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We study the coherent transport of heavy holes through a one-dimensional ring in the presence
of spin-orbit coupling. Spin-orbit interaction of holes, cubic in the in-plane components of momen-
tum, gives rise to an angular momentum dependent spin texture of the eigenstates and influences
transport. We analyze the dependence of the resulting differential conductance of the ring on hole
polarization of the leads and the signature of the textures in the Aharonov-Bohm oscillations when
the ring is in a perpendicular magnetic field. We find that the polarization-resolved conductance
reveals whether the dominant spin-orbit coupling is of Dresselhaus or Rashba type, and that the
cubic spin-orbit coupling can be distinguished from the conventional linear coupling by observing
the four-peak structure in the Aharonov-Bohm oscillations.

PACS numbers: 03.65.Vf, 71.70.Ej, 73.23.-b, 73.63.-b

I. INTRODUCTION

Conductance of mesoscopic rings threaded by the mag-
netic flux shows Aharonov-Bohm oscillations [1] due to
the phase a quantum state acquires when it winds around
the magnetic flux. An analogous effect in rings made
of semiconductors with spin-orbit coupling occurs due
to the spin precession as an electron orbits the ring,
giving rise to the Aharonov-Casher phase [2]. Both
the Aharonov-Bohm and the Aharonov-Casher effect are
manifestations of quantum coherence in mesoscopic sys-
tems, and provide a way to study the quantum interfer-
ence in mesoscopic conductors [3, 4, 5, 6]. They lead
to universal conductance fluctuations [7] and persistent
spin and charge currents [8, 9, 10]. From a more prac-
tical point of view, the conductance that depends on
the magnetic flux in the case of Aharonov-Bohm effect,
or on the strength of spin-orbit coupling in the case of
Aharonov-Casher effect, paves the way for novel appli-
cations in mesoscopic electronic and spintronic devices.
For example, the Aharonov-Casher phase can be mod-
ified by applying a backgate voltage to the device and
changing the Rashba coupling constant [11]. This enables
spintronic devices that require neither any ferromagnetic
materials, nor the control over magnetic field to operate
[11, 12, 13, 14].

Recently, a number of experimental [15, 16] and the-
oretical [4] studies have investigated transport of heavy
holes in rings. These studies are relevant because of the
strong spin-orbit coupling of heavy holes confined to the
ring [15], and long coherence length (∼ 3µm in carbon-
doped GaAs), making the interference effects in trans-
port observable. The material parameters of holes allow
for spintronic applications [17]. In coherent spin-orbit
coupled systems, the transport shows an intriguing in-
terplay of Aharonov-Bohm and Aharonov-Casher effects
[18]. Apart from showing strong spin-orbit coupling and
long coherence lengths, the heavy holes interact through
a novel form of the spin-orbit coupling that is cubic in

the in-plane components of momentum. This form of
spin-orbit coupling influences the interference effects in
transport.
In this work, we study the conductance of a ring of

heavy holes tunnel-coupled to two external leads. This is
in contrast to previous studies which consider rings that
are strongly coupled to the leads [4], or are in a diffusive
regime and can be described using semiclassical trajecto-
ries [19], or described in a lattice model [20]. Studies of
the conduction through quantum dots embedded in an
Aharonov-Bohm ring have focused on the effects of in-
teraction on the transport [21, 22, 23] , while we study
the interference of many available paths. In these setups,
the interference effects can be traced to the Aharonov-
Bohm and Aharonov-Casher phases accumulated by a
spin experiencing a time dependent field while moving
along a trajectory through the ring. In the adiabatic
limit, this approach leads to geometric phases [24]. On
the other hand, in our tunneling setup, the quantum ef-
fects in transport arise from the interference of tunneling
paths through the eigenstates of the ring. The interfer-
ence is then related to the magnetic field dependence of
the eigenstates of a hole confined to the ring, and not to
the phase accumulated by a spin following quasiclassical
trajectory.
The states |Ψhh〉 of a heavy hole orbiting a ring can be

described in terms of pseudospin textures. At a position
φ along the ring, the heavy hole state is

〈φ|Ψhh〉 = ψ+(φ)|jz = 3/2〉+ ψ−(φ)|jz = −3/2〉, (1)

and it determines a unique direction n in the pseudospin
space for which 〈φ|Ψhh〉 is an eigenstate of pseudospin
projection to the axis n, i.e., |Ψhh〉 ∝ |σn = 1〉. We iden-
tify the |jz = ±3/2〉 heavy hole states with pseudospin-
1/2 pointing in ±z direction, |σez = ±1〉. The pseu-
dospin texture associates the direction n with every point
φ on the ring (Figs. 1, 2), so that the states in Eq. (1)
can be represented in terms of spin texture as

〈φ|Ψhh〉 = eiλ(φ)|σ
n(φ) = 1〉, (2)
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with the texture defined by the position-dependent unit
vector n(φ), and the position-dependent overall phase
λ(φ). The textures of heavy hole eigenstates depend on
the hole orbital momentum κ, so that the holes arrive at
the connecting leads with different pseudospins, causing
an interference pattern in the resulting conductance.
In the measurement of conductance as a function of

flux through a semiconductor ring, the Aharonov-Casher
effect manifests itself through an additional structure in
the Aharonov-Bohm oscillations due to spin precession in
the arms of the ring [15]. In the approximation of spin-
orbit coupling that is linear in momentum, the conduc-
tance oscillations reveal a splitting of Aharonov-Bohm
peak in the Fourier transform of resistivity as a func-
tion of the external magnetic field [25]. However, the
spin-orbit coupling of holes in III-V semiconductors is,
in lowest order, cubic in the hole momentum [26]. In
this case, the spin texture of the orbiting carrier depends
on the momentum (see below) and profoundly influences
the transport. Therefore, for the carriers with cubic
spin-orbit coupling, the Aharonov-Casher phase can be
controlled by changing the momentum of the carriers,
without the need to modify the coupling constant. This
point is especially important in the structures fabricated
in symmetric quantum wells where the Rashba coupling
is absent, and the Dresselhaus spin-orbit coupling is given
by the crystalline structure. Even though the coupling
constant is fixed, due to the cubic form of spin orbit cou-
pling, the Aharonov-Casher phase can still be indirectly
controlled through the manipulation of the carrier mo-
mentum. In addition, the Dresselhaus and Rashba terms
produce different patterns in conductance as a function
of backgate voltage, so that the conductance in phase-
coherent rings reveals the dominant type of spin-orbit
coupling.
The remainder of the paper is organized as follows: In

Sec. II, we describe the confinement of heavy holes to
a ring and derive the effective one-dimensional Hamilto-
nian. In Sec. III, we solve for the hole eigenstates and
eigenenergies. In Sec. IV, we introduce the tunnelling
model of hole transport through the ring. In Sec. V, we
present the resulting differential conductance of the ring.
We conclude in Sec. VI.

II. HEAVY HOLES IN A ONE-DIMENSIONAL
RING

Heavy holes confined to the two-dimensional hole gas
(2DHG) are described with H = H0 +HSO +HZ, where
H0 = p2/2mhh is the standard kinetic term, HZ =
(1/2)µBB · g ·σ is the Zeeman coupling to the magnetic
field B, µB being the Bohr magneton, g the gyromag-
netic tensor of the confined holes, and σ the vector of the
pseudospin Pauli matrices. The spin-orbit interaction of
heavy holes is, in lowest order, cubic in the in-plane com-
ponents of the momentum [26],

HSO =
(

iαp3− + βp−p+p−
)

σ+ + h. c., (3)

where α and β are respectively interaction strengths of
Rashba and Dresselhaus spin-orbit coupling, and O± =
Ox ± iOy, (O = p, σ). The pseudo-spin represents the
two heavy hole states |σz = ±1〉 = |j = 3/2, jz = ±3/2〉.
This is in sharp contrast to the electrons in a two-
dimensional electron gas (2DEG), where the spin-orbit
is in the lowest order linear in momentum. Effects of
spin orbit coupling in general depend on the confinement,
both to the 2DHG and to the ring. We will treat the spin-
orbit coupling strengths α and β as free parameters and
absorb the influence of the electrostatic potential that
confines the holes to two dimensions into their values. In
particular, if the confinement to two dimensions is caused
by a symmetric potential, the Rashba coupling vanishes,
α = 0. We neglect the orbital effects of the magnetic
fields so that p is the kinetic momentum of the hole.

In order to illustrate the spin structure of ring eigen-
states, we will first solve for the eigenvalues and wave
functions of the heavy holes confined to the ring in the
absence of magnetic field. Later, we take the magnetic
field into account and find that it causes modification of
the quantization condition and the Zeeman coupling.

The two-dimensional hole gas is confined to the ring
by a radial potential V (r) that has a deep minimum in
the interval a − w/2 < r < a + w/2, where a is the ra-
dius of the ring, and w is its width. States of the hole
orbiting the ring in the limit of strong confinement are
products of the ground state radial wave function in the
potential V (r), and a function of the angular coordinate
Ψ(φ). For strong radial confinement, the motion of the
hole in the ring is described by an effective Hamiltonian
that depends only on the angular coordinate along the
ring and all the properties of the radial wave function
enter the problem only through the parameters of the
effective one-dimensional Hamiltonian. The description
in terms of the effective one-dimensional Hamiltonian is
valid when both the energy spacing of the 2DHG confine-
ment and the energy spacing of the radial confinement are
much larger than the energies associated with the motion
along the ring.

We find an effective Hamiltonian for the ring by in-
troducing the confinement potential V (r) in the radial
direction in HSO and reducing it to the subspace of the
lowest radial mode, in analogy with [27]. Typically these
results were obtained by introducing a model potential
and explicitly calculating the angular Hamiltonian for the
lowest radial mode. The resulting one-dimensional effec-
tive Hamiltonian for the harmonic radial confinement was
found for the case of linear- [27] and cubic Rashba [19]
spin-orbit coupling. We note that generically the solution
to the radial problem in an arbitrary potential can lead
to divergences in the effective Hamiltonian. This can be
avoided by working directly with the radial wave function
in the form of a harmonic oscillator ground state. In this
work, we employ a different approach, and calculate the
effective Hamiltonian for a general radial wave function.
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The resulting effective one-dimensional Hamiltonian is

H =−
1

2mhha2
∂2φ+

[

iαe3iφ
(

F0 + F1∂φ + F2∂
2
φ + F3∂

3
φ

)

+

βeiφ
(

G0 +G1∂φ +G2∂
2
φ +G3∂

3
φ

)]

σ−+
[

−iαe−3iφ
(

F0 − F1∂φ + F2∂
2
φ − F3∂

3
φ

)

+

βe−iφ
(

G0 −G1∂φ +G2∂
2
φ −G3∂

3
φ

)]

σ+.

(4)

where G0 = i(R0 + R1 − R2), G1 = −(R1 + R2), G2 =
i(R2 − 2R3), and G3 = −R3, F0 = i(R0 − 3R1 + 3R2),
F1 = −3R1 + 9R2 − 8R3, F2 = i(−3R2 + 6R3), and
F3 = R3. The parameters that depend on the radial con-
finement are Rj = 〈r−j∂3−j

r 〉radial, where the expectation
value is taken in the ground state radial wave function.
The parameters Rj , j = 0, . . . , 3, satisfy consistency con-
ditions that reduce the number of free parameters to two.
We keep the explicit dependence of the independent ex-
pectation values in the radial state. The constraints are
R2 = R3/2 and R0 = −3R1/2. The constraints can
be proven using integration by parts in the radial part
of the Schrödinger equation, under the assumption that
the radial part of the wave function vanishes at the ori-
gin together with its derivatives up to order 3. We have
checked that this conclusion holds in the limit of a series
of potentials that converge to the hard wall. Also, note
that the relation between R0 and R1 is satisfied for the
radial wave functions of the harmonic confinement for
which R3 diverges [19]. We can take the values R0 and
R3 as the free parameters of the ring confinement. For a
ring of radius a and width w, R3 ∝ a−3, R0 ∝ a−1w−2.
Before embarking on the solution of the one-

dimensional problem, let us briefly discuss the resulting
Hamiltonian. Depending on the radius and the width
of the ring, different terms in the spin-orbit interaction
become more or less important. Also, we see an en-
hancement of the spin-orbit effects in narrow and small
rings. We see that the strength of the spin-orbit coupling
terms depends on the width of the one-dimensional ring
w through the parameter 1/(aw2). This means that the
spin-orbit coupling terms can be enhanced in a very nar-
row ring. In this limit, however, the spin-orbit coupling is
effectively linear. Therefore, the effects of the cubic spin-
orbit coupling presented here will be pronounced in the
rings of intermediate widths, and the strength of radial
confinement that is strong enough for the approximation
of the single radial mode to hold.

III. SPECTRUM AND EIGENSTATES OF THE
ORBITING HOLES

The effective Hamiltonian (4) describes a ring of heavy
holes in the presence of both Dresselhaus and Rashba
spin-orbit interaction, when α 6= 0 and β 6= 0. Our
goal is to understand the role of cubic spin-orbit cou-
pling in transport, and contrast its effects to the standard

linear spin-orbit coupling, experienced by the electrons
in a similar configuration. We will therefore focus on
the two limits that allow for a simple solution, namely,
Dresselhaus-only interaction (α = 0), and Rashba-only
interaction (β = 0) that was previously studied in [19].
While restricting the domain of validity of our results,
these approximations emphasize the physical picture of
the eigenstates in terms of holes orbiting the ring, and the
associated texture of the hole pseudospin. Apart from al-
lowing a simple solution and providing a simple picture
of the eigenstates, these two limits are also, in principle,
realizable in practice. In the semiconductor heterostruc-
tures that confine holes to the 2DHG, the strength of the
Rashba term is governed by the asymmetry of the confin-
ing potential in the direction perpendicular to the 2DHG
plane. For a highly asymmetric potential the Rashba
term is dominant, but it vanishes when the holes are
confined by a symmetric potential well.

A. Dresselhaus (α = 0) case

Eigenstates of the effective Hamiltonian (4) are speci-
fied by two quantum numbers, κ = (2n+ 1)/2, where n
is an integer, and the texture quantum number τ =⇑,⇓,
that takes on two discrete values. The Dresselhaus inter-
action eigenstates Ψd are

Ψd
κ⇑ = eiκφ

(

cos θd(κ)
2 e−

i
2
(φ+π

2
)

sin θd(κ)
2 e

i
2
(φ+π

2
)

)

(5)

Ψd
κ⇓ = eiκφ

(

− sin θd(κ)
2 e−

i
2
(φ+π

2
)

cos θd(κ)
2 e

i
2
(φ+π

2
)

)

, (6)

where the texture angle θd(κ) is

θd(κ) = tan−1

[

2mhhβ

R
2/3
3

(

2

3
R0 +

(

κ2 −
5

4

)

R3

)

]

. (7)

The states represent a hole that orbits the ring with an-
gular momentum κ and well defined spin texture. At
the point on the ring with the angle φ, the spin state
〈φ = φ0|Ψ

d
κ⇑〉 corresponds to the spin that is tilted by

the angle θd(κ) from the normal to the plane of the ring,
and the azimuthal angle is Φ = φ0 + π/2, so that the
projection of the spin to the plane of the ring is always
tangential to the ring (see Fig. 1). The spin state associ-
ated with the other texture, 〈φ = φ0|Ψκ⇓〉, corresponds
to the spin with the tilt angle π − θd, and the same az-
imuthal angle. The crucial difference with respect to the
eigenstates of the ring with linear spin-orbit coupling is
that the texture of the state depends on the momen-
tum quantum number κ even in the absence of magnetic
fields. Therefore, the states of different momentum show
different spin textures.
Energies depend on both momentum and the texture,

Ed
κ,⇑(⇓) =

1

2mhhR
2/3
3

(

κ2 +
1

4
±

κ

cos θd(κ)

)

. (8)
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FIG. 1: (Color online) Hole pseudospin texture of the
Dresselhaus-only eigenstate.

The pairs of eigenstates (Ψκ,⇑,Ψ−κ,⇓) form Kramers dou-
blets, Ed

κ⇑ = Ed
−κ⇓.

B. Rashba (β = 0) case

When the spin-orbit coupling is of the Rashba type,
the momentum κ = (2n + 1)/2 for integer n is still a
good quantum number, and there are still two textures,
τ =⇑ and τ =⇓ for every value of κ. The eigenstates Ψr

are

Ψr
κ⇑ = eiκφ

(

cos θr(κ)
2 e−

3i
2
φ

sin θr(κ)
2 e

3i
2
φ

)

(9)

Ψr
κ⇓ = eiκφ

(

− sin θr(κ)
2 e−

3i
2
φ

cos θr(κ)
2 e

3i
2
φ

)

, (10)

with the Rashba texture angle θr(κ)

θr(κ) = tan−1

[

2mhhα

R
2/3
3

(

2

3
R0 +

(

13

12
−

1

3
κ2
)

R3

)

]

.

(11)
As for the Dresselhaus case, the eigenstates represent a
hole with well defined pseudospin texture that orbits the
ring. The texture is however quite different. The pseu-
dospin 〈φ = φ0|Ψ

r
κ⇑〉 is tilted away from the normal to

the ring plane by the angle θr(κ) that, in contrast to the
Dresselhaus case, can vary in the full range θr ∈ [0, π],
while the Dresselhaus spin orbit coupling allows only for
θd ∈ [0, π/2], except for κ = 1/2 and unrealistically large
R3. The pseudospin projection to the plane of the ring,
that was always tangential in the Dresselhaus case, now
makes three full rotations on each orbit (see Fig. 2). The
pseudospin of the opposite texture 〈φ = φ0|Ψ

r
κ⇓〉 has the

tilt angle θ = π − θr(κ), and the same projection to the
ring plane.

FIG. 2: (Color online) Hole pseudospin texture of the Rashba-
only eigenstate.

Energies in the Rashba case again depend on the mo-
mentum and texture

Er
κ,⇑(⇓) =

1

2mhhR
2/3
3

(

κ2 +
9

4
±

κ

cos θr(κ)

)

. (12)

The time reversal symmetry imposes Kramers degener-
acy, and the states in the Kramers doublet (Ψr

κ⇑,Ψ
r
−κ⇓)

have the same energy Er
κ⇑ = Er

−κ⇓.

C. Magnetic field

Our preceding calculation of the eigenstates and
eigenenergies did not take into account the interaction
of holes with the magnetic field B. In this subsection,
we will find the spectrum and the eigenstates of a heavy
hole in the presence of a magnetic field normal to the
ring. This calculation includes the change of the quan-
tization condition for the orbital momentum κ and the
Zeeman term HZ, but neglects the modification of the
lowest energy radial wave function due to the magnetic
confinement. This approximation neglects the modifica-
tion of the radial confinement, described by R1 and R3 in
Eq. 4 due to magnetic field. This approximation is valid
for weak magnetic fields rc ≫ a that give the cyclotron
radius rc much larger than the ring radius a, as well as
for the magnetic fields of arbitrary strength confined to
the interior of the ring.
The requirement that the wave function of an orbiting

hole is single-valued, 〈φ = 2π|Ψκτ 〉 = 〈φ = 0|Ψκτ 〉 gives
the quantization condition κ = (2n+ 1)/2, for integer n.
In the absence of Zeeman coupling, the complete spec-
trum of the ring is periodic in the flux with the period
Φ0. This perfect periodicity of the spectrum is broken by
the Zeeman interaction.
For the magnetic field in z− direction, normal to the

plane of the ring, it is possible to account exactly for the
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effects of Zeeman term HZ = bSz, where b = gzzµBB is
the magnetic field in with absorbed Bohr magneton µB

and the gyromagnetic tensor component gzz. For 2DHG
the g-tensor is highly anisotropic, and to a good ap-
proximation the only nonzero component is gzz. There-
fore, this approximation is valid also for the magnetic
fields with in-plane components, with the adjustment
that B → (B · ez)ez , since only the z− component im-
pacts both the Aharonov-Bohm flux and the Zeeman
term.
The Zeeman interaction couples the states of the same

orbital momentum κ and opposite textures. The energies
and eigenstates in the presence of Zeeman interaction
are (|κ ⇑〉, |κ ⇓〉) → (|κ+〉, |κ−〉) and (Eκ,⇑, Eκ,⇓) →
(Eκ,+, Eκ,−), where

Eκ,± =
1

2
(Eκ,⇑ + Eκ,⇓)±

√

1

4
δ(κ)2 + b2 + b cos θ(κ)δ(κ).

(13)

The eigenstates in the presence of Zeeman interaction
keep the κ quantum numbers, but the states of opposite
textures get mixed

(

|κ+〉
|κ−〉

)

=

(

cos Θ(κ)
2 − sin Θ(κ)

2

− sin Θ(κ)
2 cos Θ(κ)

2

)

(

|κ ⇑〉
|κ ⇓〉

)

, (14)

where the mixing angle Θ(κ) is

Θ(κ) = arccos
1
2δ(κ) + b cos θ(κ)

√

1
4δ(κ)

2 + b2 + b cos θ(κ)δ(κ)
. (15)

Here δ(κ) = Eκ,⇑ − Eκ,⇓ is the energy difference of the
two states with momentum κ and opposite textures.

IV. TUNNELING MODEL OF CONDUCTION

We consider a system of heavy holes confined to a ring-
shaped geometry and contacted by a pair of leads [Fig.
3]. The lead density of states is assumed to be wide and
flat. In order to elucidate the pseudospin structure of
the leads, we allow for an arbitrary pseudospin density
matrix ρS(D) in the source(drain) lead.
The spin textures revealed in the eigenstates of heavy

holes confined to a ring influence the transport prop-
erties when the ring is coupled to electrodes. For ex-
ample, the hole of a given pseudospin entering the ring
from the source electrode can propagate via different Ψκτ

eigenstates, and arrive at the drain electrode with differ-
ent pseudospin orientations. The pseudospin states at
the drain electrode will interfere, and the probability of
transmission will depend on the pseudospin orientations.
Since the pseudospin orientations at the drain electrode
depend on the hole momentum κ through the texture
of the state Ψκτ , we may expect that the transmission
of the ring, and therefore the resulting conductance will

S R D

t
S

t
D

FIG. 3: (Color online) Geometry of the ring of heavy holes
coupled to a pair of leads. The heavy holes in the ring (R)
experience the spin-orbit coupling. Due to this coupling, the
eigenstates of holes confined to the ring have a spin texture.
The ring is coupled to the source (S) and drain (D) electrodes
via tunneling of holes. The tunneling is assumed to conserve
the hole spin.

also depend on the momentum of the incoming hole. This
momentum dependence is absent the electronic systems
where the texture is determined solely by the spin-orbit
coupling constant [28]. Therefore, we expect new effects
of spin interference in transport of carriers that are sub-
ject to the cubic spin-orbit coupling.

The interference of heavy holes will be observable if
their coherence length λcoh is longer than the ring cir-
cumference λring. At the same time, the spin-orbit length
λSO that a hole must transverse in the ring in order to
experience an appreciable pseudospin rotation must be at
least comparable to λring. The resulting set of constraints
λcoh ≫ λring ∼ λSO can be achieved in the heavy hole
structures based on carbon-doped GaAs [15], [25].

In order to find the transmission through the ring,
we introduce a tunneling Hamiltonian model for the
ring coupled to source and drain electrodes. The tun-
neling Hamiltonian description is valid when the over-
lap of the electrode states and the ring states is small,
|φkσ(x)Ψκτ (x)| ≪ 1 for every point x within the system,
and every pair of states (κτ, kσ).

The tunneling between either electrode and the ring
occurs on the length scale λtun that is much shorter than
the spin-orbit length, λtun ≪ λSO. Therefore, unless
there are magnetic impurities in the boundary region be-
tween the ring and the leads, the tunneling will preserve
the true hole spin, resulting in the hole pseudospin con-
servation in tunneling, and the pseudospin independence
of the tunneling amplitudes.

The tunneling Hamiltonian reads

HT = HS +HD +HR +HT, (16)
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where the three noninteracting Hamiltonians

HS =
∑

kσ

ǫSkσs
†
kσskσ, (17)

HD =
∑

kσ

ǫDkσd
†
kσdkσ , (18)

HR =
∑

κτ

ǫκτr
†
κτ rκτ (19)

describe decoupled source electrode, drain electrode, and

the ring. The operators skσ(dkσ) annihilate a hole of
momentum k and pseudospin σ =↑, ↓ in the source(drain)
electrode, while the operators rκτ , τ =⇑,⇓ annihilates a
hole in the ring state Ψκτ . The ring energies ǫκτ are
given by (8) and (12). The tunneling term HT describes
processes when a hole hops from an electrode to the ring
and back,

Htun =
∑

kσ,κτ

(

tSkσ,κτs
†
kσrκτ + tDkσ,κτd

†
kσrκτ + h. c.

)

.

(20)

The tunneling matrix elements, t
S(D)
kσ,κτ , are determined by

the details of the potential barrier between the electrodes
and the ring. We are interested in the consequences of
nontrivial spin textures in the transport of holes through
a ring. The potential barrier is due to electric fields,
and its influence on the spin and the hole pseudospin
can come only from the spin-orbit coupling. Here we
assume that the holes of arbitrary pseudospin see the
same potential. This assumption is valid for a potential
which is nonzero only in a tunneling region of the linear
dimension much smaller than the spin-orbit length.
Under these assumptions, we can model the tunneling

matrix elements as

t
S(D)
kσ,κτ = t

S(D)
k,κ 〈kσS(D)|φS(D)〉〈φS(D)|κτ〉, (21)

where the spin- and texture-independent matrix elements

t
S(D)
k,κ describe the tunneling in the absence of spin-orbit
coupling, and the spin- and texture-dependent factor is
proportional to the overlap of the spin and texture part
of the wave function at the position φS(D) of the source
(drain) junction.
The resulting tunneling Hamiltonian Htun is a gener-

alization of the Fano-Anderson model [29] to the many
isolated levels in a continuum with different couplings to
the continuum states in the leads. Since the tunneling
term HT in (20) is bilinear in the operators that describe
the uncoupled system, it is in principle exactly solvable.
However, the exact solution for the eigenstates is simple
and transparent only in the case of a single level [18, 30].
The exact solution requires inversion of an N×N matrix,
where N is the number of relevant ring states. Instead
of solving for the eigenstates, we calculate the current
through the ring using the Keldysh technique [31].
The current through a region coupled to the leads via

a tunneling Hamiltonian was considered by Meir and

Wingreen in [32]. Quite generally, the current is

I =
e

h

∫

dǫ [fS(ǫ)− fD(ǫ)] Tr
[

GAΓDGRΓS(ǫ)
]

, (22)

where fS(D) are Fermi distribution functions in the source

and drain electrodes, GR(A) are retarded (advanced)
Green functions of the ring coupled to the leads, and
ΓS(D) are the escape rates of the ring states to the source
(drain) electrode. The trace is taken over the ring states
κτ . At zero temperature T = 0, the differential con-
ductance g(ǫ) for the carriers of energy ǫ can be directly
read off from (22) (for finite temperature T , see below)
as g(ǫ) = Tr

[

GAΓDGRΓS(ǫ)
]

.

The Green functions in frequency space GR(A)(ω) are
expressed in terms of the self-energy as

GR(A)(ω) =
1

[

gR(A)(ω)
]−1

−ΣR(A)(ω)
. (23)

Here, gR(A) is the retarded(advanced) Green function
of the ring. In our noninteracting case, the self-energy
ΣR(A) is given exactly as a sum of contributions coming
from the excursion of the hole through the electrodes,

ΣR(A)
κ1τ1,κ2τ2(ω) =

∑

kσ,L

(

tLkσ,κ1τ1

)∗
g
L R(A)
kσ (ω)tLkσ,κ2τ2 , (24)

where g
L R(A)
kσ (ω) are retarded (advanced) Green func-

tions of decoupled leads, being diagonal in kσ.
The escape rates ΓS/D describe the processes in which

a hole escapes from the ring into a lead and gets replaced
by another hole. They are defined as

ΓS/D
κ1τ1,κ2τ2(ω) = 2π

∑

kσ

t
S/D
kσ,κ1τ1

(

t
S/D
kσ,κ2τ2

)∗

δ(ω − ǫ
S/D
kσ ).

(25)
The current through the ring is determined by Eqs.

(22), (23), (24), and (25), once we incorporate the tunnel-
ing matrix elements (21). The current will depend on the
pseudospin states in the leads. The effects of the texture
in the ring eigenstates will be visible in the conductance
if the states in the ring are polarized. We thus consider
general pseudospin density matrices in the source (drain)
electrode

ρS(D) =
1

2

(

1+PS(D) · σ
)

, (26)

where the direction of PS(D), defines the axis of partial
polarization |PS(D)| ≤ 1 in the source(drain) lead.
We proceed by calculating the current using (22), with

the spin-dependent density of states in the escape rates
(25), and assuming that the bands in the leads are wide
and flat. Our calculation is numerical and includes a
finite number (184) of states in the ring. This approach
produces results that do not change in the range of low
values of ω with the addition of new levels. Another
reason for truncating the number of levels is the fact that
the dispersion relations for heavy holes in the ring (8),
and (12) predict unphysical states that are bound to the
ring by strong spin-orbit coupling.
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FIG. 4: (Color online) Tunneling dependence of differen-
tial conductance between unpolarized leads with Dresselhaus
spin-orbit coupling in the leads. The differential conductance
g(ǫ) in units of the conductance quantum G0 = h/e is plotted
as a function of the absolute value of the tunneling matrix el-
ement between the states of uncoupled leads of the ring, and
the chemical potential of the leads. At small tunneling, the
conductance shows peaks when the chemical potential of the
ring aligns with the energy levels of the ring. As the tunneling
grows, the peaks become wider and begin to overlap.

V. DIFFERENTIAL CONDUCTANCE OF A
HEAVY-HOLE RING

In this section, we discuss the influence of nontrivial
pseudospin textures in the eigenstates of the heavy hole
ring to its conductance. In the tunneling picture, we can
distinguish two basic sources of the varying conductance.
One source is the discrete spectrum of the ring, that in
the limit of weak tunneling produces a series of peaks in
the conductance when the chemical potential of the leads
aligns with the discrete energy levels of the ring. As we
increase the tunneling matrix elements the levels broaden
due to the coupling to the leads, and eventually begin to
overlap. Interference of the transitions from the source
lead to the drain lead via ring eigenstates is the second
source of variations in the conductance.

We illustrate the interplay of these two mecha-
nisms that modify conductance by studying pseudospin-
resolved current in the ring. Then, we study the
polarization-resolved conductance and show the qual-
itative differences between Dresselhaus- and Rashba-
coupled holes, which allow for the determination of the
dominant type of coupling.

Magnetic flux threaded through the ring causes
Aharonov-Bohm oscillations in the conductance that are
further modified by the pseudospin textures. The stan-
dard technique for observing these oscillations is by look-
ing for the peaks in the Fourier transform of the con-
ductance as a function of magnetic field that correspond
to the period of one flux quantum. We show that the

0 40 80 120
E [E

R
]

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

g 
[G

0]

g
++

 + g
+- 

g
+0

- ( g
++

 + g
+-

 )

g
+0

FIG. 5: (Color online) When the broadening of the ring levels
is strong enough to produce the overlap of the energy levels,
the tunneling processes through various states in the ring in-
terfere. Pseudospin textures affect this tunneling. The con-
ductance g+0 between the pseudospin-polarized source lead
and the unpolarized drain lead (thick black line) is not equal
to the sum of conductances g++ + g+− between the polar-
ized source and drain leads with parallel polarizations g++

and the conductance between polarized source and drain lead
with the antiparallel polarization g+− (thin dark (blue) line).
The difference g+0 − (g++ + g+−) is the contribution of the
interference term (thin bright (red)) line.

structure of Aharonov-Bohm oscillations in direct space,
i.e. before the Fourier transform, offers a signature of
the cubic spin-orbit coupling in the form of easily recog-
nizable four-peak structure in the oscillations. We trace
the emergence of this split-peak structure to dependence
of the energy spectrum of an orbiting hole on the flux
through the ring, and show that the form of the periodic
conductance is drastically different between the cubic and
linear spin-orbit coupling.
The possibility of experimental observation of the

pseudospin-resolved conductance is determined by the
widths of the ring energy levels compared to their split-
ting. In our system, the levels broaden due to tunnel-
ing. In experiment, an additional thermal broadening
will further smear the conductance peaks. We study the
disappearance of pseudospin-split conductance with tem-
perature, and suggest the regime favorable for resolving
the pseudospin components.
In this section, the energy is measured in units of ER,

the energy of κ = 1 orbital state in a ring without spin-

orbit coupling, ER = h̄2/2mhhR
−2/3
3 . For a typical ring

of radius R
−2/3
3 ∼ 0.5µm, ER ≈ 1µeV.

A. Level broadening and interference

The dependence of conductivity on the tunnel coupling
strength and carrier energy is illustrated in Fig. 4 which
shows the conductance between unpolarized leads. In
the limit of zero tunneling, |t| → 0, the peaks in the
conductance appear at the energies of an isolated ring.
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As the tunneling is increased, the levels become broader,
due to the tunneling of holes between the ring and the
lead. Our calculation includes contributions of an ar-
bitrary number of such ’excursions’. The calculation is
done at zero temperature (for the thermal broadening
see below). With strong enough tunneling, the broad-
ening of the ring levels leads to their overlap. The re-
sulting conductance in the overlapping region is not a
simple sum of the conductances of pseudospin compo-
nents. Since the tunneling involves many ring levels in a
coherent way, the resulting conductance shows a signa-
ture of interference. In Fig. 5, we show the interference
term at a fixed tunneling strength. The conductance g+0

between the pseudospin-polarized source lead and the un-
polarized drain lead (thick black line) is not equal to the
sum of conductances g++ + g+− between the polarized
source and drain leads with parallel polarizations g++

and the conductance between polarized source and drain
lead with the antiparallel polarization g+− (thin dark
(blue) line). The difference g+0 − (g++ + g+−) is the
contribution of the interference term (thin bright (red))
line.

B. In-plane spin textures

The conductance between the leads polarized in the di-
rection normal to the plane of the ring does not show the
full difference between the Dresselhaus- and Rashba cou-
pling induced textures. Namely the most striking differ-
ence between the two textures is in the projection of the
pseudospin to the plane of the ring, see Fig. 1 and Fig. 2,
which is qualitatively different for the two forms of the
cubic spin-orbit coupling. The in-plane component of the
Dresselhaus-only eigenstate winds once around the z−
axis as the ring is transversed, and always stays tangen-
tial to the ring. The in-plane component of the Rashba
state, on the other hand, winds three times as the ring is
transversed.

The winding of in-plane polarization is the same for
all the states in the ring and leaves a signature in the
conductance. We calculate the conductance between the
fully polarized leads with the polarization vector P in
the plane of the ring, and with the varying position of the
drain lead along the ring. We notice that the conductance
patterns in the Rashba case show more islands of con-
ductivity at a fixed carrier energy as the position of the
drain lead is encircling the ring. The reason for the addi-
tional islands is that the lead pseudospin aligns with the
in-plane projection of the pseudospin of ring eigenstates
at the position of the junction. Aligned pseudospins in-
crease the conductivity and create the islands. The in-
plane projection of the Dresselhaus eigenstate pseudospin
texture aligns with lead polarization for one junction po-
sition, while this alignment occurs for three positions in
the case of Rashba coupling.
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FIG. 6: Conductance between the completely in-plane po-
larized source and drain leads for Dresselhaus (upper panel)
spin-orbit coupled holes. The position of the source lead is
φS = 0, while the position of the drain lead φD varies between
0 and 2π. For each drain position, the differential conductance
is plotted as a function of the ring Fermi energy. The radial
structure of the pseudospin textures is seen in the traces of
conductance at a fixed energy.
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FIG. 7: Conductance between the completely in-plane po-
larized source and drain leads for Rashba spin-orbit coupled
holes. The position of the source lead is φS = 0, while the
position of the drain lead φD varies between 0 and 2π. For
each drain position, the differential conductance is plotted as
a function of the ring Fermi energy. Compare with the case
of Dresselhaus spin-orbit coupling.

C. Modified Aharonov-Bohm oscillations

Conductance measurements between the polarized
leads and with the control over the chemical potential
of the ring are difficult to achieve. Typical experiments
measure the conductance as a function of the magnetic
field that threads a magnetic flux through the ring and in-
troduces the Zeeman coupling. In our model of tunneling
conductance the Aharonov-Bohm phase can be incorpo-
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rated in the boundary conditions for the ring wave func-
tion, using the singular gauge. This leads to a quantiza-
tion condition for κ−Φ/Φ0, where Φ is the flux threaded
through the ring, and Φ0 is the flux quantum. The effect
of the flux is thus the shift of all the κ quantum numbers.
As a consequence, the energy levels and the pseudospin
textures change. The new texture angles θd/r and the
new energies Eκ,τ are still given by Eqs. (8), (7), (12),
and (11), but with the shifted values of the orbital quan-
tum number κ→ κ+Φ/Φ0.
The gross features of the Aharonov-Bohm oscillations

can be understood in terms of a simplified picture based
on interference of levels that lie close in energy. The
spectra of the ring in zero magnetic field, and in the
presence of weak spin-orbit coupling consists of pairs
of closely spaced Kramers doublets (Ψκ,⇑,Ψ−κ,⇓) and
(Ψκ+1,⇓,Ψ−κ−1,⇑). The gap between these doublets
scales as β2 (α2) for weak Dresselhaus (Rashba) spin-
orbit coupling, while all the other states are separated by
larger gaps that originate from the kinetic energy terms
and persist in the absence of spin-orbit coupling. There-
fore, we can approximately describe the conductance by
transition amplitudes

T =

(

T+,+ T+,−

T−,+ T−,−

)

, (27)

where the matrix element T s1s2 stands for the amplitude
for a hole of pseudospin ±1/2 for s1 = ± in the source-
lead to tunnel into the drain-lead with the pseudospin
±1/2 for s2 = ±. Taking into account only the tunneling
through the four closely spaced levels and in the absence
of the flux through the ring, the transition amplitudes
are

T0 = 2 sin (κπ) cos

(

d0
2

)(

cos s0
2 i sin s0

2
i sin s0

2 cos s0
2

)

, (28)

where s0 = θd/r(κ) + θd/r(κ + 1), and d0 = θd/r(κ) −
θd/r(κ+ 1) are the sum and the difference of the texture
angles of the involved states. Similar considerations for
the case of a ring threaded by the magnetic flux Φ = Φ0/2
equal to half the flux quantum gives

T1/2 = 2 cos (κπ) cos

(

d1/2

2

)(

cos
s1/2
2 i sin

s1/2
2

i sin
s1/2
2 cos

s1/2
2

)

,

(29)
where the relevant sums are now s1/2 = θd/r(κ+ 1/2) +

θd/r(κ+ 3/2), and d1/2 = θd/r(κ+ 1/2)− θd/r(κ+ 3/2).
The quantum number κ is a half of an odd integer and
T1/2 = 0. Therefore, this simplified description cor-
rectly predicts the minima in conductance when half a
flux quantum threads the ring. The conductance value is
zero in this simple model, but it turns out to be nonzero
when the additional levels are included in the more de-
tailed model. When the additional levels in the ring are
included, the conductance can be nonzero in the ring
threaded by half of flux quantum, see Fig. 8. The cur-
rents transmitted through the ring carry hole polariza-
tion, as can be seen from the figures. The peak in the
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FIG. 8: Conductance of the ring threaded by a half of flux
quantum. Leads are unpolarized. Note that the conductance
is not zero due to tunneling through off-resonant states. The
inset shows the conductance of the same ring with the same
flux, but between polarized leads. The peak at ǫF ≈ 55 ER

shows that the split peak in the main plot is due to the con-
ductance of the holes of different polarizations.

unpolarized conductance near the energy ǫ = 54ER is
split, while the polarized conductance shows a single peak
of roughly half the height. The components of the split
peak correspond to pseudospin components with high po-
larization up and down, described by pseudospin density
matrices (26) with P ≈ ez and P ≈ −ez. This splitting
is a clear signature of pseudospin dependent transport.
The standard setup for a study of conductance os-

cillations as a function of the magnetic field consists
of measuring the conductance at a fixed lead chemi-
cal potential and sweeping the external magnetic field.
The conductance then typically reveals the oscillations
with the period TAB = SΦ−1

0 , S being the ring sur-
face area and Φ0 the flux quantum. The spin-orbit cou-
pling was found to modify these oscillations [15]. In
our model the conductance is modified due to the pres-
ence of four closely spaced energy levels that correspond
to each peak in the conductance. At zero flux these
four levels are the Kramers doublets (Ψκ,⇑,Ψ−κ,⇓) and
(Ψκ+1,⇓,Ψ−(κ+1),⇑). The splitting between these pairs in
the absence of magnetic field is of second order in spin-
orbit coupling. As the magnetic flux is threaded through
the ring the quartet of levels splits, with two of the levels
with κ > 0 gaining energy, and the levels with κ < 0
losing it. In addition the Zeeman coupling splits these
levels further. This behavior is in sharp contrast to the
linear spin-orbit coupling case where there are at most
two states of any given energy.

The four-peak structure within the maximum of con-
ductance in Aharonov-Bohm oscillations represents a sig-
nature of the cubic spin-orbit coupling, see Fig. 9. The
period of oscillations is equal for both types of coupling,
but the shape of the peaks is drastically different. The
four-peak structure is most visible when the leads are
tuned into the vicinity of a ring energy level. At these
energies, in contrast, the linear spin-orbit coupling pro-
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FIG. 9: Aharonov-Bohm oscillations for different types of
spin-orbit coupling. (a) The conductance of the ring as a
function of the magnetic field shows oscillations with the pe-
riod that corresponds to a flux quantum threading the ring for
both linear ((red) light) and cubic ((black) dark) spin-orbit
coupling, but with markedly different conductance within a
period. (b,c) The four-peak structure (labels 1-4 in (a)) for
the cubic spin-orbit interaction, and the single-peak structure
for the linear spin-orbit coupling can be traced to the mag-
netic fields at which an energy level in the ring aligns with the
leads (labels 1-4 in (b)). Calculations for both plots are done
for the lead chemical potential of 36 ER ≈ 36µeV, close to an
energy level of an isolated ring in the absence of spin-orbit
coupling, and the linear spin-orbit coupling model is derived
from the cubic one by setting R3 = 0.

duces a single-peak structure.
Fourier spectra of conductance fluctuations were re-

ported to show the signature of spin-orbit coupling in
the diffusive regime, seen in the splitting of peaks in the
Fourier spectrum [15, 16]. We have compared the Fourier
spectra of our results in the case of linear and cubic
form of spin-orbit coupling. In our tunneling model, the
Fourier spectra of the ring with linear spin-orbit coupling
differs from the spectra of the ring with the cubic spin-
orbit coupling in the relative size of the base and higher
harmonic. The shape of the peaks in Fourier spectrum
does not show significant differences. Therefore, the sig-
nature of the cubic spin-orbit coupling is clearly visible
in the direct-space Aharonov-Bohm oscillations, and very
hard to discern in the Fourier transform.

D. Thermal broadening

The split peaks in differential conductance as function
of lead chemical potential will be visible is the distance
between the peaks is larger then their width. As an il-
lustration of the effects of temperature T > 0, we will in-
vestigate the broadening of pseudospin-resolved peak at
half flux quantum Φ = Φ0/2, Fig. 11. For the parameters
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FIG. 10: Fourier spectra of the ring conductance as function
of the magnetic field. The upper panel ((black) dark) shows
the conductance spectrum of the ring with cubic spin-orbit
coupling, and the lower panel ((red) light) shows the conduc-
tance spectrum of the ring with linear spin-orbit coupling.

The ring radius is set to R
−3/2
3 = 0.5µm, and the lead chem-

ical potential is 36 ER. The structure of base frequency and
the higher harmonics is the consequence of the Aharonov-
Bohm oscillations. The two cases can be distinguished by the
relative size of the harmonics.

we used, the splitting of the peaks is ∼ 3µeV ≈ 30mK,
and requires low temperatures to resolve. The broad-
ening that impairs resolving of the split peaks has a
temperature-independent contribution due tunneling to
the leads, and it is further increased due to the temper-
ature. We study the thermal broadening of the conduc-
tivity using (22), and finding the conductance g at finite
temperatures. We find that the conductance is indeed
broadened at finite temperatures, Fig. 11. However, the
visibility of the peaks and the resolution of peaks can
be improved if the peaks are narrower or the splitting is
larger. The peak splitting grows with the absolute value
of the momentum, |κ|, and can be observed at higher
temperatures if the momentum of the interfering states
is larger. In summary, the favorable conditions for the
observation of pseudospin- dependent conductance are
weak tunneling and low temperatures. Both of these
conditions aim at reducing the line width of the peaks.
Another way to resolve the pseudospins is to perform
an experiment with the higher chemical potential in the
leads, and observe the splitting of the higher-energy peak.
These peaks are further separated in energy, due to the
cubic spin orbit coupling.

VI. CONCLUSIONS

We have investigated the conductance of a mesoscopic
ring of heavy holes tunnel-coupled to leads. In the coher-
ent regime, the transport through the ring is dominated
by the the energy spectrum and the pseudospin texture
of the orbiting hole eigenstates. Due to the cubic form of
spin-orbit interaction, the pseudospin texture of the hole
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FIG. 11: Thermal broadening of differential conductance g.
Components of the split peak in the differential conductance
(inset in Fig. 8) merge into a single peak as the temperature
is raised. The squares represent the conductance of the ring
with stronger tunneling between the leads and the ring, |t| =
0.5ER, while the circles represent the conductivity for weaker
tunneling |t| = 0.3ER. Weaker tunnel coupling allows the
splitting to be resolved at higher temperatures.

eigenstates is momentum dependent, as opposed, e.g., to
the electrons with linear spin-orbit coupling.
The hole transport proceeds through tunneling be-

tween the source and the drain lead via various ring eigen-
states, with the phase of each tunneling path modified
due to the spin texture. The effects of interference be-

tween the tunneling paths are visible in the conductance
when the tunnel broadening is sufficient to make the ring
energy levels overlap. We have demonstrated that the
dominant type of spin-orbit interaction can be deduced
from the pseudospin-dependent conductance between the
polarized leads.

Aharonov-Bohm oscillations appear in the tunneling
approach as a consequence of the evolution the ring
spectrum as the magnetic flux is threaded through the
ring. Approximately periodic evolution of the peaks leads
directly to the approximately periodic conductance os-
cillations. We have explained the four-peak shape of
the Aharonov-Bohm oscillations in the direct space as
a direct consequence of four-fold near degeneracy of the
orbiting hole energy levels. This particular shape of
Aharonov-Bohm oscillations is a signature of the cubic
spin-orbit coupling, but it is not visible in the Fourier
transform of the conductance.

The pseudospin splitting of the conductance peaks,
caused by pseudospin textures of the ring eigenstates is
clearly visible at zero temperature and low tunneling,
but disappears when the combined thermal- and tunnel
broadening becomes comparable to the size of the split-
ting.
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