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Martingales and Rates of Presence in Homogeneous

Fragmentations

Nathalie Krell∗ and Alain Rouault†

Abstract

In mass-conservative homogeneous fragmentations, sizes of the fragments decrease
at asymptotic exponential rates. Like in branching processes, two situations occur:
either the number of such fragments is exponentially growing - the rate is effective -,
or the probability of presence of such fragments is exponentially decreasing [3],[12].

In a recent paper [18], N. Krell considers fragments whose sizes decrease at exact

exponential rates. In this new setting, she characterizes the effective rates and studies
Hausdorff dimension. The present paper carries out a detailed analysis of this model
and focus on presence probabilities, using the spine method and a suitable martingale.
For the sake of completeness, we compare our results with results and methods of the
classical model.
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1 Introduction and main results

Fragmentations are well defined in the book of Bertoin [8] (see also [1] and [3]) and
a short overview on this field is given here. We consider a homogenous fragmentation F
of intervals, which is a Markov process in continuous time taking its values in the set U
of open sets of (0, 1). Informally, each interval component - or fragment - splits as time
goes on, independently of the others and with the same law, up to a rescaling. We make

∗Université Paris Descartes, MAP5, 45 rue des Saints-Pères 75270 Paris Cedex 06.
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the restriction that the fragmentation is conservative, which means that no mass is lost.
In this case, the law F is completely characterized by the so-called dislocation measure ν
(corresponding to the jump-component of the process) which is a measure on U fulfilling the
following conditions

ν((0, 1)) = 0,

∫

U

(1 − u1)ν(dU) <∞, (1)

and
∞∑

i=1

ui = 1 for ν − almost every U ∈ U ,

where for U ∈ U ,
|U |↓ := (u1, u2, ...)

is the decreasing sequence of the lengths of the interval components of U .
It appears quite natural to study the rates of decay of fragments. If we measure the

fragments by logarithms of their sizes, a homogeneous fragmentation can be considered
as an extension of a classical branching random walk in continuous time. The common
feature of many branching models consists in the alternative between exponential growth
and extinction. Let us recall some basic facts about a Galton-Watson process ζn started
from ζ0 = 1 with finite mean m = Eζ1. We have n−1 log E(ζn) = logm and

(a) if m > 1, and P(ζ1 ≥ 1) = 1 then limn−1 logZn = logm a.s.
(b) if m < 1 then limn n

−1 log P(Zn 6= 0) = logm. More generally, in branching random
walks, when the local rate of growth of the population in expectation is (exponentially)
positive, it is a.s. the effective local rate of growth of the population, and when it is negative,
it is the local rate of decrease of the probability of presence.

The goal of this paper is to present results of the second type, i.e. asymptotic study of
presence of abnormally large fragments. Let us first explain known results of the first type
- exponential growth - and fix some notation.

For x ∈ (0, 1) let Ix(t) be the component of the interval fragmentation F (t) which contains
x, and let |Ix(t)| be its length. Bertoin showed in [6] that if V is a uniform random variable
on [0, 1] independent of the fragmentation, then

ξ(t) := − log |IV (t)|
is a subordinator whose distribution is entirely determined by the characteristics of the
fragmentation. Its Laplace exponent is given by

Ee−qξ(t) = e−tκ(q)

where κ is the concave positive function :

κ(q) :=

∫

U

(
1 −

∞∑

j=1

uq+1
j

)
ν(dU) ∀q > p (2)
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and p is the smallest real number for which κ remains finite :

p := inf

{
p ∈ R :

∫

U

∞∑

j=2

up+1
j ν(dU) <∞

}
.

The SLLN tells us that a.s. ξ(t)/t→ κ′(0) =: vtyp, so that a.s.

lim
t→∞

−t−1 log |IV (t)| = vtyp .

In fact, there is an interval (vmin, vmax) straddling vtyp of effective asymptotic exponential
rates of decreasing of fragments which we describe now. Let p be the unique solution of the
equation

κ(q) = (q + 1)κ′(q), q > p .

We define vmin = κ′(p) and vmax := κ′(p+).
In all this article, we fix a and b such that 0 < a < 1 < b.
If we set

G̃v,a,b(t) = {Ix(t) : x ∈ (0, 1) ae−vt < |Ix(t)| < be−vt}
then it is known ([3], [12] Corollary 3) that the asymptotic growth of G̃v,a,b(t) is ruled by the
concave function C defined for v < vmax by

C(v) = inf
q>p

(q + 1)v − κ(q) , (3)

or

C(v) = (Υv + 1)v − κ(Υv) , κ′(Υv) = v . (4)

More precisely we have:
• for v ∈ (vmin, vmax), C(v) is strictly positive and

lim
t→∞

t−1 log ♯G̃v,a,b(t) = C(v) a.s. (5)

• for v ≤ vmin, C(v) is strictly negative and the set G̃v,a,b(t) is a.s. empty for t large
enough.

Let us stress that C(v) depends only on v and not on a, b.
The latter setting will be referred as classical.
In a recent paper [18], Krell studied the more constrained set

Gv,a,b(t) = {Ix(t) : x ∈ (0, 1) and ae−vs < |Ix(s)| < be−vs ∀ s ≤ t} ,

and proved a result of the same kind. In particular, Proposition 3 (p.908) [18] tells us that
there exists1 a positive number ρ(v, a, b) depending upon v, a, b such that

1see the forthcoming Section 2 for a precise definition
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• for v > ρ(v, a, b), conditionally on {inf{t : Gv,a,b(t) 6= ∅} = ∞}

lim
t→∞

t−1 log ♯Gv,a,b(t) = v − ρ(v, a, b) , a.s. (6)

• for v < ρ(v, a, b), limt→∞ ♯Gv,a,b(t) = 0 a.s..
This result holds under the following assumption A, which comes from [21] and [5], and

ensures the absolute continuity of the marginals of the underlying Lévy process.

Assumption A. The image ν1 of the measure ν by the mapping U 7→ u1 satisfies

νac1 ((1 − ǫ, 1]) = ∞ for any ǫ > 0 , (7)

where νac1 be the absolutely continuous part of ν1.
Referring to the above general comments on branching models, we can say that the above

assertions (5) and (6) are of the first type. Our main aim here is to present results of the
second type.

For the classical model, an assumption is needed. A fragmentation is called r-lattice with
r > 0, if ξ(t) is a compound Poisson process whose jump measure has a support carried by
a discrete subgroup of R and r is the mesh. If there is no such r, the fragmentation is called
non-lattice.

Assumption B. Either the fragmentation is non-lattice, or it is r-lattice and a, b satisfy
b > aer.

Theorem 1.1. [11] Under Assumption B, if v < vmin, then

lim
t→∞

t−1 log P(G̃v,a,b(t) 6= ∅) = C(v) (8)

In [11], the result of Theorem 5 is more precise since it gives sharp (i.e. non logarithmic)
estimates of the latter probability.

For the more constrained set Gv,a,b(t), the corresponding result is the following.

Theorem 1.2. Under assumption A, if v − ρ(v, a, b) < 0, then

lim
t→∞

t−1 log P(Gv,a,b(t) 6= ∅) = v − ρ(v, a, b) (9)

Theorem 1.2 is the main result of the present paper. The crucial tool consists in first
introducing additive martingales to make a change of probability and then using a decom-
position according to the spine method. For the sake of completeness, a direct short proof of
Theorem 1.1 in the same spirit is given to illustrate the common feature of both models (it
should be noted that a similar method and result hold for the branching Brownian motion
in [16]).

Let us remark that since Gv,a,b ⊂ G̃v,a,b, the limits (5), (8), (6) and (9) are comparable.
In fact we have the following general result m
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Proposition 1.3. Under assumption A, for all v < vmax

C(v) > v − ρ(v, a, b). (10)

In Section 2, we present all the tools on fragmentations and Lévy processes. Section 3 is
devoted to the study of the two martingales and their asymptotic properties. In particular,
a mistake in the proof of Theorem 2.1 in [18] is corrected. In Section 4, we give the proofs
of the theorems on the presence probabilities and the proofs of the results on martingales.
Section 5 is devoted to a proof of Proposition 1.3 only based on properties of Lévy processes.

2 Background on fragmentations and Lévy processes.

2.1 Partition fragmentations and interval fragmentations

Let P the space of partition of N, and for every integer k, the block {1, ..., k} is denoted
by [k]. As in [10], we call discrete point measure on the space Ω := R+×P×N, any measure:

w =

∞∑

(t,π,k)∈D

δ(t,π,k),

where D is a subset of R+ ×P × N such that

∀t′ ≥ 0 ∀n ∈ N ♯
{

(t, π, k) ∈ D | t ≤ t
′

, π|[n] 6= ([n], ∅, ∅, ...), k ≤ n
}
<∞

and for all t ∈ R

w({t} × P × N) ∈ {0, 1}.
Starting from an arbitrary discrete point measure ω on R+ ×P × N, we will construct a

nested partition Π = (Π(t), t ≥ 0) (which means that for all t ≥ t
′

Π(t) is a finer partition of
N than Π(t

′

)). We fix n ∈ N, the assumption that the point measure ω is discrete enables us
to construct a step path (Π(t, n), t ≥ 0) with values in the space of partitions of [n], which
only jumps at times t at which the fiber {t} × P × N carries an atom of ω, say (t, π, k),
such that π|[n] 6= ([n], ∅, ∅, ...) and k ≤ n. In that case, Π(t, n) is the partition obtained by
replacing the k− th block of Π(t−, n), denoted Πk(t−, n), by the restriction π|Πk(t−,n) of π to
this block, and leaving the other blocks unchanged. Of course for all t ≥ 0, (Π(t, n), n ≥ 0) is
compatible (i.e. for every n, Π(n, t) is a partition of [n] such that the restriction of Π(n+1, t)
to [n] coincide with Π(n, t)), as a consequence, there exists a unique partition Π(t), such that
for all n ≥ 0 we have Π(t)|[n] = Π(t, n). With the terminology of [6], it is shown in [10] that
this process Π is a partition-valued homogeneous fragmentation.

Let the set S↓ be

S↓ :=

{
s = (s1, s2, ...) | s1 ≥ s2 ≥ ... ≥ 0 ,

∞∑

i=1

si ≤ 1

}
.
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A block B ⊂ N has an asymptotic frequency, if the limit

|B| := lim
n→∞

n−1♯(B ∩ [n])

exists. When every block of some partition π ∈ P has an asymptotic frequency, we write
|π| = (|π1|, ...) and then |π|↓ = (|π1|↓, ...) ∈ S↓ for the decreasing rearrangement of the
sequence |π|. In the case where a block of the partition π does not have an asymptotic
frequency, we decide that |π| = |π|↓ = ∂, where ∂ stands for some extra point added to S↓.

The sigma-field generated by the restriction to [0, t] × P × N is denoted by G(t). So
(G(t))t≥0 is a filtration, and the nested partitions (Π(t), t ≥ 0) are (G(t))t≥0-adapted. We
also define the sigma-field (F(t))t≥0 generated by the decreasing rearrangement |Π(r)|↓ of the
sequence of the asymptotic frequencies of the blocks of Π(r) for r ≤ t. Of course (F(t))t≥0

is a sub-filtration of (G(t))t≥0.
Let G1(t) the sigma-field generated by the restriction of the discrete point measure w to

the fiber [0, t] × P × {1}. So (G1(t), t ≥ 0) is a sub-filtration of (G(t), t ≥ 0), and the first
block of Π is (G1(t), t ≥ 0)-measurable. Let D1 ⊆ R+ be the random set of times r ≥ 0 for
which the discrete point measure has an atom on the fiber {r} × P × {1}, and for every
r ∈ D1, denote the second component of this atom by π(r).

There is a powerful link between partition fragmentations and interval frag-
mentations. On the one hand, the S↓-valued process of ranked asymptotic frequencies |Π|↓
of a partition fragmentation is a so-called ranked (or mass) fragmentation ([2], [6]), and
conversely a partition fragmentation can be built from a ranked fragmentation via a ”paint-
box” process. On the other hand, the interval decomposition (Ji(t), J2(t), ...) of the open F (t)
ranked in decreasing order is a ranked fragmentation, denoted byX(t) := (|Ji(t)|, |J2(t)|, ...)↓.
We can then lift this ranked fragmentation to a partition fragmentation. More precisely, if
ν is the dislocation measure of F , and ν̃ its image by the map U 7→ |U |↓, then according
to Theorem 2 in [6], there exists a unique measure µ on P which is exchangeable (i.e. in-
variant by the action of finite permutations on P), and such that ν̃ is the image of µ by the
map π 7→ |π|↓ where |π|↓ is the decreasing rearrangement of the sequence of the asymptotic
frequencies of the blocks of π. So, for all measurable function f : [0, 1] → R+ such that
f(0) = 0, ∫

P

f(|π1|)µ(dπ) =

∫

S↓

∞∑

i=1

sif(si)ν̃(ds) =

∫

U

∞∑

i=1

uif(ui)ν(dU).

It should be noted that {|J1(t)|, |J2(t)|, ...}t≥0 = {|Π1(t)|, |Π2(t)|, ...}t≥0.
In the following sections, Π refers to this partition fragmentation.

2.2 Lévy processes.

A Lévy process is a stochastic process with càdlàg sample paths and stationary indepen-
dent increments. Two particular types of such processes are considered:

• a subordinator is a Lévy process taking values in [0,∞), which implies that its sample
paths are increasing,
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• a Lévy process is called completely asymmetric when all its jumps have the same sign.
We will consider here Lévy processes without positive jumps.

The Laplace exponent of a subordinator is characterized by2

E exp−λσt = exp−tΦ(λ) (11)

and the process

(exp−pσt + tΦ(p))t≥0 (12)

is a martingale. We define the probability measure P(p) as the h-transform of P by means
of this martingale:

dP(p)|Et
= exp{−pσt + tΦ(p)} dP|Et

. (13)

Under P(p), σt is a subordinator with Laplace exponent q 7→ Φ(p + q) − Φ(p). The change
of probability shifts the drift.

We will need some technical notions about completely asymmetric Lévy processes, mostly
taken from [4] and [5]. Let Y = (Yt)t≥0 be a Lévy process with no positive jumps and (Et)t≥0

the natural filtration associated to (Yt)t≥0. The case where Y is the negative of a subordinator
is degenerate for our purpose and therefore is implicitly excluded in the rest of the paper.
The law of the Lévy process started at x ∈ R will be denoted by Px, its Laplace transform
is given by

E0(e
λYt) = etψ(λ), λ, t ≥ 0,

where ψ : R+ → R is called the Laplace exponent.
Let φ : R+ → R+ be the right inverse of ψ (which exists because ψ : R+ → R is convex

with limt→∞ ψ(λ) = ∞), i.e. ψ(φ(λ)) = λ for every λ ≥ 0. Let W : R+ → R+ be the scale
function, that is the unique continuous function with Laplace transform:

∫ ∞

0

e−λxW (x)dx =
1

ψ(λ)
, λ > φ(0).

For q ∈ R, let W (q) : R+ → R+ be the continuous function such that for every x ∈ R+

W (q)(x) :=

∞∑

k=0

qkW ∗k+1(x),

where W ∗n = W ∗ ... ∗W denotes the nth convolution power of the function W , so that
∫ ∞

0

e−λxW (q)(x)dx =
1

ψ(λ) − q
, λ > φ(q).

The functionsW (q) are useful to investigate the two-sided exit problem for Lévy processes.
Their properties are well exposed in the book of Kyprianou [20] and in [13], examples are in
[17].

The following theorems taken from [21] and [5] yield another important martingale and
its corresponding change of probability.

2Bold symbols P and E will refer to Lévy processes while P and E refer to fragmentations.
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Theorem 2.1. Let us define the critical value

ρβ := inf{q ≥ 0 ; W (−q)(β) = 0}. (14)

Suppose that the one-dimensional distributions of the Lévy process are absolutely continuous.
Then the following holds:

1. ρβ ∈ (0,∞) and the function W (−ρβ) is strictly positive and continuous on (0, β).

2. The mapping β 7→ ρβ = inf{q > 0 : W (−q)(β) = 0} is strictly decreasing and of class
C1 on (0,∞).

3. Let for β > 0,

Tβ = inf{t : Yt /∈ (0, β)} ; (15)

then the process

Dt := eρβt 1{t<Tβ}
W (−ρβ)(Yt)

W (−ρβ)(x)
(16)

is a (Px, (Et))-martingale, for every x ∈ (0, β).

Remark 2.2. The definition of ρβ is complicated, but some examples are given in [18].

Let the probability measure Pl be the h-transform of P based on the martingale Dt :

dPl
x|Et

= DtdPx|Et
. (17)

Theorem 2.3. With the same assumption as in Theorem 2.1, under P
l
x, (Yt) is a homo-

geneous strong Markov process on (0, β), positive-recurrent and as t → ∞, Yt converges in
distribution to its stationary probability, which has a density.

It is essentially Theorem 3.1 in [21], the convergence in distribution is a consequence of
Theorem 2 (v) of [5].

The change of probability forces the process to be confined in (0, β).

3 Two additive martingales and their asymptotic be-

havior

As seen in [8] (p.133 and in Lemmas 3.9 and 3.10), the process ξt = − ln |Π1(t)| is a
G(t) subordinator, which means in particular that ξt+s − ξt is independent of G(t). In this
section, we will adapt the above statements to the subordinator ξt (instead of σt) and to
the spectrally negative process Yt = vt − ξt − log a, starting at x = − log a. It should be
stressed that there is a slight change since G(t) is not the proper filtration of these processes,
but the martingale properties remain true, as well as Markov property. We then perform a
projection on the filtration F(t) of the ranked fragmentation.

8



3.1 The classical additive martingale M
(p)
t

As in (13), we define for p > p the G(t)-martingale

D
(p)
t = e−pξ(t)+tκ(p) ,

and the probability measure P(p) as the h-transform of P based on D
(p)
t :

dP(p)|G(t) = D
(p)
t dP|G(t). (18)

When the martingale D
(p)
t is projected on the sub-filtration (F(t))t≥0, we obtain the

well-known additive F(t)-martingale

M
(p)
t =

∞∑

j=1

|Πj(t)|p+1eκ(p)t =
∞∑

i=1

|Ji(t)|p+1eκ(p)t , (19)

and the projection of (18) allows to build the new probability :

dP(p)|F(t) = M
(p)
t dP|F(t) . (20)

In [10], there is a complete description of the behavior of the process (Π(t) , t ≥ 0) under
P(p), but since it is not used here, it is omitted.

3.2 The martingale M
(v,a,b)
t associated to the set Gv,a,b(t).

Since we are interested in the set of the “good” intervals at time t as

Gv,a,b(t) = {Ix(t) : x ∈ (0, 1) and ae−vs < |Ix(s)| < be−vs ∀ s ≤ t}. (21)

it is natural to study the process

Yt := vt− ξt − log a , t ≥ 0

and its time of exit from (0, log b/a). It is a Lévy process with no positive jump. Its Laplace
exponent is

ψ(λ) = vλ− κ(λ)

with κ defined in (2).
Assumption (A) guarantees that the marginals of the Lévy process Yt are absolutely

continuous and Theorem 2.1 can thus be applied.
For this Lévy process Y let

T := Tlog(b/a)

where Tβ is defined in (15) and
ρ(v, a, b) := ρlog(b/a),
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where ρβ is defined in (14). To put it shortly, we will use frequently the notation ρ instead
of ρ(v, a, b).

To simplify the notation, let also

h(y) := W (−ρ)(y − log a)1{y∈(log a,log b)} (22)

for all y ∈ R, and h(−∞) = 0. This function is well defined thanks to Theorem 2.1 and
h(0) 6= 0.

By rewriting (16) with the new notation we get a (G(t))-martingale

Dt = eρt 1{t<T}
h(vt− ξt)

h(0)
, t ≥ 0 , (23)

and then a new probability defined by

dPl|G(t) = DtdP|G(t). (24)

For i ≥ 1, let Pi(t) be the block of Π(t) which contains i at time t. We define the killed
partition as follows

Π†
j(t) = Πj(t)1{∃i∈N∗| Πj(t)=Pi(t); ∀s≤t |Pi(s)|∈(ae−vs,be−vs)}.

Similarly, if I is an interval component of F (t), we define the “killed” interval I† by I† = I
if I is good (i.e. I ∈ Gv,a,b(t) with Gv,a,b(t) defined in (21)), else by I† = ∅. Projecting the
martingale Dt on the sub-filtration (F(t))t≥0, we obtain an additive martingale

M
(v,a,b)
t =

eρt

h(0)

∑

j∈N

h
(
vt+ log |Π†

j(t)|
)
|Π†

j(t)|

=
eρt

h(0)

∑

i∈N

h
(
vt+ log |J†

i (t)|
)
|J†
i (t)|. (25)

Finally, let the absorption time of Mt at 0 be

ζ := inf{t : Mt = 0} = inf{t : Gv,a,b(t) = ∅},

with the convention inf ∅ = ∞.
The projection of (24) on the sub-filtration F(t) gives the identity:

dPl|F(t) = M
(v,a,b)
t dP|F(t) . (26)

The interesting fact is that the change of probability Pl only affects the behavior of the
block which contains 1. More precisely, like in lemma 8 (ii) [10], we obtain

Lemma 3.1. Suppose Assumption (A) holds. Under Pl, the restriction of w to R+ × P ×
{2, 3, ...} has the same distribution as under P and is independent of the restriction to the
fiber R+ ×P × {1}.

10



3.3 Growth of martingales

The above theorems rule the asymptotic behavior of our martingales. It should be noted
that assertion 1 of Theorem 3.2 was claimed in [18] Theorem 2, but unfortunately there was
a mistake in the proof. Indeed it is not true in general that the function h is Lipschitz.

Theorem 3.2. In the previous notation, with the assumption A, then:

1. If v > ρ(v, a, b), the martingale M
(v,a,b)
t is bounded in L2(P).

2. If v < ρ(a, b, v),

a) limt→∞M
(v,a,b)
t = 0, P-a.s.,

b) there exists C1, C2 > 0 such that for every t

C1 ≤ e(v−ρ(v,a,b))t E
[
M

(v,a,b)
t

]2
≤ C2 . (27)

Theorem 3.3. 1. If p ∈ (p, p), there exists α > 0 such that the martingale M
(p)
t is

bounded in L1+α(P).

2. If p ≥ p,

a) limt→∞M
(p)
t = 0, P-a.s.

b) There exists α0 > 0 such that for α ∈ (0, α0),

d(p, α) := (1 + α)κ(p) − κ ((1 + α)(p+ 1) − 1) > 0 (28)

and then for those α, we have for every t > 0

ed(p,α)t E |M (p)
t |1+α ≤ Cα,p , (29)

where Cα,p depends on α and p.

4 Proofs

4.1 Proof of Theorem 1.2

Proof: • We first show the upper bound of (9), i.e.

lim sup
t→∞

t−1 log IP(Gv,a,b(t) 6= ∅) ≤ v − ρ . (30)

Let 0 < ā < a < 1 < b < b̄. As in Section 3.2, we associate to ā, b̄ and v, the parameter
ρ̄, as well as the set of ‘good” intervals

Gv,ā,b̄(t) := {Ix(t) : x ∈ (0, 1) and |Ix(s)| ∈ (āe−vs, b̄e−vs) ∀ s ≤ t} ,

11



and the martingale M̄t.
Let for every t ∈ R

h̄(t) := W (−ρ̄)(t+ log(1/ā))1{t∈(log ā,log b̄)}.

For t ≥ 0 fixed, we have:

1 = EM̄t =
eρ̄t

h̄(0)
E

(
∑

i∈N

h̄(vt+ log |Ji(t)|)|Ji(t)| 1{Ji(t)∈Ḡv,a,b(t)}

)

≥ āe(ρ̄−v)t

h̄(0)
E

(
∑

i∈N

h̄(vt+ log |Ji(t)|) 1{Ji(t)∈Gv,a,b(t)}

)
.

Since (a, b) ( (ā, b̄), h̄ is continuous and stricly positive on [log a, log b] so that, if

C5 := h̄(0)/

(
ā inf
x∈[log a,log b]

h̄(x)

)
<∞,

then, for all t ≥ 0 :

C5 ≥ e(ρ̄−v)tE

(
∑

i∈N

1{Ji(t)∈Gv,a,b(t)}

)
≥ e(ρ̄−v)tP(Gv,a,b(t) 6= ∅)

Hence for all ā, b̄ such that 0 < ā < a < 1 < b < b̄:

lim sup
t→∞

t−1 log P(Gv,a,b(t) 6= 0) ≤ v − ρ̄ .

For ā → a and b̄ → b, by the continuity of ρ. (see Theorem 2.1.2) the inequality (30) is
obtained.

• Let us prove the lower bound of (9), i.e.

lim inf
t→∞

t−1 log IP(Gv,a,b(t) 6= ∅) ≥ v − ρ . (31)

Since Mt is a positive martingale and {Gv,a,b(t) 6= ∅} = {Mt 6= 0}, we have

1 = E(Mt) = E(Mt1l{Mt 6=0}) = E(Mt1l{Gv,a,b(t)6=∅}) .

Now, thanks to the Cauchy-Schwarz inequality:

E(Mt1l{Gv,a,b(t)6=∅}) ≤
(
E(M2

t )P(Gv,a,b(t) 6= ∅)
)1/2

and applying (27), we get
P(Gv,a,b(t) 6= ∅) ≥ L−1e(v−ρ)t

which yields (31).
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4.2 Proof of Theorem 1.1

The upper bound is straightforward. We have for all p ≥ p,

1 = EM
(p)
t = E

(
∞∑

i=1

|Ji(t)|p+1eκ(p)t

)
≥ ap+1eκ(p)t−(p+1)vtP(G̃v,a,b(t) 6= ∅) .

Hence
P(G̃v,a,b(t) 6= ∅) ≤ a−(p+1)e[(p+1)v−κ(p)]t

and
lim sup
t→∞

t−1 log P(G̃v,a,b(t) 6= ∅) ≤ (p + 1)v − κ(p).

In particular, for p = Υv, we get from (4)

lim sup
t→∞

t−1 log P(G̃v,a,b(t) 6= ∅) ≤ C(v) . (32)

To prove the lower bound:

lim inf
t→∞

t−1 log P(G̃v,a,b(t) 6= ∅) ≥ C(v) , (33)

we use again the change of probability (20) with p = Υv. We have,

P(G̃v,a,b(t) 6= ∅) = E(p)
(
(M

(p)
t )−1; G̃v,a,b(t) 6= ∅

)
≥

≥ etC(v)−tε P(p)

(
sup

0<s≤t
M (p)

s < e−tC(v)+tε; vt− ξt ∈ [log a, log b]

)

(34)

and

P(p)

(
sup

0<s≤t
M (p)

s < e−tC(v)+tε; vt− ξt ∈ [log a, log b]

)
≥

≥ P(p) (vt− ξt ∈ [log a, log b]) − P(p)

(
sup

0<s≤t
M (p)

s ≥ e−tC(v)+tε

)
(35)

From Sections 2.2 and 3.1 we see that under P(p), the Lévy process (vt− ξt)t≥0 has mean
−κ′(p) + v = 0 and variance σ2

p := −κ′′(p). From Proposition 2 of Bertoin and Doney [9] it
satisfies the local central limit theorem, if it is not lattice. We get

σp
√

2πt P(p)(vt− ξt ∈ [log a, log b]) → log
b

a
. (36)

and then
lim inf

t
t−1 log P(p)(vt− ξt ∈ [log a, log b]) = 0 . (37)
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In the case of a r-lattice fragmentation, under assumption B, there is at least an integer
multiple of r in the interval [vt− log b, vt− log a]. We can use the lattice version of the local
central limit theorem (see for instance [14] Theorem 2 iii)), and we get (37) again.

Let us tackle now the second term of the RHS of (35). By convexity (M
(p)
t )1+α is a

P-submartingale, so (M
(p)
t )α is a P(p)-submartingale3. Hence, by Doob’s inequality,

P(p)

(
sup

0<s≤t
|M (p)

s | ≥ e−tC(v)+tε

)
≤ etαC(v)−αtεE(p) |M (p)

t |α

= etαC(v)−αtεE |M (p)
t |1+α , (38)

and by (29) we have for α ∈ (0, α1] for some α1 > 0

P(p)

(
sup

0<s≤t
|M (p)

s | ≥ e−tC(v)+tε

)
≤ K ′

α,pe
tH(α) , (39)

where
H(α) = αC(v) − αε+ d(p, α) ,

and K ′
α,p is some constant. Now, a second order development of κ around p gives

H(α) = −αε− α2(p+ 1)2

2
κ′′(p)(1 + o(α))

and, since κ′′ < 0 (κ is concave), we may choose α being small enough such that H(α) < 0.
This yields

lim sup
t

t−1 log P(p)

(
sup

0<s≤t
|M (p)

s | ≥ e−tC(v)+tε

)
< 0. (40)

So, gathering (40) and (36), we get

lim inf
t→∞

t−1 log P(p)

(
sup

0<s≤t
M (p)

s < e−tC(v)+tε; vt− ξt ∈ [log a, log b]

)
= 0 ,

which with (34) yields

lim inf
t→∞

t−1 log P(G̃v,a,b(t) 6= ∅) ≥ C(v) − ε

for every ε > 0. Letting ε → 0 proves (33), and ends the proof of Theorem 1.1 .

3This the same argument as in [16]
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4.3 Proof of Theorem 3.2 :

We use the change of probability (26), with p = Υv:

E(M2
t ) = El(Mt) , (41)

and the spine decomposition:
Mt = ct + dt,

where

ct :=
eρt

h(0)
h
(
vt+ log(|Π†

1(t)|)
)

|Π†
1(t)| (42)

and

dt :=
eρt

h(0)

∞∑

i=2

h
(
vt+ log

(
|Π†

i (t)|
))

|Π†
i(t)| . (43)

The asymptotic behavior of ct and dt is ruled by the two following lemmas.

Lemma 4.1. Suppose Assumption (A) holds. Under Pl, e−(ρ−v)tct converges in distribution
as t→ ∞, to a random variable η with no mass en 0. Moreover there exists C > 0 such that

lim
t→∞

El(ct)e
−(ρ−v)t = C . (44)

Lemma 4.2. Suppose Assumption (A) holds, if ρ 6= v, there exists C > 0 such that

Eldt ≤ C max{e(ρ−v)t, 1} . (45)

4.3.1 Proof of Theorem 3.2 1)

From (41), it is enough to prove that

lim
t→∞

El(Mt) <∞ .

By (44), we have
lim
t→∞

El(ct) = 0 . (46)

By (45), we have supt E
l(dt) <∞.

4.3.2 Proof of Theorem 3.2 2) a)

The method is now classic, (see for instance [19]) and uses a decomposition which may
be found in Durrett [15] p. 241. It will be used also in the proof of Theorem 3.3 below. We
have only to prove that Pl(lim supMt = ∞) = 1.

We have the obvious lower bound
Mt ≥ ct

For v < ρ, Lemma (4.1) yields lim ct = ∞ in Pl probability, or in other words Pl(lim supt ct =
∞) = 1 which implies Pl(lim suptMt = ∞) = 1, hence P(limtMt = 0) = 1.
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4.3.3 Proof of Theorem 3.2 2 b)

This result is a straightforward consequence of (41) and the two lemmas.

4.3.4 Proof of Lemma 4.1 :

From the definition of ct (42), we see that the distribution of
(
e−(ρ−v)tct, t ≥ 0

)
under Pl

is the distribution of
(

1
h(0)

W (−ρ)(Yt)e
Yt 1{t<T}, t ≥ 0

)
under P

l
log(1/a). Under P

l
log(1/a), the

stopping time T is a.s. infinite and from Theorem 2.3 the process Yt is positive-recurrent,
converges in distribution and the limit has no mass in 0. Since the function y 7→ W (−ρ)(y)ey

is continuous, it is bounded on the compact support of the distribution of Yt, and yt =
El
(
cte

−(ρ−v)t
)

has a positive limit.

4.3.5 Proof of Lemma 4.2 :

We start from the definition of dt decomposing the time interval [0, t] into pieces [k−1, k[
and splitting the sum (43) according to the time where the fragment separates from 1:

h(0)e−ρtdt =
∑

k

∑

i∈Ik

h(vt+ log |Π†
i(t)|)|Π†

i(t)| (47)

where Ik is the set of i ≥ 2 such that the block Πi(t) separates at some instant r ∈ D1 ∩
[k − 1, k[. The block after the split which contains 1 is Π1(r). Thus, there is some index
ℓ ≥ 2 such that Πi(t) ⊆ πℓ(r) ∩Π1(r−). Then, at time k, πℓ(r) ∩ Π1(r−) is partitioned into
Πj(k), j ∈ Jℓ,r where Jℓ,r is some set of indices measurable with respect to

G1,k(t) := G1(t) ∨ G(k) .

Conditionally upon G1,k(t), the partition (Πi(t), i ∈ Ik) can be written in the form Π̃(j)(t −
k)|Πj(k), j ∈ Jk, where Jk is some set of indices G1,k(t)-measurable and where (Π̃(j))j∈N is a
family of i.i.d. homogeneous fragmentations distributed as Π under P and independent of
the sigma-field G1,k(t).

As a consequence:
∪
i∈Ik

Πi(t) = ∪j∈Jk
Π̃(j)(t− k)|Πj(k) , (48)

and for all m ∈ N

|Π̃(j)
m (t− k)|Πj(k)| = |Π̃(j)

m (t− k)||Πj(k)|. (49)

Now, we have to take into account the killings.
Let us call ”good fragment” a fragment which satisfies the constraint all along its history

up to time t. In the sum

Sk :=
∑

i∈Ik

h(vt+ log |Π†
i(t)|)|Π†

i(t)|

=
∑

j∈Jk

∑

m

h(vt+ log(|Π̃(j)
m (t− k)||Πj(k)|))|Π̃(j)

m (t− k)||Πj(k)|1lj,m,k
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where 1lj,m,k = 1 if and only if Π̃
(j)
m (t− k)|Πj(k) is a good fragment. From the definition of h

in (22) we have

∑

m

h(vt+ log(|Π̃(j)
m (t− k)||Πj(k)|))|Π̃(j)

m (t− k)|1lj,m,k

= eρ(k−t)h(vk + log(|Πj(k)|)1lj,kM̃ j
t−k

where M̃ j
t−k is a martingale and where 1lj,k = 1 if and only if Πj(k) is a good fragment. We

have then

El (Sk|G1,k(t)) = eρ(k−t)
∑

j∈Jk

|Πj(k)|h(vk + log(|Πj(k)|)1lj,k

Now again by the definition of h and its continuity, there exists C3 > 0 such that

h(vk + log(|Πj(k)|) ≤ C31lvk+log(|Πj(k)|∈(log a,log b)

and
El (Sk|G1,k(t)) ≤ C3e

(ρ−v)ke−ρt
∑

j∈Jk

1lj,k

It is clear that the only terms that contribute to the sum
∑

j∈Jk
1lj,k correspond to good

fragments at time k which where dislocated from good Π1(k− 1) during [k− 1, k[. Since the
fragmentation is conservative, there were at most bev/a such dislocations during that time.
So we get:

El (Sk|G1,k(t)) ≤ C3be
va−1e(ρ−v)ke−ρt ,

and from (47) there exists C4 > 0 such that

El(dt|G1(t)) ≤ C4

⌊t⌋∑

k=1

e(ρ−v)k .

In other words, for all v 6= ρ there exists L > 0 such that

El(dt|G1(t)) ≤ Lmax(e(ρ−v)t, 1) , (50)

which proves (45), hence Lemma 4.2.

4.4 Proof of Theorem 3.3

1) The first point is in the proof of Theorem 2 of [7] p.406. The core of the argument is
the estimate:

E sup
0<s≤t

|M (p)
s |1+α≤ Kαc(p, α)

∫ t

0

exp (d(p, α)s) ds (51)
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where
• Kα is a universal constant depending only on α
• d(p, α) = (1 + α)κ(p) − κ

(
(1 + α)(p+ 1) − 1

)

•
c(p, α) =

∫

S∗

|
∞∑

i=1

(xp+1
i − xi) |1+α ν(dx) <∞

for every p > p and α ∈ [0, α1] for some α1.
For p < p̄, we know that κ(p) − (p + 1)κ′(p) < 0, so that the function α 7→ d(p, α) is

decreasing on some interval [0, α2] and vanishes at α = 0. The integral on the right hand
side of (51) is then uniformly bounded in t.

2) The point a) is in ([10]), but we recall the argument for the sake of completeness. The
martingale is lower bounded by the contribution of the spine:

M
(p)
t ≥ etκ(p)|Π1(t)|p+1 = exp{tκ(p) − (p+ 1)ξt} .

From Sections 2.2 and 3.1, we know that under P(p), the Lévy process
(
κ(p)t− (p+ 1)ξt

)
t≥0

has mean κ(p) − (p + 1)κ′(p), which is 0 if p = p̄ and positive if p > p̄. In both cases

P(p)(lim supt→∞(κ(p)t − (p + 1)ξt) = ∞) = 1. This shows that P(p)(lim supM
(p)
t = ∞) = 1,

hence P(limM
(p)
t = 0).

2 b) For p > p̄, we know that κ(p) − (p + 1)κ′(p) > 0, so that the function α 7→ d(p, α)
is increasing on some interval [0, α0] and vanishes at α = 0, hence is positive on (0, α0]. By
integration, we get (29).

5 Comparison of limits.

Proof of Proposition 1.3: Let us prove the inequality

v − ρ(v, a, b) ≤ C(v) .

directly. In the particular case of v ∈ (vmin, vmax) such that ρ(v, a, b) ≥ vmin, it was already
proved in [18], Remark 4.

Let β = log b − log a, fix v and let ρ = ρ(v, a, b). One has to prove that C(v) ≥ v − ρ,
which by the definition (3) of C is equivalent to prove that pv − κ(p) ≥ −ρ for all p > p.
As in Section 3.2 let us denote by ψ(p) = pv − κ(p) the Laplace exponent of vt− ξt. Since
ρ = inf{q ≥ 0 : W (−q)(β) = 0} ≥ 0, there is nothing to prove if ψ(p) ≥ 0. Let us assume
ψ(p) < 0, so that we have to prove that −ρ− ψ(p) ≤ 0. But

−ρ− ψ(p) = − inf{q ≥ 0 : W (−q)(β) = 0} − ψ(p)

= − inf{q′ ≥ ψ(p) : W (ψ(p)−q′)(β) = 0} .

From Lemma 8.4 p.222 in [20], we have

W (ψ(p)−q′)(β) = epxW (−q′)
p (x)
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where Wp denotes the function W associated to the tilted process (see [20] p.213) of Laplace
exponent λ 7→ ψ(λ+ p) − ψ(p). This yields

−ρ− ψ(p) = − inf{q′ ≥ ψ(p) : W (−q′)
p (β) = 0} .

For q′ ∈ [ψ(p), 0] we have −q′ ≥ 0 hence W
(−q′)
p (β) > 0 and

inf{q′ ≥ ψ(p) : W (−q′)
p (β) = 0} = inf{q′ ≥ 0 : W (−q′)

p (β) = 0} ≥ 0 .

Finally we get −ρ− ψ(p) ≤ 0.

Remark 5.1. A consequence of this proposition is that when v < vmin, we have ρ(v, a, b) > v.
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