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IF: An Intermediate Representation for SDL and its ApplicationsMarius Bozga��, Jean-Claude Fernandezyy, Lucian Ghirvuz�z, Susanne Graf�,Jean-Pierre Krimm�, Laurent Mounier�, Joseph Sifakis�Key-words: Sdl, Static Analysis, Validation, Model-Checking, Test, Test Generation.AbstractWe present work of a project for the improvement of a speci�cation/validation toolboxintegrating a commercial toolset Objectgeode and di�erent validation tools such as theveri�cation tool cadp and the test sequence generator tgv.The intrinsic complexity of most protocol speci�cations lead us to study combination ofother techniques such as static analysis and abstraction together with the classical model-checking techniques. Experimentation and validation of our results in this context motivatedthe development of an intermediate representation for sdl called if. In this intermediaterepresentation, a system is represented as a set of timed automata communicating asyn-chronously through a set of bu�ers or by rendez-vous through a set of synchronization gates.The advantage of the use of such a program level intermediate representation is that itis easier to interface with various existing tools, such as static analysis, abstraction andcompositional state space generation. Moreover, it allows to de�ne for sdl di�erent, butmathematically sound, notions of time.We illustrate the use of if on a small example, a distributed leader election algorithm,on which we perform experimentation using static analysis and compositional generation.1 Introductionsdl and related formalisms such as msc and ttcn are at the base of a technology for the speci�-cation and the validation of telecommunication systems. This technology will be developing fastdue to many reasons, institutional, commercial and economical. sdl is promoted by Itu andother international standardization bodies. There exist commercially available tools and mostimportantly, there are increasing needs for description and validation tools covering as manyaspects of system development as possible. These needs motivate the work for enhancement ofthe existing standards undertaken by Itu and Etsi, in particular.Among the work directions for improvement of sdl, an important one is the description ofnon functional aspects of the behavior, such as performance and timing. Finding a \reasonable"notion of time is a central problem which admits many possible solutions depending on choicesof semantic models. This is certainly a non trivial question and this is re
ected by the varietyof the existing proposals.Choosing an appropriate timed extension for sdl should take into account not only technicalconsiderations about the semantics of timed systems but also more pragmatic ones related to�VERIMAG-Centre Equation, 2 avenue de Vignate, F-38610 Gi�eres, e-mail: Marius.Bozga@imag.fryLSR/IMAG, BP 82, F-38402 Saint Martin d'H�eres Cedex, e-mail: Jean-Claude.Fernandez@imag.frzWork partially supported by R�egion Rhône-Alpes, France1



the appropriateness for use in a system engineering context. We believe that the di�erent ideasabout extensions of the language must be validated experimentally before being adopted to avoidphenomena of rejection by the users. Furthermore, it is important to ensure as much as possiblecompatibility with the existing technology and provide evidence that the modi�ed standard canbe e�ciently supported by tools.Another challenge for the existing technology for sdl to face the demand for description andvalidation of systems of increasing size, is to provide environments that allow the user to masterthis complexity. The existing commercial tools are quite satisfactory in several respects and thisis a recognized advantage of sdl over other formalisms poorly supported by tools. However, it isnecessary to improve the existing technology to avoid failing to keep up. Mastering complexityrequires a set of integrated tools supporting user driven analysis. Of course, the existing toolssuch as simulators, veri�ers, automatic test generators can be improved. Our experience fromreal case studies shows that another family of tools is badly needed to break down complexity.All the methods for achieving such a goal are important ranging from the simplest and most\naive" to the most sophisticated.In this paper we present work of a project for the improvement of a speci�cation/validationtoolbox interconnectingObjectgeode[Ver96] and di�erent validation tools such as cadp[FGK+96]developed jointly with the Vasy team of Inria Rhône-Alpes and tgv[FJJV97] developed jointlywith the Pampa team of Irisa. The project has two complementary work directions. The�rst is the study and the implementation of timed extensions for sdl; this work is carried outin cooperation with Verilog, Sema Group and Cnet within a common project. The second iscoping with complexity by using a combination of techniques based on static analysis, abstrac-tion and compositional generation. Achieving these objectives requires both theoretical andexperimental work. Experimentation and validation of our results in this context motivated thedevelopment of an intermediate representation for sdl called if. if is based on a simple, andsemantically sound model for distributed timed systems which is asynchronously communicat-ing timed automata (automata with clocks). A translator from a static subset of sdl to if hasbeen developed and if has been connected to di�erent tools of our toolbox. The use of such anintermediate representation confers many advantages.� It is possible to implement and evaluate di�erent semantics of time for sdl as the underly-ing model of if is general enough to encompass a large variety of notions of urgency, timenon determinism and di�erent kinds of real-time constructs.� if allows a 
attened description of the corresponding sdl speci�cation with the possibil-ity of direct manipulation, simpli�cation and generally application of analysis algorithmswhich are not easy to perform using commercial tools which, in general, are closed.� if can be considered as a common representation model for other existing languages suchas Promela or for the combination of languages adopting di�erent description styles.Related workAfter its standardization in the eighties, a lot of work has been done concerning the mathe-matical foundations of sdl. The �rst complete semantics was given by the annex F to therecommendation Z.100 and is based on a combination of csp and Meta-iv. Even if it is thereference semantics of sdl (about 500 pages), it is far from being complete and contains manyinconsistencies and obscure points. 2



In [Bro91] is given a semantics for sdl based on streams and stream processing functions. Itdeals with a subset of sdl and the timing aspects are simpli�ed. An operational semantics whichcovers sdl systems, processes, blocks and channels is given in [God91]. It de�nes a method tobuild labeled transition systems from sdl speci�cations. The approach is relatively complete,however in this case too, time is not handled in a satisfactory manner. An important work isdone in [BM95, BMU98] which gives a semantics based on process algebra to a rather simplesubset of sdl, called '�sdl. A method is given, for translating each sdl system into a termof PA�drt-ID which is a discrete time process algebra extended with propositional signals andconditions, counting process creation operator, and a state operator. Finally, we mention thework of [MGHS97] which proposes an axiomatic semantics based on Duration Calculus and thework of [GK97] which uses abstract real time machines.The paper is organized as follows. In the next section, we present an example used throughoutthe paper to illustrate our work. Then, we describe the main features of the if formalism usedas an intermediate representation for sdl. Finally, we present an open validation environmentfor sdl speci�cations and illustrate its usefulness by means of some experimental results.2 An example: a distributed leader election algorithmWe present a simple example used throughout the paper to illustrate the introduced formalismsand veri�cation methods. We consider a token ring, that is a system of n stations S1, : : : , Sn,connected through a circular network, in which a station is allowed to access some shared resourceR only when it \owns" a particular message, the token. If the network is unreliable, it is necessaryto recover from token loss. This can be done using a leader election algorithm [Lan77, CR79] todesignate a station responsible for generating a new token.Formal speci�cations and veri�cations of these algorithms already exist and we considerhere an sdl version of the one described in [GM96]. Figure 1 shows the system view of thespeci�cation. The signals open and close denote the access and the release of the sharedresource (here a part of the environment). The signals token and claim are the messagescirculating on the ring.
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All stations Si are identical and modelled by the sdl process of Figure 2. On expirationof the timer worried token loss is assumed: this timer is set when the station waits for thetoken, and reset when it receives it. The \alternating bit" round is used to distinguish betweenvalid claims (emitted during the current election phase) and old ones (cancelled by a tokenreception). In the idle state, a station may either receive the token from its neighbour (then itreaches the critical state and can access the resource) and receive the timer expiration signal(then it emits a claim stamped with its address and the current value of round) or receive aclaim. A received claim is \�ltered" if its associated address is smaller than its own addressand transmitted unchanged if it is greater. If its own valid claim is received, then this stationbecomes elected and generates a new token.
process Si
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idleFigure 2: The behaviour of station SiTo complete this speci�cation, message loss should be modelled explicitly (for instance byintroducing a non deterministic choice when a token or claim is emitted by a station). However,using the intermediate representation if, message loss can be expressed directly using lossybu�ers.3 IF: An intermediate representation for SDLIn the following sections, we give a brief overview of the intermediate representation if, itsoperational semantics in terms of labeled transition systems and the translation of a ratherextended subset of sdl into if. A more complete description of if and its semantics can befound in [BFG+98]. In particular, we do not present the rendez-vous communication mechanismhere.3.1 An overview on IFIn if, a system is a set of processes communicating asynchronously through a set of bu�ers(which may be lossy/reliable and bounded/unbounded). The timed behaviour of a system can4



be controlled through clocks (like in timed automata [ACD93, HNSY94]) and timers (sdl timers,which can be set, reset and expire when they reach a value below 0).3.1.1 IF system de�nitionA system is a tuple Sys = (glob-def,procs) where� glob-def = (type-def,sig-def,var-def,buf-def) is a list of global de�nitions, where type-def isa list of type de�nitions, sig-def de�nes a list of parameterized signals (as in sdl), var-defis a list of global variable de�nitions, and �nally, buf-def is a list of bu�ers through whichthe processes communicate by asynchronous signal exchange.� procs de�nes a set of processes described in section 3.1.2.3.1.2 IF process de�nitionProcesses are de�ned by a set of local variables, a set of control states and a set of controltransitions. A process P2procs is a tuple P= (var-def, Q, cTrans), where:� var-def is a list of local variable de�nitions (including timers and clocks)� Q is a set of control states on which the following attributes are de�ned:{ stable(q) and init(q) are boolean attributes, where only stable states are visible onthe semantic level.{ for stable states, the tpc(q) attribute is a predicate on any variable \visible" in theprocess (global variables and local variables of P), de�ning when time is allowed toprogress. In non stable states, time cannot progress.{ save(q), discard(q) are lists of filters of the formsignal-list [ in buf ] [if cond].save(q) is used to implement the save statement of sdl; its e�ect is to preserve allsignals of the list in buf, whenever the condition cond holds.discard(q) is used to implement the implicit discarding of unconsumable signals ofsdl. When reading the next input signal in buf, all signals to be discarded precedingit in buf are discarded in the same atomic transition.� cTrans is a set of control transitions, consisting of two types of transitions between twocontrol states q,q'2Q:{ input transitions which are triggered by some signal read from one of the communi-cation bu�ers as in sdl: q g 7! input ; body�������������!(u) q0{ internal transitions depending not on communications:q g 7! body�������!(u) q0Where in both cases:� g is a predicate representing the guard of the transition which may depend on variablesvisible in the process (including timers, clocks and and bu�ers, where bu�ers are accessedthrough a set of primitives).� body is a sequence of the following types of atomic actions:5



{ outputs of the form \output sig(par list) to buf" have as e�ect to append a signalof the form \sig(par list)" at the end of the bu�er buf.{ usual assignments.{ settings of timers of the form \set timer := exp". This has the e�ect to activatetimer and to set it to the value of exp. An active timer decreases with progress oftime. sdl timers expire when they reach the value 0, but in if any timer tests areallowed. Clocks are always active and they increase with progress of time.{ resettings of timers and clocks, which have the e�ect to inactivate timers and to assignthe value 0 to clocks.� The attribute u2feager, delayable, lazyg de�nes the urgency type of each transition.eager transitions have absolute priority over progress of time, delayable transitions maylet time progress, but only as long as they remain enabled, whereas lazy transitions cannotprevent progress of time. These urgency types are introduced in [BST98].� input is an input of the form \input sig(reference list) from buf [if cond]" where{ sig is a signal,{ reference list the list of references1 in which the received parameters are stored,{ buf is the name of the bu�er from which the signal should be read{ cond is a \post guard" de�ning the condition under which the received signal isaccepted; cond may depend on received parameters.3.2 Semantics of IF3.2.1 Association of a model with a processWe show how with a process can be associated a labeled transition system, and then, how theseprocess models can be composed to obtain a system model. Let P= (var-def, Q, cTrans) be aprocess de�nition in the system Sys and:� Let TIME be a set of environments for timers and clocks (for simplicity of the presentation,we suppose that these environments are global, that is, applicable to all timers and clocksoccurring in Sys, if necessary, using renaming). An environment T 2TIME de�nes for everyclock a value in a time domain T (positive integers or reals), and for every timer eithera value in T or the value \inac" (which can be represented by a negative value) meaningthat the timer is not active. Setting or resetting a timer or a clock a�ects a valuation Tin an obvious manner. Progress of time by an amount � transforms the valuation T intothe valuation T � � in which the values of all clocks are increased by �, and the values ofall timers are decreased by � (where the minimal value is zero).� Let BUF be a set of bu�er environments B, representing possible contents of the bu�ersof the system, on which all necessary primitives are de�ned: e.g. \get the �rst signal ofa given bu�er, taking into account the save and the discard attribute of a given controlstate", \append a signal at the end of a bu�er",...\time progress by amount �", denotedby B � �, is necessary for bu�ers with delay.� Let ENV be a set of environments E de�ning the set of valuations of all other variablesde�ned in the system Sys.1that is an \assignable" expression such as a variable or an element of an array6



The semantics of P is the labeled transition system [P] = (Q�VAL,Trans,Ttrans) where� Q�VAL is the set of states and VAL= ENV�TIME�BUF is the set of data states.� Trans is the set of untimed transitions obtained from control transitions by the followingrule: for any (E ,T ,B),(E ',T ',B')2VAL and input transition (and simpler for an internaltransition)q g 7! (sig(x1:::xn);buf;cond) ; body�������������������������!(u) q02cTrans implies(q; (E ;T ;B)) �̀! (q'; (E 0;T 0;B0)) 2Trans, if{ the guard g evaluates to true in the environment (E ,T ,B){ the �rst element of buf in the environment B| after elimination of appropriate signalsof the discard attribute and saving of the signals of the save attribute | is a signalsig(v1:::vn), and the updated bu�er environment, after getting sig(v1:::vn), is B"{ E"=E [v1:::vn/x1:::xn] and T "=T [v1:::vn/x1:::xn] are obtained by assigning to xi thevalue vi of the received parameters,{ the post guard cond evaluates to true in the environment (E",T ",B"){ E ' is obtained from E" by executing all the assignments of the body,{ T ' is obtained from T " by executing all the settings and resettings occurring in thebody, without letting time progress,{ B' is obtained from B" by appending all signals required by outputs in the body,{ ` is an appropriate labeling function used for tracing.� Ttrans is the set of time progress transitions, which are obtained by the following rule:in any state (q,(E ,T ,B)), time can progress by the amount �, that is(q; (E ;T ;B)) ��! (q; (E ;T � �;B � �)) 2Ttrans if1. q is stable2. time can progress in the state (q,(E ,T ,B)), and,3. time can progress by steps until �: whenever time has progressed by an amount �0where 0 � �0 < �, time can still progress in the reached state (q,(E ,T � �0,B � �0)).Time can progress in a state (q,(E ,T ,B)) if and only if the following conditions hold:{ the time progress attribute tpc(q) holds in (E ,T ,B){ no transition with urgency attribute eager is enabled in (q,(E ,T ,B)){ for each delayable transition tr enabled in (q,(E ,T ,B)), there exists a positiveamount of time �, such that tr cannot be disabled while time progresses by �.3.2.2 Composition of modelsThe semantics of a system Sys = (glob-def,procs) is obtained by composing the models ofprocesses by means of an associative and commutative parallel operator k.Let [Pi] = (Qi�VAL,Transi,Ttransi) be the models associated with processes (or subsystems)of Sys. Then, [P1] k [P2] = (Q�VAL,Trans,Ttrans) where� Q= Q1�Q2 where init((q1,q2)) = init(q1) ^ init(q2)stable((q1,q2)) = stable(q1) ^ stable(q2)7



� Trans is the smallest set of transitions obtained by the following rule and its symmetricalrule: (q1;V) �̀! (q01;V 0) 2 Trans1 and :stable(q1) _ stable(q2)((q1; q2);V) �̀! ((q01; q2);V 0) 2 Trans� Ttrans is the smallest set of transitions obtained by the following rule(q1;V) ��! (q1;V 0) 2 Ttrans1 and (q2;V) ��! (q2;V 0) 2 Ttrans2((q1; q2);V) ��! ((q1; q2);V 0) 2 Ttrans3.3 Translation from SDL to IF3.3.1 Structuresdl provides a complex structuring mechanism using blocks, substructures, processes, services,etc, whereas if systems are 
at, that is consisting of a single level of processes, communicatingdirectly through bu�ers. Therefore, a structured sdl system is 
attened by the translation intoif. Also, the structured communication mechanism of sdl using channels, signal routes, connec-tion points, etc is transformed into point to point communication through bu�ers by computingfor every output a statically de�ned unique receiver process (respectively its associated bu�er).All prede�ned sdl data types, arrays, records and enumerated types can be translated. Forabstract data types, only the signatures are translated, and for simulation, the user must providean appropriate implementation.In sdl all signals are implicitly parameterized with the pid of the sender process, thereforein if all signals have an additional �rst parameter of type pid.3.3.2 ProcessesBasically, for each instance of an sdl process, we generate an equivalent if process and associatewith it a default input queue. If the number of instances can vary in some interval, the maximalnumber of instances is created.Variables: Each local variable/timer of an sdl process becomes a local variable/timer of thecorresponding if process. We de�ne also variables sender, offspring and parent which areimplicitly de�ned in sdl. Remote exported/imported variables declared inside an sdl processesbecome global variables, declared at if system level.States: All sdl states (including start and stop) are translated into stable if control states.As if transitions have a simpler structure than sdl transitions, we introduce also systematicallyauxiliary non stable states for each decision and each label (corresponding to a \join") withinan sdl transition. For each stable if state we de�ne the save and discard sets to be the same asfor the corresponding sdl state.Transitions: For each minimal path between two if control states, an if transition is gener-ated. It contains the triggers and actions de�ned on that path in the same order.8



All the generated transitions are by default eager i.e. they have higher priority than theprogress of time; this allows to be conform with the notion of time progress of the tool Ob-jectgeode; more liberal notions of time progress can be obtained by using di�erent translationsfrom sdl to if (see the example below).� inputs: sdl signal inputs are translated directly into if inputs, where the sender parametermust be handled explicitly: each signal receives the �rst parameter in the local variablesender.Spontaneous input none is translated by an assignment of the sender to the pid of thecurrent process. No input part is generated in this case.� timeouts expirations are not noti�ed via timeout signals in if: each timeout signal con-sumption in an sdl process is translated into a transition without input, which tests ifthe corresponding timer evaluates to zero, followed by the reset of that timer. The resetis needed to avoid multiple consumption of the same timeout expiration.� priority inputs: are translated into normal inputs by enforcing the guards of all low priorityinputs and the save set of the source state. The guard of each low priority input isconjuncted with a term saying that \there is no higher priority signal in the bu�er". Alllow priority signals are explicitly saved if \at least one input with higher priority exists inthe bu�er". Such tests can e�ectively be expressed by prede�ned predicates on bu�ers.� continuous signal: sdl transitions triggered by a continuous signal test, generate if tran-sitions without input. They are translated by an if transition, whose guard is equivalentto the sdl continuous signal.� enabling condition: an enabling condition following an sdl input signal is translated di-rectly into a post guarded input where the received parameters can be tested.� task: all sdl formal tasks are translated into if assignments. Informal tasks becomecomments in the if speci�cation.� set and reset: sdl timer sets become if timer sets, where an absolute value \now + T"becomes in if a relative value \T". sdl timer resets become if timer resets.� output: sdl outputs become if outputs: if the to pid-expression clause is present in thesdl output, the same pid-expression is taken as destination for the if output. Otherwise,according to signal routes signature, via restrictions, connections, etc. we compute stati-cally the set of all possible destinations. If this set contains exactly one process instance, itbecome the if destination, otherwise, this output is not translated. Every output containsas �rst parameter the pid of the sending process.� decision: each alternative of an sdl formal decision is translated into a guard starting anif-transition from the corresponding non stable state.� create: the dynamic creation of processes is not yet handled. But we intend to translatethis construction by using the rendez-vous mechanism of if: a new instance is created(an \inactive" instance is activated) by synchronizing its �rst action with the processcreating (activating) it. During this synchronization, parameters can be passed betweenthe \creating" and the \created" processes, such as the the values of the parent and theoffspring variables, etc.� procedures: if does not directly support procedures. But we handle a relatively large classof sdl programs containing procedures by procedure inlining, which consists in directlyinserting the procedure graph, instead of its call, in the process graph.9



Example: translation of the token ring to IFTo illustrate if, we present the translation of the token ring introduced in Section 2. Thetranslation of the structure is completely straightforward in this example. Figure ?? containsthe if version of the process S1, where the additional non stable states are dotted.
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set worried:=1
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round:=true
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if rnd<>round
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if rnd=round

if worried=0

if adr < S1
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Figure 3: The \graphical" if description of station S1By default, all transitions are eager, which leads to the same behaviour as in Objectgeode.Thus, time can only progress, and the timeout occur, if the token is really lost (that is, notransition is enabled), and therefore a leader election algorithm is only initiated if necessary.In if, a di�erent notion of time, closer to reality, can be modeled, e.g. by considering thetransition from the critical state as lazy, thus allowing time to pass there by an arbitraryamount. In order to limit the time that a process can remain in critical, one can introduce aclock cl crit which is reset when entering critical, add to the outgoing transition the guardcl crit�some limit and consider this transition as delayable.4 An open validation environment based on IFOne of the main motivations for developing if is to provide an intermediate representationbetween several tools in an \open" validation environment for sdl. Indeed, none of the existingtools provides all the validation facilities a user may expect. Therefore, we want to allow themto cooperate, as much as possible using program level connections. An important feature is theability of the environment to be open: in particular connections with kronos [Yov97] (a modelchecker for timed automata) and invest [GS97, BLO98] (a tool computing abstractions) areenvisaged.In this section, we �rst present the architecture of this environment and its main components.Then, we describe in a more detailed manner two more recent modules concerning static analysis(section 4.2) and compositional generation (section 4.3) which are based on if.4.1 ArchitectureThe environment is based on two validation toolsets, Objectgeode and cadp, connected throughthe intermediate representation if. There exists already a connection between these toolsets at10
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Figure 4: An open validation environment for sdlthe simulator level [KRL97], however using if o�ers two main advantages:� The architecture still allows connections with many other speci�cation languages or tools.Thus, even speci�cations combining several formalisms could be translated into a single ifintermediate code and globally veri�ed.� The use of an intermediate program representation where all the variables, timers, bu�ersand the communication structure are still explicit, allows to apply methods such as staticanalysis, abstraction, compositional generation. These methods are crucial for the appli-cability of the model checking algorithms.ObjectGEODEObjectgeode is a toolset developed by Verilog supporting the use of sdl, msc and omt.It includes graphical editors and compilers for each of these formalisms. It also provides a Ccode generator and a simulator to help the user to interactively debug an sdl speci�cation. TheObjectgeode simulator also o�ers some veri�cation facilities since it allows to perform automaticsimulation (either randomly or exhaustively), and behavioral comparison of the speci�cationwith special state machines called observers [ALH95].CADP and TGVWe have been developing for more than ten years a set of tools dedicated to the design andveri�cation of critical systems. Some of them are distributed in collaboration with the Vasyteam of Inria Rhône-Alpes as part of the cadp toolset [FGK+96, BFKM97]. We brie
y presenthere two veri�ers integrated in cadp (aldebaran and evaluator) and the test sequence11



generator tgv [FJJV97] built upon cadp jointly with the Pampa project of Irisa. Thesetools apply model-checking on behavioral models of the system in the form of labeled transitionsystems (lts). aldebaran allows to compare and to minimize �nite lts with respect to varioussimulation or bisimulation relations. This allows the comparison between the observable behaviorof a given speci�cation with its expected one, expressed at a more abstract level. evaluatoris a model-checker for temporal logic formulas expressed on �nite lts. The temporal logicconsidered is the alternating-free �-calculus. tgv aims to automatically generate test cases forconformance testing of distributed systems. Test cases are computed during the exploration ofthe model and they are selected by means of test purposes. Test purposes characterize someabstract properties that the system should have and one wants to test. They are formalized interms of lts, labeled with some interactions of the speci�cation. Finally, an important featureof cadp is to o�er several representations of lts, enumerative and symbolic ones based on bdd,each of them being handled using well-de�ned interfaces such as open-caesar [Gar98] andsmi [Boz97].SDL2IF and IF2CTo implement the language level connection through the if intermediate representation we takeadvantage of a well-de�ned api provided by the Objectgeode compiler. This api o�ers a set offunctions and data structures to access the abstract tree generated from an sdl speci�cation.sdl2if uses this abstract tree to generates an if speci�cation operationally equivalent to thesdl one.if is currently connected to cadp via the implicit model representation feature supportedby cadp. if programs are compiled using if2c into a set of C primitives providing a fullbasis to simulate their execution. An exhaustive simulator built upon these primitives is alsoimplemented to obtain the explicit lts representation on which all cadp veri�ers can be applied.4.2 Static analysisThe purpose of static analysis is to provide global informations about how a programmanipulatesdata without executing it. Generally, static analysis is used to perform global optimizations onprograms [ASU86, WZ91, Muc97]. Our goal is quite di�erent: we use static analysis in orderto perform model reductions before or during its generation or validation. The expected resultsare the reduction of the state space of the model or of the state vector.We want to perform two types of static analysis: property independent and property depen-dent analysis. In the �rst case, we use classic analysis methods such as live variable analysis orconstant propagation, without regarding any particular property or test purpose we are inter-esting to validate. In the second case, we take into account informations on data involved in theproperty and propagate them over the static control structure of the program. Presently, onlyanalysis of the �rst type is implemented but, we are also investigating constraint propagationand more general abstraction techniques. For instance, through the connection with invest wewill be able to compute abstract if programs using general and powerful abstraction techniques.Live variables analysisA variable is live in a control state if there is a path from this state along which its value canbe used before it is rede�ned. An important reduction of the state space of the model can be12



obtained by taking into account in each state only the values of the live variables.More formally, the reduction considered is based on the relation �live de�ned over modelstates: two states are related if and only if they have the same values for all the live variables. Itcan be easily proved that�live is an equivalence relation and furthermore, that it is a bisimulationover the model states. This result can be exploited in several ways. Due to the local nature of�live it is possible to directly generate the quotient model w.r.t. �live instead of the whole modelwithout any extra computation. Exactly the same reduction is obtained when one modi�es theinitial program by introducing systematic assignments of non-live variables to a particular value.This second approach is presently implemented for IF programs.Consider now the token ring protocol example. In the idle state the live variables are roundand worried, in the critical state only round is live, while variables sender, adr and rnd arenever live. The reduction obtained by the live reduction is shown in Table 1 (line 3).Constant propagationA variable is constant in a control state if its value can be statically determined in the state.Two reductions are possible. The �rst one consists in modifying the source program by replacingconstant variables with their value. Thus, it is possible to identify and then to eliminate partsof dead code of the program e.g. guarded by expressions which always evaluates to false,therefore to increase the overall e�ciency of the program. The second reduction concerns thesize of the state vector: for a control state we store only the values of the non-constant variables.The constant values do not need to be stored, they can always be retrieved by looking at thecontrol state.Note that, both of the proposed reductions do not concern the size of the model, they onlyallow to improve the state space exploration (time and space). However, this kind of analysismay be particularly useful when considering extra information about the values assigned tovariables, extracted from the property to be checked.4.3 Compositional generationAs shown in the previous section, e�cient reductions are obtained by replacing a model Mby its quotient w.r.t an equivalence relation like �live. However, stronger reductions can beobtained by taking into account the properties under veri�cation. In particular, it is interestingto consider a weaker equivalence R | which should be a congruence for parallel composition|, able to abstract away non observable actions. The main di�culty is to obtain the quotientM=R without generating M �rst.A possible approach is based on the \divide and conquer" paradigm: it consists in splittingthe program description into several pieces (i.e., processes or process sets), generating the modelMi associated to each of them, and then composing the quotients Mi=R. Thus, the initialprogram is never considered as a whole and the generated models can be kept small.This compositional generation method has already been applied for speci�cation formalismsbased on rendez-vous communication between processes, and has been shown e�cient in prac-tice [GLS96, Val96, KM97]. Surprisingly, to our knowledge it has not been investigated withinan sdl framework, may be, because bu�ers raise several di�culties or due to lack of suitabletools.To illustrate the bene�t of a compositional approach we brie
y describe here its applicationto the token ring protocol: 13



1. We split the if description into two parts, the �rst one contains processes S1 and S2 andthe second one contains processes S3 and S4. For each of these descriptions the internalbu�er between the two processes is a priori bounded to two places. Note that, when abounded bu�er over
ows during simulation, a special over
ow transition occurs in thecorresponding execution sequence.2. The lts associated with each of these two descriptions are generated considering the\most general" environment, able to provide any potential input. Therefore, the over
owtransitions appear in these lts (claim and token can be transmitted at any time).3. In each lts the input and output transitions relative to the internal bu�ers (Q2 andQ4) arehidden (i.e., renamed to the special � action); then these lts are reduced w.r.t an equiv-alence relation preserving the properties under veri�cation. For the sake of e�ciency wehave chosen the branching bisimulation [vGW89], also preserving all the safety properties(e.g. mutual exclusion).4. Each reduced lts is translated back into an if process, and these two processes are com-bined into a single if description, including the two remaining bu�ers (Q1 and Q3). Itturns out that the lts generated from this new description contains no over
ow transi-tions (they have been cut o� during this last composition, which con�rms the hypothesison the maximal size of the internal bu�ers).The �nal lts is branching bisimilar to the one obtained from the initial if description. Thegain, obtained by using compositional generation in addition to static analysis, can be found inTable 1 (line 4).ResultsWe summarize in Table 1 the size of the lts obtained from the token-ring protocol using severalgeneration strategies.Generation method Number of states Number of transitions1 Objectgeode 3018145 71190432 if 537891 22983483 if + live reduction 4943 196644 if + compositional generation 1184 4788Table 1: lts obtained for the token ring exampleThe di�erence between the model generated by Objectgeode (line 1) and the one obtainedfrom if (line 2) are due to the following reasons:� the handling of timer expirations in Objectgeode involves two steps: �rst the timeoutsignal is appended to the input bu�er of the process, and later it is consumed, whereas inif these two steps are collapsed into a single one, bypassing the bu�er.� Objectgeode introduces \visible" states for each informal decision, whereas these statesdo not appear in the model obtained from if.14



However, the abstraction from these extra states in if, preserves all relevant properties.The most spectacular reduction is obtained by the live-reduction: the reduced model is about100 times smaller than the one obtained by direct generation, preserving all properties (models2 and 3 are strongly bisimilar).Finally, when considering as visible only the open and close signals all four lts are branchingbisimilar to the one shown in Figure 4, which proves, in particular, the mutual exclusion propertyof the protocol.
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Figure 5: The reduced behavior of the token ring.5 Conclusion and perspectivesWe have presented the formalism if which is an intermediate representation for sdl allowingthe interconnection of tools such as Objectgeode, cadp, tgv and speci�c designed for if. Theuse of if o�ers several advantages:� if has a clear, formal semantics of time, and an explicit notion of atomicity. Moreover,it has some powerful concepts which are interesting for speci�cation, such as di�erenturgency types of transitions, synchronous communication, various bu�er types (bounded,unbounded, lossy, : : : ).� if makes veri�cation easier from several points of view:{ the models generated by state space enumeration are less complex, though equivalent,due to the elimination of certain transient states.{ if is a \program level" connection between the toolsets. This allows to combineprogram analysis techniques (e.g., static analysis or compositional generation) andclassical model checking techniques. We envisage to implement more sophisticatedstatic analysis, such as constraints propagation and more general abstraction tech-niques.� The semantics of time in if is general enough to implement and experiment di�erent timesemantics for sdl. 15
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