Eugene Asarin
email: asarin@ippi.ac.msk.su

Marius Bozga

Alain Kerbrat

Oded Maler
email: oded.maler@imag.fr

Amir Pnueli

Anne Rasse

Data-Structures for the Veri cation of Timed Automata ?

In this paper we suggest numerical decision diagrams, a bddbased data-structure for representing certain subsets of the Euclidean space, namely those encountered in veri cation of timed automata. Unlike other representation schemes, ndd's are canonical and provide for all the necessary operations needed in the veri cation and synthesis of timed automata. We report some preliminary experimental results.

? This research was supported in part

1 Introduction Consider a transition system A = (Q;), where Q is the set of states and : Q 7 ! 2 Q is a transition function, mapping each state q 2 Q into the set of q-successors (q) Q.

The problem of calculating or characterizing all the states reachable from a subset F Q of the state-space is one of the central problems in veri cation.

The basic algorithm to calculate this set of states is the following: F 0 := F for i = 0; 1; : : :; repeat F i+1 := F i (F i) until F i+1 = F i where (F i) = S q2Fi (q). Symbolic methods BCM + 93], McM93] have proved to be a very useful tool in the analysis of large discrete transition systems composed of many interacting components. Instead of transforming the description of the system into an enormous \ at" transition table over 4 IB m , on which reachability analysis is practically impossible, these methods represent the transition relation as a formula over the state variables. Given such a formula T and a formula P describing the subset F of the state-space one can calculate a new formula P 0 characterizing the set (F) of immediate successors of F. Iterating the procedure until a xedpoint is reached yields a formula P characterizing the set of all states reachable from F. When is expressed by a formula T (X; X 0), and F by a formula P(X).

the above algorithm can be reformulated as: P 0 (X) := P(X) for i = 0; 1; : : : ; repeat P i+1 (X) := P i (X) _ 9Y (P i (Y) ^T (Y; X)) until P i (X) = P i+1 (X)

The essence of any symbolic method is a data-structure for representing sets (equivalently, the formulas characterizing them) on which the above operations can be performed, in particular the forward (or backward) projection (line 3), boolean operations and equivalence testing. Binary decision diagrams (bdd's) Bry86] are such a data-structure for boolean domains. The calculation of the forward projection is relatively-easy on large practical problems and the space requirements for the representations are reasonable. Given an ordering of the variables, bdd's also have the canonicity property: all equivalent formulas lead to the same bdd and equivalence testing is thus trivial.

The veri cation of timed automata introduces an additional ingredient, that is, a set of continuous variables (clocks) ranging over non-countable domains. The dynamics of the passage of time cannot be captured by a \next-state" transition relation, and symbolic methods are unavoidable as states and trajectories cannot be enumerated. The sets encountered in reachability analysis of timed automata are thus certain subsets of IB m IR d . While the discrete part is standard, the subsets of IR d that need to be represented and manipulated are what we call k-polyhedral sets, namely sets de nable by a boolean combination of basic inequalities of the form x i < c, x i c, x i ? x j < c and x i ? x j c, for i; j 2 f1; : : :; dg and c 2 f0; : : : ; kg. Such polyhedral sets have been called regions in AD94].

As long as these polyhedra are convex (i.e., de nable by conjunctions of basic inequalities and their negations), there exists a canonical representation, the difference bounds matrix (dbm, see for example Dil89]). This is a (d+1) (d+1) matrix with entries taken from f0; : : : ; kg denoting the constants in a non-redundant set of inequalities whose intersection forms the region. For this representation, the intersection is done very easily via min and max operations. The forward and backward projections via elimination of the time quanti er are also done very e ciently on dbm's. Things however get complicated when we have arbitrary unions of convex polyhedra. In this case there is no unique representation and most tools represent such sets as a list of dbm's. The more \non-convex" the set becomes, more matrices are required in order to represent it and this makes equivalence testing and redundancy elimination di cult. Moreover, it is not clear how this representation is to be combined with a symbolic representation of the discrete part.

In this paper, we suggest an alternative bdd-based data-structure, Numerical Decision Diagram (ndd) that has a caonicity property: given an ordering of the clock variables, every k-polyhedral set has a unique minimal representation. For this data-structure we have boolean set-theoretic operations and equivalence testing for free. 5 We present an algorithm to calculate forward and backward projection in time for this data-structure and thus have all the ingredients needed in order to do reachability analysis for timed automata. Since this representation is bdd-based it can be combined naturally with symbolic methods for the discrete part of the system.

The rest of the paper is organized as follows. In section 2 we present timed automata and de ne the components of their reachability analysis algorithms. In section 3 we de ne ndd's and their forward projection algorithm for the discretetime interpretation of timed automata. In section 4 we show how a discretization scheme, rst reported in GPV94], can be used to extend the scope of ndd's to the dense-time interpretation. Finally we present some experimental results.

Timed Automata

First, some notations. We use bold-face letters to denote points in IR d . Thus, v stands for (v 1 ; : : : ; v d), where v i 2 IR, for every i = 1; : : : ; d. For points u; v 2 IR d , we write u v to denote that u i v i , for every i = 1; : : : ; d. A subset S IR d is called monotonic if v 2 S implies u 2 S, for every u 2 IR d satisfying u v.

For the sake of (the few) readers not familiar with timed automata we start with an informal illustration of the behavior of these creatures. Consider the timed automaton of gure 1. It has two states and two clocks z 1 and z 2 . Suppose it starts operating in the con guration (q 1 ; 0; 0) (the two last coordinates denote the values of the clocks). Then it can stay at q 1 as long as the staying condition for q 1 is true, namely z 1 2. Meanwhile the values of the clocks grow and the set of all con gurations reachable from (q 1 ; 0; 0) without leaving q 1 is f(q 1 ; t; t) : 0 t 2g. However, after one second, the condition z 1 1 (the guard of the transition from q 1 to q 2) is satis ed and the automaton can move to q 2 while setting z 2 to 0. Hence the additional reachable con gurations are f(q 2 ; t; 0) : 1 t 2g. Having entered q 2 in one of these con gurations, the automaton can either stay there as long as z 1 5 ^z2 3 or can unconditionally move to (q 1 ; 0; 0), etc. z 1 1=z 2 := 0 =z 1 := z 2 := 0 q 1 z 1 2 q 2 z 1 5ẑ 2 3 Fig. 1. A timed automaton.

Since the state-space of timed automata contains real values, we have an in nite-state automaton and an enumerative approach, where all states and transitions are enumerated, is impossible. We will use notation such as G qq 0 to denote the set of values in the clock space that satisfy the condition (\guard") for the transition from q to q 0 6 = q. Similarly, G qq denotes the set of clock values allowing the automaton to stay in q (\staying conditions"). In timed automata such sets are restricted to be k-polyhedral subsets of IR d , that is, the class of sets obtainable by applying set-theoretic operations to half-spaces of the form fv : v i cg, fv : v i < cg, fv : v i ? v j cg or fv : v i ? v j < cg for some integer c 2 f0; : : : ; kg, where k is some positive integer. 6 These sets constitute the nite region graph AD94] whose properties underlie all analysis methods for timed automata.

A function from IR d to itself is a reset function if it sets some of its arguments to 0 and leaves the others intact. We will use R qq 0 to denote the reset function associated with every pair of states (we take R qq to be the identity function).

We will make the following simplifying assumptions concerning the timed automata that we consider: 1) There is only one transition associated with every pair of states. 2) The values of the clocks are bounded by k. Hence the clock space is 0; k) d . 3) G qq 0 is convex for every q; q 0 2 Q, and 4) G qq is monotonic for every q 2 Q. The readers can convince themselves that it costs few states to convert any timed automaton into one satisfying these properties.

We let K denote the interval 0; k) in the dense-time interpretation or the set f0; : : : ; k ? 1g in the discrete-time interpretation. For every z 2 IR d we use z + t to denote z + t 1 where 1 = (1; 1; : : : ; 1) is a d-dimensional unit vector. De nition 1 (Timed Automaton). A timed automaton is A = (Q; Z;) such that, Q is a discrete set, Z = K d is the clock space (Q Z is the con guration space) and : Q Z 7 ! 2 Q Z is the transition relation. It is required that admits the following decomposition: For every q; q 0 2 Q, let G qq 0 Z be a k- polyhedral monotonic set and let R qq 0 : Z 7 ! Z be a reset function. Then, for every (q; z) 2 Q Z (q; z) = (q 0 ; z 0) : 9t 2 K z + t 2 G qq \ G qq 0 ẑ0 = R qq 0 (z + t)

(1)

The meaning of (q; z) is the set of Q Z con gurations the automaton can reach starting at (q; z) by waiting t time (possibly zero), and then taking at most one transition. 7 Every subset of Q Z encountered in the analysis of timed automata can be decomposed into a nite union of sets of the form fqg P where P is kpolyhedral. We will write such sets as (q; P). We will extend functions on ele-6 In fact, we can use c 2 f0; r; 2r : : : ; krg for some positive rational r. 7 In the treatment here, we assume that all sets of the form Gqq are de nable by a positive boolean combination of inequalities of the form xi ci and xi ? xj cij.

All the techniques presented here can be generalized to apply to the more general case that some of the inequalities de ning Gqq are strict.

ments to functions on sets in the natural way, e.g. (q; P) = S z2P (q; z) and R q;q 0 (P) = S z2P R qq 0 (z).

Next, we de ne a function : 2 Z 7 ! 2 Z (time forward projection) as:

(P) = fz + t : z 2 P; t 2 Kg \ Z:

It is not hard to see that the immediate successors of a set of con guration (q; P) can be written as ((q; P)) = (q; b P) q 0 6 =q (q 0 ; P q 0) where b P = (P) \ G qq and for every q 0 , P q 0 = R qq 0 (b P \ G qq 0): This concludes the motivation for the paper as we see that the additional machinery needed to analyze timed automata consists of calculations of boolean operations, R(P), and (P) on k-polyhedral sets.

3 Numerical Decision Diagrams: Discrete Time

Representation

The idea of ndd's is elementary. When we consider K d under the discrete interpretation, we have nothing but subsets of a nite set. Obviously, every element of K can be coded in binary using b = dlog ke bits, where dlog ke is the smallest integer not smaller than log k. Consequently, we can represent every subset of K d as a boolean function of d b boolean variables. This function can be represented by a bdd in the usual way. We will use standard positional encoding, i.e., every number n 2 K is represented by a set of values x 0 ; : : : x b?1 such that n = P b?1 i=0 x i 2 i .

The rst question concerning the implementation is the ordering of the bits of every number. Although, especially for sets of the form x c, putting the most signi cant bit rst might lead to smaller bdd's, we prefer to put the least signi cant bit rst, because it facilitates the calculation of . Examples of sets and their ndd representation for d = 1 and k = 8 appear in gure 2. When there are more than one clock variables, there are various ways to order their bits, for example, x 0 ; x 1 ; : : : ; y 0 ; y 1 ; : : :.

In order to represent decision trees and bdd's textually we will use the expression bdd(x i ; L; R) to denote a tree that tests x i , branches to the subtree L on zero and to the subtree R on one. For example, the tree obtained from the bdd for x < 5 in gure 2 is written as: bdd(x 0 ; bdd(x 1 ;

1; bdd(x 2 ; 1; 0)); bdd(x 1 ; bdd(x 2 ; 1; 0); 0

)) 0 0 0 7 7 7

x > 5

x < 5

x < 3 0 7 (x > 5) _ (x < 5)

x 2

x 1

x 0 0

1 0 0 1 1 1 0 0 7 (x > 5) _ (x < 3) x 0 x 1 x 1 0 1 0 1 1 x 2 x 2 0 0 0 0 1 1 1 x 0 x 1 x 1 1 0 1 1 0 x 2 0 1 0 0,1 x 0 x 1 x 1 x 2 1 0 1 1 0 0 1 1 0 0 x 0 x 1 x 2 0 1 0,1 0 1 0 1
Fig. 2. Some 8-polyhedral sets in one-dimension and their corresponding ndd's.

Operations

Beside set-theoretic operations that we have for free, the reset operation is also elementary: in order to calculate R(P) for a reset function R that resets, say, the variable x, you build a bdd for the set x = 0 and intersect it with the bdd for 9x P. What remains to show is how to calculate (P), which we will rst demonstrate on the semantic level.

Given P 2 K d , (P) can be written as fz : 9t 2 K s:t: z ? t 2 Pg. Before applying the existential quanti er we have a set P 0 2 K d+1 representing all the tuples (t; z) such that z ? t 2 P. We will present a procedure that converts a b d-variable ndd for P into a b (d + 1)-variable ndd for P 0 (with t as an additional K-variable, encoded using the boolean variables t 0 ; t 1 ; : : : ; t b?1).

Eliminating the existential quanti er for t from P 0 , we obtain the bdd for (P).

The procedure will initially create the ndd for the set P 1 = f(t; z) : z t 2 Pg where stands for subtraction modulo k. Then, by intersecting P 1 with the set P 2 = f(t; z) : z t 1g we get P 0 (see gure 3). the time. We rst make the subtraction modulo k (creating P1) and then intersect with P2 to get rid from over ow.

To illustrate the construction of P 1 , we consider rst the case that d = 1, i.e. only one clock. The recursive function sub(B; borrow) presented in table 1 takes an ndd B for P K and produces an ndd for P 1 K 2 as described above. The parameter borrow represents the \borrow" bit which is propagated from right to left on performing binary subtraction. The external invocation of this function is done with borrow = 0. For simplicity of presentation, we assume that B has nodes for all variables, with entries of the form bdd(x i ; L; L) in case the function is independent of x i . An optimized version can be derived for the more general case of skipped variable tests.8

The e ect of applying the function to an arbitrary decision tree over f0; : : : ; 3g is depicted in gure 4. The extension to d > 1 is rather straightforward.

Dense Time

The above construction is su cient for analyzing timed automata under the discrete-time interpretation. It is however known that some timed automata can produce behaviors (state-sequences) under a dense semantics which are not possible under any discrete-time semantics. In this section we introduce a discretization scheme GPV94] 9 having the two following important properties: 1) It preserves the qualitative behavior of the automaton, that is, for every sequence of discrete transitions in the semantics of a timed automaton A, there is a similar sequence in the semantics of its discretization e

A and vice versa.

(I i = I 0 i) ^(f i > 0 $ f 0 i > 0)
^î;j2f1;:::;dg

(f i > f j $ f 0 i > f 0 j):
We consider automata with Z = K d . We will use a discretization step = 1=(2d)

and let e K = fn : 0 n < 2kdg. In other words, we cut every unit interval into 2d equal segments and pick the endpoints. The discretized clock space (that is, the domain over which discretized clocks range) is e Z = e K d \ f(z 1 ; : : : ; z d) : 8i; j jz i ? z j j = 2m g:

Note that we take from e K d only points such that the di erence between any pair of clock valuations is an even multiple of (see gure 5). For any polyhedral

1 0 0 1 1 A B C D x1 x1 x0 A A B B C C D D B D D B C A A 0 0 0 C 0 1 1 1 1 0 1 0 1 0 0 1
Fig. 4. Applying sub to an arbitrary decision tree over f0; 1; 2; 3g. The circled leaves will become zero when we intersect with f(x; t) : x tg.

set P, we let its discretization be e P = P \ e Z. It is not hard to see that, for every k-polyhedral set P, we have P 6 = ; i e P 6 = ;. Another important property of this scheme is the following:

Claim 1. Let z = e z + " for some e z 2 e Z, j"j < . Then z 2 P) (e z 2 P _ e z + 2 P)

(and hence at least one of them belongs also to e P).

Proof: If e z = (z 1 ; : : : ; z d) 2 P we are done, otherwise there is one or more inequalities of the form z i > c i satis ed by e z + " but not by e z (which implies that z i = 2dn for some integer n). These inequalities must be satis ed by e z+ as well. On the other hand, if there is an inequality of the form z j < c j satis ed by e z + " but not by e z + , we have z j = (2dn ? 1) , which contradicts the assumption e z 2 e Z. In addition, e z + " and e z + satisfy together every diagonal inequality (of the form z i ? z j < c) and we can conclude that e z + 2 P. Note that this fails to be true for points outside e Z. Consider z = (0; 3=4) and P = (0 < x < 1) ^(0 < y < 1) ^(y > x). Here z + " 2 P but neither z nor z + = (1=4; 1) belong to P. e (e P) = fe z 0 2 e Z : 9e z 2 e P 9 e t 2 e K s:t: e z 0 = e z + e tg:

Claim 2 Discretization Preserves Forward Projection.

For every k-polyhedral set P and P 0 such that P 0 = (P)

e (e P) = f P 0 :

Proof: One direction, e (e P) f P 0 is obvious because e P P and e K K.

For the other direction, suppose some e z 0 2 (P) \ e Z, implying that e z 0 can be written as (n 1 ; : : : ; n d), and that for some z 2 Z, t 2 K, z + t = e z 0 hence z = (n 1 ? t; : : : ; n d ? t). Let t = m + t 0 for some t 0 < . Then z = ((n 1 ?m) + t 0 ; : : : ; (n d ?m) + t 0). According to the previous claim either e z or e z + is in e P and their temporal successor e z 0 is in e (e P). Having shown that forward projection (as well as boolean operations) on Z and K can be imitated by discretized operations on e

Z and e K, the only remaining problem is concerned with the reset operator. The problem is that e Z is not closed under reset functions { for example, resetting the rst coordinate of (;) 2 e Z we obtain (0;) 2 e K d ? e Z (because the di erence between the points is not an even multiple of). This is important because claim 2 does not hold on e K d but only on e Z. In order to calculate successors on the discretization we need an \adjustment" operator, which, after applying a reset, will delete points that went out of e Z and replace each of them by one or more region-equivalent points in e

Z. This extra operator can be viewed as the price we pay for dense reasoning.

For each m 2 f0; : : : ; d?1g, let us de ne a function m : e K d ! 2 e Z as follows:

m (z) = fz 0 : d î=1 (I i = I 0 i) ^0 B B B B @ f i = 0 ^f0 i = 0 _ f i = (2l + 1) ^l < m ^f0 i = (2l + 2) _ f i = (2l + 1) ^l > m ^f0 i = (2l) 1 C C C C A g
The function m returns a non-empty set if and only if all the non-zero fractional parts of z are odd multiples of , and none of them falls in the interval 2m ; (2m + 2)]. Its e ect is to add to all fractional parts f i satisfying 0 < f i < 2m and subtract from all fractional parts satisfying (2m+2) < f i .

Zero fractional parts are left unchanged. One can see that if z satis es these conditions then m (z) = fz 0 g and z 0 z. This operator is illustrated in gure 6. we obtain z2 = (1; 0; 5; 7) 6 2 e Z. (c) Applying 1 we push the non-zero clocks toward the \hole" around 3 and obtain z3 = (2; 0; 4; 6) which is region-equivalent to z2. Note that in this graphical representation the passage of time is via clock-wise rotation.

It is not hard to see that the application of to any P e K d yields a subset P 0 e Z such that, for every z 2 P, there is at least one z 0 2 P 0 satisfying z z 0 . Based on this function, we can de ne for every reset function R : Z ! Z a discretized reset function e R : e Z ! 2 e Z as e R(e z) = (R(e z)). It follows that, for every P, e R(e P) has elements of every region equivalence class which are represented in R(P). This is all we need: we just add to the ndd solution for integer time is d log(2d) bits to represent the ner grid and to replace every reset function R qq 0 by its adjusted version g R qq 0 . The same arithmetical calculation of time successors described in section 3 will work, when we add the fractional bits to the clock and time variables. The adjustment operation seems to be the hard part of the calculation (we have only implemented the discrete-time representation so far) but at least this operation is performed only on the fractional bits (and hence is sensitive to the number of clocks but not to their ranges). In fact there is a tradeo between two discretization schemes (see GPV94]), one with = 1=(d + 1), where resets behave normally but the evolution of time is distorted and loses some of its arithmetical content, and the other one we describe here, were time evolution remains arithmetic while resetting is more involved.

Concluding Remarks

Related Work

Various tools for the analysis of timed and hybrid automata have been developed recently, e.g. kronos DOY94], uppal BGK +] and Hy-Tech AHH93]. The rst two represent polyhedral sets by dbms. An alternative approaches is to transform the timed automaton into a huge discrete automaton (the region graph) and than encode its using boolean variables and bdd's. 10 The idea of extending bdd's for the purpose of solving arithmetical constraints has been proposed by Rauzy Rau95]. The structures he proposes are, however, not canonical. Our method can be applied as well outside the analysis of timed automata, e.g., as a decision procedure for some decidable theories in bounded arithmetics (see also WB95]). In fact, the forward projection calculation can be easily adapted to clocks having non-uniform rates in f0; ?1; +1g and can be applied to the analysis of larger classes of hybrid systems and to programs with bounded integer variables.

Experimental Results

For experimentation we have used a system developed at Verimag for representing and manipulating communicating automata augmeneted with bounded variables BFK96]. This system takes such automata and translates them into bdds using one of several publicly-available bdd packages { we have used the CUDD package S95] of Colorado University. We have incorporated a discretetime version of the ndd representation into that system and tested its performance on various timed automata corresponding to digital circuits with delays (the exact de nitions and the translation procedure from circuits to timed automata are described in MP95]). We will report here the results obtained with two generic families of automata, for which we tried to calculate all the reachable con gurations starting from an initial state.

The rst family consists of one-state automaton having n clocks and n transitions. The automaton (see gure 7-a) can let time progress as long as none of the clocks has reached its upper bound u i . Whenever a clock C i reaches the lower bound l i < u i , a self-looping transition which resets C i can be taken. These automata allow us to isolate the complexity of representing and manipulating polyhedral sets from that of treating the discrete state-space. The second family consists of a product of n two-state automata of the type appearing in (gure 7-b). Such a product is the natural way to model n independent non-deterministic input oscillators and it is a necessary ingredient in any attempt to do exhaustive timing analysis of asynchronous circuits.

The main di erence between the two examples is that in the second we have 2 n discrete states. While the set of reachable con guration for this example will be of the form f(q; P 1)g q2f0;1g n , the set of reachable clock con gurations of the rst automaton will be S q P q , which seems in general to be simpler to represent. In fact, for the constants we have chosen all the clock space is eventually reachable, but some very \hard" sets are encountered in the intermediate stages of the xed-point calculations.

We have taken clock values in the range 0::15, let l i = 9, u i = 12 and compared the results with those of kronos which uses dbms. For this set of examples the ndd results were much better. It should be noted, however, that dbms implement the richer dense semantics and are not sensitive to the range of clock values as long as they do not cross the maximal integer value. In contrast, the performance of ndds depends critically on the number of bits used to encode clock values. Moreover, the examples were chosen so that they generate intermediate polyhedral sets which are very \non-convex", which makes life hard for the dbm implementation (but also for ndds). Finally the current forward simulation algorithm of kronos keeps all reachable regions in a form of a simulation graph11 and this turns out to be ine cient for these examples { we believe that changing this implementation detail will allow kronos to treat larger examples. The results are summarized in table 2. They were obtained on a SUN Ultra-Sparc 1 with 256MB of memory.

 Fig. 3. Calculating (P) via moving to d+1 dimensions (P 0) and then projecting away

 2) It is amenable to representation by ndd's.For each clock value z i , i = 1; : : : ; d, let I i and f i denote the integer and fractional parts of z i , respectively. Two clock valuations z = (I 1 +f 1 ; : : : ; I d +f d) and z de ned to be region equivalent, written z z 0 , if d î=1

Fig. 5 .

 5 Fig. 5. Left: discretizing 0; 1) 2 : the circled points are the elements of e Z while the

Fig. 6 .

 6 Fig. 6. The e ect of the adjustment operator 1 for K = 0; 1) 4 and = 1=8 (all points are multiples of): (a) A point z1 = (1; 3; 5; 7) 2 e Z. (b) After restting the second clock

Fig. 7 .

 7 Fig. 7. The automata used for experiments: (a) A one-state automaton with n clocks and n transitions. (b) A basic two-state automaton with one clock.

Table 1 .

 1 The function sub.

	function sub(B; borrow) begin if B is a leaf then return(B); else let B = bdd(xi; L; R) if borrow = 0 then return(bdd(ti;bdd(xi;(sub(L; 0); sub(R; 0))), bdd(xi; (sub(R; 1); sub(L; 0))))); else return(bdd(ti;bdd(xi;(sub(R;1);sub(L; 0))) bdd(xi; (sub(L; 1); sub(R; 1))))); end

That is, for the same price as for bdd's in general.

As usual in bdd applications, all calls are hashed so that repeated calls with the same arguments will not repeatedly traverse the complete subtrees.

In CC95] this approach has been applied to the degenerate case of one-clock automata.

This is the number appearing in the \regions" column in the table.

Acknowledgment: We thank S. Yovine, K. Daws and S. Tripakis for useful discussions concerning veri cation of timed automata in general and the kronos implementation in particular, and P. Raymond for some help in bdds.

by the European Community projects HYBRID EC-US-043 and INTAS-94-697. Verimag is a joint laboratory of cnrs and ujf. 4 We use IB for f0; 1g and IR for the non-negative reals.

Our intermediate conclusion is that the analysis of timed automata with many clocks is not yet feasible. We have managed to handle additional non-trivial examples (such as an interconnected chain of XOR gates) with 10-13 clocks, but a closer investigation of polyhedral sets and their various representation schemes is needed in order to push performance limitations forward.