secular modes as possible. There is a 2d + 3 dimensional family of modulations, given by the scaling, space-translation, gauge, Galilean, and conformal invariances. By modulating the function v thanks to these transformations, we can eliminate all secular modes but one, limiting the growth of the operator e itL . This allows us to decrease the order to which V and g -1 vanish at the origin, so as to infer Theorem 1.1. As mentioned before, this approach is quite similar in spirit to [START_REF]Non-generic blow-up solutions for the critical focusing NLS in 1-d[END_REF] for L 2 -critical Schrödinger equation, and to [START_REF] Beceanu | A centre-stable manifold for the focussing cubic NLS in R 1+3[END_REF][START_REF]A centre-stable manifold in H 1/2 for the H 1/2 critical NLS[END_REF], where an L 2 -supercritical Schrödinger equation is considered.

One of the difficulties of our proof is to include the choice of the modulation parameters in the definition of the operator defining the fixed point. In this context, the contraction property seems hard to check: we manage to prove continuity only (see Proposition 7.5). We bypass this difficulty by using the Schauder fixed point theorem. A key step is to obtain energy estimates on an evolution equation with a time-dependent operator, which is the sum of the linearized operator L and a time-dependent perturbative term which is given by the modulation.

1.3. Application to NLS on surfaces. Let us first recall that the other known blow-up regime, the log-log regime, is not only more stable on R d : it is structurally stable, in the sense that it persists in other geometries. The case of a domain was settled by F. Planchon and P. Raphaël [START_REF] Planchon | Existence and stability of the log-log blow-up dynamics for the L 2 -critical nonlinear Schrödinger equation in a domain[END_REF], and the one of a general Riemannian manifold by N. Burq, P. Gérard and P. Raphaël [START_REF] Burq | Blow-up solutions for the L 2 -critical nonlinear Schrödinger equation on a manifold[END_REF].

As a consequence of Theorem 1.1, we are able to construct blow-up solutionswith 1/t blow-up speed, and with profile related to Q -on surfaces flat enough at the blow-up point. To this purpose we consider rotationally symmetric manifolds. Such a manifold M is a Riemannian manifold of dimension 2, given by the metric

ds 2 = dr 2 + φ 2 (r) dω 2 ,
where dω 2 is the metric on the sphere S 1 , and φ is a smooth function C ∞ ([0, ∞[), positive on ]0, ∞[, such that φ (even) (0) = 0 and φ ′ (0) = 1. These conditions on φ yield a smooth manifold (see e.g. [START_REF] Petersen | Riemannian geometry[END_REF]). For example, R 2 and the hyperbolic space H 2 are such manifolds, with φ(r) = r and φ(r) = sinh r, respectively. The volume element is φ(r), and the distance to the origin from a point of coordinates (r, ω) is r. Finally, the Laplace-Beltrami operator on M is

∆ M = ∂ 2 r + φ ′ (r) φ(r) ∂ r + 1 φ 2 (r) ∆ S 1 .
Now, if we consider ũ a radial solution of NLS on M (recall that d = 2)

(1.13) i∂ t ũ + ∆ M ũ + |ũ| 2 ũ = 0, then the radial function u defined by ũ(t, r) = u(t, r) r φ(r) 1/2 satisfies Equation (1.1) with V (r) = 1 2 φ ′′ (r) φ(r) - 1 4 φ ′ (r) φ(r) 2 - 1 r 2
, and g(r) = r φ(r) .

Therefore we are in the framework of Theorem 1.1, up to conditions of flatness of the metrics at the blow-up point and of boundedness of V and g at infinity. These boundedness conditions corresponds to conditions on the growth of the unit ball volume of the manifold at infinity. This proves the existence of a blow-up solution of speed 1/t and critical mass for such surfaces. Notice that the hyperbolic space φ(r) = sinh r correspond to the borderline case ∂ 2 r g(0) = 0, which we do not reach with our method. This should be covered, however, by an extension of the work of [START_REF] Raphaël | Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS[END_REF] to equations with a linear potential. The motivation for this case would be to complete the available information: the virial identity yields a sufficient blow-up condition which is weaker than in the Euclidean case ( [START_REF]The nonlinear Schrödinger equation on the hyperbolic space[END_REF]), and for defocusing nonlinearities (or focusing nonlinearities with small data), the geometry of the hyperbolic space strongly alters scattering theory, since long range effects which are inevitable in the Euclidean case, vanish there (see [START_REF] Banica | Scattering theory for radial nonlinear Schrödinger equations on hyperbolic space[END_REF][START_REF] Ionescu | Semilinear Schrödinger flows on hyperbolic spaces: scattering in H 1[END_REF][START_REF] Anker | Nonlinear Schrödinger equation on real hyperbolic spaces[END_REF]; see also [START_REF] Banica | Weighted Strichartz estimates for radial Schrödinger equation on noncompact manifolds[END_REF][START_REF] Banica | On scattering for NLS: from Euclidean to hyperbolic space[END_REF]).

We conclude this subsection by giving explicit examples of surfaces satisfying the above assumptions.

Example 1.6 (Compact perturbations of the hyperbolic and Euclidian planes

). Let c 0 , d 0 ∈ R and consider φ ∈ C ∞ ([0, +∞[) such that φ(r) = r + c 0 r 5 + O(r 7
) as r → 0, and φ(r) = sinh(r) + d 0 or φ(r) = r + d 0 for large r. Then there exists a solution ũ of (1.13) that blows up at time t = 0 at the origin r = 0, and such that ∇ũ(t) L 2 ≈ 1/t as t → 0. An example of such a surface in the case φ(r) = r + d 0 for large r is given by the surface M of R 3 equipped with the induced Euclidean metric and defined by the equation x = f (y 2 +z 2 ), where f : R + → R + is a smooth nondecreasing function such that f (0) = f ′ (0) = 0 and f (s) = x 0 > 0 for large s.

Remark 1.7. Many simple manifolds do not enter in our framework, as they do not satisfy the boundedness conditions on V and g at infinity. Examples are given by the surfaces of R 3 defined by the equation x = (y 2 + z 2 ) k , k 2, with the induced Euclidean metric, which are spherically symmetric manifolds such that g = r/φ(r) satisfies assumption (1.5), but grows polynomially at infinity. We do not know if this is only a technical point and it would be interesting, in view of these examples, to relax the boundedness conditions on V and g at infinity to a polynomial growth. The case of non-flat compact surfaces, even with strong symmetry assumptions, is also completely open.

1.4. Structure of the paper. In §2, we sketch the proof of Theorem 1.1 under strong flatness assumptions on V and g near the origin. The result then follows in a rather straightforward fashion from a standard fixed point argument, relying on estimates on the linearized operator L due to M. Weinstein. In §3, we introduce the full family of modulations, in order to reduce the proof of Theorem 1.1. In §4, we recall some more precise properties on the linearized operator L, which are crucial for tuning the modulation, as presented in §5. Once the modulation is settled, we study the non-secular part of the remainder in §6. The proof of Theorem 1.1 is then completed in §7, thanks to compactness arguments. Minor technical results are detailed in two appendices, for the sake of completeness.

Proof of a weaker result

In this section, we sketch the proof of Theorem 1.1 with

θ(τ ) = τ, λ(t) = t, x(t) = 0, (hence S = S 2 in Remark 1.2) under the Assumption 2.1. Let d = 1 or 2, and V, g ∈ C ∞ (R d ; R). Assume that for all α, ∂ α g, ∂ α V ∈ L ∞ ,
and that there exist m V 7 and m g 9 such that:

∀|β| m V , |∂ β V (x)| C β |x| mV -|β| if |x| 1, ∀|β| m g , |∂ β (g(x) -1)| C β |x| mg -|β| if |x| 1.
Recall that the linearized operator L is defined by

Lf := -∆f + f - 2 d + 1 Q 4/d f - 2 d Q 4/d f .
We will need the following property of L, which is a consequence of [START_REF]Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] (see also [START_REF] Bourgain | Global solutions of nonlinear Schrödinger equations[END_REF]Proposition 1.38]).

Proposition 2.2. One can decompose H 1 R d as H 1 = S ⊕ M , with S (of finite dimension) and M stable by e itL and such that, if P M and P S denote the projections on M and S, respectively, the following holds. If s 1 and ψ ∈ H s , then for all t 1,

e itL P S (ψ) H s C 1 + t 3 |ψ(x)|e -c|x| dx, e itL P M (ψ) H s C ψ H s . Also, if s ′ 1 and ψ ∈ Σ s ′ , then for all t 1, |x| s ′ e itL P S (ψ) L 2 C 1 + t 3 |ψ(x)|e -c|x| dx, |x| s ′ e itL P M (ψ) L 2 C |x| s ′ ψ L 2 + C 1 + t s ′ ψ H s ′ .
In particular, we have for all s 1 and

ψ ∈ H s R d , (2.1) 
e itL ψ H s C 1 + |t| 3 ψ H s ,
and for all ψ ∈ Σ,

(2.2) |x|e itL ψ L 2 C |x|ψ L 2 + C 1 + |t| 3 ψ H 1 .
In order to prove Theorem 1.1, we need to find a solution of

i∂ t h -Lh = R(h) ; h(t) Σ -→ t→+∞ 0.
We now give the expression of R(h): R(h

) = R N L (h) + R L (h) + R 0 , with R N L (h) = -g x t |Q + h| 4/d (Q + h) -Q 1+4/d - 2 d + 1 Q 4/d h - 2 d Q 4/d h , R L (h) = 1 -g x t 2 d + 1 Q 4/d h + 2 d Q 4/d h + 1 t 2 V x t h, R 0 (t, x) = 1 -g x t Q(x) 1+4/d + 1 t 2 V x t Q(x).
We construct a fixed point for the functional

(2.3) M(h)(t, x) = +∞ t e i(τ -t)L iR(h)(τ, x)dτ, that we decompose as M(h) = M N L (h) + M L (h) + M 0 , in accordance with the decomposition of R. Let s > d/2
with s 1, T > 1, and 4 < b < a real numbers to be chosen later. We can prove that M is a contraction on the ball of radius one B a,b,T of the space

E a,b,T = ψ ∈ C([T, +∞[; H s ∩ Σ) | ψ E < ∞ ,
where

ψ E := sup t T t a ψ(t) H s + t b |x| ψ(t) L 2 .
In the sequel we will denote by C a positive constant, that may change from line to line and depend on a, b, and s but not on T .

Since the assumptions made in this paragraph are not as general as in Theorem 1.1, we shall only sketch the main steps of the arguments which lead to the conclusion of Theorem 1.1.

Bound on the nonlinear terms. There exists

C > 0 such that ∀ h, f ∈ B a,b,T , M N L (h) -M N L (f ) E C T a-4 h -f E .
This estimate follows from (2.1), (2.2) and the definition of E a,b,T , which is an algebra embedded in L ∞ (R d ). Note also that 4/d 1, so R N L contains nonlinear terms which are at least quadratic in h.

Bound on the first linear term. There exists

C > 0 such that ∀ h, f ∈ B a,b,t0 , M 1 L (h) -M 1 L (f ) E ≤ C T mg-4 h -f E , where M 1 L (h)(t, x) = +∞ t e i(τ -t)L i g x τ -1 2 d + 1 Q 4/d h + 2 d Q 4/d h dτ.
The key remark is that Q decays exponentially. If |x| τ , by assumption on g,

g x τ -1 Q(x) 4/d C g x τ -1 e -c|x| C τ mg |x| mg e -c|x| C τ mg e -c 2 |x| .
If |x| τ , in view of the boundedness of g and the exponential decay of Q,

g x τ -1 Q(x) 4/d Ce -c|x| Ce -c 2 τ e -c 2 |x| .
Hence the bound

∀x ∈ R d , ∀τ 1, g x τ -1 Q(x) 4/d C τ mg e -c 2 |x| .
Proceeding along the same lines, we infer

(2.4) g • τ -1 Q 4/d H s C τ mg ,
and we get by (2.1) and (2.2), the bound on the first linear term.

Bound on the second linear term. There exists C > 0 such that for all h, f ∈ B a,b,T ,

M 2 L (h) -M 2 L (f ) E C 1 T mV -2 + 1 T + 1 T a-b h -f E ,
where

M 2 L (h)(t, x) = +∞ t e i(τ -t)L i τ 2 V x τ h(τ, x) dτ.
We have, for τ 1,

V • τ W s,∞ C, hence V • τ h H s C h H s .
Like above, we also have

(2.5) V x τ e -c|x| H s C τ mV . By decomposing M 2
L (h) on its M and S components, we can use the estimates of Proposition 2.2 to get the desired bound on the second linear linear term.

Bound on the source term.

There exists C > 0 such that

M 0 E C 1 T mg-a-4 + 1 T mV -a-2 .
This follows easily from (2.4) and (2.5).

Conclusion.

Gathering all the previous estimates together, we have:

(2.6) ∀f, h ∈ B a,b,T , M(h) -M(f ) E C w(T ) h -f E , where w(T ) = 1 T a-4 + 1 T mg-4 + 1 T mV -2 + 1 T + 1 T a-b + 1 T mg-a-4 + 1 T mV -2-a .
Therefore, for m V > 6 and m g > 8 (this corresponds to the assumption made in this paragraph, since m V and m g are integers, by regularity of V and g), we can choose a, b with 4 < b < a such that all the powers of T in (2.6) are positive. Hence we can pick T large enough such that

(2.7) ∀f, h ∈ B a,b,T , M(h) -M(f ) E 1 2 h -f E .
Taking f = 0 in (2.7), we see that M maps B a,b,T into B a,b,T . Furthermore, (2.7) shows that M is a contraction on B a,b,T , which concludes the proof of Theorem 1.1 under Assumption 2.1.

Introducing a modulation

We now wish to replace the assumption made in the previous section by the assumptions of Theorem 1.1, which we rewrite:

Assumption 3.1. Let d = 1 or 2, and V ∈ C 2 (R d ; R), g ∈ C 4 (R d ; R). Assume that for ∂ β V ∈ L ∞ for |β| 2, ∂ β g ∈ L ∞ for |β| 4 and: ∀|β| 1, |∂ β V (x)| C β |x| 1-|β| if |x| 1, ∀|β| 3, |∂ β (g(x) -1)| C β |x| 3-|β| if |x| 1.
At first sight, the above assumption on V is stronger than in Theorem 1.1. This difference is irrelevant though, in view of the following remark. For a potential V as in Theorem 1.1, replacing u(t, x) by u(t, x)e itV (0) amounts to changing V to V -V (0), a potential which satisfies the above assumption. This explains the presence of the factor e -itV (0) in the statement of Theorem 1.1.

Modulation and linearization.

As explained in the introduction, we want to obtain a solution to

(3.1) i∂ t v + ∆ v - 1 t 2 V x t v + g x t | v| 4/d v = 0 ; v(t) -e iθ(t) Q Σ -→ t→+∞ 0,
where θ(t) = t + o(t) as t → +∞. Introduce the following modulations:

(3.2) v(t, x) = e i(q1(t)+q3(t)•x+q5(t)|x| 2 ) 1 q 4 (t) d/2 v γ(t), x q 4 (t)
-q 2 (t) , with q 1 , q 4 , q 5 , γ ∈ R and q 2 , q 3 ∈ R d . The functions v and v have similar properties as t → +∞ if, morally,

(3.3) q 1 (t), q 2 (t), q 3 (t), q 5 (t) -→ t→+∞ 0 ; q 4 (t) -→ t→+∞ 1 ; γ(t) ∼ t→+∞ t.
We give a rigorous meaning to this line below. Note that the second point implies the last one if we assume

γ(t) = 1 q 4 (t) 2 .
From now on, we define γ as

(3.4) γ(t) = τ 0 + t τ0 1 q 4 (σ) 2 dσ,
where τ 0 is a large time to be determined later. We introduce the new time and space variables (τ, y) = γ(t), x q 4 (t)

-q 2 (t) , or, equivalently

(t, x) = γ -1 (τ ), q 4 γ -1 (τ ) y + q 2 γ -1 (τ ) .
With our choice for γ, (3.1) is equivalent to

(3.5) i∂ τ v + ∆v = V p v -g p |v| 4/d v + iZ p (v),
where we have denoted, for p(τ

) = (p 1 , p 2 , p 3 , p 4 , p 5 ) ∈ R × R d × R d × R × R: iZ p (v) = p 1 + p 3 • y + p 5 |y| 2 v + ip 2 • ∇v + ip 4 d 2 + y • ∇ v, g p (τ, y) = g x t = g q 4 (y + q 2 ) γ -1 (τ ) , V p (τ, y) = q 2 4 t 2 V x t = q 2 4 γ -1 (τ ) 2 V q 4 (y + q 2 ) γ -1 (τ ) .
The parameters q 2 and q 4 are assessed in γ -1 (τ ) and substituting x = q 4 (y + q 2 ),

p 1 = q 2 4 q1 + q 3 4 q3 • q 2 + q 4 4 q5 |q 2 | 2 + q 2 4 |q 3 + 2q 4 q 5 q 2 | 2 ,
p 2 = q 2 4 q2 + q 4 q4 q 2 -2q 4 a -4q 2 4 q 5 q 2 , p 3 = q 3 4 q3 + 2q 4 4 q5 q 2 + 4q 3 4 q 3 q 5 + 8q 4 4 q 2 5 q 2 , p 4 = q 4 q4 -4q 5 q 2 4 , p 5 = q 4 4 q5 + 4q 4 4 q 2 5 . The following rewriting essentially block diagonalizes the above system: p 4 = q 4 ( q4 -4q 5 q 4 ) . p 5 = q 4 4 q5 + 4q 2 5 . p 2 = q 2 4 q2 -2q 4 q 3 + p 4 q 2 . p 3 = q 3 4 ( q3 + 4q 3 q 5 ) + 2q 2 p 5 .

p 1 = p 3 • q 2 -p 5 |q 2 | 2 + q 2 4 q1 + |q 3 | 2 .
Note that we have not examined the asymptotic condition as t → +∞. We analyze this aspect more precisely below (see §3.3). We write v = e iτ (Q+w): Equation (3.5) is equivalent to

(3.6) i∂ τ w -Lw -iZ p (w) = iR p (w) + iZ p (Q),
where L is the linearized operator (1.11), and

R p (w) = R N L (w) + R L (w) + R 0 (3.7)      iR N L (w) = -g p × (F (Q + w) -F (Q) -ℓ(w)) , iR L (w) = (1 -g p ) × ℓ(w) + V p w, iR 0 = (1 -g p ) × F (Q) + V p Q, with F (z) = |z| 4/d z ; ℓ(w) = 2 d + 1 Q 4/d w + 2 d Q 4/d w.
As we will often write the equation (3.6) as ∂ t w + iLw = (. . .), we also forced a multiplication by i in the definition of R p . Note that R N L , R L and R 0 also depend on the parameter p, although we will usually not indicate it with an index. The sequel of this section is as follows. In §3.2, we show that one can recover the modulations q 1 ,. . . ,q 5 and the original variables t and x from the parameters p 1 ,. . . ,p 5 and the modulated variables τ and y. In §3.3, we reduce Theorem 1.1 to the proof of an existence theorem in the modulated variables τ and y.

3.2.

From p to the modulation. From now on, we will work only in the modulated variables τ and y, and consider, by abuse of notation, the modulations q k as functions of τ . Denoting by ′ the derivative with respect to τ , that is ḟ = 1 q 2 4 f ′ , the above system reads:

(3.8)                      p 4 = q ′ 4 q 4 -4q 5 q 2 4 . p 5 = q 2 4 q ′ 5 + 4q 4 4 q 2 5 . p 2 = q ′ 2 -2q 4 q 3 + p 4 q 2 . p 3 = q 4 q ′ 3 + 4q 3 4 q 3 q 5 + 2q 2 p 5 . p 1 = p 3 • q 2 -p 5 |q 2 | 2 + q ′ 1 + q 2 4 |q 3 | 2 .
Recall that we seek q 4 = 1 + q 4r , with q 1 , q 2 , q 3 , q 4r , q 5 -→ t→+∞ 0.

Consider these functions as unknowns, to be sought, for c > 0, in

(3.9) W (c, τ 0 ) = {f ∈ C([τ 0 , ∞[), f c,τ0 := sup τ τ0 τ c |f (τ )| < ∞}.
Our main assumption here is p j ∈ W (c(p j ), τ 0 ), for 1 j 5.

Lemma 3.2. Let c(p 3 ) = c(p 5 ) > 2, c(p 1 ) > 1, c(p 2 ) = c(p 4 ) > 1.
Then if τ 0 is sufficiently large the following holds. Let p j ∈ W (c(p j ), τ 0 ), 1 j 5 such that ∀j ∈ {1, . . . , 5}, p j c(pj),τ0 1.

Then there exists a unique family of parameters q 1 , q 2 , q 3 , q 4r , q 5 , such that the system (3.8) holds with • q 2 , q 4r ∈ W (c(q 2 ), τ 0 ) with c(q 2 ) = (min (c(p 5 ) -2, c(p 4 ) -1)) -. • q 3 , q 5 ∈ W (c(q 3 ), τ 0 ) with c(q 3 ) = c(p 3 )/2.

• q 1 ∈ W (c(q 1 ), τ 0 ) with c(q 1 ) = min (c(p 1 ) -1, c(p 3 ) -1), and q 1 c(q1),τ0 + q 2 c(q2),τ0 + q 3 c(q3),τ0 + q 4r c(q2),τ0 + q 5 c(q3),τ0 1.

Finally, the variables (τ, y) and (t, x) are uniformly equivalent:

1 2 dτ dt 2 ; 1 2 x y 2 x .
Remark 3.3. Under the assumptions of the lemma, we can define implicitly the variable t from the variable τ in view of the formula (3.4).

Proof. The first two equations in (3.8) determine q 4r and q 5 . Then the next two yield q 2 and q 3 , while we infer q 1 from the last equation. Thus we first consider (3.10)

   q ′ 4r -4q 5 = p 4 (1 + q 4r ) + 4q 5 q 4r (3 + 3q 4r + q 2 4r ), q ′ 5 = p 5 (1 + q 4r ) 2 -4(1 + q 4r ) 2 q 2 5 .
Introduce the corresponding homogeneous system: d dτ q 4r q 5 = 0 4 0 0

q 4r q 5 .
The square of the above matrix is zero, and we infer:

exp 0 4 0 0 = 1 4 0 1 .
Duhamel's formula for (3.10) thus reads:

q 4r (τ ) = - ∞ τ p 4 (σ) (1 + q 4r (σ)) + 4q 5 (σ)q 4r (σ) 3 + 3q 4r (σ) + q 2 4r (σ) dσ - +∞ τ 4(τ -σ) p 5 (σ) (1 + q 4r (σ)) 2 -4(1 + q 4r (σ)) 2 q 2 5 (σ) dσ, q 5 (τ ) = - ∞ τ p 5 (σ) (1 + q 4r (σ)) 2 -4(1 + q 4r (σ)) 2 q 2 5 (σ) dσ. Denoting N (k) = k c(k),τ0
, the first right hand side is controlled by

∞ τ σ -c(p4) + σ -c(q4r )-c(q5) N (q 4r )N (q 5 ) + τ σ -c(p5) + τ σ -2c(q5) N (q 5 ) 2 dσ τ 1-c(p4) + τ 1-c(q4r )-c(q5) + τ 2-min(c(p5),2c(q5)) .
The second right hand side is controlled by τ 1-min(c(p5),2c(q5)) . We can solve the above system by a fixed point argument in the class that we consider, provided that τ 0 is sufficiently large, as soon as c(q 4r ) + 1 < c(p 4 ) ; 1 < c(q 5 ), c(q 4r ) + 2 < min(c(p 5 ), 2c(q 5 )) ; c(q 5 ) + 1 < min(c(p 5 ), 2c(q 5 )).

This boils down to

c(p 4 ) > 1 ; c(p 5 ) > 2,
in which case we may take c(q 4r ) = (min (c(p 5 ) -2, c(p 4 ) -1)) -; c(q 5 ) = 1 2 c(p 5 ).

Note also that τ 0 can be chosen independent of p such that N (p) 1.

The system yielding (q 2 , q 3 ) is similar (the constant 4 becomes a 2):

   q ′ 2 -2q 3 = p 2 + 2q 4r q 3 -p 4 q 2 q ′ 3 = -4(1 + q 4r ) 2 q 3 q 5 + p 3 -2q 2 p 5 1 + q 4r .
Under the extra assumption c(p 2 ) = c(p 4 ) and c(p 3 ) = c(p 5 ), we may take c(q 2 ) = c(q 4r ) ; c(q 3 ) = c(q 5 ).

It is clear that we may choose c(q 1 ) = min (c(p 1 ) -1, c(p 3 ) -1).

The inequalities:

d dt (τ -t) = 1 q 2 4 -1 = (1 + q 4r ) -2 -1 1 t c(q2) , |y j -x j | = 1 q 4 -1 x j -q 2 1 t c(q2) (|x j | + 1)
imply the last part of the lemma.

The following lemma is a direct consequence of the proof of the previous result: Lemma 3.4. Let p and p satisfy the assumptions of Lemma 3.2. Assume in addition that for all k, c(p k ) = c(p k ) = c(p) > 2. Denote by q and q the corresponding modulations provided by Lemma 3.2. We have

|q 4 (τ ) -q4 (τ )| + |q 2 (τ ) -q2 (τ )| 1 τ c(p)-2 max 1 k 5 p k -pk c(p),τ0 .
Proof. Subtract the Duhamel's formulations to systems (3.10) associated to p and p, respectively. Denoting e q (τ ) = |q 4 -q4 | + τ |q 5 -q5 |, we have immediately

e q (τ ) τ ∞ τ 1 σ c(p) + 1 σ 1+c(q5) e q (σ) + 1 σ c(p) max 1 k 5 p k -pk c(p),τ0 dσ τ ∞ τ 1 σ 1+c(q5) e q (σ) + 1 σ c(p) max 1 k 5 p k -pk c(p),τ0 dσ
From Lemma 3.2, c(q 5 ) = c(p)/2 > 1. We can then apply Gronwall lemma to e q (τ ) = e q (τ )/τ , and the first estimate follows. The estimate for q 2 proceeds along the same lines. 

(3.11) i∂ τ w -Lw -iZ p (w) = iR p (w) + iZ p (Q), such that w(τ ) H 1 C τ 2 -, y w(τ ) L 2 C τ 1 -.
Theorem 3.5 implies Theorem 1.1. Writing v(τ, y) = e iτ (Q(y) + w(τ, y)), we first see that Theorem 3.5 implies the existence of p = p(τ ) like above, and a solution

v ∈ C([τ 0 , ∞[; Σ) to i∂ τ v + ∆v = V p v -g p |v| 4/d v + iZ p (v), v(τ ) -e iτ Q H 1 C τ 2 -, y (v(τ ) -e iτ Q) L 2 C τ 1 -.
If this holds, then Lemma 3.2 yields a modulation q such that (3.12)

|q 2 (t)| + |q 4 (t) -1| -→ t→+∞ 0, |q 1 (t)| + |q 3 (t)| + |q 5 (t)| C t 1 + ,
and a solution of (3.1),

v(t, x) = e i(q1(t)+q3(t)•x+q5(t)|x| 2 ) 1 q 4 (t) d/2 v γ(t), x q 4 (t)
-q 2 (t) .

We now set

θ(t) = γ(t) ; λ(t) = tq 4 1 t ; x(t) = tq 4 1 t q 2 1 t .
Equation (3.4) and Lemma 3.2 show that indeed, γ(t) = t + o(t) as t → ∞. We also know from (3.12) that

λ(t) ∼ t and |x(t)| = o(t) as t → 0 + .
In view of the behavior of the H 1 and F H 1 norms via the pseudo-conformal transformation, we readily verify that Theorem 1.1 follows from (3.12).

As suggested by the statement of Theorem 3.5, we construct simultaneously the modulation p and the remainder w. We will see in Section 5 that these two unknowns are related through a nonlinear process.

The linearized operator

To prove Theorem 3.5, we need more precise properties concerning the linearized operator L than those recalled in Proposition 2.2. We use again refined estimates proved in [START_REF]Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] (see also [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF]).

As in [START_REF]Modulational stability of ground states of nonlinear Schrödinger equations[END_REF], we identify C with R 2 , and the space of complex-valued functions

H 1 (R d , C) with the space H 1 (R d , R)×H 1 (R d , R), considering the operator L = iL as an operator on L 2 × L 2 with domain H 2 × H 2 : L = iL = 0 L - -L + 0 , L + = -∆ + 1 - 4 d + 1 Q 4/d , L -= -∆ + 1 -Q 4/d .
Note that L is not self-adjoint. We denote by

f, g = R d f 1 g 1 + R d f 2 g 2 , the scalar product on L 2 (R d ) × L 2 (R d ).
The space of secular modes is defined by

S := κ 1 N (L κ ) ,
where N (A) is the null-space of the operator A. We next specify the space S and the dynamics of e itL on S. Note that by direct calculation, (

       L -(|x| 2 Q) = -4 d 2 Q + x • ∇Q , L -Q = 0, -L + d 2 Q + x • ∇Q = 2Q, (4.2) L -(x ℓ Q) = -2∂ x ℓ Q, L + (∂ x ℓ Q) = 0. 4.1) 
Furthermore, there exists only one radial function Q such that

L + Q = -|x| 2 Q. Consider for 1 ℓ d n 1 = -iα -1 0 Q; n 2,ℓ = -β -1 0 ∂ x ℓ Q, n 3,ℓ = iβ -1 0 x ℓ Q n 4 = α -1 0 d 2 Q + x • ∇Q , n 5 = -iα -1 0 1 2 |x| 2 Q + γ 0 Q , n 6 = α -1 0 Q,
(where α 0 , β 0 , γ 0 are normalization constants, α 0 , β 0 > 0). Then (4.3)

Ln 1 = Ln 2,ℓ = 0, Ln 4 = -2n 1 , Ln 3,ℓ = 2n 2,ℓ , Ln 5 = 2n 4 , Ln 6 = -2n 5 + 2γ 0 n 1 .
This shows that all n j 's are in the space S. By similar computations, the following functions are in the space S * = κ 1 N ((L * ) κ ):

m 1 = i Q, m 2,ℓ = x ℓ Q, m 3,ℓ = -i∂ x ℓ Q, m 4 = - 1 2 |x| 2 Q -γ 0 Q, m 5 = i d 2 Q + ix • ∇Q, m 6 = -Q.
Moreover, M = (S * ) ⊥ , and n k , m j = δ jk , so that

P S h = 1 j 6
ν j n j , where ν j = h, m j .

As a consequence, in view of (4.3), the exact dynamics of e itL on S is obtained.

Proposition 4.1. Let G ∈ C(R; H 1 × H 1 )
, and W such that

(4.4) ∂ t W + iLW = G Denote ν j = W, m j and d j = G, m j . Then, ν ′ 1 = 2ν 4 -2γ 0 ν 6 + d 1 ν ′ 2,ℓ = -2ν 3,ℓ + d 2,ℓ ν ′ 3,ℓ = d 3,ℓ ν ′ 4 = -2ν 5 + d 4 ν ′ 5 = 2ν 6 + d 5 ν ′ 6 = d 6 .

Tuning the modulation

Our approach consists of a careful examination of (3.11). As we have seen in the previous section, we can write H 1 = M ⊕ S. Recall that S, the generalized kernel of iL, is a finite dimensional space, and that the group e itL is bounded on M . To construct the wave operator of Theorem 3.5, we have to control the secular part of w (its S component). We decompose w into w = w S + w M . By noticing that

Z p (Q) = -i p 1 + p 3 • y + p 5 |y| 2 Q + p 2 • ∇Q + p 4 d 2 + y • ∇ Q (5.1) = p 1 α 0 n 1 -p 3 β 0 n 3 + 2p 5 α 0 (n 5 -γ 0 n 1 ) -p 2 β 0 • n 2 + α 0 n 4
is in S, we deduce the projected equations on S and on M . Namely, we want to construct a solution to the system

∂ τ w S + iLw S = P S R p (w) + P S Z p (w) + Z p (Q), (5.2) 
∂ τ w M + iLw M -P M Z p (w M ) = P M R p (w) + P M Z p (w S ). (5.3) We introduce (5.4) Φ(w)(τ ) = ∞ τ e i(τ -σ)L (P S R p (w) + P S Z p (w) + Z p (Q)) dσ + Φ 2 (w)(τ ) = Φ 1 (w)(τ ) + Φ 2 (w)(τ ),
where Φ 2 (w) = φ is the solution (in M for all τ ) of the equation

∂ τ φ + iLφ -P M Z p (φ) = P M R p (w) + P M Z p (w S ).
The existence of Φ 2 (w) will be shown in §6. In the present section, we define the modulation parameter p, and estimate Φ 1 (w). The main point in our approach is that p depends on w, and is chosen so that the secular part Φ 1 (w) of Φ(w) belongs to span(n 6 ). As p also appears in the definition of Φ in (5.4), the dependence of Φ upon w is more implicit (and more nonlinear) than it may seem. As it is standard, we shall construct in Section 7 a fixed point for Φ. However, we shall not use Banach-Picard result (based on contractions), but rather the Schauder fixed point argument (based on compactness).

For p = (p 1 , . . . , p 5 ), c > 0, denote, once and for all,

|p(τ )| = max 1 k 5 |p k (τ )|, p c,τ0 = max 1 k 5 p k c,τ0 .
The main result of this section is the following: There exists a unique modulation parameter p = p(w), such that, for τ τ 0 ,

(5.6) |p(τ )| 1 τ 3-3ε ,
and

Φ 1 (w)(τ ) = ∞ τ e i(τ -σ)L (P S R(w) + P S Z p (w) + Z p (Q)) dσ ∈ span n 6 .
Furthermore, for this choice of p (5.7) ∀τ τ 0 , | Φ 1 (w)(τ ), m 6 | C τ 3-2ε , where C does not depend on w.

We prove Proposition 5.1 in §5.2. We first need some a priori estimates for arbitrary p. Proof. Estimates (5.8) and (5.9) follow from the definition of R N L and of R L (see (3.7)), and, for (5.9), from Assumption (3.1).

     iR N L (w) = -g p × (F (Q + w) -F (Q) -ℓ(w)) , iR L (w) = (1 -g p ) × ℓ(w) + V p w, iR 0 = (1 -g p ) × F (Q) + V p Q, with F (z) = |z| 4/d z ; ℓ(w) = 2 d + 1 Q 4/d w + 2 d Q 4/d w.
Next we estimate |g p -g p|. Notice that

1 γ -1 (τ ) - 1 γ-1 (τ ) = γ-1 (τ ) -γ -1 (τ ) γ -1 (τ )γ -1 (τ ) .
We have

dγ -1 (τ ) dτ = q 4 (τ ) 2 = (1 + q 4r (τ )) 2 .
Therefore, by Lemma 3.4:

d dτ γ-1 (τ ) -γ -1 (τ ) |q 4r (τ ) -q4r (τ )| 1 τ c(p)-2 p -p c(p),τ0 ,
Integrating between τ 0 and τ and using that γ(τ 0 ) = γ(τ 0 ) = τ 0 we get, since c(p) < 3,

γ-1 (τ ) -γ -1 (τ ) 1 τ c(p)-3 p -p c(p),τ0 .
This rather poor estimate yields the more interesting one 1

γ -1 (τ ) - 1 γ-1 (τ ) 1 τ c(p)-1 p -p c(p),τ0 .
Denote λ = q 4 /γ -1 , and λ its counterpart associated to p. We can write g p (τ, y) -g p(τ, y) = g(λy + λq 2 ) -g( λy + λq 2 ).

Note that Assumption 3.1 implies

|g(a) -g(b)| |a -b| |a| 2 + |b| 2 .
Invoking Lemma 3.2 and Lemma 3.4, we deduce

|g p (τ, y) -g p(τ, y)| |λ -λ||y| + |λq 2 -λq 2 | λ 2 + λ2 y 2 1 τ c(p)-1 p -p c(p),τ0 y × 1 τ 2 y 2 1 τ c(p)+1 p -p c(p),τ0 y 3 .
We have a similar estimate on V p -V p = λ 2 V (λ(y + q 2 )) -λ2 V ( λ(y + q2 )):

|V p (τ, y) -V p(τ, y)| 1 τ c(p)+1 p -p c(p),τ0 y .
By definition, we have (without splitting the terms as in (3.7))

-iR p (w) = g p × |Q + w| 4/d (Q + w) -V p × (Q + w) -F (Q) -ℓ(w).
We also have

|Q + w| 1+4/d Q 1+4/d + |w| 1+4/d
, and the estimate (5.10) follows.

Estimates (5.11) and (5.12) of the lemma are a straightforward consequence of the definitions (3.7) of R L,p and R N L,p , and of the above estimates.

We introduce the notation, for 1 j 6, 

|D j (p)(τ )| w 1+4/d H 1 + w 2 H 1 + 1 τ 2 w L 2 + |p(τ )| w L 2 +      0 if j = 2, 4, 6 1/τ 1+c(p) -+ 1/τ 4 if j = 1, 5 1/τ 3 if j = 3.
Proof. Taking the L 2 -norm in y in the pointwise estimate (5.8), Sobolev embedding yields:

R N L (w)(τ ) L 2 2 k 1+4/d w(τ ) k H 1 .
By the pointwise estimate (5.9) we get

R L (w)(τ ) L 2 1 τ 2 w(τ ) L 2 . These estimates yield, since m j ∈ S R d , |D j (p)(τ )| 2 k 1+4/d w(τ ) k H 1 + 1 τ 2 w(τ ) L 2 + | R 0 , m j | + |p(τ )| w(τ ) L 2 ,
Notice that R 0 is purely imaginary, that m 2 , m 4 and m 6 are real, and thus ∀j ∈ {2, 4, 6} R 0 , m j = 0, which yields the first case in (5.14). By Assumption 3.1, the Taylor expansion of g near the origin reads:

g(x) = 1 + |α|=3 c α x α + O(|x| 4 ).
In view of Lemma 3.2, we infer

g p (τ, y) = 1 + q 3 4 (γ -1 (τ )) 3 |α|=3 c α (y + q 2 ) α + O |q 4 (y + q 2 )| 4 τ 4 = 1 + q 3 4 (γ -1 (τ )) 3 |α|=3 c α y α + O y 2 τ 3+c(q2) + O y 4 τ 4 .
Notice that if j ∈ {1, 5}, m j is a radial function. Thus if |α| = 3,

y α m j = 0.
Arguing similarly on V , we infer

| P S R 0 , m j | = | R 0 , m j | = | (1 -g p )F (Q) + V p Q, m j | 1 τ 3+c(q2) + 1 τ 4 .
Lemma 3.2 then yields the second case in (5.14). To prove the third case, we use the pointwise estimate

|R 0 | y τ 3 Q 1+4/d + 1 τ 2 1 |y|>τ + y τ 1 |y| τ Q.
Since Q decays exponentially, this yields R 0 (τ ) L 2 1 τ 3 , and the third case in (5.14) follows.

5.2.

Control of the secular modes by projection. We next prove Proposition 5.1. We introduce, for arbitrary p, (5.15) 

d j (p)(τ ) = P S R p (w) + P S Z p (w) + Z p (Q), m j = D j (p)(τ ) + Z p (Q), m j .
By the explicit expression (5.1) of Z p (Q) we get the relations between d j and D j :

d 1 (p) = D 1 (p) + α 0 p 1 -2α 0 γ 0 p 5 , d 2 (p) = D 2 (p) -β 0 p 2 , d 3 (p) = D 3 (p) -β 0 p 3 d 4 (p) = D 4 (p) + α 0 p 4 , d 5 (p) = D 5 (p) + 2α 0 p 5 , d 6 (p) = D 6 (p),
where α 0 , β 0 , γ 0 are real constants, α 0 , β 0 > 0. From (5.5), we know that w tends to zero as τ → +∞. Recalling that Z p (Q) ∈ S for any parameter p, the stability of S by e itL shows that Φ 1 (w) ∈ S. Denote, as in Proposition 4.1,

Φ 1 (w)(τ ) = 6 j=1 ν j (τ )n j .
By Proposition 4.1,

ν 6 (τ ) = - +∞ τ d 6 = - +∞ τ D 6 (p),
which is well-defined in view of (5.14), (5.5), (5.6). We want ν j to vanish, for 1 j 5, so in view of Proposition 4.1, we would like to impose

d 2 = d 3 = d 4 = 0 ; d 5 = -2ν 6 ; d 1 = 2γ 0 ν 6 .
The proposition follows if we get a fixed point p in the unit ball of (W (3-3ε, τ 0 )) 3+2d (the space W is defined by (3.9)) for the operator Ψ(p) = p = ( p 1 , p 2 , p 3 , p 4 , p 5 ):

p 5 = 1 2α 0 -D 5 (p) + 2 ∞ τ D 6 (p) ; p 4 = - 1 α 0 D 4 (p) p j = 1 β 0 D j (p), j = 2, 3 ; p 1 = - 1 α 0 D 1 (p) - γ 0 α 0 D 5 (p).
Let B be the closed unit ball in (W (3 -3ε, τ 0 )) 3+2d . We first show that B is stable by Ψ. By (5.5), and since 0 < ε < 1/2, we have, for τ τ 0 ≫ 1,

w 1+4/d H 1 + w 2 H 1 + 1 τ 2 w L 2 + |p(τ )| w L 2 (5.16) 1 τ (1+4/d)(2-ε) + 1 τ 4-2ε + 1 τ 4-ε + 1 τ 5-4ε 1 τ 4-2ε .
By definition of Ψ, (5.16) and the estimates (5.14) on D j , we get, for j ∈ {2, 3, 4}

| p j (τ )| |D j (p)(τ )| w 1+4/d H 1 + w 2 H 1 + 1 τ 2 w L 2 + 1 τ 3 + |p(τ )| w L 2 C τ 3 1 τ 3-3ε , if τ
τ 0 and τ 0 is chosen sufficiently large. In view of the estimates (5.14) and (5.16), we have (5.17 Recall that by definition, D j (p) = P S R p (w) + P S Z p (w), m j .

We have

| P S Z p (w) -P S Z p(w), m j | |p k (τ ) -pk (τ )| w(τ ) L 2 1 τ 2-ε |p k (τ ) -pk (τ )| 1 τ 5-4ε p -p 3-3ε,τ0 .
By the pointwise estimate (5.10) we get

| R p (w) -R p(w), m j | 1 τ 4-3ε p -p 3-3ε,τ0 .
Taking τ 0 larger if necessary, we deduce the estimate (5.19).

To prove (5.20), we argue as in the proof of Lemma 5.3:

D 6 (p) = R N L (w) + R L (w) + P S Z p (w), m 6 ,
that is, the contribution of R 0 vanishes, since R 0 is purely imaginary and m 6 is real. We then invoke inequalities (5.11) and (5.12) of Lemma 5.2, to infer:

| R p (w) -R p(w), m 6 | 1 τ 4-3ε p -p 3-3ε,τ0 w(τ ) H 1 w(τ ) H 1 4/d 1 τ 4-3ε × 1 τ 2-ε p -p 3-3ε,τ0 ,
which gives (5.20) and concludes the proof of the contraction property (5.18).

Therefore there exists a fixed point p ∈ B for Ψ. For this p, we have ν j (τ ) = 0, for 1 j 5. Moreover, since

Φ 1 (w)(τ ) = ν 6 (τ )n 6 ,
it remains to show (5.7), that is, to check that |ν 6 (τ )| 1/τ 3-2ε . This follows immediately from (5.17) and the fact that ν ′ 6 = D 6 .

The non-secular part

As announced in the previous paragraph, we now study the M -component of w, which has to solve (5.3). For this, we consider the operator Φ 2 , that is, we study the equation (6.1)

∂ τ φ + iLφ -P M Z p (φ) = F ; φ(τ ) Σ -→ τ →+∞ 0,
where

F ∈ C([τ 0 , ∞[; M ). For a, b > 0, let X(a, b, δ) = φ ∈ C([τ 0 , ∞[; M ∩ Σ δ ), φ X(a,b,δ) < ∞ , where φ X(a,b,δ) = sup τ τ0 τ a φ(τ ) H δ + sup τ τ0 τ b y δ φ(τ ) L 2 .
The main result of this section is:

Proposition 6.1. Let τ 0 > 0 and p ∈ C([τ 0 , ∞[) 3+2d such that ∀τ τ 0 , |p(τ )| 1 τ 3-3ε . Assume that F ∈ X(a + 1 + η, b + 1 + η, δ), with a, b > 0, η > 0 and δ < a -b < δ(2 -3ε), 1 δ 5.
Then (6.1) has a unique solution φ ∈ X(a, b, δ). Furthermore, it satisfies φ X(a,b,δ) µ F X(a+1+η,b+1+η,δ) .

6.1. Energy estimates. Recall the important property, established in [START_REF]Modulational stability of ground states of nonlinear Schrödinger equations[END_REF]: on M , the

H 1 norm • H 1 is equivalent to • M , where φ 2 M = Re Lφ, φ . Lemma 6.2. Let κ ∈ N, and F ∈ L 1 ([τ 0 , ∞[; Σ 2κ+1 ). Suppose that φ ∈ C([τ 0 , ∞[; M ∩ Σ 2κ+1
) solves (6.1) and tends to 0 in Σ 2κ+1 as τ → +∞. There exists C > 0 such that for all τ τ 0 , the following holds:

φ(σ) H 2κ+1 C ∞ τ F (σ) H 2κ+1 +|p(σ)| φ(σ) H 2κ+1 + y ∇ 2κ φ(σ) L 2 dσ, y 2κ+1 φ(σ) L 2 C ∞ τ y 2κ+1 F (σ) L 2 + y 2κ ∇φ(σ) L 2 + φ(σ) L 2 + |p(σ)| y 2κ+1 φ(σ) L 2 dσ.
Proof. We begin with the first inequality in the case κ = 0. Multiply (6.1) by Lφ, integrate with respect to y and consider the real part:

Re

R d ∂ τ φ Lφ -Re R d P M Z p (φ) Lφ = Re R d F Lφ.
We readily check the identity Re

R d ∂ τ φ Lφ = 1 2 d dτ φ 2 M .
A straightforward integration by parts yields

R d F Lφ F H 1 φ H 1 .
It remains to estimate (

d P M Z p (φ) Lφ = Re R d Z p (φ) Lφ -Re R d P S Z p (φ) Lφ. 6.2) Re R 
We start with the first term. Recall that

Z p (φ) = -i p 1 + p 3 • y + p 5 |y| 2 φ + p 2 • ∇φ + p 4 d 2 + y • ∇ φ and Lφ = -∆φ + φ - 2 d + 1 Q 4/d φ - 2 d Q 4/d φ.
We have, by elementary integration by parts:

Re i p 1 φ ∆φ = 0, Re i p 3 • yφ∆φ = Im φ p 3 • ∇φ |p 3 | φ L 2 φ H 1 , Re i p 5 |y| 2 φ∆φ = 2 p 5 Im φ y • ∇φ 2|p 5 | φ H 1 y φ L 2 , Re p 2 • ∇φ∆φ = 0, Re p 4 d 2 + y • ∇ φ∆φ = -p 4 |∇φ| 2 .
We infer:

Re Z p (φ)∆φ C(|p 3 | + |p 4 |) φ 2 H 1 + |p 5 | φ H 1 y φ L 2 .
We easily deduce that the first term in (6.2) is controlled by

Re Z p (φ)Lφ C|p| φ H 1 ( φ H 1 + y φ L 2 ).
For the remaining second term in (6.2) we use the structure of the space S,

Re P S Z p (φ) Lφ = 1 j 6 Z p (φ), m j Re n j Lφ .
Integrating by parts both in the scalar product and in the integral, we get

Re P S Z p (φ) Lφ C|p| φ 2 L 2 .
Summarizing, we have obtained

d dτ φ 2 M C F H 1 φ H 1 + C|p| φ H 1 φ H 1 + y φ L 2 .
Since the M -norm and the H 1 -norm are equivalent on M , the first inequality of the lemma follows in the case κ = 0.

Let κ 1. We write (6.1) as

∂ τ φ + iLφ -Z p (φ) = F -P S Z p (φ).
Applying the operator (iL) κ we get

∂ τ ((iL) κ φ) + iL ((iL) κ φ) -(iL) κ Z p (φ) = (iL) κ F -(iL) κ P S Z p (φ).
Hence

∂ τ ((iL) κ φ) + iL ((iL) κ φ) -Z p (iL) κ φ = (iL) κ F + [(iL) κ , Z p ] φ -(iL) κ P S Z p (φ),
where [(iL) κ , Z p ] denotes the commutator of the operators (iL) κ and Z p . By direct computation, the commutator [iL, Z p ] is an operator of order 2 in ( y , ∇), which is only of order 1 in y and whose coefficients are multiples of p 1 ,. . . ,p 5 :

[iL, Z p ]φ = iL, -i p 1 + p 3 • y + p 5 |y| 2 + p 2 • ∇ + p 4 d 2 + y • ∇ φ = -i ∆, -i p 3 • y + p 5 |y| 2 + p 4 y • ∇ φ -i 2 d + 1 Q 4/d , p 2 • ∇ + p 4 y • ∇ φ -i 2 d Q 4/d , p 2 • ∇ + p 4 y • ∇ φ = -2 (p 3 • ∇ + 2p 5 y • ∇ + dp 5 + ip 4 ∆) φ + i 2 d + 1 p 2 • ∇ Q 4/d + p 4 y • ∇ Q 4/d φ + i 2 d p 2 • ∇ Q 4/d + p 4 y • ∇ Q 4/d φ. Furthermore [(iL) κ , Z p ] = κ-1 j=0 (iL) j [iL, Z p ] (iL) κ-j-1 . Hence [(iL) κ , Z p ] φ H 1 |p| φ H 2κ+1 + y ∇ 2κ φ L 2 . Notice also that (iL) κ P S (Z p (φ)) H 1 = 1 j 6 Z p (φ), m j (iL) κ n j H 1 |p| φ L 2 .
Denoting φ κ = (iL) κ φ, we see that φ κ (τ ) ∈ M and that it solves

∂ τ φ κ + iLφ κ -P M Z p (φ κ ) = (iL) κ F + [(iL) κ , Z p ] φ -(iL) κ P S Z p (φ) + P S Z p (φ κ ).
From the case κ = 0 and the previous estimates, we get:

(iL) κ φ(τ ) H 1 +∞ τ F (σ) H 2κ+1 + |p(σ)| φ(σ) H 2κ+1 + y ∇ 2κ φ(σ) L 2 dσ.
Noting that for a large constant K, depending on κ, we have for all f ∈ M , (iL

) κ f H 1 + K f H 1 ≈ f H 2κ+1 ,
and using the case κ = 0 to bound φ(τ ) H 1 , we get the first estimate of the lemma.

To conclude, we estimate the momenta: for s ∈ N, we compute more generally 1 2

d dτ y 2s |φ| 2 = Re y 2s ∂ τ φφ = Re y 2s (-iLφ + P M Z p (φ) + F )φ = Im y 2s Lφ φ + Re y 2s P M Z p (φ) φ + Re y 2s F φ.
By a direct integration by parts

(6.3) Im y 2s Lφ φ y s-1 ∇φ L 2 y s φ L 2 + φ 2 L 2 . Furthermore, Re y 2s P M Z p (φ) φ = Re y 2s Z p (φ) φ -Re y 2s P S Z p (φ) φ.
On the one hand, Re

y 2s Z p (φ) φ = Re y 2s p 2 • ∇φ φ + p 4 y 2s d 2 + y • ∇ φ φ max k=2,4 |p k | y s φ 2 L 2 .
On the other hand, Re

y 2s P S Z p (φ) φ = 1 j 6 Z p (φ), m j Re n j y 2s φ |p| φ 2 L 2 .
Hence (6.4) Re

y 2s P M Z p (φ) φ |p| y s φ 2 L 2 .
Combining (6.3), (6.4), we obtain the second estimate of the lemma, concluding this proof.

6.2. Refined a priori estimates. In the sequel, we consider 0 < ε < 1/3, and extra smallness assumptions will be precised when needed.

Lemma 6.3. Let τ 0 > 0 and p ∈ C([τ 0 , ∞[) 3+2d such that ∀τ τ 0 , |p(τ )| 1 τ 3-3ε . Assume that F ∈ X(a + 1 + η, b + 1 + η, δ), with η > 0 and (6.5) δ < a -b < δ(2 -3ε), δ ∈ {1, 5},
where X is defined in Proposition 6.1. Let µ > 0. If τ 0 is sufficiently large, every solution φ ∈ X(a, b, δ) of (6.1) satisfies (6.6) φ X(a,b,δ) µ F X(a+1+η,b+1+η,δ) .

Remark 6.4. The restriction δ ∈ {1, 5} in the above statement is arbitrary.

Proof. First case: δ = 1. Denote by

M 1 = F X(a+1+η,b+1+η ,1) 
.

The H 1 -estimate and the momentum estimate with κ = 0 of Lemma 6.2 read, along with the assumption on p:

φ(τ ) H 1 C ∞ τ M 1 σ a+1+η + 1 σ 3-3ε ( φ(σ) H 1 + y φ(σ) L 2 ) dσ, y φ(τ ) L 2 C ∞ τ M 1 σ b+1+η + 1 σ 3-3ε y φ(σ) L 2 + φ(σ) H 1 dσ.
We apply Lemma A.1 with the following data:

α 1 = β 1 = 0 ; α 2 = β 2 = 1 ; a 1 = a 2 = b 1 = 2 -3ε ; b 2 = -1.
This is possible under the assumptions a, b > 0 and 1 < a -b < 2 -3ε, which are fulfilled in the context of Lemma 6.3. We then have φ X(a,b,1) µ F X(a+1+η,b+1+η,1) , for τ 0 sufficiently large.

Second case: δ = 5. Denote by

M 5 = F X(a+1+η,b+1+η,5) .
To proceed in a similar way as in the first case, we use interpolation estimates (B.8) and (B.9). By Lemma 6.2 in the case κ = 2, we obtain

φ(σ) H 5 C ∞ τ M 5 σ a+1+η + 1 σ 3-3ε φ(σ) H 5 + y 5 φ(σ) 1/5 L 2 φ(σ) 4/5 H 5 dσ, y 5 φ(σ) L 2 C ∞ τ M 5 σ b+1+η + y 5 φ(σ) 4/5 L 2 φ(σ) 1/5 H 5 + φ(σ) L 2 + 1 σ 3-3ε y 5 φ(σ) L 2 dσ.
We apply Lemma A.1 with the following data:

α 1 = β 3 = 0 ; β 2 = 1 ; α 2 = β 1 = 1 5 ; a 1 = a 2 = b 3 = 2 -3ε ; b 1 = b 2 = -1.
This is possible under the assumptions a, b > 0 and 5 < a -b < 10 -15ε, which are fulfilled in the context of Lemma 6.3. We then have φ X(a,b,5) µ F X(a+1+η,b+1+η,5) , for τ 0 sufficiently large. Summarizing, we have obtained the lemma in the following cases:

1 < a -b < 2 -3ε and δ = 1, 5 < a -b < 5(2 -3ε) and δ = 5, which corresponds to the announced result.

6.3. Proof of Proposition 6.1. The proof is set up in the same spirit as the existence of Møller's wave operators. Let χ(τ ) = 1-H(τ ), where H is the Heaviside function, be the function equal to 1 for τ < 0 and 0 for τ > 0. We first consider the case where δ = 5 and F ∈ L 1 ([τ 0 , ∞[; M ∩ Σ 5 ). For (τ n ) n a sequence going to +∞, consider (6.7)

∂ τ φ n + iLφ n -P M Z p (φ n ) = χ(τ -τ n )F ; φ n|τ =1+τn = 0.
To begin with, we remove the projection P M from the left hand side, and consider (6.8)

∂ τ φ n + iLφ n -Z p (φ n ) = χ(τ -τ n )F ; φ n|τ =1+τn = 0.
We show that for every n, (6.8) has a unique solution φ n ∈ C([τ 0 , ∞[; Σ 5 ). To see this, remove the modulation by reversing the approach presented in §3: recalling (3.2), define φ n by

φ n (t, x) = e i(q1(t)+q3(t)•x+q5(t)|x| 2 ) 1 q 4 (t) d/2 φ n γ(t), x q 4 (t) -q 2 (t) ,
where γ is given by (3.4) and the q j 's are well-defined function of the p k 's in view of Lemma 3.2. We check that (6.8) is then equivalent to an equation of the form

i∂ t φ n + ∆ φ n = W 1 φ n + W 2 φ n + F n ; φ n|t=tn = 0,
where the notation F n is obvious, t n = γ -1 (τ n + 1), and the potentials are given by

W 1 (t, x) = 1 q 4 (t) 2 1 - 2 d + 1 Q x q 4 (t) -q 2 (t) 4/d , W 2 (t, x) = - 2 dq 4 (t) 2 Q x q 4 (t)
-q 2 (t)

4/d e 2i(q1(t)+q3(t)•x+q5(t)|x| 2 ) .

We note that W j ∈ L ∞ ([t 0 , ∞[; W 5,∞ (R d )), j = 1, 2. We can then construct φ n in C([t 0 , ∞[; L 2 ): a fixed point argument yields φ n on small time intervals (with a non-trivial initial data in order to repeat the process), and we can split [t 0 , t n ] into finitely many time intervals on which we can control the L ∞ t L 2 x -norm of φ n by the

L 1 t L 2
x -norm of F n on the same time interval. We can proceed along the same line to construct φ n in C([t 0 , ∞[; H 5 ), and then infer that φ n is also in C([t 0 , ∞[; Σ 5 ) (with φ n|t tn = 0). We skip the easy details.

We deduce that (6.8) has a unique solution φ n ∈ C([τ 0 , ∞[; Σ 5 ). The case of (6.7) follows easily, by rewriting it as

∂ τ φ n + iLφ n -Z p (φ n ) = -P S Z p (φ n ) + χ(τ -τ n )F ; φ n|τ =1+τn = 0,
and by recalling that

P S Z p (φ n ) = 6 j=1 Z p (φ n ), m j n j , hence P S Z p (φ n )(τ ) Σ 5 1 τ 3-3ε φ n (τ ) L 2 .
The important point which we must note now is that φ n ∈ C([t 0 , ∞[; M ∩ Σ 5 ), which is compactly supported in time, has no secular part. This is so thanks to Proposition 4.1, and the integral formulation of (6.7), which can be written as:

φ n (τ ) = 1+τn τ e i(σ-τ )L ((χ(σ -τ n )F (σ) + P M Z p (φ n )(σ)) dσ, τ τ 0 . Since χ(• -τ n )F ∈ L 1 ([τ 0 , ∞[; M ∩ Σ 5
), Proposition 4.1 shows that the right hand side of the above equation has no non-trivial S-component. Therefore, φ n (τ ) ∈ M .

To conclude, we note that under the assumptions of the proposition, χ(• -τ n )F converges to F in X(a + 1 + η/2, b + 1 + η/2, δ). Since (6.1) is linear, Lemma 6.3 shows that φ n is a Cauchy sequence in X(a, b, δ), thus it converges in this space to φ solution to (6.1) which satisfies (6.6). Uniqueness follows from Lemma 6.3, and we have defined an operator F → φ.

By density and Lemma 6.3, the result remains true if we assume only δ = 1 (and F ∈ X(a + 1 + η, b + 1 + η, δ)). The proposition then follows by complex interpolation between the cases δ = 1 and δ = 5.

Fixed point argument

In this section we show Theorem 3.5. Recall that we have defined the operator Φ as follows:

Φ(w)(τ ) = ∞ τ e i(τ -σ)L (P S R p (w) + P S Z p (w) + Z p (Q)) dσ + Φ 2 (w)(τ ) = Φ 1 (w)(τ ) + Φ 2 (w)(τ ),
where Φ 2 (w) = φ is the solution (in M ) of the equation

∂ τ φ + iLφ -P M Z p (φ) = P M R p (w) + P M Z p (P S w)
given by Proposition 6.1. The modulation p is a function of w itself, defined in §5, Proposition 5.1. To prove Theorem 3.5 (hence Theorem 1.1), we show that Φ has a fixed point in a suitable space. Consider for 0 < ε < 1/3 and 1 < δ

Y (δ, ε, τ 0 ) = w ∈ C [τ 0 , ∞[; M ∩ Σ δ + C ([τ 0 , ∞[; span n 6 ) ; w δ,ε,τ0 < ∞
where w δ,ε,τ0 is defined as By Proposition 6.1, P S Φ(w) = Φ 1 (w). Since by Proposition 5.1, Φ 1 (w) ∈ span(n 6 ), the secular part of Φ(w) has the suitable structure for Y . Moreover, by (5.7), for τ τ 0 ,

| Φ 1 (w)(τ ), m 6 | C τ 3-2ε C τ ε 0 1 τ 3-3ε . Therefore, increasing τ 0 if necessary, sup τ τ0 τ 3-3ε | Φ(w)(τ ), m 6 | 1 2 .
Thus Φ 1 (w) is in the 1/2-ball of Y (δ, ε, τ 0 ). To control the non-secular part P M Φ(w) = Φ 2 (w), we apply Proposition 6.1 with

F = P M R p (w) + P M Z p (P S w) .
We look for a and b such that F ∈ X(a + 1 + η, b + 1 + η, δ). We note that P M Z p (P S w) = w, m 6 P M Z p (n 6 ), so we have the estimate

P M Z p (P S w) (τ ) Σ δ | w(τ ), m 6 | |p(τ )| 1 τ 3-3ε × 1 τ 3-3ε = 1 τ 6-6ε .
The delicate term, which explains the assumption δ < 2, is the last one, P M R p (w). We treat separately the contributions of R 0 , R L and R N L . Since d 2 and δ > 1, H δ (R d ) is an algebra, and we infer

P M R N L (w) H δ R N L (w) H δ + P S R N L (w) H δ w 2 H δ + w 1+4/d H δ 1 τ 2(2-ε) .
From the pointwise estimate (5.8),

y δ P M R N L (w) L 2 y δ R N L (w) L 2 + y δ P S R N L (w) L 2 w 2 L 2 + y δ w L 2 2 j 4/d w j H δ 1 τ 2(2-ε) .
We next treat the contribution of R L . Using that τ 2 V p is bounded in the Sobolev space W 2,∞ , uniformly for τ ≥ 1, we get

P M R L (w) H δ 1 τ 2 w H δ 1 τ 4-ε .
Using simply the boundedness of the external potential V , we infer

y δ P M R L (w) L 2 1 τ 3 w L 2 + 1 τ 2 y δ w L 2 1 τ 4-2ε-δ .
The term P M R 0 can be estimated in a similar way, up to the fact that the H δ -norm and the momenta of Q do not decay in time:

P M R 0 H δ 1 τ 3 ; y δ P M R 0 L 2 1 τ 3 .
Summarizing, we have obtained

F H δ 1 τ 6-6ε + 1 τ 4-2ε + 1 τ 4-ε + 1 τ 3 1 τ 3 , y δ F L 2 1 τ 6-6ε + 1 τ 4-2ε + 1 τ 4-2ε-δ + 1 τ 3 1 τ 4-2ε-δ ,
meaning that F ∈ X(3, 4 -2ε -δ, δ). We can then apply Proposition 6.1 provided that there exists a, b, η > 0 with δ < a -b < δ(2 -3ε), such that F ∈ X(a + 1 + η, b + 1 + η, δ). We take a + 1 + η = 3 (note that this constraint comes from R 0 ). This requires a = 2 -η (η > 0 can be arbitrarily small), and since on the other hand, we must have a > δ, this explains why we have assumed δ < 2. By taking η = ε 2 , we get as a constraint δ < ε + δ < δ(2 -3ε).

As ε < 1/4 and δ > 1, this condition is fulfilled. Therefore, by Proposition 6.1, Φ

2 (w) ∈ X(2 -ε 2 , 2 -3 2 ε -δ, δ)
. By increasing τ 0 if necessary, Φ 2 (w) is also in the 1/2-ball of Y (δ, ε, τ 0 ), and the proposition follows. 7.2. Compactness. We recall the following compactness result, which is a particular case of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4]. Theorem 7.2 (From [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]). Let X ⊂ B ⊂ Y be Banach spaces such that X is compactly embedded into B, and B is continuously embedded into Y . Let τ 0 < τ 1 and F be a subset of

L ∞ ([τ 0 , τ 1 ]; X) such that ∂v ∂τ , v ∈ F is bounded in L ∞ ([τ 0 , τ 1 ]; Y ). Then F has compact closure in C([τ 0 , τ 1 ]; B).
Fix ε, δ as in Proposition 7.1. Let K be the closed unit ball of Y (δ, ε, τ 0 ). By Proposition 7.1, the operator Φ maps K into itself. Notice that K is closed into Y (δ ′ , ε ′ , τ 0 ) if δ ′ < δ, ε ′ > ε and 2ε + δ < 2ε ′ + δ ′ . In this subsection we show the following lemma.

Lemma 7.3. Let 0 < ε < ε ′ < 1/4 and 1 < δ ′ < δ < 2 and assume 2ε + δ < 2ε ′ + δ ′ < 2 (this implies that Y (δ, ε, τ 0 ) is continuously embedded into Y (δ ′ , ε ′ , τ 0 )). The image Φ(K) of K has compact closure in Y (δ ′ , ε ′ , τ 0 ).
Remark 7.4. The assumptions of the lemma are satisfied for example by δ, ε, δ ′ , ε ′ defined by δ = 2 -4ε, ε ′ = 2ε, δ ′ = 2 -5ε, for some small ε > 0.

Proof. It is sufficient to show that for all r > 0, there exists a finite number N of functions in

ψ n ∈ Y (δ ′ , ε ′ , τ 0 ), such that (7.1) ψ ∈ Φ(K) =⇒ ∃n ∈ {1, . . . , N }, ψ -ψ n δ ′ ,ε ′ ,τ0 < r.
Recall first that Φ(K) ⊂ K. Thus for ψ ∈ Φ(K),

τ 2-ε ′ P M ψ(τ ) H δ ′ + τ 3-3ε ′ | ψ(τ ), m 6 | + τ 2-2ε ′ -δ ′ y δ ′ P M ψ(τ ) L 2 τ ε-ε ′ + τ 3ε-3ε ′ + τ 2ε+δ-2ε ′ -δ ′ .
Let τ 1 such that τ 0 < τ 1 /2 and

τ 1 2 ε-ε ′ + τ 1 2 3ε-3ε ′ + τ 1 2 2ε+δ-2ε ′ -δ ′ < r 2 .
From the two preceding inequalities, we get that for ψ ∈ Φ(K),

(7.2) τ τ 1 2 =⇒ τ 2-ε ′ P M ψ(τ ) H δ ′ + τ 3-3ε ′ | ψ(τ ), m 6 | + τ 2-2ε ′ -δ ′ y δ ′ P M ψ(τ ) L 2 < r 2 .
Next, consider the set F = Φ(w) [τ0,τ1] , w ∈ K .

We will show that the assumptions of Theorem 7.2 hold with

X = Σ δ , B = Σ δ ′ , Y = Σ δ-2 ,
where we define (as

δ < 2) Σ δ-2 = H δ-2 + F (H δ-2 ). Note that 0 < δ ′ < δ, so that X is compactly embedded in B. The fact that Φ(K) ⊂ K shows that F is a bounded subset of C [τ 0 , τ 1 ]; Σ δ . Furthermore if φ = Φ(w) ∈ K then φ = φ M + φ S where 
∂ τ φ S + iLφ S = P S R p (w) + P S Z p (w) + Z p (Q), ∂ τ φ M + iLφ M -P M Z p (φ M ) = P M R p (w) + P M Z p (w S ).
Using that φ and w are in K, we get that

∂ τ φ ∈ C [τ 0 , +∞[; Σ δ-2 and that ∂ τ φ |[τ0,τ1
] is uniformly bounded in Σ δ-2 with a bound which is independent of φ. By Theorem 7.2, F has compact closure in C [τ 0 , τ 1 ]; Σ δ . As a consequence, there exist ψ1 ,. . . ψN such that

(7.3) ∀ ψ ∈ F, ∃n ∈ {1, . . . N }, sup τ0 τ τ1 ψ(τ ) -ψn (τ ) Σ δ ′ < r 6τ κ 1 , where κ = max{2 -ε ′ , 3 -3ε ′ , 2 -2ε ′ -δ ′ } > 0. Let χ ∈ C ∞ ([τ 0 , +∞[), supported in [τ 0 , τ 1 ]
, such that 0 χ 1, and χ = 1 on [τ 0 , τ 1 /2]. For 1 n N , let ψ n = χ ψn . We show that the ψ n 's satisfy (7.1), which will conclude the proof of the lemma. Let ψ ∈ Φ(K). By (7.3), there exists n ∈ {1, . . . N } such that

χψ -ψ n L ∞ (τ0,+∞,Σ δ ′ ) ψ -ψn L ∞ (τ0,τ1,Σ δ ′ ) < r Aτ κ 1 ,
where A is a large universal constant to be specified later. And thus, using that χψ is supported in [τ 0 , τ 1 ],

∀τ τ 0 , χψ(τ ) -ψ n (τ ) Σ δ ′ < r Aτ κ . This implies, if A is large enough, τ 2-ε ′ χP M ψ(τ ) -P M ψ n (τ ) H δ ′ + τ 3-3ε ′ | χψ(τ ) -ψ n (τ ), m 6 | + τ 2-2ε ′ -δ ′ y δ ′ (χP M ψ(τ ) -P M ψ n (τ )) L 2 < r 2 .
Furthermore, by (7.2),

τ 2-ε ′ (1 -χ)P M ψ(τ ) H δ ′ + τ 3-3ε ′ |(1 -χ) ψ(τ ), m 6 | + τ 2-2ε ′ -δ ′ (1 -χ) y δ ′ P M ψ(τ ) L 2 < r 2 .
Hence (7.1). The proof is complete.

7.3.

End of the proof. The following proposition will allow us to use Schauder's Theorem in order to prove Theorem 3.5.

Proposition 7.5. Let 0 < ε < ε ′ < 1/4 and 1 < δ ′ < δ < 2, and assume

2ε + δ < 2ε ′ + δ ′ < 2. The closed unit ball K of Y (δ, ε, τ 0 ) is closed in Y (δ ′ , ε ′ , τ 0 ).
In addition, the map Φ : K → K is continuous for the topology of Y (δ ′ , ε ′ , τ 0 ).

Proof. In view of Proposition 7.1, we need only prove the continuity. We start with an estimate of the difference of two parameters p, p defined from two different functions w, w ∈ Y (δ ′ , ε ′ , τ 0 ). Recall that the existence of p was proved in Proposition 5.1 as a fixed point of the operator Ψ(p) = Ψ w (p), and that w ∈ Y (δ ′ , ε ′ , τ 0 ) implies p 3-3ε ′ ,τ0 < ∞. We have

|p(τ ) -p(τ )| = |Ψ w (p)(τ ) -Ψ w (p)(τ )| |Ψ w (p)(τ ) -Ψ w (p)(τ )| + |Ψ w (p)(τ ) -Ψ w (p)(τ )| .
By the contraction estimate (5.18) on Ψ w , we get

p -p 3-3ε ′ ,τ0 1 1 -κ Ψ w (p) -Ψ w (p) 3-3ε ′ ,τ0 .
Therefore, in view of the definition of Ψ w , Letting n tends to ∞, we get that φ satisfies the following equation in the sense of distributions ∂ τ φ + iL φ -P M Z p ( φ) = P M R p (w) + P M Z p (P S w).

p -p 3-3ε ′ ,τ0 1 
Using that φ is, by definition, solution to the same equation, we get ∂ τ ( φ -φ) + iL( φ -φ) -P M Z p ( φ -φ) = 0, which implies, by Lemma 6.3, that φ = φ. The proof is complete.

Proof of Theorem 3.5. By Proposition 7.5, Φ is a continuous map from K into itself. By Lemma 7.3, Φ(K) is relatively compact in Y (δ ′ , ε ′ , τ 0 ). As K is a convex closed subset of Y (δ ′ , ε ′ , τ 0 ), we can apply Schauder's Theorem (see e. (1 -θ)Z 1 + θZ 2 , (A.1) and Hölder inequality yield

z 1 (τ ) M 1 σ a+1+η L 1 + C m j=1 Z 1 L ∞ + Z 2 L ∞ 1 σ aj +1 L 1
, where the Lebesgue norms correspond to integration over [τ, ∞[. Similarly,

z 2 (t) M 1 σ b+1+η L 1 + C m j=1 Z 1 L ∞ + Z 2 L ∞ 1 σ bj +1 L 1 .
For any c > 0, 1 σ c+1 By assumption, a j -a and b j -b are positive. Taking the sup norm of the preceding inequalities and using the triangle inequality, we get Integrating by parts, we have Integration by parts also yields

Z 1 L ∞ ([τ0,+∞[) C τ η 0 M + C m j=1 Z 1 L ∞ ([τ0,+∞[) + Z 2 L ∞ ([
x 2 f L 2 x 3 f 2/3 L 2 f 1/3 L 2 , (B.2) f H 1 f 1/3 H 3 f 2/3 L 2 , (B.3) f H 2 f 2/3 H 3 f 1/3 L 2 , (B.4) x ∇f L 2 C x 3 f 1/3 L 2 f 1/3 L 2 f 1/3 H 1 , (B.5) x 2 ∇f L 2 C x 3 f 2/3 L 2 f 1/3 H 1 , (B.6) x ∇ 2 f L 2 C x 3 f 1/3 L 2 f 2/3 H 1 , (B.
x ∇f 2 L 2 = - R d f (x)∇ • x 2 ∇f (x) dx R d |f (x)| x |∇f (x)|dx + R d |f (x)| x 2 |∆f (x)|dx x f L 2 f H 1 + x 2 f L 2 f H 2 x 3 f 1/3 L 2 f 4/3 L 2 f 1/3 H 1 + x 3 f 2/3 L 2 f 2/3 L 2 f 2/3
x 2 ∇f 2 L 2 = - R d f (x)∇ • x 4 ∇f (x) dx x 3 f L 2 f H 1 + x 3 f L 2 x ∇ 2 f L 2 x 3 f L 2 f 1/3 H 3 f 2/3 L 2 + x ∇ 2 f L 2 .
On the other hand,

x ∇ 2 f 2 L 2 = - R d ∇f (x)∇ x 2 ∇ 2 f (x) dx x ∇f L 2 f H 2 + x 2 ∇f L 2 f H 3 f H 3 x 3 f 1/3 L 2 f 2/3 L 2 + x 2 ∇f L 2 . (B.10)
We infer, for instance,

x 2 ∇f 2 L 2 x 3 f 7/6 L 2 f 1/3 L 2 f 1/2 H 3 + x 2 ∇f 1/2 L 2 x 3 f L 2 f 1/2 H 3 C x 3 f 7/6 L 2 f 1/3 L 2 f 1/2 H 3 + ε x 2 ∇f 2 L 2 + C ε x 3 f L 2 f 1/2 H 3 4/3
, where we have used Young's inequality, with (4, 4 ′ ) = (4, 4/3). Taking ε < 1 yields (B.6), and (B.7) then follows from (B.10). The proof of (B.8) and (B.9) is similar, and we omit it.

3. 3 .

 3 Reduced problem. In the rest of this paper, we show the following: Theorem 3.5. Let Assumption 3.1 be satisfied. There exists τ 0 > 0, a modulation p such that p j ∈ W (c(p), τ 0 ) with c(p) > 2, and a solution w ∈ C([τ 0 , ∞[; Σ) to

Proposition 5 . 1 .τ 2 -

 512 Let Assumption 3.1 be satisfied. Let ε ∈]0, 1/3[. Then if τ 0 > 0 is large enough we have the following property. Let w ∈ C([τ 0 , ∞[; H 1 ) with ε w(τ ) H 1 1.

5. 1 .

 1 General estimates. Recall from (3.7) the notations:

Lemma 5 . 2 . 9 ) 10 )

 52910 Let Assumption 3.1 be satisfied, and p k c(p),τ0 1, pk c(p),τ0 1, k ∈ {1, . . . , 5}, where c(p) ∈]2, 3[. Then, for every fixed w, we have the pointwise estimates |R N L (w)| Q|w| 2 + |R p (w) -R p(w)| 1 τ c(p)+1 pp c(p) e -c y + y |R N L,p (w) -R N L, p(w)| 1 τ c(p)+1 pp c(p),τ0 y 3 |w| 2 w 4/d-1 , (5.11) |R L,p (w) -R L, p(w)| 1 τ c(p)+1 pp c(p),τ0 y |w|. (5.12)

(5. 13 )

 13 D j (p)(τ ) = P S R p (w) + P S Z p (w), m j . Lemma 5.3. Let Assumption 3.1 be satisfied. If p c(p),τ0 1,where c(p) > 2, then we have for all τ τ 0 ,(5.14) 

  )

|D 6 (| p 1

 61 2ε , provided τ 0 ≫ 1. By the estimate (5.14) (second case) and (5.16) we get, taking again τ τ 0 ≫ 1,| p 5 (τ )| |D 5 (p)(τ )| + +∞ τ (τ )| |D 1 (p)(τ )| + |D 5 (p)(τ )| 1 τ 3-3ε .As a consequence p = Ψ(p) ∈ B, and the stability property of Ψ is settled.It remains to prove the contraction property of Ψ, (5.18) Ψ(p) -Ψ(p) 3-3ε,τ0 κ pp 3-3ε,τ0 , for all p, p ∈ B, with κ < 1. In view of the definition of Ψ, it is enough to show that if ι is small, and τ 0 is chosen large enough, we have, for τ τ 0 , (5.19)D j (p) -D j (p) 3-3ε,τ0 ι pp 3-3ε,τ0 ,for1 j 5, and (5.20) D 6 (p) -D 6 (p) 4-3ε,τ0 ι pp 3-3ε,τ0 .

sup τ τ0 τ 2 7 . 1 .Proposition 7 . 1 .

 27171 -ε P M w(τ ) H δ + sup τ τ0 τ 2-2ε-δ y δ P M w(τ ) L 2 + sup τ τ0 τ 3-3ε | w(τ ), m 6 |. Stability. The main result of this section is the following: Let δ ∈]1, 2[, and 0 < ε < 1/4 so that ε < 1 -δ/2. There exists τ 0 > 0 such that Φ maps the closed unit ball of Y (δ, ε, τ 0 ) to itself. Proof. For w ∈ Y (δ, ε, τ 0 ), Proposition 5.1 yields a modulation p such that sup τ τ0 τ 3-3ε |p(τ )| 1.

j 5 ((D 6 . 1 1 τ 4 - 1

 56141 D j (p)(w) -D j (p)( w)) 3-3ε ′ ,τ0 + +∞ τ (p)(w) -D 6 (p)( w)) 3-3ε ′ ,τ0By the definition (5.13) of D j (p), one has|D j (p)(w) -D j (p)( w)| | P S (R p(w) -R p( w)), m j | + | P S Z p(ww), m j | | R N L, p(w) -R N L, p( w), m j | + | R L, p(ww), m j | + | P S Z p(ww), m j | .In view of the explicit formulas for R N L and of the pointwise estimate (5.9) on R L , we infer, since w, w ∈ L ∞ τ H 1 :|(D j (p)(w) -D j (p)( w))(τ )| w(τ )w(τ ) H 1 ( w(τ ) H 1 + w(τ ) H 1 ) + 1 τ 3 w(τ )w(τ ) H 1 + |p(τ )| w(τ )w(τ ) H 2ε ′ ww δ ′ ,ε ′ ,τ0 . In conclusion, (7.4) pp 3-3ε ′ ,τ0 1 τ ε ′ 0 ww δ ′ ,ε ′ ,τ0 . (w) -Φ 1 ( w) δ ′ ,ε ′ ,τ0 1 τ ε ′ 0 ww δ ′ ,ε ′ ,τ0 . Therefore Φ 1 is (Lipschitz-)continuous on Y (δ ′ , ε ′ , τ 0 ). It remains to show the continuity of Φ 2 . Let w ∈ K and w n ∈ K such that w n → w in Y (δ ′ , ε ′ , τ 0 ). Denote by φ n = Φ 2 (w n ) = P M Φ(w n ),and φ = Φ 2 (w). By Lemma 7.3, Φ(K) is relatively compact and there exists a subsequence of φ n which converges in Y (δ ′ , ε ′ , τ 0 ) to some φ ∈ K. It remains to show that φ = φ. By (7.4) we have lim n→∞ p n -p 3-3ε ′ ,τ0 = 0. By definition of Φ 2 , we have ∂ τ φ n + iLφ n -P M Z pn (φ n ) = P M R pn (w n ) + P M Z pn (P S w n ).
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 112 g. [38, Corollary B.3]) which implies that Φ has a fixed point w ∈ K. By the definition of K and Proposition 5.1, Theorem 3.5 follows. Appendix A. A differential inequality Lemma A.1. Let µ > 0 and m ∈ N. Let (a j ) j=1...m , (b j ) j=1...m , be real constants, a, b, η > 0, and (α j ) j=1...m , (β j ) j=1...m be constants in [0, 1]. Assume ∀j ∈ {1 . . . m}, a j + (b -a)α j > 0, b j + (a -b)β j > 0. There exists τ 0 such that for any M > 0 and any nonnegative continuous functions z 1 and z 2 on [τ 0 , +∞[ such that sup τ τ0 |τ a z 1 (τ )| + sup τ τ0 |τ b z 2 (τ )| < ∞. and satisfying the following differential inequality on [τ 0 , +∞[: (τ )| + sup τ τ0 |τ b z 2 (τ )| µM.Proof. Denote byZ 1 (τ ) = τ a z 1 (τ ), Z 2 (τ ) = τ b z 2 (τ ).Let a j = (1 -α j )a + α j b + a j , b j = β j a + (1 -β j )b + b j . Using Young's inequality, Z1-θ 

L 1 (Z 1 LZ 1 L

 111 [τ,∞[) = 1 cτ c ,and hence (with a constant C depending only on the parameters η, a, b, a j , b j )Z 1 (τ ) C τ η M + C m j=1 ∞ ([τ0,+∞[) + Z 2 L ∞ ([τ0,+∞[) τ aj -a , Z 2 (τ ) C τ η M + C m j=1 ∞ ([τ0,+∞[) + Z 2 L ∞ ([τ0,+∞[) τ bj -b .

Z 1 L

 1 ∞ ([τ0,+∞[) + Z 2 L ∞ ([τ0,+∞[) τ bj -b 0 Appendix B. Some interpolation inequalities Lemma B.1. Let d 1.There exists C > 0 such that for all f ∈ S(R d ),

3 .

 3 7) x ∇ 4 f L 2 C x 5 f To prove (B.1), use Hölder's inequality: Inequalities (B.3) and (B.4) then follow from (B.1) and (B.2), respectively, and Plancherel formula.

H 1 ,

 1 where we have used (B.1)-(B.4). Inequality (B.5) follows.
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