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SDL for Real-Time: What Is Missing?'

Marius Bozga, Susanne Graf — Alain Kerbrat Daniel Vincent
Laurent Mounier Tulian Ober

Verimag, Grenoble Telelogic, Toulouse France Telecom

1 Introduction

The ITU T Specification and Description Language (SDL, [1]) is increasingly used in the develop-
ment of real-time and embedded systems. This kind of systems impose particular demands on the
development language and SDL is a suitable choice in many respects: it is formal, it is supported by
powerful development environments integrating advanced facilities (like simulation, model checking,
test generation, auto-coding), and it supports many phases of software development ranging from
analysis to implementation and on-target deployment.

In this paper we review the needs of a real-time systems developer that are not covered, for various
reasons, by SDL. The issues that we examine are heterogeneous, ranging from pure programming
issues, like the difficulty to specify real timeout emergency procedures in SDL, or the difficulty to
program atomic transactions, to high-level modeling issues, like the difficulty to model time non-
deterministic system components, or the impossibility to use the standard formal semantics of SDL
in simulation and verification. For most issues we strain to give solutions, although sometimes this
only means that we favor one alternative among a set of incompatible, equally justified choices.

We propose a different semantic setting for time in SDL, that allows a flexible specification of
timing requirements and timing knowledge about the system. With our proposal one can capture very
general forms of conditions on the duration of actions or the duration between two events. We dispose
of analysis methods that work on top of this semantic framework, and by which we can verify general
timing properties of a SDT. system, such as the minimal/maximal time between two particular events.

We show on a small example how our semantic setting may be used as the basis for other methods
([9, 14]) of introducing timing properties in a SDL system, methods that are closer to the abstraction

level of SDL. The value added by our semantic framework is clearly marked.

2 Types of Problems and General Proposals

2.1 Types of Problems

SDL has the double aim of being on one hand a high-level specification formalism, which means it
must abstract from certain implementation details, and on the other hand a programming formalism
from which direct code generation is possible. The problems that we identify in this paper refer to
SDL either as a specification language, or as a programming language. The problems on each side are

different because the needs on each side are different too.



On the specification side, we further have two kinds of problems: expressivity problems and usability

problems.

1. An expressivity problem is the impossibility of SDL to capture meaningful information about a
system (like, for example, the execution time boundaries of a piece of SDL code).

2. Usability problems relate to the way an SDL model is used in analysis and early design: the modeler
must be able to simulate the system or formally verify certain properties. An usability problem
is a problem in the definition of the SDL semantics, which makes it practically or theoretically
difficult to construct the global state graph of a SDT. system (graph that is used by simulation or

verification tools).

2.2 Semantic Profiles for SDL

The semantics of SDL, as presented in [1], is rather crafted for code generation than for simulation
and verification. 7Z.100 maintains that each action takes an indeterminate time to execute, and that
a process stays an indeterminate amount of time in a certain state before taking the next fireable
transition. This notion of a time that is external, unrelated to the SDL system, is practical for
code generation in the sense that actual implementations of the system conform to it. However, for
simulation and verification, this semantics of time is utterly impractical: timer extents do not have
any significance, any timer that gets in a queue may stay there for an indeterminate amount of time.

Any rigorous attempt to construct the simulation graph of a SDL system (which is the starting
point for simulation and verification) must account for all possible combinations of execution times,
timer expirations and timer consumptions, causing an explosion of the state space. We have here a
usability problem, as characterized in section 2.

In practice, simulation and verification tools make simplifying assumptions on execution and idle
times. The usual convention is that actions take 0 time to execute, and that the system executes
immediately whatever it can execute. This option is justified by the fact that it generates the highest
degree of determinism, thus reducing the state space by an important factor (and in fact, rendering
SDL systems analyzable). This is not the only point where the SDL semantics raises usability problems
for simulation and verification, as we will see in the next sections.

We face here two alternative definitions of the SDI. semantics that are mutually exclusive and
equally justified (one by the needs of code generators, one by the needs of simulators and verification
tools).

This dichotomy cannot be surpassed by a single SDL semantics. The solution we propose is to
adopt multiple semantic profiles of SDL. The idea of defining multiple semantic profiles of a language
is not new: the UML community is on the way to defining several profiles for UML [2], each one fit
for a particular application domain (real time, electronic commerce, etc). In the case of SDL, profiles
would not correspond to different application domains but rather to the different usages of a SDL

model: code generation, simulation, performance analysis, model checking, test generation etc.



A semantic profile would define a semantics that is particularly suitable for a certain type of
manipulation of a SDL model. A semantic profile for code generation, for example, would support
real parallelism between the agents composing a system, while a semantic profile for simulation and
verification would propose quasi-parallel execution of agents, that is, interleaving of transitions or
transition actions.

If we accept the need for different semantic profiles, it follows that the definition of profiles should be
parameterized. Parametric semantic profiles allow to reuse the common part of two different semantics,
and outline only the differences. For example, a semantic profile for simulation and verification could
have a parameter which determines whether whole transitions are atomic, or whether only the SDL
statements (OUTPUT, TASK, SET, RESET, etc) should be atomic (the fact that TAU SDT Validator
[15] supports such a parameter suggests it is useful). There is no need to have two whole different
profiles for these two cases, since most of the semantics is the same in the two cases. A parameter
would be a simple and clean solution.

Semantic profiles allow the SDL standard to follow the path that was already undertaken by SDL
tools, which are highly parameterized. The parameters used by tools such as Object GEODE [16] and
TAU [15] represent in fact small variations in the semantics used by the tools.

Introducing profiles in the SDL standard has the advantage that all existing profiles would be
concentrated together, and that compliance relationships between profiles could be defined formally.
A theoretical basis for defining profiles and inter-profile compliance relationships does not exist and is
hard to develop, but the current practice of SDL tools, which employ the notion of profile implicitly

and without discipline, demands it.

3 What is Missing on the Programming Side?

SDL has several characteristics that are attractive for real-time systems designers: asynchronous
communication is a first class language feature, a specification is organized in a logical hierarchy that
can be mapped in many ways to different physical configurations of software modules (and SDL code
generators usually provide this feature), external code may be called from SDL making it possible to
use system libraries directly from SDL.

There are however several mechanisms, often employed in real-time systems, which should be

natively implemented in the language. We review some of them here.

3.1 Interruptive Timers

SDL offers native mechanisms for writing time dependent code: one can consult the system clock
from SDT (through the implicit variable now), can set timers, wait for a timer to expire or receive

an asynchronous message when it expires.



SDL timer timeouts are always received as asynchronous messages. For general-purpose time
dependent code this is usually fine, but it may be difficult to write real timeout emergency procedures
using timers. To ensure that a piece of code is executed immediately as a consequence of a timeout,
the SDL programmer must first make sure that the agent handling the timer is idle when the timer is
received. If this is not the case, then the process may consume the asynchronous timer message from
the message queue only when it finishes its current job, which may be too late.

SDL needs a notion of emergency timer, whose expiration is taken immediately into account by
the receiving agent. Emergency actions which interrupt the normal execution of an agent were already
introduced in SDL.’2000, with the advent of exceptions. All we need is a link between the exception
mechanism and the system time.

Our proposal goes towards the introduction of the notion of interruptive timer in the language.
An interruptive timer is a timer that raises an exception instead of sending an asynchronous message

when it expires. With interruptive timers, one can easily set up real timeout emergency procedures.

3.2 Atomic Code Sequences and Synchronization

Atomicity and mutual exclusion may be achieved in SDL by directly inserting system calls in the
SDL code. However, these are patterns that are very commonin real-time systems, and SDL could
benefit from native constructs for expressing atomicity and mutual exclusion.

Additionally, inserting system calls in SDL for achieving atomicity and mutual exclusion has a
severe drawback: as we mentioned in the beginning of Section 3, one advantage of SDL is that it
can be mapped to different physical software configurations. The system calls for obtaining mutual
exclusion are different when agents are mapped to threads and when they are mapped to processes.
This means that the SDL code must differ from configuration to configuration, which is a regression.

With native SDL constructs for atomicity and mutual exclusion, a code generator could generate
the right synchronization, rollback or deadlock protection code in every possible mapping. Moreover,
atomicity and mutual exclusion would be taken into account in simulation (which is not the case when
using system calls), and deadlocks or other kind of errors that they may introduce could be detected
earlier.

The same discussion stays valid for general purpose synchronization code. Some forms of synchro-
nization between SDL agents may be achieved only through external system calls. There too, native

SDL constructs would be benefic.

4 'What Is Missing on the Specification Side?

On the specification side things are more critical. As mentioned in introduction, the role of SDL in the
system development process is twofold: on one hand it is a specification language that must be capable

to abstract away certain implementation details while still capturing an accurate image of the system



under development, on the other hand it is a description language that must be able to express an
implementation down to the last details. These two roles of the language are sometimes conflicting, and

in many cases the description side has been given priority, to the detriment of high-level specification.

4.1 Control over Time Progress

The problem used as an example in the beginning of Section 2.2 is an important usability problem in
itself. A simulator that would use the semantics of time as described in Z.100 [1], would have no control
over the way time progresses. As a result, the simulator would not guarantee elementary properties

like:

1. when a timer expires, it is treated in a reasonable amount of time.
2. when two timers are set at the same time, the timer set with the lower delay will be consumed

first.

This will lead to the exploration of a number of undesirable execution paths that can never actually
happen in the system implementation, and eventually to state space explosion.

A semantic profile for simulation must give the simulator some control over the progress of time.
Existing simulation tools do this, by assuming that actions take 0 time to execute, and that time
never progresses while the system has something to execute.

These means of controlling the time progress in simulation are limited. There are cases when the

user needs to control the simulation time in more flexible ways:

— to specify that in a certain state, an unlimited amount of time may pass, even though the system
has something to execute (make place for lazy, is it really necessary 777).

— to specify that in a state, a bounded amount of time may pass regardless of whether there is
something to execute or not. In this case, there is a number of consequent problems as to the
specification of the amount of time (fixed or with lower and upper bounds; specified statically or

dynamically).

We propose a concrete solution to this problem in Section 5.

4.2 Assumptions on Execution Times

There is also an expressivity problem related to the usability problem of section 4.1: since the standard
semantics of SDL assumes an indeterminate amount of time may pass while the system is in a state
or while it executes an action, there are no means to specify the execution times of (a sequence of)
actions.

Such information may be meaningful in simulation or in verification. The well functioning of the

system may depend on the assumptions on execution times.



Currently, in order to introduce assumptions on minimal execution times, the user is forced to use
timers and to introduce explicit waiting. For maximal execution times, the user must also introduce
timers and additional invalid states that will have to be considered as unreachable when the state
graph is built. So in order to express high-level specifications, one needs to use programming features.

There exists already several approaches to introducing execution time assumptions in SDL speci-
fications. The Object GEODE Simulator [14] uses a syntactic extension by which one can associate an
execution time (interval) to an action. [9] uses a more elaborate approach in which execution times are
dynamically calculated with the help of queuing machines, so that they are depending on the amount
of work and on the charge of the system.

We will not introduce here new SDL extesions for expressing execution times. Instead, we introduce
a semantic framework that allows a simulator to control the progress of time (Section 5) and we
show how existing approaches for expressing execution times ([14,9]) can be adapted to our semantic

framework, with benefits in terms of analysis power.

4.3 Atomicity of Transition Elements

The lack of programming constructs for expressing atomicity, mutual exclusion, and synchronization
was outlined in Section 3.2. The same problem may be characterized as an expressivity problem of
SDL as a high-level specification language.

Besides that, the lack of a notion of atomicity poses usability problems. 7.100 [1] asserts that the
agents composing a system are executed in a real parallel environment. In order to work, a simulator
has to assume a certain degree of atomicity. Existing SDL simulation and verification tools make
simplifying assumptions: that statements are atomic, or that entire transitions are atomic, or that
sequences of statements that take 0 time to execute are atomic.

The place for such assumptions would ideally be an SDL semantic profile for simulation and

verification.

4.4 Flexible Channel Specifications

SDL defines channels as reliable means for transporting messages: a channel never looses messages.
Additionally, a channel may either be non-delayable (i.e. messages arrive instantaneously at the other
end) or with non-specified delays (but keeping the order of the conveyed messages).

These attributes are insufficient for characterizing real communication channels. For example, SDL
is used to describe flow control protocols such as the alternating bit protocol from the OSI stack. Such
protocols are built upon the assumption that channels are unreliable, and it is their mission to make
them reliable through software. If the assumptions on channels cannot be marked in SDL, the resulted
description of the protocol cannot be used in simulation: the simulator will never cover the parts that

handle signal loss.



In practice, when one needs to model a channel which losses messages, or which delays messages
by a rule, he has to explicitly describe the behavior of the channel in SDL(with an SDL process, for

instance). This approach has several drawbacks:

— once the behavior of the channel is specified, all messages will arrive at destination with a wrong
sender PID.

— the channel description must be replicated over and over again for every lossy channel in the system
(note that a generic Process Type cannot be used, because the channel description depends on
the types of the conveyed signals, which differ from channel to channel).

— dynamic creation of timers is needed in order to transport an indefinite number of messages at

once on a delayable channel.
A simple solution to this problem is to allow the user to specify in SDL:

1. whether a channel looses messages or not, and the loss probability
2. upper and lower time bounds for the delays applied to the message conveyed by a channel, as well

as the probability law followed by delays

More complicated solutions which take into account the type and size of a message can be imagined.
Again, the ideal place for such extensions would be an SDL profile for simulation, verification and

performance analysis.

5 Timed SDL Semantics Based on Transition Urgencies

In this section we introduce a semantic framework that can be used in connection with SDL to solve
the problems of controlling time progress in simulation, problems described in Section 4.1. Basically, we
introduce a set of constructs for controlling simulation time progress, for which we dispose of powerful
analysis methods that allow to derive interesting timing information (such as the minimal/maximal
time span between two events) and to verify timing properties of SDL systems.

The framework presented here is not a direct solution to the problems described in Sections 3 and
4. Instead, it may constitute the underlying semantics for other temporized extensions of SDL (such
as [9, 14]), which solve the abouve mentioned problems, and which are closer to the abstraction level
of SDL. Therefore, the constructs we introduce below are not meant to be used directly by SDL
modelers.

The constructs identified here are inspired from Timed Automata with urgencies, a high-level
formalism for modeling temporal properties of reactive systems. For a thorough understanding of the
semantics behind these constructs, the reader is referred to [3,4] (timed automata), and [5] (timed
automata with urgencies).

As stated in Section 4.1, in order for a semantics to be usable in simulation and verification,

the simulator has to have control over the system time. In SDL, the system time is represented by



the value of the implicit variable now. Our idea is the following: we consider that time may only
progress while the system stays in a simulation state, and time does not progress while the simulator
executes a system transition (that is, now is not modified during a transition). Note that we talk
about simulation states and simulation transitions, which may differ from SDL states and transitions:
for example, if transitions are not atomic but SDL statements are, there will be a simulator state
between each of the SDL statements on a SDL transition, and there will be a simulator transition
for each individual SDL statement.

Moreover, the progress of time in a simulator state is controlled (bounded) by the transitions that

may be triggered next. We identify three categories of transition urgencies:

1. eager transitions, which have priority over time progress. If in a simulator state there is an eager
transition enabled, time cannot progress until the transition (or another enabled transition) is
taken.

2. lazy transitions, which do not have priority over time. An enabled lazy transition does not inhibit
the progress of time in the simulation state. Therefore, time may progress with an indefinite
amount, if the other enabled transitions allow it too.

3. delayable transitions, which have priority over time progress only when time progress would
disable them. Time progress may disable a transition if the transition has an enabling condition
depending on time (i.e. on the value of now). Therefore, a delayable transition will usually have
an enabling condition depending on now, such as now < z or now — = < y (where = and y may
be integer variables or constants). Then, time may progress in the simulation state until now = x

(or now — x = y).

With this semantics, the simulator can control the progress of the system time by identifying the
urgency of the simulator transitions enabled in a certain state.

The source of this information on urgencies differ from case to case, depending on the concrete
SDL timed extensions introduced at user level. We can imagine an extension of SDL in which the user
puts the urgency information directly in the SDL model, like in the example in Section 6. Urgency
information may also be derived from other kinds of timed annotations, as we will see in Section 7.

Transition urgencies were implemented in TF [6,7], a specification language developed at VER-
IMAG for prototyping semantic variations of the constructs of a SDL-like language. We have also
implemented the extensions in the Object GEODE Simulator [13], with good results in terms of both
what we can express with them and what analyses we can perform on annotated models.

However, such extensions are not very close to the level of abstraction of SDL, and modelers may
find it difficult to produce the urgency annotations and the related information. As we mentioned
already, our extensions are rather thought to be the semantic basis for more user-level constructs,
such as those introduced in [9,14]. Section 7 is dedicated to showing how such user-level extensions

are projected on our semantic framework, and what advantages we acquire by using this framework.



6 Example: the Bounded Retransmission Protocol

We illustrate here on a simple example some of the specification problems of SDL that have been

identified in this paper, and we show how they can be solved using our semantic framework.

6.1 Specification of the protocol

The example we propose is the so-called “Bounded Retransmission Protocol” (BRP), which provides
a file transfer service through an unreliable medium between two entities, a Transmitter and a
Receiver. More precisely, each file is splitted into several packets and each packet is transmitted in
sequence using the well-known alternating bit protocol. However, in case of packet loss, only a bounded
number of retransmission are performed, and thus the file delivery is not guaranteed. In this situation,
both entities should abort the current transfer, and proceed to the next file. This protocol has been
used as a running example for several verification tools[12, 8, 11], and we consider here a simple version
mainly focussed on its timing behaviour.

The SDL specification of this protocol (figure 1) is composed of a Transmitter and a Receiver
process, briefly described below:

The Transmitter first waits for a transfer request issued by the environment (Put (p), where p is
the number of packets). When a transfer request is issued, it starts sending each packet (m,b) one
by one, where m indicates whether the packet is a first, middle or last element of the file, and b is
the alternating bit. After each sent of a packet, the Transmitter starts a timer s_repeat and waits
either from an acknowledgement issued by the receiver, or for the expiration of s_repeat. If a correct
acknowledgement is received, it resets s_repeat and proceeds to the next packet, unless it was the
last one, in which case the entire file is delivered to the upper layer (Get(p)). However, if s_repeat
expires, the same packet is resent up to max_retry attempts (s_repeat being restarted after each
resent). If none of these resent succeeds, then the Transmitter aborts the current file transfer and
reports the failure to its upper layer. This is done either using an Abort message when the current
packet was a middle one, or using a Dont_know message when the current packet is a first or a last
one (since in this case the Receiver may have either correctly received the entire file, or no received
any packet at all). Finally, after a transfer abortion the Transmitter starts a timer s_abort and waits
for its expiration before processing the next file.

The Receiver continuously waits for packet receptions. When a first packet is received, it
initialises its alternating bit, starts a timer r_abort and sends back an acknowledgement to the
Transmitter. Each subsequent packet is acknowledged (according to the “alternating bit” policy),
and the timer r_abort is restarted upon each reception of a mew packet. When a last packet is
received, the Receiver considers that the entire file has been correctly transmitted: it delivers it to
its upper layer (Get (p)), stops its timer, and waits for a new file. However, if an expected packet lates
to arrive, then the timer r_abort expires and the Receiver can assume that the transfer has been

aborted. It informs its upper layer (Abort), and waits for a new file.



system brp

process receiver

synonym maxp = 2;

syntype

NoOfPackets = natural constants 1:maxp
endsyntype;

synonym max_retry = 4;
synonym dt_repeat = 2.0;
synonym dt_abort = 15.0;
synonym dr_abort = 13.0;

signal PUT(NoOfPackets);
signal GET(NoOfPackets);
signal ABORT, DK;

D

centr i
¥ brpblock cexit
[#8orT.0K]  [PuT] [eeT. ABORT]
newtype
Data literals first, middle, last;
endnewtype;

/* max_retry*(dt_repeat + d_trans) < dr_abort < dt_abort */

centry cexit

block brpblock
entry

[ABORT‘ DK]

[PUT]

4
transmitter [

signal SDT(Data,boolean);
signal ACK(boolean);

exit

[SDT]

ACK] medium

]

[GET, ABORT]

receiver

[GED)
I

SDT(m,c)

idle

( true )

< or el

( false )
ACK(D)

dcl b, ¢ Boolean;

dcl p Natural,
m Data;

timer r_abort :=
dr_abort;

RESET (r_abort)

G

( trlue ) ( false)

ii=itl @
( false )

( true )

<csb>

( trlue ) ( false

L
[ br=notb |

( _

)
)

dcl b,c Boolean; Wait_Abort
dcl p Natural;
dcl 1,j Natural;
dcl m Data;

timer t_repeat := dt_repeat;
timer t_abort := dt_abort;

Fig. 1. The Bounded Retransmission Protocol in SDL



6.2 Modeling of the timed behaviour

One of the main correctness criterion of this protocol is that both the Transmitter and the Receiver
should decide to abort the same file transfers. However, this is achieved only when precise constraints

are fulfilled between timers values and action durations. In particular:

— if the timer r_abort expires too early, then the Receiver will consider that the current transfer
is aborted whereas other packets of the same file may still arrive;

— if the timer t_abort expires too early, then the Transmitter will proceed to the next file after an
abortion before this abortion was detected by the Receiver (which will never detect it later);

— finally, if the timer t_abort is set to a value smaller than max_retry times the transmission delay,

then the Transmitter will always abort the current transfer ...

As stated in section 4, if this specification is simulated following the Z.100 time semantics, no
guaranties are ensured about the relative expiration times of the different timers. Therefore, even
if the timers are set to correct values, many incorrect (and irealistic !) execution scenarios will be
observed, preventing any validation result.

On the other hand, simulating this specification using the default time semantics of ObjectGEODE
(i.e., each transition takes 0 time and is considered eager) is also not satisfying since it excludes
realistic scenarios. For instance, using this semantics, the timer r_abort can never expire before the
reception of an expected packet (expiration will take place only after the packet loss). Thus, this too
deterministic time behaviour will only lead to partial validation results.

These two limitations can be avoided using the notion of transition urgency introduced in section 5.
More precisely, lazy and delayable transitions are used to specify some parts of the system supposed
to take a certain amount of time to execute, or those occurrence is only controlled by the environment
(they may occur at a specified or unspecified frequency). All other transitions (and in particular
timeout expirations) are supposed to be eager. In the BRP specifications the non eager transitions

are the following;:

— The transfer requests (Put(p)) issued by the environment, which may occur at an unspecified
rate, and which should therefore be declared as lazy;

— The packet transmission (Sdt(m,b)), which is supposed to take a non deterministic amount of
time within a given interval to model the transmission delay, and which should be declared as
delayable. (Note that the delay required to transmit the acknowledgements are omitted here, but

they could have been introduced similarly).

Figure 2 gives a correct specification of the Transmitter process including the urgencies annotations.

7 Transition Urgencies as Underlying Mechanism

At user level, the problems described in Sections 3 and 4 should have simple and intuitive solutions.

While we are still searching for adequate user-level extensions of SDL, which should come from



process transmitter

D

=i+l
<genidd>

(st ) (midde) ( last ) (e ) ( faise)

now -x >= d_trans_min and
now -x <= d_trans_max

dcl b,c Boolean;

dcl p Natural;

dcl 1,j Natural;

dcl m Data;

timer t_repeat :=
dt_repeat;

timer t_abort :=
dt_abort;

dcl x time;

Fig. 2. The specification of Transmitter using urgencies

industial users facing the problems that we have described, we present here two existing proposals for
extending SDL with time-related constructs.

The goal is to show how the semantic framework introduced in Section 5 may be used as a basis
for defining a precise semantics for SDL extensions such as the Object GEODE Simulator extensions

[14] or QSDL, the extended SDL implemented in the tool QUEST [9].

7.1 The Object GEODE Performance Evaluation Extensions

The Object GEODE Simulator implements a series of SDL extensions, for modeling timing properties
of systems. The modeler has the possibility to split the system among multiple processors, to give
priorities to processes, and to declare execution durations on actions.

We can use these extesions to specify the process Transmitter from our example in Section 6.
Namely, we use the Object GEODE extensions to model the non-deterministic waiting time before
the transmission of signal SDT, as shown in Fig. 3. The transition shown in Fig. 3 may replace the
transition outgoing from the state Send, in the initial specification of the BRP protocol (Fig. 1.

In Object GEODE, execution durations on actions are specified statically, by a time interval and
a probability distribution (not used here). The actions that have no duration specified, are considered
to take O time. The semantics of time consuming actions is the following: when an agent reaches a
time consuming action, it enters an implicit state in which it stays for a time period complying to the
specified interval. While the agent is in that state, only agents executed by other physical processors
may execute. The other agents executed by the same physical processor as the blocked agent are

blocked too. When time elapses, the agent exits the implicit state and executes the action in 0 time.



'non-deterministic
wait’

SDT(m,b)
SET (t_repeat)

Fig. 3. The BRP Transmitter delay modeled using the ObjectGEODE performance evaluation extensions

In our example, the simulator executes all the actions described in the process Transmitter before
the informal task ’non-deterministic wait’. Then, the simulator puts the Transmitter in an implicit
state, where it stays for a period of d_trans_min to d_trans_max time units. At the end of this period,
the Transmitter exits the implicit state, and the simulator executes the output of SDT in 0 time.

This semantics can be captured using urgencies. Associating a delay to an action is equivalent to
splitting the initial transition with an implicit intermediate state and an implicit delayable transition,
as shown in Fig. 2.

The advantage of using our semantic framework for expressing execution times is that our anal-
ysis methods allow to consider both lower and upper limits simultaneously during simulation. The
analysis methods we have developed on our model work with time intervals, and we can compute the

minimal/maximal time span between two arbitrary occurrences in the system.

7.2 QSDL

Queuing SDL (QSDL, [9]) is an extension of SDL with constructs for modeling timing properties of
systems, developed at the University of Essen, Germany. QSDL was developed for doing performance
modeling and analysis on SDL systems.

The tool supporting QSDL, QUEST [10], implements a discrete-time semantics that resembles
the semantics implemented in ObjectGEODE and TAU. Time passes in simulation states, normal
transition actions take 0 time to execute. Additionally, QSDL introduces a new SDL statement, which
takes time and which may be put on transitions: REQUEST. Like in Object GEODE, described in the
previous section, this time consuming action introduces in fact an implicit simulation state, in which
the calling agent stays for as long as the REQUEST takes.

The difference between QSDL and the Object GEODE performance evaluation extensions comes
from the fact that the execution time of a REQUEST is not specified statically. QSDL uses the concept of
queuing machine to compute the dynamic execution time of a REQUEST. Queuing machines represent

computing resources shared between several agents of an SDL system, for which the agents compete.



For projecting the QSDL extensions on our semantic framework which uses transition urgencies
to control time progress, we need is to model QSDL queuing machines by SDL automata annotated
with urgencies. The task is not trivial, because the behavior of a queuing machine depends on a series

of parameters:

1. the speed. The absolute amount of work, which is a parameter of the REQUEST, is first divided by
the speed of the machine, to obtain an amount of work relative to the machine

2. the number of processors. A machine may have from one to an infinity of processors. Perfect
parallelism is assumed (i.e. if a machine has n requests to process simultaneously, m processors,
and a speed s, the rate at which each request is processed is r = Zs if n > m and r = s if n < m).

3. the scheduling policy. In case of multiple, competing requests, the scheduling policy determines
which requests are serviced and which are put on hold. QSDL defines the following scheduling
policies: FIFO with three variants (non-preemptive, priority non-preemptive, and priority preemp-
tive), Processor Time Sharing, Infinite Processors, Random non-preemptive, and LIFO priority

preemptive. For details, see [10]

We can model QSDL queuing machines in terms of SDI automata with urgencies, with few
modifications to our semantic model. These modifications preserve the decidability results established
in the basic framework, so that our analysis tools can work on the modified semantic model.

Our idea is not to replace the QSDL extensions with our own, but to base the QSDL semantics on

our notion of urgency. Doing this would boost the power of verification methods applicable to QSDL.

8 Conclusions
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