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MINIMAL BLOW-UP SOLUTIONS TO THE MASS-CRITICAL

INHOMOGENEOUS NLS EQUATION

VALERIA BANICA, RÉMI CARLES, AND THOMAS DUYCKAERTS

Abstract. We consider the mass-critical focusing nonlinear Schrödinger equa-
tion in the presence of an external potential, when the nonlinearity is inhomo-
geneous. We show that if the inhomogeneous factor in front of the nonlinearity
is sufficiently flat at a critical point, then there exists a solution which blows
up in finite time with the maximal (unstable) rate at this point. In the case
where the critical point is a maximum, this solution has minimal mass among
the blow-up solutions. As a corollary, we also obtain unstable blow-up solu-
tions of the mass-critical Schrödinger equation on some surfaces. The proof is
based on properties of the linearized operator around the ground state, and on
a full use of the invariances of the equation with an homogeneous nonlinearity
and no potential, via time-dependent modulations.

1. Introduction

1.1. Setting of the problem and main result. We consider the equation

i∂tu+∆u− V (x)u + g(x)|u|4/du = 0, x ∈ Rd,(1.1)

u|t=0 = u0 ∈ H1
(
Rd
)

where d = 1 or d = 2, g and V are real smooth functions on Rd, bounded as well as
their derivatives, and g is positive at least in an open subset of Rd. We investigate
blowing up solutions to (1.1). One of the applications that we have in mind is the
study of finite time blow-up for solutions to the nonlinear Schrödinger equation on
surfaces. The link between these two problems is detailed in §1.3 below.

First, let us recall some classical arguments (see e.g. [15]). The nonlinearity
is energy-subcritical, so for any initial condition u0 ∈ H1, there exists a maximal
interval of existence ]T−(u0), T+(u0)[, and a solution u of (1.1) such that

u ∈ C(]T−, T+[, H
1).

Furthermore if T+ < +∞, then lim
t→T+

‖∇u(t)‖L2 = +∞. The mass M = ‖u(t)‖2L2

and the energy

E =

∫ (
1

2
|∇u(t, x)|2 +

1

2
V (x)|u(t, x)|2 −

1
4
d + 2

g(x)|u(t, x)|
4
d+2

)
dx

are independent of t ∈]T−, T+[.

We consider the ground state Q, which is (up to translations) the unique positive
solution of the equation

∆Q+Q1+4/d = Q, x ∈ Rd.

Recall that Q is C∞, radial, and exponentially decreasing at infinity. Furthermore,
Q is the critical point for the Gagliardo–Nirenberg inequality ([39])

(1.2) ‖ψ‖
2+4/d

L2+4/d 6 C ‖∇ψ‖2L2 ‖ψ‖
4/d
L2 , ∀ψ ∈ H1

(
Rd
)
.

In the homogeneous case V = 0, g = 1, the equation

(1.3) i∂tu+∆u+ |u|4/du = 0
1
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is stable by the pseudo-conformal transformation: if u is a solution of (1.3), so is
ṽ(t, x) defined by

(1.4) ṽ(t, x) = (T u)(t, x) :=
ei

|x|2

4t

td/2
u

(
1

t
,
x

t

)
.

Applying this transformation to the stationary solution eitQ, one gets a solution of
Equation (1.3)

S(t, x) = e−i/t e
i |x|2

4t

td/2
Q
(x
t

)
,

that blows up at time t = 0, and such that ‖∇u(t)‖L2 ≈ 1
t as t → 0. A classical

argument shows, as a consequence of (1.2) that this is the minimal mass solution
blowing-up in finite time (see [39]).

When equation (1.3) is perturbed in such a way that the pseudo-conformal trans-
formation is no longer valid, there are only few known examples of blow-up solutions
with the same growth rate. Consider the same equation (1.3) posed on an open
subset of Rd (with Dirichlet or Neumann boundary conditions) or on a flat torus.
Then one can construct blow-up solutions as perturbation of S(t, x) with an expo-
nentially small error when t → 0: see [31] for d = 1 and [12] for d = 2. The proof
relies on a fixed point argument around a truncation of S(t, x). The linear term
is considered as a source term, and is controlled in spaces of functions decaying
exponentially in time. This approach was first used in [26] to construct solutions
with several blow-up points.

The recent work [20] is devoted to a 4-dimensional mass critical Hartree equation,
with an inhomogeneous kernel. In the corresponding homogeneous case, when the
Hartree term is (|x|−2∗|u|2)u, (1.4) leaves the equation invariant, yielding a blow-up
solution analogous to S(t, x). Under the assumption that the perturbation vanishes
at some large order at the blow-up point, a pseudo-conformal, minimal mass blow-
up solution of the perturbed equation is constructed. In this case, the solution
is only a polynomial perturbation of the explicit ground state pseudo-conformal
blow-up solution, and the proof of [31] and [12] is no longer valid. The construction
of [20] relies on an adaptation of an argument of Bourgain and Wang [10].

In the general setting of (1.1), the strategy of [31] and [12] does not work either
unless both g and V are constant around the blow-up point. The argument of
Bourgain and Wang is easy to adapt and gives, as in [20], a minimal mass solution
under strong flatness conditions on g and V at the blow-up point (see Remark 1.5
and Section 2). These flatness conditions and the concentration of the solution at
the blow-up point imply that the terms induced by g and V are small at the blow-
up time. Our goal is to weaken as much as possible these conditions: we construct
blow-up solutions for any bounded potential V with bounded derivatives, assuming
only a vanishing condition to the order 2 on g− g(x0) at the blow-up point x0. We
assume for simplicity that x0 = 0 and that g(0) = 1, the general case x0 ∈ Rd,
g(x0) > 0 follows by space translation and scaling. For s > 0, we denote

Σs =
{
ψ ∈ Hs

(
Rd
) ∣∣∣ |x|sψ ∈ L2

(
Rd
)}

= Hs
(
Rd
)
∩ F

(
Hs
(
Rd
))
,

and we shall drop the index for Σ1. Our main result is the following:

Theorem 1.1. Let d = 1 or d = 2 and V ∈ C2(Rd;R), g ∈ C4(Rd;R). Assume
that ∂βV ∈ L∞ for |β| 6 2, ∂αg ∈ L∞ for |β| 6 4, and

(1.5) g(0) = 1 ;
∂g

∂xj
(0) =

∂2g

∂xj∂xk
(0) = 0, 1 6 j, k 6 d.
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Then there exist T > 0, u ∈ C(]0, T [,Σ) solution of (1.1) on ]0, T [ such that

(1.6)
∥∥∥u(t)− S̃(t)

∥∥∥
Σ

−→
t→0+

0, with S̃(t, x) = e−itV (0) e
i |x|2

4t −iθ( 1
t )

λ(t)d/2
Q

(
x− x(t)

λ(t)

)
,

where θ, λ are continuous real-valued functions and x(t) is a continuous Rd-valued
function such that

θ(τ) = τ + o(τ) as τ → +∞,

λ(t) ∼ t and |x(t)| = o(t) as t→ 0+.

Remark 1.2. We easily infer the asymptotics

∥∥∥u(t)− S̃2(t)
∥∥∥
F(H1)

−→
t→0+

0, with S̃2(t, x) = e−itV (0) e
i |x|2

4t −iθ( 1
t )

td/2
Q
(x
t

)
.

Note that in this formula, we do not control the Ḣ1-norm, for which a better control
of λ and x(t) would be needed.

As explained below, we construct the blow-up solution as a perturbation of the

solution S̃2(t, x). The flatness condition on g implies that the new perturbative
terms induced by the inhomogeneity g are small as t tends to 0.

Remark 1.3. The pseudo-conformal blow-up regime of Theorem 1.1, where the
blow-up rate ‖∇u(t)‖L2 is of order 1/t around t = 0, is unstable and non-generic,

as opposed to the blow-up regime at a rate
(

log(| log |t||)
t

)1/2
highlighted (in space

dimension 1) by G. Perelman [32] (see also [30]). This log-log regime was shown
to be generic in all dimensions, under a spectral assumption if d > 2, in a series of
papers of F. Merle and P. Raphaël (see e.g [29, 35]). This assumption was checked
in the case d 6 4, and the main properties of the log-log regime persist for d = 5
(see [17]). Theorem 1.1 may also be seen as a structural stability property for the
pseudo-conformal blow-up regime: this regime persists under some perturbations
of the equation.

Remark 1.4. Note that (1.6) implies ‖u(t)‖22 = ‖Q‖22. If we assume furthermore
that |g| 6 1, the solution constructed in Theorem 1.1 has minimal mass for blow-
up. This is consistent with the conjecture that the non-generic blow-up occurs at
the boundary of the manifold of all blowing-up solutions. Note also that g may not
remain everywhere positive: we consider a localized phenomenon.

Remark 1.5. Establishing Theorem 1.1 is much easier if we assume that V −V (0)
and g − g(0) vanish to high order at x = 0. This is the analogue of Theorem 1 of
[20] in the context of Hartree equation. In Section 2, we give, in this less general
setting, a short proof of (1.6) which is an adaptation of [10] and simplifies the
argument of [20]. In this case we can assume that θ(τ) = τ , λ(t) = t and x(t) = 0.
The first equality should also hold (in view of the recent work [36]) in the general
context of Theorem 1.1. The main difficulty of the proof of Theorem 1.1 under
the general assumption is to combine the strategy of [10] with modulation theory
to relax the high order flatness assumption to the weaker assumption (1.5). This
difficulty already appears in [23] in a more delicate context (see below).

We next discuss two particular cases. If g ≡ 1, our theorem shows that for any
real-valued smooth potential V which is bounded onRd as well as all its derivatives,
for any point x0 ∈ Rd, there exists a solution of

i∂tu+∆u− V (x)u + |u|4/du = 0
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blowing-up at x0 at a pseudo-conformal rate. Little is known about blow-up so-
lutions for this equation, except in some particular cases (where V is unbounded)
where algebraic miracles provide a good understanding: if V is linear in x, Avron–
Herbst formula shows that V does not change the blow-up rate ([14]). If V (x) =
±ω2|x|2, V changes the blow-up time, but not the blow-up rate ([13]). Our result
shows that the S(t) blow-up rate remains for any bounded potential (e.g. obtained
after truncating the above potential).

Equation (1.1) in the case V ≡ 0 was studied by F. Merle in [28]. Assume for
the sake of simplicity that

g(0) = 1 and ∀x 6= 0, |g(x)| < 1.

In this case, g attains its maximum at 0. In [28], it is shown, assuming g ∈ C1, V =
0, and an additional bound on g and its derivative, that for any mass M > ‖Q‖2L2

and close to ‖Q‖2L2 there exists a blow-up solution u of (1.1) such that ‖u0‖
2
L2 =M .

It is also shown that a critical mass blow-up solution must concentrate at the critical
point 0. Furthermore, if there exists α ∈]0, 1[ such that g satisfies

(1.7) ∇g(x) · x 6 −|x|1+α

for small x, then there is no critical mass solution. Note that this assumption
implies that g is not C2. The existence of minimal mass blow-up solutions for g
which do not satisfy (1.7) is left open in [28]. Theorem 1.1 answers positively to
this question for smooth g, except in the critical case ∇g(0) = 0 and ∇2g(0) 6= 0,
which includes the case α = 1 in (1.7). After our article was written, P. Raphaël
and J. Szeftel [36] have shown the existence of a minimal mass blow-up solution in
the case where the matrix ∇2g(0) is non-degenerated. The strategy of the proof
borrows arguments due to the pioneering works of Y. Martel [24], Y. Martel and
F. Merle [25]. The authors also show a difficult and strong uniqueness result: this
solution is (up to phase invariance and time translation) the only minimal mass
solution. This is in the spirit of the work by F. Merle [27] for (1.3) (see also [18],
and [2] for partial results in the case of a plane domain)

Under the assumption ∇2g(0) = 0, the authors of [36] conjecture that the set of
minimal mass solutions is parametrized by two additional parameters, the energy
and the asymptotic momentum. Our goal here is to give a simple construction of
critical-mass pseudo-conformal blow-up solutions in curved geometries (see §1.3)
and we do not address the issue of classification of these solutions.

We do not address either the question of the existence of non-generic blow-
up solutions of (1.1) with supercritical mass. Examples of such solutions were
constructed in [10] for equation (1.3) in space dimensions 1 and 2 and in [20] for
the case of Hartree nonlinearity in space dimension 4. In both cases a supercritical
mass blow-up solution is obtained, up to a small remainder, as the sum of a minimal
mass blow-up solution and a solution that vanishes to some order at the origin at
the blow-up time. It should be possible to adapt our method to construct the same
type of solutions. Note that our case is of course simpler than the one of Hartree-
type nonlinearity, where the non-local character of the nonlinearity appears as an
important issue in this construction.

Let us mention the conjecture, stated in [32], that there is a codimension one
submanifold of initial data of equation (1.3) in H1 leading to pseudo-conformal
blow-up. In [23] J. Krieger and W. Schlag constructed, for this equation in space
dimension 1, a set of initial data leading to this type of blow-up. This set is,
in spirit, of codimension 1 in a space ΣN (N large), without being, rigorously
speaking, a submanifold of this space. The proof of [23] requires a full use of the
modulations, and also very delicate dispersive estimates for the linearized operator.
This type of result is out of reach by our method. As a drawback, the method
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of [23] can only deal with functions with a very high regularity, whereas our fixed
point, relying on energy estimates, is essentially at an Hd/2+ level. Our argument
should in particular work in dimensions d > 3, although the lack of regularity of the
nonlinearity might become an issue in high dimensions. Let us mention although
the works [21, 22, 7, 8] devoted to the constructions of stable manifolds around
solitons or stationary solutions for other equations.

1.2. Strategy of the proof. The key ingredient of the proof is a result of M. Wein-
stein [40] on the properties of the linearized NLS operator around the ground state,
which implies that the instability of the linearized equation is only polynomial, not
exponential.

We first consider, as in [10], the pseudo-conformal transformation (1.4). Thus u
is a solution to (1.1) on ]0, T [ if and only if ṽ is solution to the following equation
on
]
1
T ,+∞

[
:

(1.8) i∂tṽ +∆ṽ −
1

t2
V
(x
t

)
ṽ + g

(x
t

)
|ṽ|4/dṽ = 0.

Intuitively, for large time, the potential term is negligible (it belongs to L1
tL

∞
x , hence

it is short range in the sense of [16]), and the inhomogeneity can be approximated
by its value at the origin. Therefore, a good asymptotic model for (1.8) should
be given by the solution (with the same behavior as t → +∞) to the “standard”
mass-critical focusing nonlinear Schrödinger equation (1.3). We want to construct
a blow-up solution to (1.1) by constructing a solution ṽ to (1.8) which behaves like
the solitary wave eitQ(x) (which solves (1.3)) as t→ +∞. In the case g = 1, there is
a huge literature concerning the existence and stability of solitary waves associated
to (1.8) when the potential 1/t2V (x/t) is replaced by a time independent potential:
therefore, these results seem of no help to study the blow-up phenomenon.

In a first approximation, we look for a solution of the form

(1.9) ṽ = eit(Q+ h).

Therefore ṽ is a solution of (1.8) if and only if

(1.10) i∂th+∆h− h−
1

t2
V
(x
t

)
(Q+h)+ g

(x
t

)
|Q+h|4/d(Q+ h)−Q1+4/d = 0.

Consider the linearized operator near Q

(1.11) Lf := −∆f + f −

(
2

d
+ 1

)
Q4/df −

2

d
Q4/df.

In [40], it is shown that the semi-group eitL is bounded in the orthogonal space of a
2d+4 dimensional space S, the space of secular modes, where it grows polynomially.
This allows us to construct the solution h of (1.10) as a fixed point in a space of
functions that decay polynomially as t→ +∞. Namely, we can write (1.10) as

(1.12) i∂th− Lh = R(h),

where R(h) is, roughly speaking, the sum of a source term involving Q, V and g,
of a similar linear term where Q is replaced by h, and of a term which is nonlinear
in h. The latter is essentially harmless, since we expect h to be small. The first
two terms can be proved small provided that we require a sufficient vanishing for
V and g − 1 at the origin to balance the polynomial growth of the semi-group eitL

on S. This approach is sketched in §2 below. Note that even though intuitively,
it is natural to expect 1/t2V (x/t) and g(x/t) − 1 to be negligible for large time,
proving this requires the nontrivial bounds on eitL shown in [40], since the S(t)
behavior is unstable. In the case where V and g − 1 are not too flat at the origin,
more information is needed.
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In order to loosen the assumptions on the local behavior of V and g near the
origin, we use all the invariances associated to (1.3) to neutralize as many secular
modes as possible. There is a 2d+ 3 dimensional family of modulations, given by
the scaling, space-translation, gauge, Galilean, and conformal invariances. By mod-
ulating the function ṽ thanks to these transformations, we can eliminate all secular
modes but one, limiting the growth of the operator eitL. This allows us to decrease
the order to which V and g − 1 vanish at the origin, so as to infer Theorem 1.1.
As mentioned before, this approach is quite similar in spirit to [23] for L2-critical
Schrödinger equation, and to [7, 8], where an L2-supercritical Schrödinger equation
is considered.

One of the difficulties of our proof is to include the choice of the modulation
parameters in the definition of the operator defining the fixed point. In this context,
the contraction property seems hard to check: we manage to prove continuity only
(see Proposition 7.5). We bypass this difficulty by using the Schauder fixed point
theorem. A key step is to obtain energy estimates on an evolution equation with
a time-dependent operator, which is the sum of the linearized operator L and a
time-dependent perturbative term which is given by the modulation.

1.3. Application to NLS on surfaces. Let us first recall that the other known
blow-up regime, the log-log regime, is not only more stable on Rd: it is structurally
stable, in the sense that it persists in other geometries. The case of a domain was
settled by F. Planchon and P. Raphaël [34], and the one of a general Riemannian
manifold by N. Burq, P. Gérard and P. Raphaël [11].

As a consequence of Theorem 1.1, we are able to construct blow-up solutions —
with 1/t blow-up speed, and with profile related to Q — on surfaces flat enough at
the blow-up point. To this purpose we consider rotationally symmetric manifolds.
Such a manifold M is a Riemannian manifold of dimension 2, given by the metric

ds2 = dr2 + φ2(r) dω2,

where dω2 is the metric on the sphere S1, and φ is a smooth function C∞([0,∞[),
positive on ]0,∞[, such that φ(even)(0) = 0 and φ′(0) = 1. These conditions on φ
yield a smooth manifold (see e.g. [33]). For example, R2 and the hyperbolic space
H2 are such manifolds, with φ(r) = r and φ(r) = sinh r, respectively. The volume
element is φ(r), and the distance to the origin from a point of coordinates (r, ω) is
r. Finally, the Laplace–Beltrami operator on M is

∆M = ∂2r +
φ′(r)

φ(r)
∂r +

1

φ2(r)
∆S1 .

Now, if we consider ũ a radial solution of NLS on M (recall that d = 2)

(1.13) i∂tũ+∆M ũ+ |ũ|2ũ = 0,

then the radial function u defined by

ũ(t, r) = u(t, r)

(
r

φ(r)

)1/2

satisfies Equation (1.1) with

V (r) =
1

2

φ′′(r)

φ(r)
−

1

4

((
φ′(r)

φ(r)

)2

−
1

r2

)
, and g(r) =

r

φ(r)
.

Therefore we are in the framework of Theorem 1.1, up to conditions of flatness of
the metrics at the blow-up point and of boundedness of V and g at infinity. These
boundedness conditions corresponds to conditions on the growth of the unit ball
volume of the manifold at infinity.
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This proves the existence of a blow-up solution of speed 1/t and critical mass
for such surfaces. Notice that the hyperbolic space φ(r) = sinh r correspond to
the borderline case ∂2rg(0) 6= 0, which we do not reach with our method. This
should be covered, however, by an extension of the work of [36] to equations with
a linear potential. The motivation for this case would be to complete the available
information: the virial identity yields a sufficient blow-up condition which is weaker
than in the Euclidean case ([3]), and for defocusing nonlinearities (or focusing
nonlinearities with small data), the geometry of the hyperbolic space strongly alters
scattering theory, since long range effects which are inevitable in the Euclidean case,
vanish there (see [5, 19, 1]; see also [6, 4]).

We conclude this subsection by giving explicit examples of surfaces satisfying
the above assumptions.

Example 1.6 (Compact perturbations of the hyperbolic and Euclidian planes).
Let c0, d0 ∈ R and consider φ ∈ C∞([0,+∞[) such that φ(r) = r+ c0r

5 +O(r7) as
r → 0, and φ(r) = sinh(r) + d0 or φ(r) = r + d0 for large r. Then there exists a
solution ũ of (1.13) that blows up at time t = 0 at the origin r = 0, and such that
‖∇ũ(t)‖L2 ≈ 1/t as t→ 0. An example of such a surface in the case φ(r) = r + d0
for large r is given by the surface M of R3 equipped with the induced Euclidean
metric and defined by the equation x = f(y2+z2), where f : R+ → R+ is a smooth
nondecreasing function such that f(0) = f ′(0) = 0 and f(s) = x0 > 0 for large s.

Remark 1.7. Many simple manifolds do not enter in our framework, as they do not
satisfy the boundedness conditions on V and g at infinity. Examples are given by
the surfaces of R3 defined by the equation x = (y2 + z2)k, k > 2, with the induced
Euclidean metric, which are spherically symmetric manifolds such that g = r/φ(r)
satisfies assumption (1.5), but grows polynomially at infinity. We do not know if
this is only a technical point and it would be interesting, in view of these examples,
to relax the boundedness conditions on V and g at infinity to a polynomial growth.
The case of non-flat compact surfaces, even with strong symmetry assumptions, is
also completely open.

1.4. Structure of the paper. In §2, we sketch the proof of Theorem 1.1 under
strong flatness assumptions on V and g near the origin. The result then follows in
a rather straightforward fashion from a standard fixed point argument, relying on
estimates on the linearized operator L due to M. Weinstein. In §3, we introduce the
full family of modulations, in order to reduce the proof of Theorem 1.1. In §4, we
recall some more precise properties on the linearized operator L, which are crucial
for tuning the modulation, as presented in §5. Once the modulation is settled, we
study the non-secular part of the remainder in §6. The proof of Theorem 1.1 is
then completed in §7, thanks to compactness arguments. Minor technical results
are detailed in two appendices, for the sake of completeness.

2. Proof of a weaker result

In this section, we sketch the proof of Theorem 1.1 with

θ(τ) = τ, λ(t) = t, x(t) = 0,

(hence S̃ = S̃2 in Remark 1.2) under the

Assumption 2.1. Let d = 1 or 2, and V, g ∈ C∞(Rd;R). Assume that for all α,
∂αg, ∂αV ∈ L∞, and that there exist mV > 7 and mg > 9 such that:

∀|β| 6 mV , |∂βV (x)| 6 Cβ |x|
mV −|β| if |x| 6 1,

∀|β| 6 mg, |∂β(g(x) − 1)| 6 Cβ |x|
mg−|β| if |x| 6 1.
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Recall that the linearized operator L is defined by

Lf := −∆f + f −

(
2

d
+ 1

)
Q4/df −

2

d
Q4/df.

We will need the following property of L, which is a consequence of [40] (see also
[9, Proposition 1.38]).

Proposition 2.2. One can decompose H1
(
Rd
)
as H1 = S ⊕M , with S (of finite

dimension) andM stable by eitL and such that, if PM and PS denote the projections
on M and S, respectively, the following holds. If s > 1 and ψ ∈ Hs, then for all
t > 1,

∥∥eitLPS(ψ)
∥∥
Hs 6 C

(
1 + t3

) ∫
|ψ(x)|e−c|x|dx,

∥∥eitLPM (ψ)
∥∥
Hs 6 C‖ψ‖Hs .

Also, if s′ > 1 and ψ ∈ Σs′ , then for all t > 1,
∥∥∥|x|s

′

eitLPS(ψ)
∥∥∥
L2

6 C
(
1 + t3

) ∫
|ψ(x)|e−c|x|dx,

∥∥∥|x|s
′

eitLPM (ψ)
∥∥∥
L2

6 C‖|x|s
′

ψ‖L2 + C
(
1 + ts

′
)
‖ψ‖Hs′ .

In particular, we have for all s > 1 and ψ ∈ Hs
(
Rd
)
,

(2.1)
∥∥eitLψ

∥∥
Hs 6 C

(
1 + |t|3

)
‖ψ‖Hs ,

and for all ψ ∈ Σ,

(2.2)
∥∥|x|eitLψ

∥∥
L2 6 C ‖|x|ψ‖L2 + C

(
1 + |t|3

)
‖ψ‖H1 .

In order to prove Theorem 1.1, we need to find a solution of

i∂th− Lh = R(h) ; ‖h(t)‖Σ −→
t→+∞

0.

We now give the expression of R(h): R(h) = RNL(h) +RL(h) +R0, with

RNL(h) = −g
(x
t

)[
|Q+ h|4/d(Q+ h)−Q1+4/d −

(
2

d
+ 1

)
Q4/dh−

2

d
Q4/dh

]
,

RL(h) =
[
1− g

(x
t

)] [(2

d
+ 1

)
Q4/dh+

2

d
Q4/dh

]
+

1

t2
V
(x
t

)
h,

R0(t, x) =
[
1− g

(x
t

)]
Q(x)1+4/d +

1

t2
V
(x
t

)
Q(x).

We construct a fixed point for the functional

(2.3) M(h)(t, x) =

∫ +∞

t

ei(τ−t)LiR(h)(τ, x)dτ,

that we decompose as M(h) = MNL(h) +ML(h) +M0, in accordance with the
decomposition of R. Let s > d/2 with s > 1, T > 1, and 4 < b < a real numbers
to be chosen later. We can prove that M is a contraction on the ball of radius one
Ba,b,T of the space

Ea,b,T =
{
ψ ∈ C([T,+∞[;Hs ∩Σ) | ‖ψ‖E <∞

}
,

where

‖ψ‖E := sup
t>T

(
ta ‖ψ(t)‖Hs + tb ‖|x|ψ(t)‖L2

)
.

In the sequel we will denote by C a positive constant, that may change from line
to line and depend on a, b, and s but not on T .
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Since the assumptions made in this paragraph are not as general as in Theo-
rem 1.1, we shall only sketch the main steps of the arguments which lead to the
conclusion of Theorem 1.1.

Bound on the nonlinear terms. There exists C > 0 such that

∀h, f ∈ Ba,b,T , ‖MNL(h)−MNL(f)‖E 6
C

T a−4
‖h− f‖E.

This estimate follows from (2.1), (2.2) and the definition of Ea,b,T , which is an
algebra embedded in L∞(Rd). Note also that 4/d > 1, so RNL contains nonlinear
terms which are at least quadratic in h.

Bound on the first linear term. There exists C > 0 such that

∀h, f ∈ Ba,b,t0 ,
∥∥M1

L(h)−M1
L(f)

∥∥
E
≤

C

Tmg−4
‖h− f‖E,

where

M1
L(h)(t, x) =

∫ +∞

t

ei(τ−t)L i
[
g
(x
τ

)
− 1
] [(2

d
+ 1

)
Q4/dh+

2

d
Q4/dh

]
dτ.

The key remark is that Q decays exponentially. If |x| 6 τ , by assumption on g,
∣∣∣
[
g
(x
τ

)
− 1
]
Q(x)4/d

∣∣∣ 6 C
∣∣∣g
(x
τ

)
− 1
∣∣∣ e−c|x| 6

C

τmg
|x|mge−c|x| 6

C

τmg
e−

c
2
|x|.

If |x| > τ , in view of the boundedness of g and the exponential decay of Q,
∣∣∣
[
g
(x
τ

)
− 1
]
Q(x)4/d

∣∣∣ 6 Ce−c|x| 6 Ce−
c
2
τe−

c
2
|x|.

Hence the bound

∀x ∈ Rd, ∀τ > 1,
∣∣∣
[
g
(x
τ

)
− 1
]
Q(x)4/d

∣∣∣ 6
C

τmg
e−

c
2
|x|.

Proceeding along the same lines, we infer

(2.4)
∥∥∥
[
g
( ·

τ

)
− 1
]
Q4/d

∥∥∥
Hs

6
C

τmg
,

and we get by (2.1) and (2.2), the bound on the first linear term.

Bound on the second linear term. There exists C > 0 such that for all h, f ∈ Ba,b,T ,

∥∥M2
L(h)−M2

L(f)
∥∥
E
6 C

(
1

TmV −2
+

1

T
+

1

T a−b

)
‖h− f‖E,

where

M2
L(h)(t, x) =

∫ +∞

t

ei(τ−t)L

(
i

τ2
V
(x
τ

)
h(τ, x)

)
dτ.

We have, for τ > 1,
∥∥∥V
( ·

τ

)∥∥∥
W s,∞

6 C, hence
∥∥∥V
( ·

τ

)
h
∥∥∥
Hs

6 C ‖h‖Hs .

Like above, we also have

(2.5)
∥∥∥V
(x
τ

)
e−c|x|

∥∥∥
Hs

6
C

τmV
.

By decomposing M2
L(h) on its M and S components, we can use the estimates of

Proposition 2.2 to get the desired bound on the second linear linear term.

Bound on the source term. There exists C > 0 such that

‖M0‖E 6 C

(
1

Tmg−a−4
+

1

TmV −a−2

)
.

This follows easily from (2.4) and (2.5).
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Conclusion. Gathering all the previous estimates together, we have:

(2.6)

∀f, h ∈ Ba,b,T , ‖M(h)−M(f)‖E 6 C w(T )‖h− f‖E, where

w(T ) =
1

T a−4
+

1

Tmg−4
+

1

TmV −2
+

1

T
+

1

T a−b
+

1

Tmg−a−4
+

1

TmV −2−a
.

Therefore, for mV > 6 and mg > 8 (this corresponds to the assumption made in
this paragraph, since mV and mg are integers, by regularity of V and g), we can
choose a, b with 4 < b < a such that all the powers of T in (2.6) are positive. Hence
we can pick T large enough such that

(2.7) ∀f, h ∈ Ba,b,T , ‖M(h)−M(f)‖E 6
1

2
‖h− f‖E.

Taking f = 0 in (2.7), we see that M maps Ba,b,T into Ba,b,T . Furthermore, (2.7)
shows that M is a contraction on Ba,b,T , which concludes the proof of Theorem 1.1
under Assumption 2.1.

3. Introducing a modulation

We now wish to replace the assumption made in the previous section by the
assumptions of Theorem 1.1, which we rewrite:

Assumption 3.1. Let d = 1 or 2, and V ∈ C2(Rd;R), g ∈ C4(Rd;R). Assume
that for ∂βV ∈ L∞ for |β| 6 2, ∂βg ∈ L∞ for |β| 6 4 and:

∀|β| 6 1, |∂βV (x)| 6 Cβ |x|
1−|β| if |x| 6 1,

∀|β| 6 3, |∂β(g(x) − 1)| 6 Cβ |x|
3−|β| if |x| 6 1.

At first sight, the above assumption on V is stronger than in Theorem 1.1. This
difference is irrelevant though, in view of the following remark. For a potential
V as in Theorem 1.1, replacing u(t, x) by u(t, x)eitV (0) amounts to changing V
to V − V (0), a potential which satisfies the above assumption. This explains the
presence of the factor e−itV (0) in the statement of Theorem 1.1.

3.1. Modulation and linearization. As explained in the introduction, we want
to obtain a solution to

(3.1) i∂tṽ +∆ṽ −
1

t2
V
(x
t

)
ṽ + g

(x
t

)
|ṽ|4/dṽ = 0 ; ‖ṽ(t)− eiθ(t)Q‖Σ −→

t→+∞
0,

where θ(t) = t+ o(t) as t→ +∞. Introduce the following modulations:

(3.2) ṽ(t, x) = ei(q1(t)+q3(t)·x+q5(t)|x|
2) 1

q4(t)d/2
v

(
γ(t),

x

q4(t)
− q2(t)

)
,

with q1, q4, q5, γ ∈ R and q2, q3 ∈ Rd. The functions v and ṽ have similar properties
as t→ +∞ if, morally,

(3.3) q1(t), q2(t), q3(t), q5(t) −→
t→+∞

0 ; q4(t) −→
t→+∞

1 ; γ(t) ∼
t→+∞

t.

We give a rigorous meaning to this line below. Note that the second point implies
the last one if we assume

γ̇(t) =
1

q4(t)2
.

From now on, we define γ as

(3.4) γ(t) = τ0 +

∫ t

τ0

1

q4(σ)2
dσ,
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where τ0 is a large time to be determined later. We introduce the new time and
space variables

(τ, y) =

(
γ(t),

x

q4(t)
− q2(t)

)
, or, equivalently

(t, x) =
(
γ−1(τ), q4

(
γ−1(τ)

) (
y + q2

(
γ−1(τ)

)) )
.

With our choice for γ, (3.1) is equivalent to

(3.5) i∂τv +∆v = Vpv − gp|v|
4/dv + iZp(v),

where we have denoted, for p(τ) = (p1, p2, p3, p4, p5) ∈ R×Rd ×Rd ×R ×R:

iZp(v) =
(
p1 + p3 · y + p5|y|

2
)
v + ip2 · ∇v + ip4

(
d

2
+ y · ∇

)
v,

gp(τ, y) = g
(x
t

)
= g

(
q4(y + q2)

γ−1(τ)

)
,

Vp(τ, y) =
q24
t2
V
(x
t

)
=

q24
γ−1(τ)2

V

(
q4(y + q2)

γ−1(τ)

)
.

The parameters q2 and q4 are assessed in γ−1(τ) and substituting x = q4(y + q2),

p1 = q24 q̇1 + q34 q̇3 · q2 + q44 q̇5|q2|
2 + q24 |q3 + 2q4q5q2|

2
,

p2 = q24 q̇2 + q4q̇4q2 − 2q4a− 4q24q5q2,

p3 = q34 q̇3 + 2q44 q̇5q2 + 4q34q3q5 + 8q44q
2
5q2,

p4 = q4q̇4 − 4q5q
2
4 ,

p5 = q44 q̇5 + 4q44q
2
5 .

The following rewriting essentially block diagonalizes the above system:

p4 = q4 (q̇4 − 4q5q4) .

p5 = q44
(
q̇5 + 4q25

)
.

p2 = q24 q̇2 − 2q4q3 + p4q2.

p3 = q34 (q̇3 + 4q3q5) + 2q2p5.

p1 = p3 · q2 − p5|q2|
2 + q24

(
q̇1 + |q3|

2
)
.

Note that we have not examined the asymptotic condition as t→ +∞. We analyze
this aspect more precisely below (see §3.3). We write v = eiτ (Q+w): Equation (3.5)
is equivalent to

(3.6) i∂τw − Lw − iZp(w) = iRp(w) + iZp(Q),

where L is the linearized operator (1.11), and Rp(w) = RNL(w) +RL(w) +R0

(3.7)





iRNL(w) = −gp × (F (Q+ w)− F (Q)− ℓ(w)) ,

iRL(w) = (1− gp)× ℓ(w) + Vpw,

iR0 = (1− gp)× F (Q) + VpQ,

with

F (z) = |z|4/dz ; ℓ(w) =

(
2

d
+ 1

)
Q4/dw +

2

d
Q4/dw.

As we will often write the equation (3.6) as ∂tw + iLw = (. . .), we also forced a
multiplication by i in the definition of Rp. Note that RNL, RL and R0 also depend
on the parameter p, although we will usually not indicate it with an index.

The sequel of this section is as follows. In §3.2, we show that one can recover
the modulations q1,. . . ,q5 and the original variables t and x from the parameters
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p1,. . . ,p5 and the modulated variables τ and y. In §3.3, we reduce Theorem 1.1 to
the proof of an existence theorem in the modulated variables τ and y.

3.2. From p to the modulation. From now on, we will work only in the modu-
lated variables τ and y, and consider, by abuse of notation, the modulations qk as
functions of τ . Denoting by ′ the derivative with respect to τ , that is ḟ = 1

q2
4

f ′, the

above system reads:

(3.8)






p4 =
q′4
q4

− 4q5q
2
4 .

p5 = q24q
′
5 + 4q44q

2
5 .

p2 = q′2 − 2q4q3 + p4q2.

p3 = q4q
′
3 + 4q34q3q5 + 2q2p5.

p1 = p3 · q2 − p5|q2|
2 + q′1 + q24 |q3|

2.

Recall that we seek q4 = 1 + q4r, with

q1, q2, q3, q4r, q5 −→
t→+∞

0.

Consider these functions as unknowns, to be sought, for c > 0, in

(3.9) W (c, τ0) = {f ∈ C([τ0,∞[), ‖f‖c,τ0 := sup
τ>τ0

τc|f(τ)| <∞}.

Our main assumption here is pj ∈W (c(pj), τ0), for 1 6 j 6 5.

Lemma 3.2. Let c(p3) = c(p5) > 2, c(p1) > 1, c(p2) = c(p4) > 1. Then if τ0 is
sufficiently large the following holds. Let pj ∈W (c(pj), τ0), 1 6 j 6 5 such that

∀j ∈ {1, . . . , 5}, ‖pj‖c(pj),τ0 6 1.

Then there exists a unique family of parameters q1, q2, q3, q4r, q5, such that the sys-
tem (3.8) holds with

• q2, q4r ∈W (c(q2), τ0) with c(q2) = (min (c(p5)− 2, c(p4)− 1))
−
.

• q3, q5 ∈ W (c(q3), τ0) with c(q3) = c(p3)/2.
• q1 ∈W (c(q1), τ0) with c(q1) = min (c(p1)− 1, c(p3)− 1),

and

‖q1‖c(q1),τ0 + ‖q2‖c(q2),τ0 + ‖q3‖c(q3),τ0 + ‖q4r‖c(q2),τ0 + ‖q5‖c(q3),τ0 6 1.

Finally, the variables (τ, y) and (t, x) are uniformly equivalent:

1

2
6
dτ

dt
6 2 ;

1

2
〈x〉 6 〈y〉 6 2 〈x〉 .

Remark 3.3. Under the assumptions of the lemma, we can define implicitly the
variable t from the variable τ in view of the formula (3.4).

Proof. The first two equations in (3.8) determine q4r and q5. Then the next two
yield q2 and q3, while we infer q1 from the last equation. Thus we first consider

(3.10)






q′4r − 4q5 = p4(1 + q4r) + 4q5q4r(3 + 3q4r + q24r),

q′5 =
p5

(1 + q4r)2
− 4(1 + q4r)

2q25 .

Introduce the corresponding homogeneous system:

d

dτ

(
q4r
q5

)
=

(
0 4
0 0

)(
q4r
q5

)
.

The square of the above matrix is zero, and we infer:

exp

(
0 4
0 0

)
=

(
1 4
0 1

)
.
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Duhamel’s formula for (3.10) thus reads:

q4r(τ) = −

∫ ∞

τ

[
p4(σ) (1 + q4r(σ)) + 4q5(σ)q4r(σ)

(
3 + 3q4r(σ) + q24r(σ)

) ]
dσ

−

∫ +∞

τ

4(τ − σ)

(
p5(σ)

(1 + q4r(σ))2
− 4(1 + q4r(σ))

2q25(σ)

)
dσ,

q5(τ) = −

∫ ∞

τ

[
p5(σ)

(1 + q4r(σ))2
− 4(1 + q4r(σ))

2q25(σ)

]
dσ.

Denoting N(k) = ‖k‖c(k),τ0, the first right hand side is controlled by

∫ ∞

τ

(
σ−c(p4) + σ−c(q4r)−c(q5)N(q4r)N(q5) + τσ−c(p5) + τσ−2c(q5)N(q5)

2
)
dσ

. τ1−c(p4) + τ1−c(q4r)−c(q5) + τ2−min(c(p5),2c(q5)).

The second right hand side is controlled by τ1−min(c(p5),2c(q5)). We can solve the
above system by a fixed point argument in the class that we consider, provided that
τ0 is sufficiently large, as soon as

c(q4r) + 1 < c(p4) ; 1 < c(q5),

c(q4r) + 2 < min(c(p5), 2c(q5)) ; c(q5) + 1 < min(c(p5), 2c(q5)).

This boils down to

c(p4) > 1 ; c(p5) > 2,

in which case we may take

c(q4r) = (min (c(p5)− 2, c(p4)− 1))− ; c(q5) =
1

2
c(p5).

Note also that τ0 can be chosen independent of p such that N(p) 6 1.

The system yielding (q2, q3) is similar (the constant 4 becomes a 2):




q′2 − 2q3 = p2 + 2q4rq3 − p4q2

q′3 = −4(1 + q4r)
2q3q5 +

p3 − 2q2p5
1 + q4r

.

Under the extra assumption c(p2) = c(p4) and c(p3) = c(p5), we may take

c(q2) = c(q4r) ; c(q3) = c(q5).

It is clear that we may choose c(q1) = min (c(p1)− 1, c(p3)− 1).

The inequalities:
∣∣∣∣
d

dt
(τ − t)

∣∣∣∣ =
∣∣∣∣
1

q24
− 1

∣∣∣∣ =
∣∣∣(1 + q4r)

−2
− 1
∣∣∣ .

1

tc(q2)
,

|yj − xj | =

∣∣∣∣
(

1

q4
− 1

)
xj − q2

∣∣∣∣ .
1

tc(q2)
(|xj |+ 1)

imply the last part of the lemma. �

The following lemma is a direct consequence of the proof of the previous result:

Lemma 3.4. Let p and p̃ satisfy the assumptions of Lemma 3.2. Assume in addi-
tion that for all k, c(pk) = c(p̃k) = c(p) > 2. Denote by q and q̃ the corresponding
modulations provided by Lemma 3.2. We have

|q4(τ)− q̃4(τ)| + |q2(τ) − q̃2(τ)| .
1

τc(p)−2
max
16k65

‖pk − p̃k‖c(p),τ0.
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Proof. Subtract the Duhamel’s formulations to systems (3.10) associated to p and
p̃, respectively. Denoting eq(τ) = |q4 − q̃4|+ τ |q5 − q̃5|, we have immediately

eq(τ) . τ

∫ ∞

τ

((
1

σc(p)
+

1

σ1+c(q5)

)
eq(σ) +

1

σc(p)
max
16k65

‖pk − p̃k‖c(p),τ0

)
dσ

. τ

∫ ∞

τ

(
1

σ1+c(q5)
eq(σ) +

1

σc(p)
max
16k65

‖pk − p̃k‖c(p),τ0

)
dσ

From Lemma 3.2, c(q5) = c(p)/2 > 1. We can then apply Gronwall lemma to
ẽq(τ) = eq(τ)/τ , and the first estimate follows. The estimate for q2 proceeds along
the same lines. �

3.3. Reduced problem. In the rest of this paper, we show the following:

Theorem 3.5. Let Assumption 3.1 be satisfied. There exists τ0 > 0, a modulation
p such that pj ∈W (c(p), τ0) with c(p) > 2, and a solution w ∈ C([τ0,∞[; Σ) to

(3.11) i∂τw − Lw − iZp(w) = iRp(w) + iZp(Q),

such that

‖w(τ)‖H1 6
C

τ2−
, ‖〈y〉w(τ)‖L2 6

C

τ1−
.

Theorem 3.5 implies Theorem 1.1. Writing v(τ, y) = eiτ (Q(y) + w(τ, y)), we first
see that Theorem 3.5 implies the existence of p = p(τ) like above, and a solution
v ∈ C([τ0,∞[; Σ) to

i∂τv +∆v = Vpv − gp|v|
4/dv + iZp(v),

‖v(τ)− eiτQ‖H1 6
C

τ2−
, ‖〈y〉 (v(τ) − eiτQ)‖L2 6

C

τ1−
.

If this holds, then Lemma 3.2 yields a modulation q such that

(3.12) |q2(t)|+ |q4(t)− 1| −→
t→+∞

0, |q1(t)|+ |q3(t)|+ |q5(t)| 6
C

t1+
,

and a solution of (3.1),

ṽ(t, x) = ei(q1(t)+q3(t)·x+q5(t)|x|
2) 1

q4(t)d/2
v

(
γ(t),

x

q4(t)
− q2(t)

)
.

We now set

θ(t) = γ(t) ; λ(t) = tq4

(
1

t

)
; x(t) = tq4

(
1

t

)
q2

(
1

t

)
.

Equation (3.4) and Lemma 3.2 show that indeed, γ(t) = t + o(t) as t → ∞. We
also know from (3.12) that

λ(t) ∼ t and |x(t)| = o(t) as t→ 0+.

In view of the behavior of the H1 and FH1 norms via the pseudo-conformal trans-
formation, we readily verify that Theorem 1.1 follows from (3.12). �

As suggested by the statement of Theorem 3.5, we construct simultaneously
the modulation p and the remainder w. We will see in Section 5 that these two
unknowns are related through a nonlinear process.
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4. The linearized operator

To prove Theorem 3.5, we need more precise properties concerning the linearized
operator L than those recalled in Proposition 2.2. We use again refined estimates
proved in [40] (see also [10]).

As in [40], we identify C with R2, and the space of complex-valued functions
H1(Rd,C) with the spaceH1(Rd,R)×H1(Rd,R), considering the operator L = iL
as an operator on L2 × L2 with domain H2 ×H2:

L = iL =

(
0 L−

−L+ 0

)
, L+ = −∆+1−

(
4

d
+ 1

)
Q4/d, L− = −∆+1−Q4/d.

Note that L is not self-adjoint. We denote by

〈f, g〉 =

∫

Rd

f1g1 +

∫

Rd

f2g2,

the scalar product on L2(Rd)× L2(Rd). The space of secular modes is defined by

S :=
⋃

κ>1

N (Lκ) ,

where N(A) is the null-space of the operator A. We next specify the space S and
the dynamics of eitL on S. Note that by direct calculation,

(4.1)






L−(|x|
2Q) = −4

(
d

2
Q+ x · ∇Q

)
, L−Q = 0,

−L+

(
d

2
Q+ x · ∇Q

)
= 2Q,

(4.2) L−(xℓQ) = −2∂xℓ
Q, L+(∂xℓ

Q) = 0.

Furthermore, there exists only one radial function Q̃ such that

L+Q̃ = −|x|2Q.

Consider for 1 6 ℓ 6 d

n1 = −iα−1
0 Q; n2,ℓ = −β−1

0 ∂xℓ
Q, n3,ℓ = iβ−1

0 xℓQ

n4 = α−1
0

(
d

2
Q+ x · ∇Q

)
, n5 = −iα−1

0

(
1

2
|x|2Q+ γ0Q

)
, n6 = α−1

0 Q̃,

(where α0, β0, γ0 are normalization constants, α0, β0 > 0). Then

(4.3)

{
Ln1 = Ln2,ℓ = 0, Ln4 = −2n1, Ln3,ℓ = 2n2,ℓ,

Ln5 = 2n4, Ln6 = −2n5 + 2γ0n1.

This shows that all nj’s are in the space S. By similar computations, the following
functions are in the space S∗ =

⋃
κ>1N ((L∗)κ):

m1 = iQ̃, m2,ℓ = xℓQ, m3,ℓ = −i∂xℓ
Q,

m4 = −
1

2
|x|2Q− γ0Q, m5 = i

d

2
Q+ ix · ∇Q, m6 = −Q.

Moreover, M = (S∗)⊥, and 〈nk,mj〉 = δjk, so that

PSh =
∑

16j66

νjnj , where νj = 〈h,mj〉 .

As a consequence, in view of (4.3), the exact dynamics of eitL on S is obtained.
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Proposition 4.1. Let G ∈ C(R;H1 ×H1), and W such that

(4.4) ∂tW + iLW = G

Denote νj = 〈W,mj〉 and dj = 〈G,mj〉. Then,

ν′1 = 2ν4 − 2γ0ν6 + d1 ν′2,ℓ = −2ν3,ℓ + d2,ℓ ν′3,ℓ = d3,ℓ

ν′4 = −2ν5 + d4 ν′5 = 2ν6 + d5 ν′6 = d6.

5. Tuning the modulation

Our approach consists of a careful examination of (3.11). As we have seen in the
previous section, we can write H1 = M ⊕ S. Recall that S, the generalized kernel
of iL, is a finite dimensional space, and that the group eitL is bounded on M . To
construct the wave operator of Theorem 3.5, we have to control the secular part of
w (its S component). We decompose w into w = wS + wM . By noticing that

Zp(Q) = −i
(
p1 + p3 · y + p5|y|

2
)
Q+ p2 · ∇Q + p4

(
d

2
+ y · ∇

)
Q(5.1)

= p1α0n1 − p3β0n3 + 2p5α0(n5 − γ0n1)− p2β0 · n2 + α0n4

is in S, we deduce the projected equations on S and on M . Namely, we want to
construct a solution to the system

∂τwS + iLwS = PSRp(w) + PSZp(w) + Zp(Q),(5.2)

∂τwM + iLwM − PMZp(wM ) = PMRp(w) + PMZp(wS).(5.3)

We introduce

(5.4)
Φ(w)(τ) =

∫ ∞

τ

ei(τ−σ)L (PSRp(w) + PSZp(w) + Zp(Q)) dσ +Φ2(w)(τ)

= Φ1(w)(τ) + Φ2(w)(τ),

where Φ2(w) = φ is the solution (in M for all τ) of the equation

∂τφ+ iLφ− PMZp(φ) = PMRp(w) + PMZp(wS).

The existence of Φ2(w) will be shown in §6. In the present section, we define the
modulation parameter p, and estimate Φ1(w). The main point in our approach is
that p depends on w, and is chosen so that the secular part Φ1(w) of Φ(w) belongs
to span(n6). As p also appears in the definition of Φ in (5.4), the dependence of Φ
upon w is more implicit (and more nonlinear) than it may seem.

As it is standard, we shall construct in Section 7 a fixed point for Φ. However, we
shall not use Banach–Picard result (based on contractions), but rather the Schauder
fixed point argument (based on compactness).

For p = (p1, . . . , p5), c > 0, denote, once and for all,

|p(τ)| = max
16k65

|pk(τ)|, ‖p‖c,τ0 = max
16k65

‖pk‖c,τ0.

The main result of this section is the following:

Proposition 5.1. Let Assumption 3.1 be satisfied. Let ε ∈]0, 1/3[. Then if τ0 > 0
is large enough we have the following property. Let w ∈ C([τ0,∞[;H1) with

(5.5) sup
τ>τ0

τ2−ε‖w(τ)‖H1 6 1.

There exists a unique modulation parameter p = p(w), such that, for τ > τ0,

(5.6) |p(τ)| 6
1

τ3−3ε
,
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and

Φ1(w)(τ) =

∫ ∞

τ

ei(τ−σ)L (PSR(w) + PSZp(w) + Zp(Q)) dσ ∈ spann6.

Furthermore, for this choice of p

(5.7) ∀τ > τ0, |〈Φ1(w)(τ),m6〉| 6
C

τ3−2ε
,

where C does not depend on w.

We prove Proposition 5.1 in §5.2. We first need some a priori estimates for
arbitrary p.

5.1. General estimates. Recall from (3.7) the notations:





iRNL(w) = −gp × (F (Q+ w)− F (Q)− ℓ(w)) ,

iRL(w) = (1− gp)× ℓ(w) + Vpw,

iR0 = (1− gp)× F (Q) + VpQ,

with

F (z) = |z|4/dz ; ℓ(w) =

(
2

d
+ 1

)
Q4/dw +

2

d
Q4/dw.

Lemma 5.2. Let Assumption 3.1 be satisfied, and

‖pk‖c(p),τ0 6 1, ‖p̃k‖c(p),τ0 6 1, k ∈ {1, . . . , 5},

where c(p) ∈]2, 3[. Then, for every fixed w, we have the pointwise estimates

|RNL(w)| . Q|w|2 +
∑

36j61+4/d

|w|j ,(5.8)

|RL(w)| .
〈y〉

3

τ3
e−c〈y〉|w| +

1

τ2
min

(
1,

〈y〉

τ

)
|w|,(5.9)

|Rp(w)−Rp̃(w)| .
1

τc(p)+1
‖p− p̃‖c(p)

(
e−c〈y〉 + 〈y〉

3
|w| 〈w〉

4/d
)

(5.10)

|RNL,p(w) −RNL,p̃(w)| .
1

τc(p)+1
‖p− p̃‖c(p),τ0 〈y〉

3 |w|2 〈w〉4/d−1 ,(5.11)

|RL,p(w) −RL,p̃(w)| .
1

τc(p)+1
‖p− p̃‖c(p),τ0 〈y〉 |w|.(5.12)

Proof. Estimates (5.8) and (5.9) follow from the definition of RNL and of RL (see
(3.7)), and, for (5.9), from Assumption (3.1).

Next we estimate |gp − gp̃|. Notice that
∣∣∣∣

1

γ−1(τ)
−

1

γ̃−1(τ)

∣∣∣∣ =
∣∣∣∣
γ̃−1(τ)− γ−1(τ)

γ−1(τ)γ̃−1(τ)

∣∣∣∣ .

We have
dγ−1(τ)

dτ
= q4 (τ)

2 = (1 + q4r (τ))
2 .

Therefore, by Lemma 3.4:
∣∣∣
d

dτ

(
γ̃−1(τ) − γ−1(τ)

)∣∣∣ . |q4r (τ) − q̃4r (τ)| .
1

τc(p)−2
‖p− p̃‖c(p),τ0,

Integrating between τ0 and τ and using that γ(τ0) = γ̃(τ0) = τ0 we get, since
c(p) < 3,

∣∣γ̃−1(τ) − γ−1(τ)
∣∣ . 1

τc(p)−3
‖p− p̃‖c(p),τ0.
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This rather poor estimate yields the more interesting one∣∣∣∣
1

γ−1(τ)
−

1

γ̃−1(τ)

∣∣∣∣ .
1

τc(p)−1
‖p− p̃‖c(p),τ0.

Denote λ = q4/γ
−1, and λ̃ its counterpart associated to p̃. We can write

gp(τ, y)− gp̃(τ, y) = g(λy + λq2)− g(λ̃y + λ̃q̃2).

Note that Assumption 3.1 implies

|g(a)− g(b)| . |a− b|
(
|a|2 + |b|2

)
.

Invoking Lemma 3.2 and Lemma 3.4, we deduce

|gp(τ, y)− gp̃(τ, y)| .
(
|λ− λ̃||y|+ |λq2 − λ̃q̃2|

)(
λ2 + λ̃2

)
〈y〉2

.
1

τc(p)−1
‖p− p̃‖c(p),τ0 〈y〉 ×

1

τ2
〈y〉

2

.
1

τc(p)+1
‖p− p̃‖c(p),τ0 〈y〉

3
.

We have a similar estimate on Vp − Vp̃ = λ2V (λ(y + q2))− λ̃2V (λ̃(y + q̃2)):

|Vp(τ, y)− Vp̃(τ, y)| .
1

τc(p)+1
‖p− p̃‖c(p),τ0 〈y〉 .

By definition, we have (without splitting the terms as in (3.7))

−iRp(w) = gp × |Q+ w|4/d(Q+ w) − Vp × (Q+ w) − F (Q)− ℓ(w).

We also have
|Q+ w|

1+4/d
. Q1+4/d + |w|1+4/d,

and the estimate (5.10) follows.
Estimates (5.11) and (5.12) of the lemma are a straightforward consequence of

the definitions (3.7) of RL,p and RNL,p, and of the above estimates. �

We introduce the notation, for 1 6 j 6 6,

(5.13) Dj(p)(τ) = 〈PSRp(w) + PSZp(w),mj〉 .

Lemma 5.3. Let Assumption 3.1 be satisfied. If

‖p‖c(p),τ0 6 1,

where c(p) > 2, then we have for all τ > τ0,

(5.14)

|Dj(p)(τ)| . ‖w‖
1+4/d
H1 + ‖w‖2H1 +

1

τ2
‖w‖L2 + |p(τ)|‖w‖L2

+





0 if j = 2, 4, 6

1/τ1+c(p)− + 1/τ4 if j = 1, 5

1/τ3 if j = 3.

Proof. Taking the L2-norm in y in the pointwise estimate (5.8), Sobolev embedding
yields:

‖RNL(w)(τ)‖L2 .
∑

26k61+4/d

‖w(τ)‖kH1 .

By the pointwise estimate (5.9) we get

‖RL(w)(τ)‖L2 .
1

τ2
‖w(τ)‖L2 .

These estimates yield, since mj ∈ S
(
Rd
)
,

|Dj(p)(τ)| .
∑

26k61+4/d

‖w(τ)‖kH1 +
1

τ2
‖w(τ)‖L2 + |〈R0,mj〉|+ |p(τ)|‖w(τ)‖L2 ,
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Notice that R0 is purely imaginary, that m2, m4 and m6 are real, and thus

∀j ∈ {2, 4, 6} 〈R0,mj〉 = 0,

which yields the first case in (5.14).
By Assumption 3.1, the Taylor expansion of g near the origin reads:

g(x) = 1 +
∑

|α|=3

cαx
α +O(|x|4).

In view of Lemma 3.2, we infer

gp(τ, y) = 1 +
q34

(γ−1(τ))
3

∑

|α|=3

cα (y + q2)
α
+O

(
|q4 (y + q2)|

4

τ4

)

= 1 +
q34

(γ−1(τ))
3

∑

|α|=3

cαy
α +O

(
〈y〉2

τ3+c(q2)

)
+O

(
〈y〉4

τ4

)
.

Notice that if j ∈ {1, 5}, mj is a radial function. Thus if |α| = 3,
∫
yαmj = 0.

Arguing similarly on V , we infer

|〈PSR0,mj〉| = |〈R0,mj〉| = |〈(1− gp)F (Q) + VpQ,mj〉| .
1

τ3+c(q2)
+

1

τ4
.

Lemma 3.2 then yields the second case in (5.14). To prove the third case, we use
the pointwise estimate

|R0| .
〈y
τ

〉3
Q1+4/d +

1

τ2

(
1|y|>τ +

〈y〉

τ
1|y|6τ

)
Q.

Since Q decays exponentially, this yields

‖R0(τ)‖L2 .
1

τ3
,

and the third case in (5.14) follows. �

5.2. Control of the secular modes by projection. We next prove Proposi-
tion 5.1. We introduce, for arbitrary p,

(5.15) dj(p)(τ) = 〈PSRp(w) + PSZp(w) + Zp(Q),mj〉 = Dj(p)(τ) + 〈Zp(Q),mj〉 .

By the explicit expression (5.1) of Zp(Q) we get the relations between dj and Dj :

d1(p) = D1(p) + α0p1 − 2α0γ0p5, d2(p) = D2(p)− β0p2, d3(p) = D3(p)− β0p3

d4(p) = D4(p) + α0p4, d5(p) = D5(p) + 2α0p5, d6(p) = D6(p),

where α0, β0, γ0 are real constants, α0, β0 > 0. From (5.5), we know that w tends
to zero as τ → +∞. Recalling that Zp(Q) ∈ S for any parameter p, the stability
of S by eitL shows that Φ1(w) ∈ S. Denote, as in Proposition 4.1,

Φ1(w)(τ) =

6∑

j=1

νj(τ)nj .

By Proposition 4.1,

ν6(τ) = −

∫ +∞

τ

d6 = −

∫ +∞

τ

D6(p),

which is well-defined in view of (5.14), (5.5), (5.6). We want νj to vanish, for
1 6 j 6 5, so in view of Proposition 4.1, we would like to impose

d2 = d3 = d4 = 0 ; d5 = −2ν6 ; d1 = 2γ0ν6.
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The proposition follows if we get a fixed point p in the unit ball of (W (3−3ε, τ0))
3+2d

(the space W is defined by (3.9)) for the operator Ψ(p) = p̃ = (p̃1, p̃2, p̃3, p̃4, p̃5):

p̃5 =
1

2α0

(
−D5(p) + 2

∫ ∞

τ

D6(p)

)
; p̃4 = −

1

α0
D4(p)

p̃j =
1

β0
Dj(p), j = 2, 3 ; p̃1 = −

1

α0
D1(p)−

γ0
α0
D5(p).

Let B be the closed unit ball in (W (3− 3ε, τ0))
3+2d. We first show that B is stable

by Ψ. By (5.5), and since 0 < ε < 1/2, we have, for τ > τ0 ≫ 1,

‖w‖
1+4/d
H1 +‖w‖2H1 +

1

τ2
‖w‖L2 + |p(τ)|‖w‖L2(5.16)

.
1

τ (1+4/d)(2−ε)
+

1

τ4−2ε
+

1

τ4−ε
+

1

τ5−4ε
6

1

τ4−2ε
.

By definition of Ψ, (5.16) and the estimates (5.14) on Dj, we get, for j ∈ {2, 3, 4}

|p̃j(τ)| . |Dj(p)(τ)| . ‖w‖
1+4/d
H1 + ‖w‖2H1 +

1

τ2
‖w‖L2 +

1

τ3
+ |p(τ)|‖w‖L2

6
C

τ3
6

1

τ3−3ε
,

if τ > τ0 and τ0 is chosen sufficiently large. In view of the estimates (5.14) and
(5.16), we have

(5.17)

∫ +∞

τ

|D6(p)(σ)|dσ .

∫ +∞

τ

1

σ4−2ε
dσ .

1

τ3−2ε
,

provided τ0 ≫ 1. By the estimate (5.14) (second case) and (5.16) we get, taking
again τ > τ0 ≫ 1,

|p̃5(τ)| . |D5(p)(τ)| +

∫ +∞

τ

|D6(p)(σ)|dσ .
1

τ4−2ε
+

1

τ4−3ε
+

1

τ3−2ε
6

1

τ3−3ε
,

and similarly

|p̃1(τ)| . |D1(p)(τ)| + |D5(p)(τ)| 6
1

τ3−3ε
.

As a consequence p̃ = Ψ(p) ∈ B, and the stability property of Ψ is settled.
It remains to prove the contraction property of Ψ,

(5.18) ‖Ψ(p)−Ψ(p̃)‖3−3ε,τ0 6 κ‖p− p̃‖3−3ε,τ0 ,

for all p, p̃ ∈ B, with κ < 1. In view of the definition of Ψ, it is enough to show
that if ι is small, and τ0 is chosen large enough, we have, for τ > τ0,

(5.19) ‖Dj(p)−Dj(p̃)‖3−3ε,τ0 6 ι‖p− p̃‖3−3ε,τ0,

for 1 6 j 6 5, and

(5.20) ‖D6(p)−D6(p̃)‖4−3ε,τ0 6 ι‖p− p̃‖3−3ε,τ0 .

Recall that by definition,

Dj(p) = 〈PSRp(w) + PSZp(w),mj〉 .

We have

|〈PSZp(w) − PSZp̃(w),mj〉| . |pk(τ) − p̃k(τ)|‖w(τ)‖L2

.
1

τ2−ε
|pk(τ) − p̃k(τ)| .

1

τ5−4ε
‖p− p̃‖3−3ε,τ0 .

By the pointwise estimate (5.10) we get

|〈Rp(w) −Rp̃(w),mj〉| .
1

τ4−3ε
‖p− p̃‖3−3ε,τ0 .
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Taking τ0 larger if necessary, we deduce the estimate (5.19).
To prove (5.20), we argue as in the proof of Lemma 5.3:

D6(p) = 〈RNL(w) +RL(w) + PSZp(w),m6〉 ,

that is, the contribution of R0 vanishes, since R0 is purely imaginary and m6 is
real. We then invoke inequalities (5.11) and (5.12) of Lemma 5.2, to infer:

|〈Rp(w) −Rp̃(w),m6〉| .
1

τ4−3ε
‖p− p̃‖3−3ε,τ0‖w(τ)‖H1 〈‖w(τ)‖H1 〉

4/d

.
1

τ4−3ε
×

1

τ2−ε
‖p− p̃‖3−3ε,τ0 ,

which gives (5.20) and concludes the proof of the contraction property (5.18).
Therefore there exists a fixed point p ∈ B for Ψ. For this p, we have νj(τ) = 0,

for 1 6 j 6 5. Moreover, since

Φ1(w)(τ) = ν6(τ)n6,

it remains to show (5.7), that is, to check that |ν6(τ)| . 1/τ3−2ε. This follows
immediately from (5.17) and the fact that ν′6 = D6. �

6. The non-secular part

As announced in the previous paragraph, we now study the M -component of w,
which has to solve (5.3). For this, we consider the operator Φ2, that is, we study
the equation

(6.1) ∂τφ+ iLφ− PMZp(φ) = F ; ‖φ(τ)‖Σ −→
τ→+∞

0,

where F ∈ C([τ0,∞[;M). For a, b > 0, let

X(a, b, δ) =
{
φ ∈ C([τ0,∞[;M ∩ Σδ), ‖φ‖X(a,b,δ) <∞

}
, where

‖φ‖X(a,b,δ) = sup
τ>τ0

τa ‖φ(τ)‖Hδ + sup
τ>τ0

τb
∥∥∥〈y〉δ φ(τ)

∥∥∥
L2
.

The main result of this section is:

Proposition 6.1. Let τ0 > 0 and p ∈ C([τ0,∞[)3+2d such that

∀τ > τ0, |p(τ)| 6
1

τ3−3ε
.

Assume that F ∈ X(a+ 1 + η, b+ 1 + η, δ), with a, b > 0, η > 0 and

δ < a− b < δ(2− 3ε), 1 6 δ 6 5.

Then (6.1) has a unique solution φ ∈ X(a, b, δ). Furthermore, it satisfies

‖φ‖X(a,b,δ) 6 µ‖F‖X(a+1+η,b+1+η,δ).

6.1. Energy estimates. Recall the important property, established in [40]: onM ,
the H1 norm ‖·‖H1 is equivalent to ‖·‖M , where

‖φ‖2M = Re 〈Lφ, φ〉 .

Lemma 6.2. Let κ ∈ N, and F ∈ L1([τ0,∞[; Σ2κ+1). Suppose that φ ∈ C([τ0,∞[;M∩
Σ2κ+1) solves (6.1) and tends to 0 in Σ2κ+1 as τ → +∞. There exists C > 0 such
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that for all τ > τ0, the following holds:

‖φ(σ)‖H2κ+1 6 C

∫ ∞

τ

(
‖F (σ)‖H2κ+1

+|p(σ)|
(
‖φ(σ)‖H2κ+1 + ‖ 〈y〉 〈∇〉

2κ
φ(σ)‖L2

))
dσ,

‖ 〈y〉
2κ+1

φ(σ)‖L2 6 C

∫ ∞

τ

(
‖ 〈y〉

2κ+1
F (σ)‖L2 + ‖ 〈y〉

2κ
∇φ(σ)‖L2 + ‖φ(σ)‖L2

+ |p(σ)|‖ 〈y〉
2κ+1

φ(σ)‖L2

)
dσ.

Proof. We begin with the first inequality in the case κ = 0. Multiply (6.1) by Lφ,
integrate with respect to y and consider the real part:

Re

∫

Rd

∂τφLφ− Re

∫

Rd

PMZp(φ)Lφ = Re

∫

Rd

FLφ.

We readily check the identity

Re

∫

Rd

∂τφLφ =
1

2

d

dτ
‖φ‖2M .

A straightforward integration by parts yields
∣∣∣∣
∫

Rd

FLφ

∣∣∣∣ . ‖F‖H1‖φ‖H1 .

It remains to estimate

(6.2) Re

∫

Rd

PMZp(φ)Lφ = Re

∫

Rd

Zp(φ)Lφ− Re

∫

Rd

PSZp(φ)Lφ.

We start with the first term. Recall that

Zp(φ) = −i
(
p1 + p3 · y + p5|y|

2
)
φ+ p2 · ∇φ+ p4

(
d

2
+ y · ∇

)
φ

and

Lφ = −∆φ+ φ−

(
2

d
+ 1

)
Q4/dφ−

2

d
Q4/dφ.

We have, by elementary integration by parts:

Re i

∫
p1φ∆φ = 0,

∣∣∣∣Re i
∫
p3 · yφ∆φ

∣∣∣∣ =
∣∣∣∣Im

∫
φp3 · ∇φ

∣∣∣∣ 6 |p3|‖φ‖L2‖φ‖H1 ,

∣∣∣∣Re i
∫
p5|y|

2φ∆φ

∣∣∣∣ = 2

∣∣∣∣p5 Im
∫
φ y · ∇φ

∣∣∣∣ 6 2|p5|‖φ‖H1‖ 〈y〉φ‖L2 ,

Re

∫
p2 · ∇φ∆φ = 0,

Re

∫
p4

(
d

2
+ y · ∇

)
φ∆φ = −p4

∫
|∇φ|2.

We infer: ∣∣∣∣Re
∫
Zp(φ)∆φ

∣∣∣∣ 6 C(|p3|+ |p4|)‖φ‖
2
H1 + |p5|‖φ‖H1‖ 〈y〉φ‖L2 .

We easily deduce that the first term in (6.2) is controlled by
∣∣∣Re

∫
Zp(φ)Lφ

∣∣∣ 6 C|p|‖φ‖H1(‖φ‖H1 + ‖ 〈y〉φ‖L2).
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For the remaining second term in (6.2) we use the structure of the space S,

∣∣∣∣Re
∫
PSZp(φ)Lφ

∣∣∣∣ =

∣∣∣∣∣∣

∑

16j66

〈Zp(φ),mj〉Re

∫
nj Lφ

∣∣∣∣∣∣
.

Integrating by parts both in the scalar product and in the integral, we get
∣∣∣∣Re

∫
PSZp(φ)Lφ

∣∣∣∣ 6 C|p|‖φ‖2L2 .

Summarizing, we have obtained

d

dτ
‖φ‖2M 6 C‖F‖H1‖φ‖H1 + C|p|‖φ‖H1

(
‖φ‖H1 + ‖ 〈y〉φ‖L2

)
.

Since the M -norm and the H1-norm are equivalent on M , the first inequality of
the lemma follows in the case κ = 0.

Let κ > 1. We write (6.1) as

∂τφ+ iLφ− Zp(φ) = F − PSZp(φ).

Applying the operator (iL)κ we get

∂τ ((iL)
κφ) + iL ((iL)κφ)− (iL)κZp(φ) = (iL)κF − (iL)κPSZp(φ).

Hence

∂τ ((iL)
κφ) + iL ((iL)κφ)− Zp(iL)

κφ = (iL)κF + [(iL)κ, Zp]φ− (iL)κPSZp(φ),

where [(iL)κ, Zp] denotes the commutator of the operators (iL)κ and Zp. By direct
computation, the commutator [iL, Zp] is an operator of order 2 in (〈y〉 ,∇), which
is only of order 1 in 〈y〉 and whose coefficients are multiples of p1,. . . ,p5:

[iL, Zp]φ =

[
iL,−i

(
p1 + p3 · y + p5|y|

2
)
+ p2 · ∇+ p4

(
d

2
+ y · ∇

)]
φ

= −i
[
∆,−i

(
p3 · y + p5|y|

2
)
+ p4y · ∇

]
φ

− i

(
2

d
+ 1

)[
Q4/d, p2 · ∇+ p4y · ∇

]
φ− i

2

d

[
Q4/d, p2 · ∇+ p4y · ∇

]
φ

= −2 (p3 · ∇+ 2p5y · ∇+ dp5 + ip4∆)φ

+ i

(
2

d
+ 1

)(
p2 · ∇

(
Q4/d

)
+ p4y · ∇

(
Q4/d

))
φ

+ i
2

d

(
p2 · ∇

(
Q4/d

)
+ p4y · ∇

(
Q4/d

))
φ.

Furthermore

[(iL)κ, Zp] =

κ−1∑

j=0

(iL)j [iL, Zp] (iL)
κ−j−1.

Hence

‖[(iL)κ, Zp]φ‖H1 6 |p|
(
‖φ‖H2κ+1 +

∥∥∥〈y〉 〈∇〉
2κ
φ
∥∥∥
L2

)
.

Notice also that

‖(iL)κPS(Zp(φ))‖H1 =
∥∥∥
∑

16j66

〈Zp(φ),mj〉 (iL)
κnj

∥∥∥
H1

. |p| ‖φ‖L2 .

Denoting φκ = (iL)κφ, we see that φκ(τ) ∈M and that it solves

∂τφκ + iLφκ − PMZp(φκ) = (iL)κF + [(iL)κ, Zp]φ− (iL)κPSZp(φ) + PSZp(φκ).
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From the case κ = 0 and the previous estimates, we get:

‖(iL)κφ(τ)‖H1 .

∫ +∞

τ

(
‖F (σ)‖H2κ+1

+ |p(σ)|
(
‖φ(σ)‖H2κ+1 +

∥∥ 〈y〉 〈∇〉2κ φ(σ)
∥∥
L2

))
dσ.

Noting that for a large constant K, depending on κ, we have for all f ∈M ,

‖(iL)κf‖H1 +K‖f‖H1 ≈ ‖f‖H2κ+1 ,

and using the case κ = 0 to bound ‖φ(τ)‖H1 , we get the first estimate of the lemma.

To conclude, we estimate the momenta: for s ∈ N, we compute more generally

1

2

d

dτ

∫
〈y〉2s |φ|2 = Re

∫
〈y〉2s ∂τφφ = Re

∫
〈y〉2s (−iLφ+ PMZp(φ) + F )φ

= Im

∫
〈y〉

2s
Lφφ+Re

∫
〈y〉

2s
PMZp(φ)φ +Re

∫
〈y〉

2s
Fφ.

By a direct integration by parts

(6.3)

∣∣∣∣Im
∫

〈y〉2s Lφφ

∣∣∣∣ . ‖ 〈y〉s−1 ∇φ‖L2‖ 〈y〉s φ‖L2 + ‖φ‖2L2 .

Furthermore,

Re

∫
〈y〉

2s
PMZp(φ)φ = Re

∫
〈y〉

2s
Zp(φ)φ − Re

∫
〈y〉

2s
PSZp(φ)φ.

On the one hand,
∣∣∣∣Re

∫
〈y〉

2s
Zp(φ)φ

∣∣∣∣ =
∣∣∣∣Re

∫
〈y〉

2s
p2 · ∇φφ+ p4 〈y〉

2s

(
d

2
+ y · ∇

)
φφ

∣∣∣∣

. max
k=2,4

|pk|‖〈y〉
s
φ‖2L2 .

On the other hand,

∣∣∣∣Re
∫

〈y〉
2s
PSZp(φ)φ

∣∣∣∣ =

∣∣∣∣∣∣

∑

16j66

〈Zp(φ),mj〉Re

∫
nj 〈y〉

2s
φ

∣∣∣∣∣∣
. |p|‖φ‖2L2 .

Hence

(6.4)

∣∣∣∣Re
∫

〈y〉
2s
PMZp(φ)φ

∣∣∣∣ . |p|‖〈y〉
s
φ‖2L2 .

Combining (6.3), (6.4), we obtain the second estimate of the lemma, concluding
this proof. �

6.2. Refined a priori estimates. In the sequel, we consider 0 < ε < 1/3, and
extra smallness assumptions will be precised when needed.

Lemma 6.3. Let τ0 > 0 and p ∈ C([τ0,∞[)3+2d such that

∀τ > τ0, |p(τ)| 6
1

τ3−3ε
.

Assume that F ∈ X(a+ 1 + η, b+ 1 + η, δ), with η > 0 and

(6.5) δ < a− b < δ(2− 3ε), δ ∈ {1, 5},

where X is defined in Proposition 6.1. Let µ > 0. If τ0 is sufficiently large, every
solution φ ∈ X(a, b, δ) of (6.1) satisfies

(6.6) ‖φ‖X(a,b,δ) 6 µ‖F‖X(a+1+η,b+1+η,δ).

Remark 6.4. The restriction δ ∈ {1, 5} in the above statement is arbitrary.



MINIMAL BLOW-UP FOR INHOMOGENEOUS NLS 25

Proof. First case: δ = 1. Denote by

M1 = ‖F‖X(a+1+η,b+1+η,1).

The H1-estimate and the momentum estimate with κ = 0 of Lemma 6.2 read, along
with the assumption on p:

‖φ(τ)‖H1 6 C

∫ ∞

τ

( M1

σa+1+η
+

1

σ3−3ε
(‖φ(σ)‖H1 + ‖ 〈y〉φ(σ)‖L2)

)
dσ,

‖ 〈y〉φ(τ)‖L2 6 C

∫ ∞

τ

( M1

σb+1+η
+

1

σ3−3ε
‖ 〈y〉φ(σ)‖L2 + ‖φ(σ)‖H1

)
dσ.

We apply Lemma A.1 with the following data:

α1 = β1 = 0 ; α2 = β2 = 1 ; a1 = a2 = b1 = 2− 3ε ; b2 = −1.

This is possible under the assumptions a, b > 0 and 1 < a− b < 2 − 3ε, which are
fulfilled in the context of Lemma 6.3. We then have

‖φ‖X(a,b,1) 6 µ‖F‖X(a+1+η,b+1+η,1),

for τ0 sufficiently large.

Second case: δ = 5. Denote by

M5 = ‖F‖X(a+1+η,b+1+η,5).

To proceed in a similar way as in the first case, we use interpolation estimates (B.8)
and (B.9). By Lemma 6.2 in the case κ = 2, we obtain

‖φ(σ)‖H5 6 C

∫ ∞

τ

( M5

σa+1+η

+
1

σ3−3ε

(
‖φ(σ)‖H5 + ‖ 〈y〉

5
φ(σ)‖

1/5
L2 ‖φ(σ)‖

4/5
H5

))
dσ,

‖ 〈y〉
5
φ(σ)‖L2 6 C

∫ ∞

τ

( M5

σb+1+η
+ ‖ 〈y〉

5
φ(σ)‖

4/5
L2 ‖φ(σ)‖

1/5
H5 + ‖φ(σ)‖L2

+
1

σ3−3ε
‖ 〈y〉5 φ(σ)‖L2

)
dσ.

We apply Lemma A.1 with the following data:

α1 = β3 = 0 ; β2 = 1 ; α2 = β1 =
1

5
; a1 = a2 = b3 = 2− 3ε ; b1 = b2 = −1.

This is possible under the assumptions a, b > 0 and 5 < a − b < 10 − 15ε, which
are fulfilled in the context of Lemma 6.3. We then have

‖φ‖X(a,b,5) 6 µ‖F‖X(a+1+η,b+1+η,5),

for τ0 sufficiently large. Summarizing, we have obtained the lemma in the following
cases:

1 < a− b < 2− 3ε and δ = 1,

5 < a− b < 5(2− 3ε) and δ = 5,

which corresponds to the announced result. �
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6.3. Proof of Proposition 6.1. The proof is set up in the same spirit as the
existence of Møller’s wave operators. Let χ(τ) = 1−H(τ), where H is the Heaviside
function, be the function equal to 1 for τ < 0 and 0 for τ > 0. We first consider
the case where δ = 5 and F ∈ L1([τ0,∞[;M ∩ Σ5). For (τn)n a sequence going to
+∞, consider

(6.7) ∂τφn + iLφn − PMZp(φn) = χ(τ − τn)F ; φn|τ=1+τn = 0.

To begin with, we remove the projection PM from the left hand side, and consider

(6.8) ∂τφn + iLφn − Zp(φn) = χ(τ − τn)F ; φn|τ=1+τn = 0.

We show that for every n, (6.8) has a unique solution φn ∈ C([τ0,∞[; Σ5). To see
this, remove the modulation by reversing the approach presented in §3: recalling

(3.2), define φ̃n by

φ̃n(t, x) = ei(q1(t)+q3(t)·x+q5(t)|x|
2) 1

q4(t)d/2
φn

(
γ(t),

x

q4(t)
− q2(t)

)
,

where γ is given by (3.4) and the qj ’s are well-defined function of the pk’s in view
of Lemma 3.2. We check that (6.8) is then equivalent to an equation of the form

i∂tφ̃n +∆φ̃n =W1φ̃n +W2φ̃n + F̃n ; φ̃n|t=tn = 0,

where the notation F̃n is obvious, tn = γ−1(τn+1), and the potentials are given by

W1(t, x) =
1

q4(t)2

(
1−

(
2

d
+ 1

)
Q

(
x

q4(t)
− q2(t)

)4/d
)
,

W2(t, x) = −
2

dq4(t)2
Q

(
x

q4(t)
− q2(t)

)4/d

e2i(q1(t)+q3(t)·x+q5(t)|x|
2).

We note that Wj ∈ L∞([t0,∞[;W 5,∞(Rd)), j = 1, 2. We can then construct φ̃n
in C([t0,∞[;L2): a fixed point argument yields φ̃n on small time intervals (with a
non-trivial initial data in order to repeat the process), and we can split [t0, tn] into

finitely many time intervals on which we can control the L∞
t L

2
x-norm of φ̃n by the

L1
tL

2
x-norm of F̃n on the same time interval. We can proceed along the same line

to construct φ̃n in C([t0,∞[;H5), and then infer that φ̃n is also in C([t0,∞[; Σ5)

(with φ̃n|t>tn = 0). We skip the easy details.

We deduce that (6.8) has a unique solution φn ∈ C([τ0,∞[; Σ5). The case of
(6.7) follows easily, by rewriting it as

∂τφn + iLφn − Zp(φn) = −PSZp(φn) + χ(τ − τn)F ; φn|τ=1+τn = 0,

and by recalling that

PSZp(φn) =
6∑

j=1

〈Zp(φn),mj〉nj , hence ‖PSZp(φn)(τ)‖Σ5 .
1

τ3−3ε
‖φn(τ)‖L2 .

The important point which we must note now is that φn ∈ C([t0,∞[;M ∩ Σ5),
which is compactly supported in time, has no secular part. This is so thanks to
Proposition 4.1, and the integral formulation of (6.7), which can be written as:

φn(τ) =

∫ 1+τn

τ

ei(σ−τ)L ((χ(σ − τn)F (σ) + PMZp(φn)(σ)) dσ, τ > τ0.

Since χ(· − τn)F ∈ L1([τ0,∞[;M ∩ Σ5), Proposition 4.1 shows that the right hand
side of the above equation has no non-trivial S-component. Therefore, φn(τ) ∈M .
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To conclude, we note that under the assumptions of the proposition, χ(· − τn)F
converges to F in X(a+ 1 + η/2, b+ 1 + η/2, δ). Since (6.1) is linear, Lemma 6.3
shows that φn is a Cauchy sequence in X(a, b, δ), thus it converges in this space to
φ solution to (6.1) which satisfies (6.6). Uniqueness follows from Lemma 6.3, and
we have defined an operator F 7→ φ.

By density and Lemma 6.3, the result remains true if we assume only δ = 1
(and F ∈ X(a + 1 + η, b + 1 + η, δ)). The proposition then follows by complex
interpolation between the cases δ = 1 and δ = 5. �

7. Fixed point argument

In this section we show Theorem 3.5.
Recall that we have defined the operator Φ as follows:

Φ(w)(τ) =

∫ ∞

τ

ei(τ−σ)L (PSRp(w) + PSZp(w) + Zp(Q)) dσ +Φ2(w)(τ)

= Φ1(w)(τ) + Φ2(w)(τ),

where Φ2(w) = φ is the solution (in M) of the equation

∂τφ+ iLφ− PMZp(φ) = PMRp(w) + PMZp(PSw)

given by Proposition 6.1. The modulation p is a function of w itself, defined in §5,
Proposition 5.1. To prove Theorem 3.5 (hence Theorem 1.1), we show that Φ has
a fixed point in a suitable space. Consider for 0 < ε < 1/3 and 1 < δ

Y (δ, ε, τ0) =
{
w ∈ C

(
[τ0,∞[;M ∩ Σδ

)
+ C ([τ0,∞[; spann6) ; ‖w‖δ,ε,τ0 <∞

}

where ‖w‖δ,ε,τ0 is defined as

sup
τ>τ0

τ2−ε‖PMw(τ)‖Hδ + sup
τ>τ0

τ2−2ε−δ‖ 〈y〉
δ
PMw(τ)‖L2 + sup

τ>τ0

τ3−3ε|〈w(τ),m6〉|.

7.1. Stability. The main result of this section is the following:

Proposition 7.1. Let δ ∈]1, 2[, and 0 < ε < 1/4 so that ε < 1− δ/2. There exists
τ0 > 0 such that Φ maps the closed unit ball of Y (δ, ε, τ0) to itself.

Proof. For w ∈ Y (δ, ε, τ0), Proposition 5.1 yields a modulation p such that

sup
τ>τ0

τ3−3ε|p(τ)| 6 1.

By Proposition 6.1, PSΦ(w) = Φ1(w). Since by Proposition 5.1, Φ1(w) ∈ span(n6),
the secular part of Φ(w) has the suitable structure for Y . Moreover, by (5.7), for
τ > τ0,

|〈Φ1(w)(τ),m6〉| 6
C

τ3−2ε
6
C

τε0

1

τ3−3ε
.

Therefore, increasing τ0 if necessary,

sup
τ>τ0

τ3−3ε|〈Φ(w)(τ),m6〉| 6
1

2
.

Thus Φ1(w) is in the 1/2-ball of Y (δ, ε, τ0).

To control the non-secular part PMΦ(w) = Φ2(w), we apply Proposition 6.1 with

F = PMRp(w) + PMZp (PSw) .

We look for a and b such that F ∈ X(a+ 1 + η, b+ 1 + η, δ). We note that

PMZp (PSw) = 〈w,m6〉PMZp(n6),

so we have the estimate

‖PMZp (PSw) (τ)‖Σδ . |〈w(τ),m6〉| |p(τ)| .
1

τ3−3ε
×

1

τ3−3ε
=

1

τ6−6ε
.
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The delicate term, which explains the assumption δ < 2, is the last one, PMRp(w).
We treat separately the contributions of R0, RL and RNL. Since d 6 2 and δ > 1,
Hδ(Rd) is an algebra, and we infer

‖PMRNL(w)‖Hδ 6 ‖RNL(w)‖Hδ + ‖PSRNL(w)‖Hδ

. ‖w‖2Hδ + ‖w‖
1+4/d

Hδ .
1

τ2(2−ε)
.

From the pointwise estimate (5.8),

‖ 〈y〉δ PMRNL(w)‖L2 6 ‖ 〈y〉δ RNL(w)‖L2 + ‖ 〈y〉δ PSRNL(w)‖L2

. ‖w‖2L2 + ‖〈y〉δ w‖L2

∑

26j64/d

‖w‖j
Hδ .

1

τ2(2−ε)
.

We next treat the contribution of RL. Using that τ2Vp is bounded in the Sobolev
space W 2,∞, uniformly for τ ≥ 1, we get

‖PMRL(w)‖Hδ .
1

τ2
‖w‖Hδ .

1

τ4−ε
.

Using simply the boundedness of the external potential V , we infer

‖ 〈y〉δ PMRL(w)‖L2 .
1

τ3
‖w‖L2 +

1

τ2
‖ 〈y〉δ w‖L2 .

1

τ4−2ε−δ
.

The term PMR0 can be estimated in a similar way, up to the fact that the Hδ-norm
and the momenta of Q do not decay in time:

‖PMR0‖Hδ .
1

τ3
; ‖ 〈y〉

δ
PMR0‖L2 .

1

τ3
.

Summarizing, we have obtained

‖F‖Hδ .
1

τ6−6ε
+

1

τ4−2ε
+

1

τ4−ε
+

1

τ3
.

1

τ3
,

‖ 〈y〉
δ
F‖L2 .

1

τ6−6ε
+

1

τ4−2ε
+

1

τ4−2ε−δ
+

1

τ3
.

1

τ4−2ε−δ
,

meaning that F ∈ X(3, 4− 2ε− δ, δ). We can then apply Proposition 6.1 provided
that there exists a, b, η > 0 with

δ < a− b < δ(2− 3ε),

such that F ∈ X(a + 1 + η, b + 1 + η, δ). We take a + 1 + η = 3 (note that this
constraint comes from R0). This requires a = 2 − η (η > 0 can be arbitrarily
small), and since on the other hand, we must have a > δ, this explains why we have
assumed δ < 2. By taking η = ε

2 , we get as a constraint

δ < ε+ δ < δ(2− 3ε).

As ε < 1/4 and δ > 1, this condition is fulfilled. Therefore, by Proposition 6.1,
Φ2(w) ∈ X(2− ε

2 , 2−
3
2ε− δ, δ). By increasing τ0 if necessary, Φ2(w) is also in the

1/2-ball of Y (δ, ε, τ0), and the proposition follows. �

7.2. Compactness. We recall the following compactness result, which is a partic-
ular case of [37, Corollary 4].

Theorem 7.2 (From [37]). Let X ⊂ B ⊂ Y be Banach spaces such that X is com-
pactly embedded into B, and B is continuously embedded into Y . Let τ0 < τ1 and F
be a subset of L∞([τ0, τ1];X) such that

{
∂v
∂τ , v ∈ F

}
is bounded in L∞([τ0, τ1];Y ).

Then F has compact closure in C([τ0, τ1];B).
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Fix ε, δ as in Proposition 7.1. Let K be the closed unit ball of Y (δ, ε, τ0). By
Proposition 7.1, the operator Φ maps K into itself. Notice that K is closed into
Y (δ′, ε′, τ0) if δ

′ < δ, ε′ > ε and 2ε+ δ < 2ε′ + δ′. In this subsection we show the
following lemma.

Lemma 7.3. Let 0 < ε < ε′ < 1/4 and 1 < δ′ < δ < 2 and assume 2ε + δ <
2ε′+δ′ < 2 (this implies that Y (δ, ε, τ0) is continuously embedded into Y (δ′, ε′, τ0)).
The image Φ(K) of K has compact closure in Y (δ′, ε′, τ0).

Remark 7.4. The assumptions of the lemma are satisfied for example by δ, ε, δ′, ε′

defined by

δ = 2− 4ε, ε′ = 2ε, δ′ = 2− 5ε,

for some small ε > 0.

Proof. It is sufficient to show that for all r > 0, there exists a finite number N of
functions in ψn ∈ Y (δ′, ε′, τ0), such that

(7.1) ψ ∈ Φ(K) =⇒ ∃n ∈ {1, . . . , N}, ‖ψ − ψn‖δ′,ε′,τ0 < r.

Recall first that Φ(K) ⊂ K. Thus for ψ ∈ Φ(K),

τ2−ε′‖PMψ(τ)‖Hδ′ + τ3−3ε′ |〈ψ(τ),m6〉|+ τ2−2ε′−δ′‖ 〈y〉
δ′
PMψ(τ)‖L2

6 τε−ε′ + τ3ε−3ε′ + τ2ε+δ−2ε′−δ′ .

Let τ1 such that τ0 < τ1/2 and
(τ1
2

)ε−ε′

+
(τ1
2

)3ε−3ε′

+
(τ1
2

)2ε+δ−2ε′−δ′

<
r

2
.

From the two preceding inequalities, we get that for ψ ∈ Φ(K),

(7.2) τ >
τ1
2

=⇒

τ2−ε′‖PMψ(τ)‖Hδ′ + τ3−3ε′ |〈ψ(τ),m6〉|+ τ2−2ε′−δ′‖ 〈y〉
δ′
PMψ(τ)‖L2 <

r

2
.

Next, consider the set

F =
{
Φ(w)

∣∣
[τ0,τ1]

, w ∈ K
}
.

We will show that the assumptions of Theorem 7.2 hold with

X = Σδ, B = Σδ′ , Y = Σδ−2,

where we define (as δ < 2) Σδ−2 = Hδ−2 + F(Hδ−2). Note that 0 < δ′ < δ, so
that X is compactly embedded in B. The fact that Φ(K) ⊂ K shows that F is a
bounded subset of C

(
[τ0, τ1]; Σ

δ
)
. Furthermore if φ = Φ(w) ∈ K then φ = φM +φS

where

∂τφS + iLφS = PSRp(w) + PSZp(w) + Zp(Q),

∂τφM + iLφM − PMZp(φM ) = PMRp(w) + PMZp(wS).

Using that φ and w are in K, we get that ∂τφ ∈ C
(
[τ0,+∞[; Σδ−2

)
and that

∂τφ|[τ0,τ1] is uniformly bounded in Σδ−2 with a bound which is independent of φ.

By Theorem 7.2, F has compact closure in C
(
[τ0, τ1]; Σ

δ
)
. As a consequence, there

exist ψ̃1,. . . ψ̃N such that

(7.3) ∀ψ̃ ∈ F, ∃n ∈ {1, . . .N}, sup
τ06τ6τ1

∥∥∥ψ̃(τ) − ψ̃n(τ)
∥∥∥
Σδ′

<
r

6τκ1
,

where κ = max{2− ε′, 3− 3ε′, 2− 2ε′ − δ′} > 0.
Let χ ∈ C∞([τ0,+∞[), supported in [τ0, τ1], such that 0 6 χ 6 1, and χ = 1

on [τ0, τ1/2]. For 1 6 n 6 N , let ψn = χψ̃n. We show that the ψn’s satisfy (7.1),
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which will conclude the proof of the lemma. Let ψ ∈ Φ(K). By (7.3), there exists
n ∈ {1, . . .N} such that

‖χψ − ψn‖L∞(τ0,+∞,Σδ′) 6
∥∥∥ψ − ψ̃n

∥∥∥
L∞(τ0,τ1,Σδ′)

<
r

Aτκ1
,

where A is a large universal constant to be specified later. And thus, using that
χψ is supported in [τ0, τ1],

∀τ > τ0, ‖χψ(τ)− ψn(τ)‖Σδ′ <
r

Aτκ
.

This implies, if A is large enough,

τ2−ε′‖χPMψ(τ) − PMψn(τ)‖Hδ′ + τ3−3ε′ |〈χψ(τ)− ψn(τ),m6〉|

+ τ2−2ε′−δ′‖ 〈y〉δ
′

(χPMψ(τ) − PMψn(τ)) ‖L2 <
r

2
.

Furthermore, by (7.2),

τ2−ε′‖(1− χ)PMψ(τ)‖Hδ′ + τ3−3ε′ |(1− χ) 〈ψ(τ),m6〉|

+ τ2−2ε′−δ′‖(1− χ) 〈y〉
δ′
PMψ(τ)‖L2 <

r

2
.

Hence (7.1). The proof is complete. �

7.3. End of the proof. The following proposition will allow us to use Schauder’s
Theorem in order to prove Theorem 3.5.

Proposition 7.5. Let 0 < ε < ε′ < 1/4 and 1 < δ′ < δ < 2, and assume
2ε+ δ < 2ε′ + δ′ < 2. The closed unit ball K of Y (δ, ε, τ0) is closed in Y (δ′, ε′, τ0).
In addition, the map Φ : K → K is continuous for the topology of Y (δ′, ε′, τ0).

Proof. In view of Proposition 7.1, we need only prove the continuity. We start
with an estimate of the difference of two parameters p, p̃ defined from two different
functions w, w̃ ∈ Y (δ′, ε′, τ0). Recall that the existence of p was proved in Proposi-
tion 5.1 as a fixed point of the operator Ψ(p) = Ψw(p), and that w ∈ Y (δ′, ε′, τ0)
implies ‖p‖3−3ε′,τ0 <∞. We have

|p(τ)− p̃(τ)| = |Ψw(p)(τ) −Ψw̃(p̃)(τ)|

6 |Ψw(p)(τ) −Ψw(p̃)(τ)| + |Ψw(p̃)(τ) −Ψw̃(p̃)(τ)| .

By the contraction estimate (5.18) on Ψw, we get

‖p− p̃‖3−3ε′,τ0 6
1

1− κ
‖Ψw(p̃)−Ψw̃(p̃)‖3−3ε′,τ0 .

Therefore, in view of the definition of Ψw,

‖p− p̃‖3−3ε′,τ0 .
∑

16j65

‖(Dj(p̃)(w) −Dj(p̃)(w̃))‖3−3ε′,τ0

+

∥∥∥∥
∫ +∞

τ

(D6(p̃)(w) −D6(p̃)(w̃))

∥∥∥∥
3−3ε′,τ0

.

By the definition (5.13) of Dj(p̃), one has

|Dj(p̃)(w) −Dj(p̃)(w̃)| 6 |〈PS(Rp̃(w) −Rp̃(w̃)),mj〉|+ |〈PSZp̃(w − w̃),mj〉|

6 |〈RNL,p̃(w) −RNL,p̃(w̃),mj〉|+ |〈RL,p̃(w − w̃),mj〉|+ |〈PSZp̃(w − w̃),mj〉| .
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In view of the explicit formulas for RNL and of the pointwise estimate (5.9) on RL,
we infer, since w, w̃ ∈ L∞

τ H
1:

|(Dj(p̃)(w) −Dj(p̃)(w̃))(τ)| . ‖w(τ) − w̃(τ)‖H1 (‖w(τ)‖H1 + ‖w̃(τ)‖H1 )

+
1

τ3
‖w(τ) − w̃(τ)‖H1 + |p̃(τ)|‖w(τ) − w̃(τ)‖H1 .

1

τ4−2ε′
‖w − w̃‖δ′,ε′,τ0 .

In conclusion,

(7.4) ‖p− p̃‖3−3ε′,τ0 .
1

τε
′

0

‖w − w̃‖δ′,ε′,τ0 .

Also, since

Φ1(w)(τ) = −n6

∫ +∞

τ

D6(p)(w),

we get

‖Φ1(w)− Φ1(w̃)‖δ′,ε′,τ0 .
1

τε
′

0

‖w − w̃‖δ′,ε′,τ0 .

Therefore Φ1 is (Lipschitz-)continuous on Y (δ′, ε′, τ0). It remains to show the con-
tinuity of Φ2.

Let w ∈ K and wn ∈ K such that wn → w in Y (δ′, ε′, τ0). Denote by φn =
Φ2(wn) = PMΦ(wn), and φ = Φ2(w). By Lemma 7.3, Φ(K) is relatively compact

and there exists a subsequence of φn which converges in Y (δ′, ε′, τ0) to some φ̃ ∈ K.

It remains to show that φ = φ̃. By (7.4) we have

lim
n→∞

‖pn − p‖3−3ε′,τ0 = 0.

By definition of Φ2, we have

∂τφn + iLφn − PMZpn(φn) = PMRpn(wn) + PMZpn(PSwn).

Letting n tends to ∞, we get that φ̃ satisfies the following equation in the sense of
distributions

∂τ φ̃+ iLφ̃− PMZp(φ̃) = PMRp(w) + PMZp(PSw).

Using that φ is, by definition, solution to the same equation, we get

∂τ (φ̃− φ) + iL(φ̃− φ)− PMZp(φ̃− φ) = 0,

which implies, by Lemma 6.3, that φ = φ̃. The proof is complete. �

Proof of Theorem 3.5. By Proposition 7.5, Φ is a continuous map fromK into itself.
By Lemma 7.3, Φ(K) is relatively compact in Y (δ′, ε′, τ0). As K is a convex closed
subset of Y (δ′, ε′, τ0), we can apply Schauder’s Theorem (see e.g. [38, Corollary
B.3]) which implies that Φ has a fixed point w ∈ K. By the definition of K and
Proposition 5.1, Theorem 3.5 follows. �

Appendix A. A differential inequality

Lemma A.1. Let µ > 0 and m ∈ N. Let (aj)j=1...m, (bj)j=1...m, be real constants,
a, b, η > 0, and (αj)j=1...m, (βj)j=1...m be constants in [0, 1]. Assume

∀j ∈ {1 . . .m}, aj + (b − a)αj > 0, bj + (a− b)βj > 0.

There exists τ0 such that for any M > 0 and any nonnegative continuous functions
z1 and z2 on [τ0,+∞[ such that

sup
τ>τ0

|τaz1(τ)| + sup
τ>τ0

|τbz2(τ)| <∞.
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and satisfying the following differential inequality on [τ0,+∞[:

(A.1)






z1(τ) 6

∫ ∞

τ


 M

σa+1+η
+ C

m∑

j=1

z1(σ)
1−αj z2(σ)

αj

σaj+1


 dσ,

z2(τ) 6

∫ ∞

τ


 M

σb+1+η
+ C

m∑

j=1

z1(σ)
βjz2(σ)

1−βj

σbj+1


 dσ,

we have

sup
τ>τ0

|τaz1(τ)| + sup
τ>τ0

|τbz2(τ)| 6 µM.

Proof. Denote by

Z1(τ) = τaz1(τ), Z2(τ) = τbz2(τ).

Let ãj = (1− αj)a+ αjb+ aj, b̃j = βja+ (1− βj)b+ bj. Using Young’s inequality,

Z1−θ
1 Zθ

2 6 (1− θ)Z1 + θZ2, (A.1) and Hölder inequality yield

z1(τ) 6M

∥∥∥∥
1

σa+1+η

∥∥∥∥
L1

+ C
m∑

j=1

(
‖Z1‖L∞ + ‖Z2‖L∞

) ∥∥∥∥
1

σãj+1

∥∥∥∥
L1

,

where the Lebesgue norms correspond to integration over [τ,∞[. Similarly,

z2(t) 6M

∥∥∥∥
1

σb+1+η

∥∥∥∥
L1

+ C

m∑

j=1

(
‖Z1‖L∞ + ‖Z2‖L∞

)∥∥∥∥
1

σb̃j+1

∥∥∥∥
L1

.

For any c > 0, ∥∥∥∥
1

σc+1

∥∥∥∥
L1([τ,∞[)

=
1

cτc
,

and hence (with a constant C depending only on the parameters η, a, b, ãj, b̃j)

Z1(τ) 6
C

τη
M + C

m∑

j=1

‖Z1‖L∞([τ0,+∞[) + ‖Z2‖L∞([τ0,+∞[)

τ ãj−a
,

Z2(τ) 6
C

τη
M + C

m∑

j=1

‖Z1‖L∞([τ0,+∞[) + ‖Z2‖L∞([τ0,+∞[)

τ b̃j−b
.

By assumption, ãj−a and b̃j−b are positive. Taking the sup norm of the preceding
inequalities and using the triangle inequality, we get

‖Z1‖L∞([τ0,+∞[) 6
C

τη0
M + C

m∑

j=1

‖Z1‖L∞([τ0,+∞[) + ‖Z2‖L∞([τ0,+∞[)

τ
ãj−a
0

‖Z2‖L∞([τ0,+∞[) 6
C

τη0
M + C

m∑

j=1

‖Z1‖L∞([τ0,+∞[) + ‖Z2‖L∞([τ0,+∞[)

τ
b̃j−b
0

.

Taking τ0 large, we obtain

‖Z1‖L∞([τ0,+∞[) 6
µ

4
M +

1

4
‖Z1‖L∞([τ0,+∞[) +

1

4
‖Z2‖L∞([τ0,+∞[),

‖Z2‖L∞([τ0,+∞[) 6
µ

4
M +

1

4
‖Z1‖L∞([τ0,+∞[) +

1

4
‖Z2‖L∞([τ0,+∞[).

Summing up, we get the announced result. �
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Appendix B. Some interpolation inequalities

Lemma B.1. Let d > 1. There exists C > 0 such that for all f ∈ S(Rd),

‖〈x〉 f‖L2 6
∥∥∥〈x〉3 f

∥∥∥
1/3

L2
‖f‖

2/3
L2 ,(B.1)

∥∥∥〈x〉2 f
∥∥∥
L2

6
∥∥∥〈x〉3 f

∥∥∥
2/3

L2
‖f‖

1/3
L2 ,(B.2)

‖f‖H1 6 ‖f‖
1/3
H3 ‖f‖

2/3
L2 ,(B.3)

‖f‖H2 6 ‖f‖
2/3
H3 ‖f‖

1/3
L2 ,(B.4)

‖〈x〉∇f‖L2 6 C
∥∥∥〈x〉3 f

∥∥∥
1/3

L2
‖f‖

1/3
L2 ‖f‖

1/3
H1 ,(B.5)

∥∥∥〈x〉2 ∇f
∥∥∥
L2

6 C
∥∥∥〈x〉3 f

∥∥∥
2/3

L2
‖f‖

1/3
H1 ,(B.6)

∥∥〈x〉∇2f
∥∥
L2 6 C

∥∥∥〈x〉3 f
∥∥∥
1/3

L2
‖f‖

2/3
H1 ,(B.7)

∥∥〈x〉∇4f
∥∥
L2 6 C

∥∥∥〈x〉5 f
∥∥∥
1/5

L2
‖f‖

4/5
H5 ,(B.8)

∥∥∥〈x〉4 ∇f
∥∥∥
L2

6 C
∥∥∥〈x〉5 f

∥∥∥
4/5

L2
‖f‖

1/5
H5 .(B.9)

Proof. To prove (B.1), use Hölder’s inequality:

‖〈x〉 f‖2L2 =

∫

Rd

(
〈x〉6 |f(x)|2

)1/3 (
|f(x)|2

)2/3
dx

6

∥∥∥∥
(
〈x〉

6
|f(x)|2

)1/3∥∥∥∥
L3

∥∥∥
(
|f(x)|2

)2/3∥∥∥
L3/2

.

Inequality (B.2) follows the same way:
∥∥∥〈x〉2 f

∥∥∥
2

L2
=

∫

Rd

(
〈x〉

6
|f(x)|2

)2/3 (
|f(x)|2

)1/3
dx

6

∥∥∥∥
(
〈x〉

6
|f(x)|2

)2/3∥∥∥∥
L3/2

∥∥∥
(
|f(x)|2

)1/3∥∥∥
L3
.

Inequalities (B.3) and (B.4) then follow from (B.1) and (B.2), respectively, and
Plancherel formula.

Integrating by parts, we have

‖〈x〉∇f‖
2
L2 = −

∫

Rd

f(x)∇ ·
(
〈x〉

2
∇f(x)

)
dx

.

∫

Rd

|f(x)| 〈x〉 |∇f(x)|dx +

∫

Rd

|f(x)| 〈x〉
2
|∆f(x)|dx

. ‖〈x〉 f‖L2 ‖f‖H1 +
∥∥∥〈x〉2 f

∥∥∥
L2

‖f‖H2

.
∥∥∥〈x〉3 f

∥∥∥
1/3

L2
‖f‖

4/3
L2 ‖f‖

1/3
H1 +

∥∥∥〈x〉3 f
∥∥∥
2/3

L2
‖f‖

2/3
L2 ‖f‖

2/3
H1 ,

where we have used (B.1)–(B.4). Inequality (B.5) follows.
Integration by parts also yields

∥∥∥〈x〉2 ∇f
∥∥∥
2

L2
= −

∫

Rd

f(x)∇ ·
(
〈x〉4 ∇f(x)

)
dx

.
∥∥∥〈x〉3 f

∥∥∥
L2

‖f‖H1 +
∥∥∥〈x〉3 f

∥∥∥
L2

∥∥〈x〉∇2f
∥∥
L2

.
∥∥∥〈x〉3 f

∥∥∥
L2

(
‖f‖

1/3
H3 ‖f‖

2/3
L2 +

∥∥〈x〉∇2f
∥∥
L2

)
.
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On the other hand,
∥∥〈x〉∇2f

∥∥2
L2 = −

∫

Rd

∇f(x)∇
(
〈x〉

2
∇2f(x)

)
dx

. ‖〈x〉∇f‖L2 ‖f‖H2 +
∥∥∥〈x〉2 ∇f

∥∥∥
L2

‖f‖H3

. ‖f‖H3

(∥∥∥〈x〉3 f
∥∥∥
1/3

L2
‖f‖

2/3
L2 +

∥∥∥〈x〉2 ∇f
∥∥∥
L2

)
.(B.10)

We infer, for instance,
∥∥∥〈x〉2 ∇f

∥∥∥
2

L2
.
∥∥∥〈x〉3 f

∥∥∥
7/6

L2
‖f‖

1/3
L2 ‖f‖

1/2
H3 +

∥∥∥〈x〉2 ∇f
∥∥∥
1/2

L2

∥∥∥〈x〉3 f
∥∥∥
L2

‖f‖
1/2
H3

6 C
∥∥∥〈x〉3 f

∥∥∥
7/6

L2
‖f‖

1/3
L2 ‖f‖

1/2
H3 + ε

∥∥∥〈x〉2 ∇f
∥∥∥
2

L2

+ Cε

(∥∥∥〈x〉3 f
∥∥∥
L2

‖f‖
1/2
H3

)4/3
,

where we have used Young’s inequality, with (4, 4′) = (4, 4/3). Taking ε < 1 yields
(B.6), and (B.7) then follows from (B.10).

The proof of (B.8) and (B.9) is similar, and we omit it. �
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