
HAL Id: hal-00374086
https://hal.science/hal-00374086

Submitted on 7 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Progress in the Symbolic Verification of Timed
Automata

Marius Bozga, Oded Maler, Amir Pnueli, Sergio Yovine

To cite this version:
Marius Bozga, Oded Maler, Amir Pnueli, Sergio Yovine. Some Progress in the Symbolic Verification
of Timed Automata. Computer Aided Verification 9th International Conference, CAV’97, Jun 1997,
Haifa, Israel. pp.179–190, �10.1007/3-540-63166-6_19�. �hal-00374086�

https://hal.science/hal-00374086
https://hal.archives-ouvertes.fr


Some Progress in the Symbolic Veri�cation ofTimed Automata?Marius Bozga1, Oded Maler1, Amir Pnueli2, Sergio Yovine11 Verimag, Centre Equation, 2, av. de Vignate, 38610 Gi�eres, France,fbozga, maler, yovineg @imag.fr2 Dept. of Computer Science, Weizmann Inst. Rehovot 76100, Israel,amir@wisdom.weizmann.ac.ilAbstract. In this paper we discuss the practical di�culty of analyzingthe behavior of timed automata and report some results obtained usingan experimental bdd-based extension of kronos. We have treated exam-ples originating from timing analysis of asynchronous boolean networksand CMOS circuits with delay uncertainties and the results outperformthose obtained by previous implementations of timed automata veri�ca-tion tools.1 IntroductionThe computational burden associated with the veri�cation of discrete systemsconsists in representing and calculating the set of reachable states of a transi-tion system, usually described as a product of small interacting systems. Timedsystems were introduced in order to provide a more detailed level of modelingin which it is possible to re�ne a statement such as \a is followed by b" into\a is followed by b within t time units". Timed formalisms for describing sys-tems (timed automata [AD94], [D89], timed Petri nets [BD91], timed transitionsystems [HMP92a] or real-time process algebras [NS92]) and for specifying be-haviors (real-time temporal logics [AH92], timed regular expressions [ACM96])allow the intuitive expression of real-life phenomena. Among these is the hardfact that it takes some time between the initiation and a completion of a changeand that quantitative timing information may matter in the future evolution ofa system.In fact, after playing with timed models for some time, one starts wonderingabout the underlying assumptions that make \classical" untimed reasoning validand useful. What class of real-timed systems is hiding behind each and everyuntimed automaton? How are discrete transitions embedded in the real timeaxis? Without getting too much into the details one can suggest two kinds ofanswers:Asynchronous answer: we assume that changes in various system componentsmay take arbitrary amount of time to be accomplished. From this perspective? This research was supported in part by the European Community projects HYBRIDEC-US-043 and INTAS-94-697. Verimag is a joint laboratory of cnrs and ujf.



an untimed system can be viewed as a timed system with trivial [0;1] boundson the duration of a transition. Clearly, such an abstraction will create muchmore executions than a real system would.Synchronous answer: certain assumptions are made and certain precautionsare taken in order to ensure that most of the timing information can be ignored.This is the principle underlying clocked realization of sequential machines: we arenot interested in the intermediate states of the next-state logic, nor whether onestate variable has changed before the other. What is important is that everybodyhas stabilized until the next time their values are sampled.When one is not satis�ed with the type of answers suggested by the abstractuntimed models or with the performance of clocked systems, timed models seemto be the next logical step (see also [BS94]). It has been shown elsewhere ([D89],[L89], [MP95]) how a very general model of non-clocked circuits with delays canbe translated into timed automata, on which one can ask all sorts of interestingtiming questions ([ACD93], [HNSY94] [AMP95]). The only problem with thesemodels is the amount of time (and space) that might elapse between posingthe question and obtaining the answer. Indeed, it is the performance bottleneckthat prevents the transfer of timing veri�cation technology from theory to prac-tice. In this paper we describe some attempts to push forward the performancelimitations of current timed automata veri�cation tools by augmenting the toolkronos [DOTY96] with an additional bdd-based capability.The rest of the paper is organized as follows: in Section 2 we discuss, viageneric examples, the computational di�culty of timed automata analysis meth-ods and present an alternative data-structure, ndd which is used to analyze theexamples in this paper. ndds are essentially nothing more than bdds over thebits of discretized clocks. In Section 3 we show the performance of the ndd imple-mentation on benchmark examples coming from asynchronous boolean networksand compare them with other implementations, while in Section 4 we apply nddsto realistic (but small) examples of MOS circuits with up to 5 inputs and 16 tran-sistors, in order to answer a question motivated by noise problems. We assumethat the reader is familiar with the basic de�nitions of timed automata and withbdds.2 The Di�culty of Timing AnalysisConsider a system which can generate events out of a set T = f�1; : : : ; �ng,such that every two consecutive occurrences of �i must be separated by li timeunits, while every occurrence of �i must be followed by another one within uiunits. Such a system can be modeled by the simple one-state timed automatonA depicted in Figure 1-a having n clocks and n transitions. Calculating theset of reachable clock con�gurations is needed in order to determine which T -sequences are realizable by the system. An illustration of the calculation of the setof reachable clock con�gurations for n = 2 is given in Figure 2. At the beginning,Time progresses until it reaches the smallest lower-bound (in this case, l1). Sincethen, until the �rst upper-bound is encountered (in this case, u1) the transition



�1 can be taken while resetting C1 to zero. After crossing the lower bound l2,transition �2 can be, as well, taken, and so on. Although it might look simplefor two clocks, this set can become rather complex in more dimensions!
Vi Ci < ui : : :Ci � li=Ci := 0 vi = 0 vi = 1�i: Ci < ui Ci < uiCi � li=Ci := 0Ci � li=Ci := 0(a) (b)Fig. 1. (a) A one-state automaton A with n transitions and n clocks. (b) A two-stateautomaton B for representing a set of input signals satisfying upper and lower boundson the distance between two switching points.

l1 u1l1 u1l2u2 u2l2
Fig. 2. The initial sets of reachable clock con�gurations of the automaton in Fig-ure 1-(a) starting from (0; 0).In general, the sets of reachable clock con�gurations obtained this way can beexpressed as a union of zones, that is, convex polyhedra generated by half-spacesof the form Ci < k or Ci � Cj < k for k in some �nite subset of the integers.3Zones admit an e�cient representation using di�erence-bounds matrices (dbm,[D89]) on which it is easy to calculate intersection and the progress of time.As it often happens in computational geometrical problems, the di�culty comesfrom the need to manipulate non-convex sets. In this case the representation isnot canonical and a lot of work is needed in order to determine whether all thereachable states have already been encountered. It may turn out, for example,3 We ignore intentionally some technicalities concerning strictness of inequalities.



that a union of zones stored in memory is, in fact, convex and can be replaced bya single zone, but testing this possibility at every iteration is costly. Some authors([H93], [AIKY95] [B96], [WD94]) try to use various sorts of approximations, e.g.to use convex hulls instead of unions, but these over-approximations often tendto become too large and hence not useful.The problem aggravates when the untimed state-space is non-trivial. Con-sider the two-state automaton B of Figure 1-(b). Such automaton represents aboolean input signal whose only constraint is that every two changes in its valueare separated by some time t 2 [li; ui). An array of such automata is an unavoid-able component in any model for analyzing the behavior of circuits under all pos-sible inputs. When two such automata work in parallel, the reachable clock con-�gurations are \distributed" among the discrete states f00; 01; 10; 11g as shownin Figure 3. This raises several problems: there might be a lot of redundancyif we represent reachable con�gurations for every state separately because twostates might share zones. In addition, if we use symbolic methods ([BCM+93],[McM93]) to overcome the discrete state-explosion problem, how should they becombined4 with the dbm representation? Finally, the convergence of the set ofreachable con�gurations into a convex zone is usually slower than in the case ofa one-state automaton.In order to overcome these problems we have devised and implemented analternative representation scheme for sets of clock con�gurations, the NumericalDecision Diagrams (ndd, [ABK+97]) and tested its performance on these andother examples. This scheme has some major advantages over dbms (canonicity,natural combination with discrete symbolic representations) but, of course, hasits own disadvantages, most notably, the sensitivity to time granularity.The idea behind ndds is trivial. Suppose that each clock can take values inthe range [0; k), and consider a discretization of time such that the possible clockvalues are K = f0; : : : ; k � 1g. Each clock can be treated as a bounded integervariable and any of its possible values can be encoded in binary using log kbits. Consequently, any subset of Kn can be viewed as a subset of f0; 1gn log kand represented by a bdd over n log k boolean variables. Given a �xed variableordering, this representation is canonical regardless of convexity, and it o�ersbdd-based boolean operations as well as the calculation of the passage of timeby simple arithmetical operations.For dense time models, two discretization schemes has been proposed in[GPV94]. They are based on taking a rational constant �, depending on thenumber of clocks such that by cutting space and time into a �-grid, one obtainsa discrete-time automaton which is equivalent (for all interesting purposes) tothe given dense-time automaton. These two schemes require � = 1=(n+1) and� = (1=2n) respectively, and involve some distortion of the passage of time or ofthe reset operator in order to preserve the properties of the original dense-timesystem (a more detailed description appears in [GPV94] and [ABK+97]).4 This problem has been addressed by Wong-Toi and Dill [WD94], who combined dbmsand bdds and recently by Balarin [B96] who encoded matrices using bdds. Both usedthe representations for approximate reachability analysis.



l2u2

l1 u1l2u2
l2u2

l1 u1l2u2
00

l1 u1 l1 u101
10
11

Fig. 3. The initial sets of reachable clock con�gurations of the automaton in Fig-ure 1-(b) starting from the discrete state 00 and the clock con�guration (0; 0).We have observed, however, that the special class of automata obtained fromcircuits ([MP95]), where all the clock conditions are of the form C � l or C < u,admits a slightly simpler and coarser region graph (see also [HMP92]). For theseautomata, a discretization with � = 1=n, where the passage of time is simplythe addition of � to all the clocks, is su�cient.Consequently, although all the reported experiments have been performedwith respect to the discrete time interpretation, they can be viewed as if we useda dense time interpretation with all the constants divided by n. Approximationsare used anyway in order to tackle the complexity of timing analysis ([AIKY95],[H93], [WD94], [B96]), and we believe that playing with the granularity of timemight prove to be an alternative approximation strategy.Note that the ndd-based method is di�erent from calculating the regiongraph of the timed automaton and then trying to encode its transition relationusing some choice of boolean state variables (see also [AK96] [CC95]). We builda uniform discretized state-space which happens to contain one or more concreterepresentative of every region, and on which the passage of time is calculated byadding a time unit � to every clock variable simultaneously.We have implemented ndd-based veri�cation algorithms for timed automataby using a system developed at Verimag for representing and manipulatingcommunicating automata augmented with bounded integer variables [BFK96].



This system takes such automata and translates them into bdds using one ofseveral publicly-available bdd packages. We have used the CUDD package [S95]of Colorado University. The experimental results are reported in the followingsections.3 Asynchronous Boolean CircuitsWith the ndd representation we were able to calculate within 12 hours all reach-able states of the automaton A (Figure 1-a) with 18 clocks and transitions, whilea dbm-based implementation could not treat more than 5 clocks. The relativeweakness of dbm in this apparently-trivial example is due to the fact that theset of reachable con�gurations of this automaton converges �nally to the wholeclock space, by accumulating more and more zones. We were able to treat prod-ucts of up to 9 B automata (Figure 1-b). The results5 are illustrated in Figure 3.It should be noted, for the fairness of the comparison, that we have used thediscrete time interpretation and have chosen clock values in the range f0,. . . ,15g{ ndds are much more sensitive to the granularity of time than dbms.

0 5 10 15

number of clocks 

0

1

10

100

1000

10000

100000

ti
m

e 
(i

n 
se

co
nd

s)

0 5 10 15

number of clocks

100

1000

10000

100000

m
em

or
y NDD A

DBM A
NDD B
DBM B

Fig. 4. Comparative performance of ndds and dbms for the automata A and B.A more complicated example is the family of circuits depicted in Figure 5.For every i 2 f0; : : : ; n � 1g we let the XOR of xi and xi�1 pass through anon-deterministic inertial delay bu�er (the exact de�nitions and the translationprocedure from circuits to timed automata are described in [MP95]). Every suchgate is modeled by the four-state timed automaton appearing in Figure 6. Thestates are encoded using two Boolean variables vi and vi, the former denotingthe value observed at the exit of the delay element while the latter representsthe \hidden" value of the XOR. When both variables are equal we say that thestate is stable and that it is excited otherwise.5 Unless otherwise stated, all the results reported here were obtained using a SUNUltra-Sparc 1 with 256MB of memory.



XOR XOR XORl0; u0 l1; u10 1 n� 1ln�1; un�1
Fig. 5. A cascade of XOR gates with delays.

vi�1 = 1^li � Ci < ui=Ci := 0vi�1 = 0^li � Ci < ui=Ci := 0vi�1 = 0^li � Ci < ui
vi�1 = 0^li � Ci < uivi�1 = 0

vi�1 = 1^Ci < ui vi�1 = 0=Ci := 0

vi�1 = 1=Ci := 0

vi�1 = 1 ^ Ci < ui
vi�1 = 0 ^ Ci < ui vi = 0; vi = 1vi = 0; vi = 0

vi = 1; vi = 1vi = 1; vi = 0 vi�1 = 0

vi�1 = 1^Ci < ui

Fig. 6. The automaton for every XOR gate, i 2 f0; : : : ; n� 1g.When n such automata are composed together we obtain a timed automatonC with 4n discrete states and n clocks, which we let range in f0; : : : ; 7g. Notethat the feed-back loops make this class of automata rather hard to analyzeas all the variables depend on each other. We have managed to calculate allthe states reachable from the unstable state (1; 1; : : : ; 1) for a cascade of upto 10 components in less than 2 hours. These results outperformed those ofthe dbm implementation which could handle only up to 6 gates, using the clock



minimization techniques described in [DY96]. Note that in both implementationsit was easier to treat the more logically-involved XOR network C than the n\independent" inputs of B. This can be explained by the fact that in timedsystems, independence of components is an illusion as there is a common sharedvariable, Time, observed and manipulated by all the components. This explainswhy the bdd results were more modest than initially expected. Nevertheless, theability to analyze such a non-trivial circuit is remarkable and we could verify thatunder certain l and u parameters, the stable state (0; 0; : : : ; 0) is never reached.Concerning variable-ordering, we have found it most e�cient to arrange thevariables by component such that every discrete variable is followed by the bitsof its associated clock with the most signi�cant bit �rst.4 MOS CircuitsThe next example, motivated by problems related to noise and power consump-tion, illustrates some pragmatic trade-o�s between accuracy and e�ciency aswell as the e�ect of other simplifying assumptions on veri�cation performance.Consider a 4-AND gate implemented by the MOS circuit of Figure 7. Weassume that the system is governed by a clock with a period uX and that theinputs are static, or more precisely: each of the inputs can change its value atmost once in the sub-interval [0; lX) and remain constant in the sub-interval[lX ; uX). Concerning the transistors, we assume that they change their states tpico-seconds after the change of their inputs where t 2 [lP ; uP ) for the P-MOSelements (A,B,I and J) and t 2 [lN ; uN ) for the N-MOS elements (C,D,L and K).A 4-state timed automaton, similar to the one of Figure 6 can be constructed tomodel every such transistor.Although such a circuit is supposed to work in a synchronous environment,some practical problems motivate us to look at what happens on a smaller timescale. A particular question one might want to ask is: \what is the maximal (overall legal input patterns) number of transitions that may take place simultane-ously?" By a transition we mean the opening or closing of a transistor, which isthe main energy consumer. When two many transitions occur simultaneously, itmight create noise a�ecting the behavior of the chip.While this question might be answered manually for a small circuit, it is notat all clear how to do it for a 8-AND made of 28 transistors, not to mentiona 16-AND with 60 transistors, where the internal elements can \change theirmind" several times within a clock cycle. It should be emphasized that unlikecommonly-used SPICE simulations, where the simulation is done once for eachinput pattern, here the results of the calculations cover all possible legal inputpatterns and all delay uncertainties.We have transformed the 4-AND circuit into 16 timed automata: 12 for thetransistors and 4 for the inputs (the latter share the same clock in the range 0to uX), and attempted to calculate the set of reachable clock con�gurations.We have kept (lN ; uN ) = (8; 16) throughout the experiments. By taking(lP ; uP ) = (10; 20) and dividing all the constants by lcmf10; 20; 8; 16g = 2 we



CA B
DX1X2

X3X4
E FGH

Y1
Y2

0
Z

IJ
LK

1

Fig. 7. A MOS realization of the 4-AND function.had to code all the transistor clocks using 4 bits. Changing lP from 10 to 8,the lcm becomes 4 and we could use only 3 bits for the clocks. Another factorwhich in
uenced performance was the partition of the central clock period intoactive and non-active phases. Not surprisingly, the results were much better for(lX ; uX) = (20; 60) than for (lX ; uX) = (40; 60).We have constructed an auxiliary automaton for counting the number oftransitions taking place at the same time and could test whether there is an inputpattern generating more than a given number of simultaneous transitions. Forexample, concerning the 4-AND circuit, under the parameters (lP ; uP ) = (8; 20)and (lX ; uX) = (40; 56) we asked whether 9 simultaneous transitions are possiblestarting from the initial stable state where all the inputs are 0. The system gave(in 1:15 hours) a positive answer and provided the following witness sequence:(X2 "; 0)! (fA #; D "g; 8)! (X1 "; 88)! (X2 #; 96)! (fB #; C "g; 100)!(D #; 104) ! (I "; 108)! (A "; 112)! (fX1 #; X2 "; X3 "; X4 "g; 120) !(fA #; B "; C #; D "; E #; F #; G "; H "; I #g; 128)where each pair of the form (S; t) indicates the occurrence of the event (or set ofevents) S after t pico-seconds since the beginning. The results of the experimentswith 3-AND, 4-AND and 5-AND circuits are given in Table 4.6We have also detected the possibilities of short-cuts (a wire connected toboth 0 and 1) as we did in [MY96] for a simpler example of a MOS circuit6 The results for the 5-AND circuit (17 clocks!) were obtained on a 200MHz Pen-tiumPro with 512MB of memory.



(lp,up)=(8,20) (lp,up)=(10,20)# test (ln,un)=(8,16) (ln,un)=(8,16)(lX ,uX)=(24,56) (lX ,uX)=(40,56) (lX ,uX)=(20,60) (lX ,uX )=(40,60)reach 31.7 1:09.9 1:53.8 5:52.53 seq#6 (*) 3.7 (*) 6.1#7 1:09.8 (*) 2:21.0 3:23.4 (*) 8:57.7#8 2:32.2 10:37.1reach 5:24.7 18:39.4 17:26.1 1:20:04.74 seq#8 (*) 25.3 (*) 43.0 (*) 56.4#9 45:02.1 (*) 1:15:38.6 1:33:07.6 MO#10 1:43:02.8reach 28:24.5 1:45:36.2 1:08:41.7 MO5 seq#10 (*) 2:09.6 (*) 3:02.5 (*) 4:15.3#11 9:07:52.4 (*) 4:24:04.4 MO MO#12 (*) 5:02:16.0Table 1. A summary of the MOS results. The lines denoted by \reach" correspond tothe calculation of the reachable states. The lines of the form \seq#n" correspond tothe time it takes to answer whether there exist a sequence of n simultaneous transitions{ a positive answer is indicated by (�) and MO denotes memory over
ow.using the dbm version of kronos. While some of the assumptions we made inthe modeling of transistors deviate from the physical reality (for example, wehave adopted a \lazy evaluation" approach concerning transistors whose inputbecomes \
oating", that is, they maintain their previous status), we believethat the approach presented here can be integrated into the design methodologyof MOS circuits. Once a suspicious input pattern has been detected by a toollike ours, a full-
edged SPICE simulation, focused around that pattern, can beinvoked in order to determine whether or not the alarm is false.5 Additional ExamplesOther experimental results will be reported elsewhere due to lack of space.They include Fischer's mutual exclusion protocol which has become a traditionalbenchmark for timed automata veri�cation tools ([DOY94], [WD94], [LPY95],[B96]). We managed to calculate the reachable states for 14 such processes. Wehave also veri�ed (in few minutes) the manufacturing example due to A. Puri,described in [DY95], where timed automata are used as an abstraction of hybridsystems.6 ConclusionsWe have suggested, implemented and tested an alternative method for e�cientveri�cation of timed automata. The essence of this method is a canonical repre-



sentation of discretized sets of clocks con�gurations using bdds. This method cantake advantage of the symbolic representation of the untimed state-space. Wewere able to treat some examples that could not be treated by state-of-the-artdbm-based tools. Looking more closely at the \bit-structure" of the clock-spaceallows us to make an informed choice concerning the trade-o� between modelaccuracy and computational hardness, as was demonstrated in the CMOS case-study.Notwithstanding the achievements, this is still not the breakthrough in timedveri�cation. The main reason, as mentioned in this paper, is the hidden depen-dency between \syntactically-independent" components, which makes the bddsof the clock part of a system rather big.Acknowledgement: We have bene�tted from the CMOS know-how of IsraelWagner and Ken McMillan.References[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Com-puter Science 126, 183{235, 1994.[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill, Model Checking in Dense RealTime, Information and Computation 104, 2{34, 1993.[AH92] R. Alur and T.A. Henzinger, Logics and Models for Real-Time: A survey,J.W. de Bakker et al (Eds.), Real-Time: Theory in Practice, LNCS 600,74-106, Springer, 1992.[AIKY95] R. Alur, A. Itai, R.P. Kurshan and M. Yanakakis, Timing Veri�cation bySuccessive Approximation, Information and Computation 118, 142-157,1995.[AK96] R. Alur, and R.P. Kurshan, Timing Analysis in COSPAN, in R. Alur,T.A. Henzinger and E. Sontag (Eds.), Hybrid Systems III, LNCS 1066, 220-231, Springer, 1996.[ABK+97] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli and A. Rasse, Data-Structures for the Veri�cation of Timed Automata, in O. Maler (Ed.), Proc.HART'97, LNCS 1201, 346-360, Springer, 1997.[ACM96] E. Asarin, P. Caspi and O. Maler, A Kleene Theorem for Timed Automata,Proc. LICS'97, 1997.[AMP95] E. Asarin, O. Maler and A. Pnueli, Symbolic Controller Synthesis for Dis-crete and Timed Systems, in P. Antsaklis et al (Eds.), Hybrid Systems II,LNCS 999, 1-20, Springer, 1995.[B96] F. Balarin, Approximate Reachability Analysis of Timed Automata, Proc.RTSS'96, 52-61, IEEE, 1996.[BD91] B. Berthomieu and M. Diaz, Modeling and Veri�cation of Time DependentSystems using Time Petri Nets, IEEE Trans. on Software Engineering 17,259-273, 1991.[BFK96] M. Bozga, J.-C. Fernandez and A. Kerbrat, A Symbolic �-calculus ModelChecker for Automata with Variables, Unpublished Manuscript, Verimag,1996. http://www.imag.fr/VERIMAG/DIST SYS/SMI/[Bry86] R.E. Bryant, Graph-based Algorithms for Boolean Function Manipulation,IEEE Trans. on Computers C-35, 677-691, 1986.[BS94] J.A. Brzozowski and C-J.H. Seger, Asynchronous Circuits, Springer, 1994.



[BCM+93] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang, Sym-bolic Model-Checking: 1020 States and Beyond, Proc. LICS'90, Philadel-phia, 1990.[CC95] S.V. Campos and E.M. Clarke, Real-time Symbolic Model Checking forDiscrete Time Models, in T. Rus and C. Rattray (Eds.), Theories andExperiences for Real-Time System Development, World Scienti�c, 1995.[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, The Tool KRONOS, inR. Alur, T.A. Henzinger and E. Sontag (Eds.), Hybrid Systems III, LNCS1066, 208-219, Springer, 1996.[DOY94] C. Daws, A. Olivero and S. Yovine, Verifying et-lotos Programs withKronos, Proc. FORTE'94, Bern, 1994.[DY95] C. Daws and S. Yovine, Two Examples of Veri�cation of Multirate TimedAutomata with KRONOS, Proc. RTSS'95, 66-75, IEEE, 1995.[DY96] C. Daws and S. Yovine, Reducing the Number of Clock Variables of TimedAutomata, Proc. RTSS'96, 73-81, IEEE, 1996.[D89] D.L. Dill, Timing Assumptions and Veri�cation of Finite-State Concur-rent Systems, in J. Sifakis (Ed.), Automatic Veri�cation Methods for FiniteState Systems, LNCS 407, 197-212, Springer, 1989.[GPV94] A. G�oll�u, A. Puri and P. Varaiya, Discretization of Timed Automata, Proc.33rd CDC, 1994.[H93] N. Halbwachs, Delay Analysis in Synchronous Programs, in C. Courcou-betis (Ed.), Proc. CAV'93, LNCS 697, 333-346, Springer, 1993.[HMP92a] T. Henzinger, Z. Manna, and A. Pnueli, Timed Transition Systems, inJ.W. de Bakker et al (Eds.), Real-Time: Theory in Practice, LNCS 600,226-251, Springer, 1992.[HMP92] T. Henzinger, Z. Manna, and A. Pnueli. What Good are Digital Clocks?,in W. Kuich (Ed.), Proc. ICALP'92, LNCS 623, 545-558, Springer, 1992.[HNSY94] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic Model-checking for Real-time Systems, Information and Computation 111, 193{244, 1994.[LPY95] K.G. Larsen, P. Pettersson and W. Yi, Compositional and SymbolicModel-Checking of Real-time Systems, Proc. RTSS'95, 76-87, IEEE, 1995.[L89] H.R. Lewis, Finite-state Analysis of Asynchronous Circuits with BoundedTemporal Uncertainty, TR15-89, Harvard University, 1989.[MP95] O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuits us-ing Timed Automata, in P.E. Camurati, H. Eveking (Eds.), Proc.CHARME'95, LNCS 987, 189-205, Springer, 1995.[MY96] O. Maler and S. Yovine. Hardware Timing Veri�cation using KRONOS,In Proc. 7th Israeli Conference on Computer Systems and Software Engi-neering, Herzliya, Israel, June 1996.[McM93] K.L. McMillan, Symbolic Model-Checking: an Approach to the State-Explosion problem, Kluwer, 1993.[NS92] X. Nicollin and J. Sifakis, An Overview and Synthesis of Timed ProcessAlgebra, in J.W. de Bakker et al (Eds.), Real-Time: Theory in Practice,LNCS 600, 526-548, Springer, 1992.[S95] F. Somenzi, CUDD: CU Decision Diagram Package, 1995.[WD94] H. Wong-Toi and D.L. Dill, Approximations for Verifying Timing Proper-ties, in T. Rus and C. Rattray (Eds.), Theories and Experiences for Real-Time System Development, World Scienti�c Publishing, 1994.


