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THE SINGULAR LIMIT OF A CHEMOTAXIS-GROWTH SYSTEM WITH GENERAL INITIAL DATA

We study the singular limit of a system of partial differential equations which is a model for an aggregation of amoebae subjected to three effects: diffusion, growth and chemotaxis. The limit problem involves motion by mean curvature together with a nonlocal drift term. We consider rather general initial data. We prove a generation of interface property and study the motion of interface. We also obtain an optimal estimate of the thickness and the location of the transition layer that develops. 1

Introduction

Let us start by a short description of life-cycles of the cellular slime molds (amoebae). The cells feed and divide until exhaustion of food supply. Then, the amoebae aggregate to form a multicellular assembly called a slug. It migrates to a new location, then forms into a fruiting body, consisting of a stalk formed from dead amoebae and spores on the top (fruiting bodies that are visible to the naked eye are often referred to as mushrooms). Under suitable conditions of moisture, temperature, spores release new amoebae. The cycle then repeats itself.

It is known that the aggregation stage is mediated by chemotaxis, i.e. the tendency of biological individuals to direct their movements according to certain chemicals in their environment. The chemotactant (acrasin) is produced by the amoebae themselves and degraded by an extracellular enzyme (acrasinase). For more details on the biological background, we refer to [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF], [START_REF] Nanjundiah | Chemotaxis, signal relaying and aggregation morphology[END_REF] or [START_REF] Ford | Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients[END_REF].

So the amoebae have a random motion analogous to diffusion coupled with an oriented chemotactic motion in the direction of a positive gradient 1 AMS Subject Classifications: 35K57, 35B50, 35R35, 92C17. 1 of acrasin. In 1970, Keller and Segel [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] proposed the following system as a model to describe such movements leading to slime mold aggregation:

(KS)

u t = ∇ • (D 2 ∇u) -∇ • (D 1 ∇v), v t = D v ∆v + f (v)u -k(v)v,
inside a closed region Ω. Here, u, respectively v, denotes the concentration of amoebae, respectively of acrasin; f (v) is the production rate of acrasin, and k(v) the degradation rate of acrasin (due to acrasinase); D 2 = D 2 (u, v), respectively D 1 = D 1 (u, v), measures the vigor of the random motion of the amoebae, respectively the strength of the influence of the acrasin gradient on the flow of amoebae; D v is a positive and constant diffusion coefficient. The problem is completed by initial data u 0 and v 0 and, assuming that there is now flow of the amoebae or the acrasin across the boundary ∂Ω, by homogeneous Neumann boundary conditions

∇u • ν = ∇v • ν = 0 on ∂Ω × (0, +∞),
ν being the unit outward normal to ∂Ω.

An often used simplified model is obtained as follows. By some receptor mechanism, cells do not measure the gradient of v but of some χ(v), with a sensitive function χ satisfying χ ′ > 0, so that D 1 (u, v) = uχ ′ (v). By taking D 2 , f and k as constant functions and using some rescaling arguments, the system reduces to (KS ′ ) u t = d u ∆u -∇ • (u∇χ(v)), τ v t = d v ∆v + uγv, with d u , d v , τ and γ some positive constants.

Many analyses of the Keller-Segel model for the aggregation process were proposed. Chemotaxis having some features of "negative diffusion", Nanjundiah [START_REF] Nanjundiah | Chemotaxis, signal relaying and aggregation morphology[END_REF] suggests that the whole population concentrates in a single point; we refer to this phenomenon as the chemotactic collapse. In mathematical terms, this amounts to blow up in finite time. As a matter of fact, it turns out that the possibility of collapse depends upon the space dimension. In particular it never happens in the one-dimensional case whereas in two space dimensions, assuming radially symmetric situations, it only occurs if the total amoebae number is sufficiently large. The problem of global existence and blow up of solutions has been intensively studied; we refer in particular to [START_REF] Childress | Nonlinear aspects of chemotaxis[END_REF], [START_REF] Schaaf | Stationary solutions of chemotaxis systems[END_REF], [START_REF] Lin | Large amplitude stationary solutions to a chemotaxis system[END_REF], [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF], [START_REF] Nagai | Blow-up of radially symmetric solutions to a chemotaxis pattern[END_REF], [START_REF] Herrero | Chemotactic collapse for the Keller-Segel model[END_REF], [START_REF] Herrero | A blow-up mechanism for a chemotaxis model[END_REF].

In a different framework, Mimura and Tsujikawa [START_REF] Mimura | Aggregating pattern dynamics in a chemotaxis model including growth[END_REF], consider aggregating pattern-dynamics arising in the following chemotaxis model with growth:

(M T ε ) u t = ε 2 ∆u -ε∇ • (u∇χ(v)) + f (u), τ v t = ∆v + u -γv,
where ε > 0 is a small parameter. The function f is cubic, 0 and 1 being its stable zeros, and satisfies 1 0 f > 0. In this model, the population is subjected to three effects: diffusion, growth and chemotaxis. The diffusion rate and the chemotactic rate are both very small compared with the growth rate. They observe that, in a first stage, internal layers -which describe the boundaries of aggregating regions -develop; in a second stage, the motion of the aggregating regions -which can be described by that of internal layers -takes place. The balance of the three effects (diffusion, growth and chemotaxis) makes the aggregation mechanism possible. Taking the limit ε → 0, they formally derive the equation for the motion of the limit interface and study the stability of radially symmetric equilibrium solutions.

The purpose of this paper is to extend some of the results obtained by Bonami, Hilhorst, Logak and Mimura [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF] about the singular limit of a variant of system (M T ε ), where the second equation is elliptic (τ = 0):

(P ε )                  u t = ∆u -∇ • (u∇χ(v)) + 1 ε 2 f ε (u) in Ω × (0, +∞), 0 = ∆v + u -γv in Ω × (0, +∞), ∂u ∂ν = ∂v ∂ν = 0 on ∂Ω × (0, +∞), u(x, 0) = u 0 (x) in Ω,
where Ω is a smooth bounded domain in R N (N ≥ 2), ν is the Euclidian unit normal vector exterior to ∂Ω. We assume that γ is a positive constant and that the nonlinearityf ε is given by

f ε (u) = u(1 -u)(u - 1 2 ) + εαu(1 -u) =: f (u) + εg(u), (1.1) 
with α > 0. The role of the function g is to break the balance of the two stable zeros slightly. The sensitive function χ is smooth and satisfies χ ′ (v) > 0 for v > 0.

We also assume that the initial datum satisfies u 0 ∈ C 2 (Ω) and u 0 ≥ 0. Throughout the present paper, we fix a constant C 0 > 1 that satisfies

u 0 C 0 (Ω) + ∇u 0 C 0 (Ω) + ∆u 0 C 0 (Ω) ≤ C 0 . (1.2)
Furthermore we define the "initial interface" Γ 0 by

Γ 0 := {x ∈ Ω, u 0 (x) = 1/2}.
We suppose that Γ 0 is a C 2+ϑ hypersurface without boundary, for a ϑ ∈ (0, 1), such that, n being the Euclidian unit normal vector exterior to Γ 0 , Γ 0 ⊂⊂ Ω and ∇u 0 (x)

• n(x) = 0 if x ∈ Γ 0 , (1.3) 
u 0 > 1/2 in Ω (1) 0 , u 0 < 1/2 in Ω (0) 0 , (1.4) 
where Ω

(1) 0 denotes the region enclosed by Γ 0 and Ω (0) 0 the region enclosed between ∂Ω and Γ 0 .

The existence of a unique smooth solution to Problem (P ε ) is proved in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF], Lemma 4.2: Lemma 1.1. There exists ε 0 > 0 such that, for all ε ∈ (0, ε 0 ), there exists a unique solution

(u ε , v ε ) to Problem (P ε ) on Ω × [0, +∞), with 0 ≤ u ε ≤ C 0 on Q T .
To study the interfacial behavior associated with this model, it is useful to consider a formal asymptotic limit of Problem (P ε ) as ε → 0. Then the limit solution u 0 (x, t) will be a step function taking the value 1 on one side of the interface, and 0 on the other side. This sharp interface, which we will denote by Γ t , obeys a law of motion, which can be obtained by formal analysis (see Section 2):

(P 0 )                  V n = -(N -1)κ + ∂χ(v 0 ) ∂n + √ 2α on Γ t , Γ t t=0 = Γ 0 -∆v 0 + γv 0 = u 0 in Ω × (0, T ], ∂v 0 ∂ν = 0 on ∂Ω × (0, T ],
where V n is the normal velocity of Γ t in the exterior direction, κ the mean curvature at each point of Γ t . We set Q T := Ω×[0, T ] and for each t ∈ [0, T ], we define Ω

t as the region enclosed by the hypersurface Γ t and Ω (0)

t as the region enclosed between ∂Ω and Γ t . The step function u 0 is determined straightforwardly from Γ t by

u 0 (x, t) = 1 in Ω (1) t 0 in Ω (0) t for t ∈ [0, T ]. (1.5)
By a contraction fixed-point argument in suitable Hölder spaces, the wellposedness, locally in time, of the free boundary Problem (P 0 ) is proved in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF], Theorem 2.1:

Lemma 1.2.
There exists a time T > 0 such that (P 0 ) has a unique solution

(v 0 , Γ) on [0, T ], with Γ = 0≤t≤T (Γ t × {t}) ∈ C 2+ϑ, 2+ϑ 2 ,
and

v 0 | Γ ∈ C 2+ϑ, 2+ϑ 2 .
Bonami, Hilhorst, Logak and Mimura [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF] have proved a motion of interface property; more precisely, for some prepared initial data, they show that (u ε , v ε ) converges to (u 0 , v 0 ) as ε → 0, on the interval (0, T ). So the evolution of Γ t determines the aggregating patterns of the individuals. Here we consider the case of arbitrary initial data. Our first main result, Theorem 1.3, describes the profile of the solution after a very short initial period. It asserts that, given a virtually arbitrary initial datum u 0 , the solution u ε quickly becomes close to 1 or 0, except in a small neighborhood of the initial interface Γ 0 , creating a steep transition layer around Γ 0 (generation of interface). The time needed to develop such a transition layer, which we will denote by t ε , is of order ε 2 | ln ε|. The theorem then states that the solution u ε remains close to the step function u 0 on the time interval [t ε , T ] (motion of interface). Moreover, as is clear from the estimates in the theorem, the "thickness" of the transition layer is of order ε.

Theorem 1.3 (Generation and motion of interface). Let η ∈ (0, 1/4) be arbitrary and set

µ = f ′ (1/2) = 1/4.
Then there exist positive constants ε 0 and C such that, for all ε ∈ (0, ε 0 ), all t ε ≤ t ≤ T , where t ε = µ -1 ε 2 | ln ε|, we have

u ε (x, t) ∈            [-η, 1 + η] if x ∈ N Cε (Γ t ) [-η, η] if x ∈ Ω (0) t \ N Cε (Γ t ) [1 -η, 1 + η] if x ∈ Ω (1) t \ N Cε (Γ t ), (1.6) 
where N r (Γ t ) := {x ∈ Ω, dist(x, Γ t ) < r} denotes the r-neighborhood of Γ t .

Corollary 1.4 (Convergence). As ε → 0, the solution (u ε , v ε ) converges to (u 0 , v 0 ) everywhere in 0<t≤T (Ω (0 or 1) t

× {t}).

The next theorem deals with the relation between the set Γ ε t := {x ∈ Ω, u ε (x, t) = 1/2} and the solution Γ t of Problem (P 0 ).

Theorem 1.5 (Error estimate).

There exists C > 0 such that

Γ ε t ⊂ N Cε (Γ t ) for 0 ≤ t ≤ T. (1.7)
Corollary 1.6 (Convergence of interface). There exists C > 0 such that As far as we know, the best thickness estimate in the literature was of order ε| ln ε| (see [START_REF] Chen | Generation and propagation of interfaces for reactiondiffusion equations[END_REF], [START_REF] Chen | Generation and propagation of interfaces for reactiondiffusion systems[END_REF]). We refer to a forthcoming article [START_REF] Karali | Singular limit of a spatially inhomogeneous Lotka-Volterra competitiondiffusion system[END_REF], respectively [START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF], in which an order ε estimate is established for a Lotka-Volterra competition-diffusion system, respectively for the FitzHugh-Nagumo system.

d H (Γ ε t , Γ t ) ≤ Cε for 0 ≤ t ≤ T, (1.8) 
The organization of this paper is as follows. Section 2 is devoted to preliminaries: we recall the method of asymptotic expansions to derive the equation of the interface motion; we also recall a relaxed comparison principle used in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF]. In Section 3, we prove a generation of interface property. The corresponding sub-and super-solutions are constructed by modifying the solution of the ordinary differential equation u t = ε -2 f (u), obtained by neglecting diffusion and chemotaxis. In Section 4, in order to study the motion of interface, we construct a pair of sub-and super-solutions that rely on a related one-dimensional stationary problem. Finally, in Section 5, by fitting the two pairs of sub-and super-solutions into each other, we prove Theorem 1.3, Theorem 1.5 and theirs corollaries.

2 Some preliminaries

Formal derivation

A formal derivation of the equation of interface motion was given in [START_REF] Bonami | A free boundary problem arising in a chemotaxis model[END_REF]. Nevertheless we briefly present it in a slightly different way: we use arguments similar to those in [START_REF] Nakamura | Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term[END_REF] where the first two terms of the asymptotic expansion determine the interface equation. The observations we make here will help the rigorous analysis in later sections, in particular for the construction of sub-and super-solutions for the study of the motion of interface in Section 4.

Let (u ε , v ε ) be the solution of Problem (P ε ). We recall that Γ ε t := {x ∈ Ω, u ε (x, t) = 1/2} is the interface at time t and call Γ ε := t≥0 (Γ ε t × {t}) the interface. Let Γ = 0≤t≤T (Γ t × {t}) be the solution of the limit geometric motion problem and let d be the signed distance function to Γ defined by:

d(x, t) = dist(x, Γ t ) for x ∈ Ω (0) t -dist(x, Γ t ) for x ∈ Ω (1) t , (2.1) 
where dist(x, Γ t ) is the distance from x to the hypersurface Γ t in Ω. We remark that d = 0 on Γ and that |∇ d| = 1 in a neighborhood of Γ. We then define

Q (1) T = 0<t≤T (Ω (1) 
t × {t}), Q (0) T = 0<t≤T (Ω (0) t × {t}).
We assume that the solution u ε has the expansions

u ε (x, t) = {0 or 1} + εu 1 (x, t) + • • • (2.2)
away from the interface Γ (the outer expansion) and

u ε (x, t) = U 0 (x, t, d(x, t) ε ) + εU 1 (x, t, d(x, t) ε ) + • • • (2.3)
near Γ (the inner expansion). Here, the functions

U k (x, t, z), k = 0, 1, • • • , are defined for x ∈ Ω, t ≥ 0, z ∈ R.
The stretched space variable ξ := d(x, t)/ε gives exactly the right spatial scaling to describe the rapid transition between the regions {u ε ≈ 1} and {u ε ≈ 0}. We use the normalization conditions

U 0 (x, t, 0) = 1/2, U k (x, t, 0) = 0,
for all k ≥ 1. The matching conditions between the outer and the inner expansion are given by

U 0 (x, t, +∞) = 0, U k (x, t, +∞) = 0, U 0 (x, t, -∞) = 1, U k (x, t, -∞) = 0, (2.4) 
for all k ≥ 1. We also assume that the solution v ε has the expansion

v ε (x, t) = v 0 (x, t) + εv 1 (x, t) + • • • (2.5)
in Ω × (0, T ). We now substitute the inner expansion (2.3) and the expansion (2.5) into the parabolic equation of (P ε ) and collect the ε -2 terms. We omit the calculations and, using |∇ d| = 1 near Γ t , the normalization and matching conditions, we deduce that U 0 (x, t, z) = U 0 (z) is the unique solution of the stationary problem

U 0 ′′ + f (U 0 ) = 0 U 0 (-∞) = 1, U 0 (0) = 1/2, U 0 (+∞) = 0. (2.6)
This solution represents the first approximation of the profile of a transition layer around the interface observed in the stretched coordinates. Recalling that the nonlinearity is given by f

(u) = u(1 -u)(u -1/2), we have U 0 (z) = 1 2 1 -tanh z 2 √ 2 = e -z/ √ 2 1 + e -z/ √ 2 . (2.7)
We claim that U 0 has the following properties.

Lemma 2.1. There exist positive constants C and λ such that the following estimates hold.

0 < U 0 (z) ≤ Ce -λ|z| for z ≥ 0, 0 < 1 -U 0 (z) ≤ Ce -λ|z| for z ≤ 0.
In addition, U 0 is a strictly decreasing function and

|U 0 ′ (z)| + |U 0 ′′ (z)| ≤ Ce -λ|z| for z ∈ R.
Next we collect the ε -1 terms. Since U 0 depends only on the variable z, we have ∇U 0z = 0 which, combined with the fact that |∇ d| = 1 near Γ t , yields

U 1zz + f ′ (U 0 )U 1 = U 0 ′ ( d t -∆ d + ∇ d • ∇χ(v 0 )) -g(U 0 ), (2.8) 
a linearized problem corresponding to (2.6). The solvability condition for the above equation, which can be seen as a variant of the Fredholm alternative, plays the key role for deriving the equation of interface motion. It is is given by

R U 0 ′ 2 (z)( d t -∆ d + ∇ d • ∇χ(v 0 ))(x, t) -g(U 0 (z))U 0 ′ (z) dz = 0, for all (x, t) ∈ Q T . By the definition of g in (1.1), we compute R g(U 0 (z))U 0 ′ (z)dz = - 1 0 g(u)du = -α/6,
whereas the equality (2.7) yields R U 0 ′2 (z)dz = 1 √ 2 +∞ 0 u 1 + u 4 du = 1/6 √ 2.
Combining the above expressions, we obtain

d t -∆ d + ∇ d • ∇χ(v 0 ) (x, t) = - √ 2α.
(2.9)

Since ∇ d (= ∇ x d(x, t)) coincides with the outward normal unit vector to the hypersurface Γ t , we have d t (x, t) = -V n , where V n is the normal velocity of the interface Γ t . It is also known that the mean curvature κ of the interface is equal to ∆ d/(N -1). Thus the above equation reads as

V n = -(N -1)κ + ∂χ(v 0 ) ∂n + √ 2α on Γ t , (2.10) 
that is the equation of interface motion in (P 0 ). Summarizing, under the assumption that the solution u ε of Problem (P ε ) satisfies

u ε → 1 in Q (1) T 0 in Q (0) T as ε → 0,
we have formally showed that the boundary Γ t between Ω (0)

t and Ω

t moves according to the law (2.10).

One can note that, using the equality (2.7), we clearly have √ 2αU 0 ′ + g(U 0 ) ≡ 0 so that, substituting (2.9) into (2.8) yields U 1 ≡ 0.

A comparison principle

The definition of sub-and super-solutions is the one proposed in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF].

Definition 2.2. Let (u - ε , u + ε ) be two smooth functions with u - ε ≤ u + ε on Q T and ∂u - ε ∂ν ≤ 0 ≤ ∂u + ε ∂ν on ∂Ω × (0, T ).
By definition, (u - ε , u + ε ) is a pair of sub-and super-solutions if, for any v ε which satisfies

     u - ε ≤ -∆v ε + γv ε ≤ u + ε on Q T , ∂v ε ∂ν = 0 on ∂Ω × (0, T ), (2.11) 
we have

L v ε [u - ε ] ≤ 0 ≤ L v ε [u + ε ]
, where the operator L v ε is defined by

L v ε [φ] = φ t -∆φ + ∇ • (φ∇χ(v ε )) - 1 ε 2 f ε (φ).
As proved in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF], the following comparison principle holds.

Proposition 2.3. Let a pair of sub-and super-solutions be given. Assume that, for all x ∈ Ω, u - ε (x, 0) ≤ u 0 (x) ≤ u + ε (x, 0). Then, if we denote by (u ε , v ε ) the solution of Problem (P ε ), the function u ε satisfies, for all (x, t)

∈ Q T , u - ε (x, t) ≤ u ε (x, t) ≤ u + ε (x, t).

Generation of interface

In this section we study the rapid formation of internal layers in a neighborhood of Γ 0 = {x ∈ Ω, u 0 (x) = 1/2} within a very short time interval of order ε 2 | ln ε|. In the sequel, we shall always assume that 0 < η < 1/4. The main result of this section is the following.

Theorem 3.1. Let η be arbitrary and define µ as the derivative of f (u) at the unstable equilibrium u = 1/2, that is

µ = f ′ (1/2) = 1/4. (3.1)
Then there exist positive constants ε 0 and M 0 such that, for all ε ∈ (0, ε 0 ),

• for all x ∈ Ω,

-η ≤ u ε (x, µ -1 ε 2 | ln ε|) ≤ 1 + η, (3.2) 
• for all x ∈ Ω such that |u 0 (x)

-1 2 | ≥ M 0 ε, we have that if u 0 (x) ≥ 1/2 + M 0 ε then u ε (x, µ -1 ε 2 | ln ε|) ≥ 1 -η, (3.3) if u 0 (x) ≤ 1/2 -M 0 ε then u ε (x, µ -1 ε 2 | ln ε|) ≤ η. (3.4)
The above theorem will be proved by constructing a suitable pair of sub and super-solutions.

The perturbed bistable ordinary differential equation

We first consider a slightly perturbed nonlinearity:

f δ (u) = f (u) + δ,
where δ is any constant. For |δ| small enough, this function is still cubic and bistable; more precisely, we claim that it has the following properties. Lemma 3.2. Let δ 0 > 0 be small enough. Then, for all δ ∈ (-δ 0 , δ 0 ),

• f δ has exactly three zeros, namely α -(δ) < a(δ) < α + (δ). More pre- cisely, f δ (u) = (u -α -(δ))(α + (δ) -u)(u -a(δ)), (3.5) 
and there exists a positive constant C such that

|α -(δ)| + |a(δ) -1/2| + |α + (δ) -1| ≤ C|δ|. (3.6) 
• We have that

f δ is strictly positive in (-∞, α -(δ)) ∪ (a(δ), α + (δ)), f δ is strictly negative in (α -(δ), a(δ)) ∪ (α + (δ), +∞). (3.7) • Set µ(δ) := f ′ δ (a(δ)) = f ′ (a(δ))
, then there exists a positive constant, which we denote again by C, such that |µ(δ) -µ| ≤ C|δ|.

(3.8)

In order to construct a pair of sub and super-solutions for Problem (P ε ) we define Y (τ, ξ; δ) as the solution of the ordinary differential equation

Y τ (τ, ξ; δ) = f δ (Y (τ, ξ; δ)) for τ > 0, Y (0, ξ; δ) = ξ, (3.9) 
for δ ∈ (-δ 0 , δ 0 ) and ξ ∈ (-2C 0 , 2C 0 ), where C 0 has been chosen in (1.2). We present below basic properties of Y .

Lemma 3.3. We have Y ξ > 0, for all ξ ∈ (-2C 0 , 2C 0 )\{α -(δ), a(δ), α + (δ)}, all δ ∈ (-δ 0 , δ 0 ) and all τ > 0. Furthermore,

Y ξ (τ, ξ; δ) = f δ (Y (τ, ξ; δ)) f δ (ξ) .
Proof. We differentiate (3.9) with respect to ξ to obtain

Y ξτ = Y ξ f ′ (Y ), Y ξ (0, ξ; δ) = 1,
which is integrated as follows:

Y ξ (τ, ξ; δ) = exp τ 0 f ′ (Y (s, ξ; δ))ds > 0. (3.10)
Then differentiating (3.9) with respect to τ , we obtain

Y τ τ = Y τ f ′ (Y ), Y τ (0, ξ; δ) = f δ (ξ),
which in turn implies

Y τ (τ, ξ; δ) = f δ (ξ) exp τ 0 f ′ (Y (s, ξ; δ))ds ,
which enables to conclude.

We define a function A(τ, ξ; δ) by

A(τ, ξ; δ) = f ′ (Y (τ, ξ; δ)) -f ′ (ξ) f δ (ξ) . (3.11)
Lemma 3.4. We have, for all ξ ∈ (-2C 0 , 2C 0 ) \ {α -(δ), a(δ), α + (δ)}, all δ ∈ (-δ 0 , δ 0 ) and all τ > 0,

A(τ, ξ; δ) = τ 0 f ′′ (Y (s, ξ; δ))Y ξ (s, ξ; δ)ds.
Proof. We differentiate the equality of Lemma 3.3 with respect to ξ to obtain

Y ξξ (τ, ξ; δ) = A(τ, ξ; δ)Y ξ (τ, ξ; δ). (3.12)
Then differentiating (3.10) with respect to ξ yields

Y ξξ = Y ξ τ 0 f ′′ (Y (s, ξ; δ))Y ξ (s, ξ; δ)ds.
These two last results complete the proof of Lemma 3.4.

Next we prove estimates on the growth of Y , A and theirs derivatives. We first consider the case where the initial value ξ is far from the stable equilibria, more precisely when it lies between η and 1η. Lemma 3.5. Let η be arbitrary. Then there exist positive constants δ 0 = δ 0 (η), C 1 = C 1 (η), C2 = C2 (η) and C 3 = C 3 (η) such that, for all δ ∈ (-δ 0 , δ 0 ), for all τ > 0,

• if ξ ∈ (a(δ), 1η) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval (a(δ), 1η), we have

C1 e µ(δ)τ ≤ Y ξ (τ, ξ; δ) ≤ C2 e µ(δ)τ , (3.13) 
and

|A(τ, ξ; δ)| ≤ C 3 (e µ(δ)τ -1); (3.14)
• if ξ ∈ (η, a(δ)) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval (η, a(δ)), (3.13) and (3.14) hold as well.

Proof. We take ξ ∈ (a(δ), 1η) and suppose that for s ∈ (0, τ ), Y (s, ξ; δ) remains in the interval (a(δ), 1η). Integrating the equality

Y τ (s, ξ; δ) f δ (Y (s, ξ; δ)) = 1
from 0 to τ and using the change of variable q = Y (s, ξ; δ) leads to

Y (τ,ξ;δ) ξ dq f δ (q) = τ. (3.15) 
Moreover, the equality in Lemma 3.3 enables to write

ln Y ξ (τ, ξ; δ) = Y (τ,ξ;δ) ξ f ′ (q) f δ (q) dq = Y (τ,ξ;δ) ξ f ′ (a(δ)) f δ (q) + f ′ (q) -f ′ (a(δ)) f δ (q) dq = µ(δ)τ + Y (τ,ξ;δ) ξ h δ (q)dq, (3.16) 
where

h δ (q) = f ′ (q) -f ′ (a(δ)) f δ (q) .
In view of (3.8), respectively (3.6), we can choose δ 0 = δ 0 (η) > 0 small enough so that, for all δ ∈ [-δ 0 , δ 0 ], we have µ(δ) ≥ µ/2 > 0, respectively (a(δ), 1η] ⊂ (a(δ), α + (δ)). Since

h δ (q) → f ′′ δ (a(δ)) f ′ δ (a(δ)) = f ′′ (a(δ)) f ′ (a(δ)) as q → a(δ),
we see that the function (q, δ) → h δ (q) is continuous in the compact region { |δ| ≤ δ 0 , a(δ) ≤ q ≤ 1-η }. It follows that |h δ (q)| is bounded by a constant H = H(η) as (q, δ) varies in this region. Since |Y (τ, ξ; δ) -ξ| takes its values in the interval [0, 1ηa(δ)] ⊂ [0, 1], it follows from (3.16) that

µ(δ)τ -H ≤ ln Y ξ (τ, ξ; δ) ≤ µ(δ)τ + H,
which, in turn, proves (3.13). Next Lemma 3.4 and (3.13) yield

|A(τ, ξ; δ)| ≤ f ′′ L ∞ (0,1) τ 0 C2 e µ(δ)s ds ≤ f ′′ L ∞ (0,1) C2 µ(δ) (e µ(δ)τ -1) ≤ 2 µ f ′′ L ∞ (0,1) C2 (e µ(δ)τ -1),
which completes the proof of (3.14). The case where ξ and Y (τ, ξ; δ) are in (η, a(δ)) is similar and omitted.

Corollary 3.6. Let η be arbitrary. Then there exist positive constants

δ 0 = δ 0 (η), C 1 = C 1 (η) and C 2 = C 2 (η) such that, for all δ ∈ (-δ 0 , δ 0 ), for all τ > 0,
• if ξ ∈ (a(δ), 1η) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval (a(δ), 1η), we have

C 1 e µ(δ)τ (ξ -a(δ)) ≤ Y (τ, ξ; δ) -a(δ) ≤ C 2 e µ(δ)τ (ξ -a(δ)), (3.17) 
• if ξ ∈ (η, a(δ)) then, for every τ > 0 such that Y (τ, ξ; δ) remains in the interval (η, a(δ)), we have

C 2 e µ(δ)τ (ξ -a(δ)) ≤ Y (τ, ξ; δ) -a(δ) ≤ C 1 e µ(δ)τ (ξ -a(δ)). (3.18)
Proof. In view of (3.8), respectively (3.6), we can choose δ 0 = δ 0 (η) > 0 small enough so that, for all δ ∈ [-δ 0 , δ 0 ], we have µ(δ) ≥ µ/2 > 0, respectively (a(δ), 1η] ⊂ (a(δ), α + (δ)). Since

f δ (q) q -a(δ) → µ(δ) as q → a(δ),
it follows that (q, δ) → f δ (q)/(qa(δ)) is a strictly positive and continuous function in the compact region { |δ| ≤ δ 0 , a(δ) ≤ q ≤ 1η }, which insures the existence of constants B 1 = B 1 (η) > 0 and B 2 = B 2 (η) > 0 such that, for all q ∈ (a(δ), 1η), all δ ∈ (-δ 0 , δ 0 ),

B 1 (q -a(δ)) ≤ f δ (q) ≤ B 2 (q -a(δ)). (3.19)
We write the inequalities (3.19) for q = Y (τ, ξ; δ) ∈ (a(δ), 1η) and then for q = ξ ∈ (a(δ), 1η), which, together with Lemma 3.3, implies that

B 1 B 2 (Y (τ, ξ; δ) -a(δ)) ≤ (ξ -a(δ))Y ξ (τ, ξ; δ) ≤ B 2 B 1 (Y (τ, ξ; δ) -a(δ)).
In view of (3.13), this completes the proof of inequalities (3.17). The proof of (3.18) is similar and omitted.

We now present estimates in the case that the initial value ξ is smaller than η or larger than 1η. Lemma 3.7. Let η and M > 0 be arbitrary. Then there exist positive constants δ 0 = δ 0 (η, M ) and C 4 = C 4 (M ) such that, for all δ ∈ (-δ 0 , δ 0 ),

• if ξ ∈ [1 -η, 1 + M ], then, for all τ > 0, Y (τ, ξ; δ) remains in the interval [1 -η, 1 + M ] and |A(τ, ξ; δ)| ≤ C 4 τ for τ > 0 ; (3.20) • if ξ ∈ [-M, η],
then, for all τ > 0, Y (τ, ξ; δ) remains in the interval [-M, η] and (3.20) holds as well.

Proof. Since the two statements can be treated in the same way, we will only prove the former. The fact that Y (τ, ξ; δ), the solution of the ordinary differential equation (3.9), remains in the interval [1η, 1 + M ] directly follows from the bistable properties of f δ , or, more precisely, from the sign conditions f δ (1η) > 0, f δ (1 + M ) < 0 valid if δ 0 = δ 0 (η, M ) is small enough.

To prove (3.20), suppose first that ξ ∈ [α + (δ), 1 + M ]. By the above arguments, Y (τ, ξ; δ) remains in this interval. Moreover f ′ is negative in this interval. Hence, it follows from (3.10) that Y ξ (τ, ξ; δ) ≤ 1. We then use Lemma 3.4 to deduce that

|A(τ, ξ; δ)| ≤ f ′′ L ∞ (-M,1+M ) τ =: C 4 τ. The case ξ ∈ [1 -η, α + (δ)]
being similar, this completes the proof of the lemma. Now we choose the constant M in the above lemma sufficiently large so that [-2C 0 , 2C 0 ] ⊂ [-M, 1 + M ], and fix M hereafter. Therefore the constant C 4 is fixed as well. Using the fact that τ → τ (e µ(δ)τ -1) -1 is uniformly bounded for δ ∈ (-δ 0 , δ 0 ), with δ 0 small enough (see (3.8)), and for τ > 0, one can easily deduce from (3.14) and (3.20) the following general estimate.

Lemma 3.8. Let η be arbitrary and let C 0 be the constant defined in (1.2). Then there exist positive constants δ 0 = δ 0 (η), C 5 = C 5 (η) such that, for all δ ∈ (-δ 0 , δ 0 ), all ξ ∈ (-2C 0 , 2C 0 ) and all τ > 0, |A(τ, ξ; δ)| ≤ C 5 (e µ(δ)τ -1).

Construction of sub and super-solutions

We now use Y to construct a pair of sub-and super-solutions for the proof of the generation of interface theorem. We set

w ± ε (x, t) = Y t ε 2 , u 0 (x) ± ε 2 r(±εG, t ε 2 ); ±εG , (3.21) 
where the constant G is defined by

G = sup u∈[-2C 0 ,2C 0 ] |g(u)|,
and the function r(δ, τ ) is given by r(δ, τ ) = C 6 (e µ(δ)τ -1).

For simplicity, we make the following additional assumption:

∂u 0 ∂ν = 0 on ∂Ω. (3.22)
In the general case where (3.22) does not necessary hold, we have to slightly modify w ± ε near the boundary ∂Ω. This will be discussed in the next remark.

Lemma 3.9. There exist positive constants ε 0 and C 6 such that for all ε ∈ (0, ε 0 ), the functions w - ε and w + ε are respectively sub-and super-solutions for Problem (P ε ), in the domain

(x, t) ∈ Q T , x ∈ Ω, 0 ≤ t ≤ µ -1 ε 2 | ln ε| .
Proof. First, (3.22) implies the homogeneous Neumann boundary condition 

∂w ± ε ∂ν = 0 on ∂Ω × (0, +∞). Let v ε be such that      w - ε ≤ -∆v ε + γv ε ≤ w + ε ∂v ε ∂ν = 0. ( 3 
L v ε [w + ε ] := (w + ε ) t -∆w + ε + ∇ • (w + ε ∇χ(v ε )) - 1 ε 2 f ε (w + ε ) ≥ 0.
Let C 6 be a positive constant which does not depend on ε. If ε 0 is sufficiently small, we note that ±εG ∈ (-δ 0 , δ 0 ) and that, in the range 0

≤ t ≤ µ -1 ε 2 | ln ε|, |ε 2 C 6 (e µ(±εG)t/ε 2 -1)| ≤ ε 2 C 6 (ε -µ(±εG)/µ -1) ≤ C 0 , which implies that u 0 (x) ± ε 2 r(±εG, t/ε 2 ) ∈ (-2C 0 , 2C 0 ).
These observations allow us to use the results of the previous subsection with τ = t/ε 2 , ξ = u 0 (x) + ε 2 r(εG, t/ε 2 ) and δ = εG. In particular, setting

F 1 := f ′ L ∞ (-2C 0 ,2C 0 )
, this implies, using (3.10), that

e -F 1 T ≤ Y ξ ≤ e F 1 T .

Straightforward computations yield

L v ε [w + ε ] = 1 ε 2 Y τ + C 6 µ(εG)e µ(εG)t/ε 2 Y ξ -∆u 0 Y ξ -|∇u 0 | 2 Y ξξ + Y ξ ∇u 0 • ∇χ(v ε ) + Y ∆χ(v ε ) - 1 ε 2 f (Y ) - 1 ε g(Y ),
and then, in view of the ordinary differential equation (3.9), εG playing the role of δ,

L v ε [w + ε ] = 1 ε G -g(Y ) + Y ξ C 6 µ(εG)e µ(εG)t/ε 2 -∆u 0 - Y ξξ Y ξ |∇u 0 | 2 + ∇u 0 • ∇χ(v ε ) + Y Y ξ ∆χ(v ε ) . (3.24)
By the definition of G the first term above is positive. Now, using the choice of C 0 in (1.2), the fact that Y ξξ /Y ξ = A and Lemma 3.8, we obtain, for a C 5 independent of ε,

L v ε [w + ε ] ≥ Y ξ C 6 µ(εG)e µ(εG)t/ε 2 -C 0 -C 5 (e µ(εG)t/ε 2 -1)C 2 0 -C 0 |∇χ(v ε )| -2C 0 e F 1 T |∆χ(v ε )| .
Moreover, the inequalities in (3.23) can be written as -∆v 

ε +γv ε = h ε , with -2C 0 ≤ h ε ≤ 2C 0 ,
L v ε [w + ε ] ≥ Y ξ (C 6 µ(εG)-C 5 C 2 0 )e µ(εG)t/ε 2 -C 0 +C 5 C 2 0 -C 0 M ′ -2C 0 e F 1 T M ′ .
Hence, in view of (3.8), we have, for ε 0 small enough (recall that Y ξ > 0),

Lw + ε ≥ Y ξ (C 6 1 2 µ -C 5 C 2 0 ) -C 0 -C 0 M ′ -2C 0 e F 1 T M ′ ≥ 0,
for C 6 large enough, so that w + ε is a super-solution for Problem (P ε ). We omit the proof that w - ε is a sub-solution.

Now, since w ± ε (x, 0) = Y (0, u 0 (x); ±εG) = u 0 (x), the comparison principle set in Proposition 2.3 asserts that, for all x ∈ Ω, for all 0

≤ t ≤ µ -1 ε 2 | ln ε|, w - ε (x, t) ≤ u ε (x, t) ≤ w + ε (x, t). (3.25)
Remark 3.10. In the more general case where (3.22) is not valid, one can proceed in the following way: in view of (1.3) and (1.4) there exist positive constants d 1 and ρ such that

u 0 (x) ≤ 1/2 -ρ if d(x, ∂Ω) ≤ d 1 . Let χ be a smooth cut-off function defined on [0, +∞) such that 0 ≤ χ ≤ 1, χ(0) = χ ′ (0) = 0 and χ(z) = 1 for z ≥ d 1 . Then define u + 0 (x) = χ(d(x, ∂Ω))u 0 (x) + (1 -χ(d(x, ∂Ω))(1/2 -ρ), u - 0 (x) = χ(d(x, ∂Ω))u 0 (x) + (1 -χ(d(x, ∂Ω)) min x∈Ω u 0 (x).
Clearly, u - 0 ≤ u 0 ≤ u + 0 , and both u ± 0 satisfy (3.22). Now we set

w± ε (x, t) = Y t ε 2 , u ± 0 (x) ± ε 2 r(±εG, t ε 2 ); ±εG .
Then the same argument as in Lemma 3.9 shows that ( wε , w+ ε ) is a pair of sub and super-solutions for Problem (P ε ). Furthermore, since w-

ε (x, 0) = u - 0 (x) ≤ u 0 (x) ≤ u + 0 (x) = w+ ε (x, 0), Proposition 2.3 asserts that, for all x ∈ Ω, for all 0 ≤ t ≤ µ -1 ε 2 | ln ε|, we have w- ε (x, t) ≤ u ε (x, t) ≤ w+ ε (x, t).

Proof of Theorem 3.1

In order to prove Theorem 3.1 we first present a key estimate on the function Y after a time of order τ ∼ | ln ε|.

Lemma 3.11. Let η be arbitrary; there exist positive constants ε 0 = ε 0 (η) and C 7 = C 7 (η) such that, for all ε ∈ (0, ε 0 ),

• for all ξ ∈ (-2C 0 , 2C 0 ),

-η ≤ Y (µ -1 | ln ε|, ξ; ±εG) ≤ 1 + η, (3.26) • for all ξ ∈ (-2C 0 , 2C 0 ) such that |ξ -1 2 | ≥ C 7 ε, we have that if ξ ≥ 1/2 + C 7 ε then Y (µ -1 | ln ε|, ξ; ±εG) ≥ 1 -η, (3.27) if ξ ≤ 1/2 -C 7 ε then Y (µ -1 | ln ε|, ξ; ±εG) ≤ η. (3.28)
Proof. We first prove (3.27). In view of (3.6), we have, for C 7 large enough, 1/2 + C 7 ε ≥ a(±εG) + 1 2 C 7 ε, for all ε ∈ (0, ε 0 ), with ε 0 small enough. Hence for ξ ≥ 1/2 + C 7 ε, as long as Y (τ, ξ; ±εG) has not reached 1η, we can use (3.17) to deduce that

Y (τ, ξ; ±εG) ≥ a(±εG) + C 1 e µ(±εG)τ (ξ -a(±εG)) ≥ a(±εG) + 1 2 C 1 C 7 εe µ(±εG)τ ≥ 1 2 -εCG + 1 2 C 1 C 7 εe µ(±εG)τ ≥ 1 -η provided that τ ≥ τ ε := 1 µ(±εG) ln 1/2 -η + CGε C 1 C 7 ε/2 .
To complete the proof of (3.27) we must choose C 7 so that µ -1 | ln ε|-τ ε ≥ 0.

A simple computation shows that

µ -1 | ln ε| -τ ε = µ(±εG) -µ µ(±εG)µ | ln ε| - 1 µ(±εG) ln 1/2 -η + CGε C 1 /2 + 1 µ(±εG) ln C 7 .
Thanks to (3.8), as ε → 0, the first term above is of order ε| ln ε| and the second one of order 1. Hence, for C 7 large enough, the quantity µ -1 | ln ε|-τ ε is positive, for all ε ∈ (0, ε 0 ), with ε 0 small enough. The proof of (3.28) is similar and omitted. Next we prove (3.26). First note that, by taking ε 0 small enough, the stable equilibria of f ±εG , namely α -(±εG) and α + (±εG), are in [-η, 1 + η]. Hence, f ±εG being a bistable function, if we leave from a ξ ∈ [-η, 1 + η] then Y (τ, ξ; ±εG) will remain in the interval [-η, 1 + η]. Now suppose that 1 + η ≤ ξ ≤ 2C 0 (note that this work is useless if 2C 0 < 1 + η). We check below that Y (µ -1 | ln ε|, ξ; ±εG) ≤ 1 + η. As long as 1 + η ≤ Y ≤ 2C 0 , (3.9) leads to the inequality Y τ ≤ f (1 + η) + εG ≤ 1 2 f (1 + η) < 0, for ε 0 = ε 0 (η) small enough. By integration from 0 to τ , it follows that

Y (τ, ξ; ±εG) ≤ ξ + 1 2 f (1 + η)τ ≤ 2C 0 + 1 2 f (1 + η)τ ≤ 1 + η, provided that τ ≥ 2C 0 -1 -η -f (1 + η)/2 ,
and a fortiori for τ = µ -1 | ln ε|, which completes the proof of (3.26).

We are now ready to prove Theorem 3.1. By setting t = µ -1 ε 2 | ln ε| in (3.25), we obtain

Y µ -1 | ln ε|, u 0 (x) -ε 2 r(-εG, µ -1 | ln ε|); -εG ≤ u ε (x, µ -1 ε 2 | ln ε|) ≤ Y µ -1 | ln ε|, u 0 (x) + ε 2 r(εG, µ -1 | ln ε|); +εG . (3.29) In view of (3.8), lim ε→0 µ -µ(±εG) µ ln ε = 0, (3.30) 
so that, for ε 0 small enough, we have

ε 2 r(±εG, µ -1 | ln ε|) = C 6 ε(ε (µ-µ(±εG))/µ -ε) ∈ ( 1 2 C 6 ε, 3 2 C 6 ε).
It follows that u 0 (x) ± ε 2 r(±εG, µ -1 | ln ε|) ∈ (-2C 0 , 2C 0 ). Hence the result (3.2) of Theorem 3.1 is a direct consequence of (3.26) and (3.29).

Next we prove (3.3). We take

x ∈ Ω such that u 0 (x) ≥ 1/2 + M 0 ε so that u 0 (x) -ε 2 r(-εG, µ -1 | ln ε|) ≥ 1/2 + M 0 ε -3 2 C 6 ε ≥ 1/2 + C 7 ε,
if we choose M 0 large enough. Using (3.29) and (3.27) we obtain (3.3), which completes the proof of Theorem 3.1.

Motion of interface

We have seen in Section 3 that, after a very short time, the solution u ε develops a clear transition layer. In the present section, we show that it persists and that its law of motion is well approximated by the interface equation in (P 0 ) obtained by formal asymptotic expansions in subsection 2.1.

More precisely, take the first term of the formal asymptotic expansion (2.3) as a formal expansion of the solution:

u ε (x, t) ≈ ũε (x, t) := U 0 d(x, t) ε , (4.1) 
where U 0 is defined in (2.6). The right-hand side is a function having a well-developed transition layer, and its interface lies exactly on Γ t . We show that this function is a good approximation of the solution; more precisely:

If u ε becomes very close to ũε at some time moment t = t 0 , then it stays close to ũε for the rest of time. Consequently, Γ ε t evolves roughly like Γ t .

To that purpose, we will construct a pair of sub-and super-solutions u - ε and u + ε for Problem (P ε ) by slightly modifying ũε . It then follows that, if the solution u ε satisfies

u - ε (x, t 0 ) ≤ u ε (x, t 0 ) ≤ u + ε (x, t 0 ),
for some t 0 ≥ 0, then

u - ε (x, t) ≤ u ε (x, t) ≤ u + ε (x, t),
for t 0 ≤ t ≤ T . As a result, since both u + ε , u - ε stay close to ũε , the solution u ε also stays close to ũε for t 0 ≤ t ≤ T .

Construction of sub-and super-solutions

To begin with we present mathematical tools which are essential for the construction of sub and super-solutions.

A modified signed distance function. Rather than working with the usual signed distance function d, defined in (2.1), we define a "cut-off signed distance function" d as follows. Choose

d 0 > 0 small enough so that d(•, •) is smooth in the tubular neighborhood of Γ {(x, t) ∈ Q T , | d(x, t)| < 3d 0 }, and such that dist(Γ t , ∂Ω) > 4d 0 for all t ∈ [0, T ]. (4.2) 
Next let ζ(s) be a smooth increasing function on R such that

ζ(s) =      s if |s| ≤ 2d 0 -3d 0 if s ≤ -3d 0 3d 0 if s ≥ 3d 0 .
We define the cut-off signed distance function d by

d(x, t) = ζ d(x, t) . (4.3) 
Note that |∇d| = 1 in the region {(x, t) ∈ Q T , |d(x, t)| < 2d 0 } and that, in view of the above definition, ∇d = 0 in a neighborhood of ∂Ω. Note also that the equation of motion interface in (P 0 ), which is equivalent to (2.9), is now written as

d t = ∆d -∇d • ∇χ(v 0 ) - √ 2α on Γ t . (4.4) 
Construction. We look for a pair of sub-and super-solutions u ± ε for Problem (P ε ) of the form

u ± ε (x, t) = U 0 d(x, t) ∓ εp(t) ε ± q(t), (4.5) 
where U 0 is the solution of (2.6), and where

p(t) = -e -βt/ε 2 + e Lt + K, q(t) = σ(βe -βt/ε 2 + ε 2 Le Lt ). (4.6) 
Note that q = σε 2 p t . Let us remark that the construction (4.5) is more precise than the procedure of only taking a zeroth order term of the form U 0 , since we have shown in the formal derivation that the first order term

U 1 in (2.3) vanishes. It is clear from the definition of u ± ε that lim ε→0 u ± ε (x, t) = 1 for all (x, t) ∈ Q (1) T 0 for all (x, t) ∈ Q (0)
T .

(4.7)

The main result of this section is the following.

Lemma 4.1. There exist positive constants β, σ with the following properties. For any K > 1, we can find positive constants ε 0 and L such that, for any ε ∈ (0, ε 0 ), the functions u - ε and u + ε are respectively sub-and supersolutions for Problem (P ε ) in the range x ∈ Ω, 0 ≤ t ≤ T .

Proof of Lemma 4.1

First, since ∇d = 0 in a neighborhood of ∂Ω, we have the homogeneous Neumann boundary condition

∂u ± ε ∂ν = 0 on ∂Ω × [0, T ].
Let v ε be such that (2.11) holds. We have to show that

L v ε [u + ε ] := (u + ε ) t -∆u + ε + ∇u + ε • ∇χ(v ε ) + u + ε ∆χ(v ε ) - 1 ε 2 f ε (u + ε ) ≥ 0, the proof of inequality L v ε [u - ε ]
≤ 0 following by the same arguments.

Computation of L v ε [u + ε ]
. By straightforward computations we obtain the following terms:

(u + ε ) t = U 0 ′ ( d t ε -p t ) + q t , ∇u + ε = U 0 ′ ∇d ε , ∆u + ε = U 0 ′′ |∇d| 2 ε 2 + U 0 ′ ∆d ε ,
where the function U 0 , as well as its derivatives, is taken at the point d(x, t)εp(t) /ε. We also use expansions of the reaction terms:

f (u + ε ) = f (U 0 ) + qf ′ (U 0 ) + 1 2 q 2 f ′′ (θ), g(u + ε ) = g(U 0 ) + qg ′ (ω),
where θ(x, t) and ω(x, t) are some functions satisfying U 0 < θ < u + ε , U 0 < ω < u + ε . Combining the above expressions with equation (2.6) and the fact that √ 2αU 0 ′ + g(U 0 ) ≡ 0, we obtain

L v ε [u + ε ] = E 1 + • • • + E 5 ,
where:

E 1 = - 1 ε 2 q[f ′ (U 0 ) + 1 2 qf ′′ (θ)] -U 0 ′ p t + q t , E 2 = U 0 ′′ ε 2 (1 -|∇d| 2 ), E 3 = U 0 ′ ε (d t -∆d + ∇d • ∇χ(v 0 ) + √ 2α), E 4 = - 1 ε qg ′ (ω), E 5 = U 0 ′ ε ∇d • ∇(χ(v ε ) -χ(v 0 )) + u + ε ∆χ(v ε ).
In order to estimate the terms above, we first present some useful inequalities. As f ′ (0) = f ′ (1) = -1/2, we can find strictly positive constants b and m such that

if U 0 (z) ∈ [0, b] ∪ [1 -b, 1] then f ′ (U 0 (z)) ≤ -m. (4.8)
On the other hand, since the region {z ∈ R | U 0 (z) ∈ [b, 1b] } is compact and since U 0 ′ < 0 on R, there exists a constant a 1 > 0 such that

if U 0 (z) ∈ [b, 1 -b] then U 0 ′ (z) ≤ -a 1 . (4.9) 
We then define

F = sup -1≤z≤2 |f (z)| + |f ′ (z)| + |f ′′ (z)|, (4.10) 
β = m 4 , (4.11) 
and choose σ that satisfies

0 < σ ≤ min (σ 0 , σ 1 , σ 2 ), (4.12) 
where

σ 0 := a 1 m + F , σ 1 := 1 β + 1 , σ 2 := 4β F (β + 1)
.

Hence, combining (4.8) and (4.9), we obtain, using that σ ≤ σ 0 ,

-U 0 ′ (z) -σf ′ (U 0 (z)) ≥ 4σβ for -∞ < z < ∞. (4.13) 
Now let K > 1 be arbitrary. In what follows we will show that L v ε [u + ε ] ≥ 0 provided that the constants ε 0 and L are appropriately chosen. From now on, we suppose that the following inequality is satisfied:

ε 2 0 Le LT ≤ 1 . (4.14)
Then, given any ε ∈ (0, ε 0 ), since σ ≤ σ 1 , we have 0 ≤ q(t) ≤ 1, hence, recalling that 0 < U 0 < 1,

-1 ≤ u ± ε (x, t) ≤ 2 . (4.15)
We first estimate the term E 1 . A direct computation gives

E 1 = β ε 2 e -βt/ε 2 (I -σβ) + Le Lt (I + ε 2 σL),
where

I = -U 0 ′ -σf ′ (U 0 ) - σ 2 2 f ′′ (θ)(βe -βt/ε 2 + ε 2 Le Lt ).
In virtue of (4.13) and (4.15), we obtain

I ≥ 4σβ - σ 2 2 F (β + ε 2 Le LT ).
Then, in view of (4.14), using that σ ≤ σ 2 , we have

I ≥ 2σβ.
Consequently, the following inequality holds.

E 1 ≥ σβ 2 ε 2 e -βt/ε 2 + 2σβLe Lt =: C 1 ε 2 e -βt/ε 2 + C 1 ′ Le Lt .
The term E 2 . First, in the points where where |d(x, t)| < d 0 , we have that |∇d| = 1 so that E 2 = 0. Next we consider the points where |d(x, t)| ≥ d 0 .

We deduce from Lemma 2.1 that:

|E 2 | ≤ C ε 2 (1 + ∇d 2 ∞ )e -λ|d+εp|/ε ≤ C ε 2 (1 + ∇d 2 ∞ )e -λ(d 0 /ε-|p|) .
In view of the definition of p in (4.6), we have that 0 < K -1 ≤ p ≤ e LT +K, and suppose from now that the following assumption holds:

e LT + K ≤ d 0 2ε 0 . (4.16) Then d 0 ε -|p| ≥ d 0 2ε , so that |E 2 | ≤ C ε 2 (1 + ∇d 2 ∞ )e -λd 0 /(2ε) ≤ C 2 := 16C (eλd 0 ) 2 (1 + ∇d 2 ∞ ).
Next we consider the term E 3 . We recall that

d t -∆d + ∇d • ∇χ(v 0 ) + √ 2α = 0 on Γ t = {x ∈ Ω, d(x, t) = 0}. Since v 0 is of class C 1+ϑ ′ , 1+ϑ ′ 2
, for any ϑ ′ ∈ (0, 1), and since the interface Γ t is of class C 2+ϑ, 2+ϑ 2 , the functions ∇d, ∆d, d t and ∇χ(v 0 ) are Lipschitz continuous near Γ t . It then follows, from the mean value theorem applied separately on both sides of Γ t , that there exists N 0 > 0 such that:

|(d t -∆d + ∇d • ∇χ(v 0 ) + √ 2α)(x, t)| ≤ N 0 |d(x, t)| for all (x, t) ∈ Q T .
Applying Lemma 2.1 we deduce that

|E 3 | ≤ N 0 C |d(x, t)| ε e -λ|d(x,t)/ε+p(t)| ≤ N 0 C max y∈R |y|e -λ|y+p(t)| ≤ N 0 C max |p(t)|, 1 λ ≤ N 0 C |p(t)| + 1 λ .
Taking the expression of p into account, we see that |p(t)| ≤ e Lt + K, which implies

|E 3 | ≤ C 3 (e Lt + K) + C 3 ′ ,
where

C 3 := N 0 C and C 3 ′ := N 0 C/λ.
The term E 4 . We set G 1 := g ′ L ∞ (-1,2) and, substituting the expression for q, obtain that

|E 4 | ≤ σG 1 β ε e -βt/ε 2 + εLe Lt ≤ C 4 ε e -βt/ε 2 + C 4 ′ εLe Lt .
We continue with the term E 5 . This term requires a more delicate analysis. We need a precise estimate of v εv 0 . We recall that v 0 satisfies -∆v 0 + γv 0 = u 0 , with u 0 a step function discontinuous when crossing the interface.

Lemma 4.2. There exists a positive constant C G such that, for all (x, t) ∈

Q T , |v ε | + |∇v ε | + |∆v ε | (x, t) ≤ C G , (4.17 
)

|v ε -v 0 | + |∇d • ∇(v ε -v 0 )| (x, t) ≤ C G (εp(t) + q(t)). (4.18) 
We postpone the proof of this lemma and pursue the proof of Lemma 4.1.

Using the smoothness of χ and (4.17), we obtain a uniform bound C G ′ for ∆χ(v ε ). Moreover, we write

∇d • ∇ χ(v ε ) -χ(v 0 ) = χ ′ (v ε )∇d • ∇(v ε -v 0 ) + χ ′ (v ε ) -χ ′ (v 0 ) ∇d • ∇v 0 . (4.19) Since v 0 is of class C 1+ϑ ′ , 1+ϑ ′ 2
, for any ϑ ′ ∈ (0, 1), there exists a constant, which we denote again by C G , such that

v 0 L ∞ (Q T ) + ∇v 0 L ∞ (Q T ) ≤ C G , which, combined with (4.19), yields |∇d•∇ χ(v ε )-χ(v 0 ) | ≤ χ ′ ∞ |∇d•∇(v ε -v 0 )|+|v ε -v 0 | χ ′′ ∞ ∇d ∞ C G ,
where the L ∞ -norms of χ ′ and χ ′′ are considered on the interval (-C G , C G ). It follows from the above inequality and (4.18) that there exists a constant C G ′′ such that, for all (x, t)

∈ Q T , |∇d • ∇ χ(v ε ) -χ(v 0 ) |(x, t) ≤ C G ′′ (εp(t) + q(t)).
Hence, using (4.15) and the above estimates, we obtain,

|E 5 | ≤ C ε C G ′′ (εp(t) + q(t)) + 2C G ′ .
Then, substituting the expressions for p and q, we easily obtain positive constants C 5 , C 5 ′ and C 5 ′′ such that

|E 5 | ≤ C 5 + C 5 ′ ε e -βt/ε 2 + C 5 ′′ (1 + εL)e Lt .
Completion of the proof. Collecting the above estimates of E 1 -E 5 yields

L v ε [u + ε ] ≥ C 1 -εC 4 -εC 5 ′ ε 2 e -βt/ε 2 + L(C 1 ′ -εC 4 ′ -εC 5 ′′ )-C 3 -C 5 ′′ e Lt -C 7 ,
where

C 7 := C 2 + KC 3 + C 3 ′ + C 5 . Now, we set L := 1 T ln d 0 4ε 0 ,
which, for ε 0 small enough, validates assumptions (4.14) and (4.16). If ε 0 is chosen sufficiently small (i.e. L large enough),

C 1 /ε 2 -(C 4 + C 5 ′ )/ε is positive, C 1 ′ -εC 4 ′ -εC 5 ′′ ≥ 1 2 C 1 ′ , and 
L v ε [u + ε ] ≥ 1 2 LC 1 ′ -C 3 -C 5 ′′ e Lt -C 7 ≥ 1 4 LC 1 ′ -C 7 ≥ 0.
The proof of Lemma 4.1 is now completed, with the choice of the constants β, σ as in (4.11), (4.12).

Proof of Lemma 4.2

Lemma 4.2 is inspired by Lemma 4.9 in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF]. Since our pair of sub-and super-solutions is different from the one in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF], we need to perform some minor changes. First we give a useful estimate on "shifted U 0 ". Lemma 4.3. For all a ∈ R, all z ∈ R, we have

|U 0 (z + a) -χ ]-∞,0] (z)| ≤ Ce -λ|z+a| + χ [-a,a] (z) 
Proof. Let us give the proof for a > 0. We distinguish three cases and use the estimates of Lemma 2.1. For z ≤ -a, we have |U 0 (z+a)-1| ≤ Ce -λ|z+a| . For -a < z ≤ 0, we have |U 0 (z + a) -1| ≤ |U 0 (z + a)| + 1 ≤ Ce -λ|z+a| + 1.

For z > 0, we have |U 0 (z + a)| ≤ Ce -λ|z+a| . We proceed in the same way for a < 0.

We turn to the proof of Lemma 4.2. First, we recall that v ε is such that (2.11) holds; hence, in view of (4.15), the estimate (4.17 with u - εu 0 ≤ h = h ε ≤ u + εu 0 , where u 0 is the step function defined by u 0 (x, t) = χ {d(x,t)≤0} . The key idea of the proof is the fact that h is exponentially small with respect to ε, except possibly in a thin neighborhood of Γ t of width of order εp(t). More precisely, from the definitions of u ± ε in (4.5) and from the above lemma for z = d(x, t)/ε and a = ±p(t), we deduce that |h(x, t)| ≤ C(e -λ|d(x,t)/ε+p(t)| + e -λ|d(x,t)/ε-p(t)| ) + χ {|d(x,t)|≤εp(t)} + q(t). which gives the term C G q(t) that appears in the right-hand side of inequality (4.18) for h(y, t) = q(t). We now suppose that the function h satisfies one of the three following assumptions: Thus, under either of the assumptions (H 1 ) or (H ± 2 ), the estimate (4.18)for the term h(y, t)χ {|d(y,t)|>d 0 } -directly follows from inequality (4.22).

(
From now on, we assume that h is supported in {|d(y, t)| ≤ d 0 }. We have that w(x, t) = |d(y,t)|≤d 0 G(x, y)h(y, t)dy, which is an analogue of (4.20) in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF]. The end of the proof is now identical to that of Lemma 4.10 in [START_REF] Bonami | Singular limit of a chemotaxis-growth model[END_REF]. We omit the details and refer to this article.

Proof of the main results

In this section, we prove our main results by fitting the two pairs of sub-and super-solutions, constructed for the study of the generation and the motion of interface, into each other.

  distance between two compact sets A and B. Consequently, Γ ε t → Γ t as ε → 0, uniformly in 0 ≤ t ≤ T , in the sense of the Hausdorff distance.

  so that the standard theory of elliptic equations gives a uniform bound M for |v ε |, |∇v ε | and |∆v ε |. Hence, using the smoothness of χ, we have a uniform bound M ′ for |∇χ(v ε )| and |∆χ(v ε )|. It follows that

  ) is a direct consequence of the standard theory of elliptic equations. Next we prove (4.18). The function w = wε := v εv 0 is solution of      -∆w + γw = h on Q T ,

(4. 21 )

 21 By linearity, we successively consider equation (4.20) with the various terms appearing in the right-hand side of(4.21). By the standard elliptic estimates, the solution w of (4.20) satisfies |w(x, t)| + |∇w(x, t)| ≤ C ′ sup y∈Ω |h(y, t)|, (4.22)

3 C|

 3 and ∇d(x, t) • ∇w(x, t) = |d(y,t)|≤d 0 (∇ x G(x, y) • ∇d(x, t))h(y, t)dy, where G is the Green's function associated to the homogeneous Neumann boundary value problem on Ω for the operator -∆ + γ. More precisely, G(x, y) = g γ (|x -y|) + H γ (x, y), where g γ (|x -y|) is the Green's function associated to the operator -∆ + γ on R N and where H γ (x, y) is smooth for x and y far away from ∂Ω. It is known that g γ is the Bessel function defined by g γ (r) = c N with c N > 0 a normalization constant. We use the following estimates (see [ln |y -x|| for N = 2, (4.24)|∇ x G(x, y) • ∇d(x, t)| ≤ C|d(y, t)d(x, t)| |y -x| N + C |y -x| N -2 for N ≥ 2.(4.25) This last inequality follows from|∇ x G(x, y) • ∇d(x, t)| ≤ C|∇d(x, t) • (yx)| |y -x| N ,and from d(y, t)d(x, t) = ∇d(x, t) • (yx) + O(|y -x| 2 ). Now, under respectively assumptions (H 1 ), (H ± 2 ), we define a function h = hε on R × [0, T ], respectively by h(r, t)

( 4 .

 4 26)Note that |h(y, t)| ≤ h d(y, t), t . Moreover, using (4.23), straightforward computations show that, under either of the assumptions (H 1 ) or (H ± 2 ), there exists C > 0 such that 0≤ d 0 -d 0 h(r, t)dr ≤ Cεp(t),(4.27)

  H 1 ) |h(y, t)| ≤ χ {|d(y, t)| ≤ εp(t)} = h(y, t)χ {|d(y,t)|≤d 0 } + h(y, t)χ {|d(y,t)|>d 0 } .We first consider the term h(y, t)χ {|d(y,t)|>d 0 } . In virtue of (4.16), we have0 < K -1 ≤ p(t) ≤ d 0 /2ε 0 .(4.23)Under assumption (H 1 ), it follows that h is supported in {|d(y, t)| ≤ d 0 /2}, which implies h(y, t)χ {|d(y,t)|>d 0 } = 0. Moreover, under assumption (H ± 2 ), using again (4.23), |h(y, t)|χ {|d(y,t)|>d 0 } ≤ expλ(d 0 /εp(t))

	(H ± 2 )	|h(y, t)| ≤ exp -λ|	d(y, t) ε	± p(t)| ,
	and write			
	h(y, t) ≤ exp(-λd 0 /2ε)
		≤	2 λd 0 e	ε
		≤	2 λd 0 e	1 K -1	εp(t).

Proof of Theorem 1.3

Let η ∈ (0, 1/4) be arbitrary. Choose β and σ that satisfy (4.11), (4.12) and σβ ≤ η 3 .

(5.1)

By the generation of interface Theorem 3.1, there exist positive constants ε 0 and M 0 such that (3.2), (3.3) and (3.4) hold with the constant η replaced by σβ/2. Since ∇u 0 • n = 0 everywhere on the initial interface Γ 0 = {x ∈ Ω, u 0 (x) = 1/2} and since Γ 0 is a compact hypersurface, we can find a positive constant M 1 such that

Here d 0 (x) := d(x, 0) denotes the cut-off signed distance function associated with the hypersurface Γ 0 . Now we define functions H + (x), H -(x) by

Then from the above observation we see that

Next we fix a sufficiently large constant K > 1 such that

For this K, we choose ε 0 and L as in Lemma 4.1. We claim that

We only prove the former inequality, as the proof of the latter is virtually the same. Then it amounts to showing that

(5.6)

In the range where d 0 (x) > -M 1 ε, the second inequality in (5.4) and the fact that U 0 is a decreasing function imply

On the other hand, in the range where d 0 (x) ≤ -M 1 ε, we have

This proves (5.6), hence (5.5) is established. Combining (5.3) and (5.5), we obtain

Since u - ε and u + ε are sub-and super-solutions for Problem (P ε ) thanks to Lemma 4.1, the comparison principle yields

where

Note that, in view of (4.7), this is enough to prove Corollary 1.4. Now let C be a positive constant such that

One then easily checks, using successively (5.7), (4.5), (5.8) and (5.1), that, for ε 0 small enough, for 0

and

which completes the proof of Theorem 1.3.

Proof of Theorem 1.5

In the case where µ -1 ε 2 | ln ε| ≤ t ≤ T , the assertion of the theorem is a direct consequence of Theorem 1.3. All we have to consider is the case where 0 ≤ t ≤ µ -1 ε 2 | ln ε|. We shall use the sub-and super-solutions constructed for the study of the generation of interface in Section 3. To that purpose, we first prove the following lemma concerning Y (τ, ξ; δ), the solution of the ordinary differential equation (3.9), in the initial time interval.

Lemma 5.1. There exist constants C 8 > 0 and ε 0 > 0 such that, for all ε ∈ (0, ε 0 ), 

provided that C 8 is sufficiently large. Now we turn to the proof of Theorem 1.5. We first claim that there exists a positive constant M 2 such that for all t ∈ [0, µ -1 ε 2 | ln ε|],

To see this, we choose M 0 ′ large enough, so that M 0 ′ ≥ C 8 + 2C 6 , where C 6 is as in Lemma 3.9. As is done for (5.2), there is a positive constant M 2 such that

In view of this last condition, we see that, if ε 0 is small enough, if

This inequality and Lemma 5.1 imply w + ε (x, t) < 1/2, where w + ε is the sub-solution defined in (3.21). Consequently, by (3.25),

In the case where d 0 (x) ≤ -M 2 ε, similar arguments lead to u ε (x, t) > 1/2. This completes the proof of (5.11). Note that we have proved that, for all 0

(5.13) Next, since Γ t depends on t smoothly, there is a constant C > 0 such that, for all t ∈ [0, µ -1 ε 2 | ln ε|],

and Ω

(1)

As a consequence of (5.11) and (5.14) we get

which completes the proof of Theorem 1.5.

Proof of Corollary 1.6. In view of Theorem 1.5 and the definition of the Hausdorff distance, to prove this corollary we only need to show the reverse inclusion, that is

for some constant C ′ > 0. To that purpose let C ′ be a constant satisfying C ′ > max( C, C), where C is as in Theorem 1.3 and C as in (5.15). Choose t ∈ [0, T ], x 0 ∈ Γ t arbitrarily and, n being the Euclidian normal vector exterior to Γ t at point x 0 , define a pair of points:

x (0) := x 0 + C ′ εn and x (1) := x 0 -C ′ εn.

Since C ′ > C and since the curvature of Γ t is uniformly bounded as t varies over [0, T ], we see that, if ε 0 is sufficiently small,

t \ N Cε (Γ t ) and x (1) ∈ Ω

t \ N Cε (Γ t ).

Therefore, if t ∈ [µ -1 ε 2 | ln ε|, T ], then, by Theorem 1.3, we have u ε (x (0) , t) < 1/2 < u ε (x (1) , t).

(5.17)

On the other hand, if t ∈ [0, µ -1 ε 2 | ln ε|], then from (5.13), (5.15) and the fact that C ′ > C, we again obtain (5.17). Thus (5.17) holds for all t ∈ [0, T ]. Now, by the mean value theorem, we see that, for each t ∈ [0, T ], there exists a point x such that

x ∈ [x (0) , x (1) ] and u ε (x, t) = 1/2. This implies x ∈ Γ ε t . Furthermore we have |x 0 -x| ≤ C ′ ε, since x lies on the line segment [x (0) , x (1) ]. This proves (5.16).