
HAL Id: hal-00373829
https://hal.science/hal-00373829v1

Submitted on 27 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A combined space-time extended Finite Element Method
Julien Réthoré, Anthony Gravouil, Alain Combescure

To cite this version:
Julien Réthoré, Anthony Gravouil, Alain Combescure. A combined space-time extended Finite
Element Method. International Journal for Numerical Methods in Engineering, 2005, pp.260-284.
�10.1002/nme.1368�. �hal-00373829�

https://hal.science/hal-00373829v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A combined space–time extended finite element method

J. Réthoré, A. Gravouil and A. Combescure∗,†

LaMCoS, Laboratoire de Mécanique des Contacts et des Solides, UMR 5514, INSA Lyon,

Bat. Jean d’Alembert, 18, 20 rue des Sciences 69621 Villeurbanne, France

The Newmark method for the numerical integration of second order equations has been extensively 
used and studied along the past fifty years for structural dynamics and various fields of mechanical 
engineering. Easy implementation and nice properties of this method and its derivatives for linear 
problems are appreciated but the main drawback is the treatment of discontinuities. Zienkiewicz 
proposed an approach using finite element concept in time, which allows a new look at the Newmark 
method. The idea of this paper is to propose, thanks to this approach, the use of a time partition of 
the unity method denoted Time Extended Finite Element Method (TX-FEM) for improved numerical 
simulations of time discontinuities. An enriched basis of shape functions in time is used to capture 
with a good accuracy the non-polynomial part of the solution. This formulation allows a suitable 
form of the time-stepping formulae to study stability and energy conservation. The case of an 
enrichment with the Heaviside function is developed and can be seen as an alternative approach 
to time discontinuous Galerkin method (T-DGM), stability and accuracy properties of which can be 
derived from those of the TX-FEM. Then Space and Time X-FEM (STX-FEM) are combined to obtain 
a unified space–time discretization. This combined STX-FEM appears to be a suitable technique for 
space–time discontinuous problems like dynamic crack propagation or other applications involving 
moving discontinuities. 

KEY WORDS: extended finite element method; space–time formulation; accuracy; stability; energy
conservation; dynamic fracture

1. INTRODUCTION

For the past fifty years, the Newmark method (see Reference [1]) has been considered as a
reference for the numerical integration of second order equations in structural dynamics or
various fields of mechanical engineering. The easy implementation and the nice properties
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concerning numerical damping and energy conservation of this method and its derivative
(Fox and Goodwin, HHT and others) are appreciated. Zienkiewicz [2] and Wood [3] pro-
pose a finite element (FEM) view of the Newmark method and extend this concept in a unified
set of single step algorithms (see Reference [4]). During the same period, space FEM was
developed in various ways. Such space or Time FEM is quite easy to use and has a lot of
advantages, but the main drawback concerns the treatment of discontinuities (and even more if
those discontinuities are moving, e.g. cracks, material interface, etc.). For space discontinuous
problems, methods have been developed, and particularly the Partition of the Unity method
(see Reference [5]), which have inspired several extensions of classical FEM for treating dis-
continuities (see References [6–8]).

This paper proposes to use an extended finite element basis for time interpolation: enriched
shape functions are added to a classical Time FEM to take into account time discontinuities. The
formulation we propose is velocity based and uses discontinuous enrichment at each time level.
The resulting method presents nice stability and accuracy properties as well as capabilities in
the treatment of time discontinuities. In a particular case, this approach allows a new look at the
time-discontinuous Galerkin methods (T-DGM) proposed in References [9, 10]. The proposed
combined space–time extended finite element method (STX-FEM) gives a unified space time
discretization and accurate results when space and/or time discontinuities have to be simulated.
In Reference [11], Chessa and Belytschko proposed a different approach to treat discontinuities
in space–time FE. They consider a space discontinuity that is moving in space–time FE using
an enriched approximation in space. Here, the interest is on the modelling of space and time
discontinuities and the approximation will be enriched in space as well as in time.

This paper is organized as follows: Section 2 summarizes the original time FEM (T-FEM)
and describes the formulation we use. Section 3 presents a time extended FEM (TX-FEM)
framework and a particular case: the Heaviside step function is used to model time discontinu-
ities. Stability and accuracy are studied for this particular case. Then the combination of space
and time X-FEM is developed and several examples illustrate the capabilities of the proposed
method (Section 4).

2. TIME FINITE ELEMENT METHOD

In this section, the numerical integration of the elastodynamics equation (Equation (1)) is
studied. For easier understanding, the problem is written for a single degree of freedom mass-
spring system (parameters k, m) submitted to an external loading f . Here x, ẋ, ẍ denote the
displacement, the velocity and the acceleration, respectively. The original Newmark method,
and Zienkiewicz [2] and Wood [3] approaches are summarized. An alternative formulation is
presented.

mẍ + kx − f = 0 (1)

2.1. Reference time-stepping formula: the Newmark method [1]

In the Newmark method, no assumption is made on the type of function that can describe
displacement or velocity. The assumption is on the continuity and the approximation of the
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rest in the Taylor formulae. This approximation uses two parameters, �N for x and �N for ẋ:

xn+1 = xn + �t ẋn +
�t2

2
ẍn +

�t3

6

(

6�N

ẍn+1 − ẍn

�t

)

(2)

ẋn+1 = ẋn + �t ẍn +
�t2

2

(

2�N

ẍn+1 − ẍn

�t

)

(3)

The elastodynamics equation (Equation (1)) at time level n is

mẍn + kxn − fn = 0 (4)

Considering Equation (4) at time levels n − 1, n and n + 1 and Equations (2) and (3) at time
levels n and n + 1, the problem can be written in terms of x. The resulting two-steps method
is as follows: given xn−1 and xn, find xn+1 such that

[m + �N�t2k]xn+1 + [−2m + ( 1
2 + �N − 2�N)�t2k]xn

+ [m + ( 1
2 − �N + �N)�t2k]xn−1

= �t2[( 1
2 − �N + �N)fn−1 + ( 1

2 + �N − 2�N)fn + �Nfn+1] (5)

This formula is interesting because it will allow us to establish relations between all presented
methods in the following paragraphs. Various combinations of Equations (2)–(4) can give other
time-stepping formulae.

2.2. Literature survey in T-FEM

Zienkiewicz and then Wood presented other approaches using the weighted residual method
and finite element concepts.

2.2.1. The Zienkiewicz approach [2]. In Reference [2], the displacement is interpolated in time
as follows:

x(t) =
n+1
∑

n−1
Li(t)xi (6)

where Li are quadratic shape functions. Then, substituting Equation (6) into the weighted
residual form of the elastodynamics equation (Equation (1)) integrated from −�t to �t (W
being any appropriate weight function), we have

∫ �t

−�t

W(t)
[

m
∑

L̈i(t)xi + k
∑

Li(t)xi

]

dt =
∫ �t

−�t

W(t)f (t) dt (7)

to obtain

[m + �Z�t2k]xn+1 + [−2m + ( 1
2 + �Z − 2�Z)�t2k]xn

+ [m + ( 1
2 − �Z + �Z)�t2k]xn−1

= �t2[( 1
2 − �Z + �Z)fn−1 + ( 1

2 + �Z − 2�Z)fn + �Zfn+1] (8) 
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where

2�Z

1

�t

∫ �t

−�t

W(t) dt =
1

�t2

∫ �t

−�t

W(t)t dt +
1

�t3

∫ �t

−�t

W(t)t2 dt

�Z

1

�t

∫ �t

−�t

W(t) dt =
1

2
+

1

�t2

∫ �t

−�t

W(t)t dt

(9)

Equation (8) is formally the same as Equation (5), but �Z and �Z are obtained from
Equation (9). Consequently �Z, �Z are consistent with the polynomial interpolation and with the
choice of the weight function W . It is not the case for �N, �N, which can be chosen arbitrarily
in Equations (2) and (3). As a consequence, we can say that an arbitrary choice of �N, �N
may not be consistent with polynomial interpolation. This two-steps method shows the analogy
between the Newmark method and T-FEM but does not allow us to change the time-step size
easily.

2.2.2. The Wood approach [3]. Wood chooses to write the displacement with a quadratic in-
terpolation in terms of three parameters xn, xn+1 and ẋn as follows:

x(t) = xn + t ẋn +
t2

�t2
(xn+1 − xn − �t ẋn) (10)

This expression is then introduced into the weighted residual form of the elastodynamics
equation and integrated from 0 to �t :

[2m + �W�t2k](xn+1 − xn − �t ẋn) − �t2kxn + �W�t2ẋn = �t2F (11)

where F is the right-hand side of Equation (8) and �W, �W are given by

�W

1

�t

∫ �t

0
W(t) dt =

1

�t3

∫ �t

0
W(t)t2 dt

�W

1

�t

∫ �t

0
W(t) dt =

1

�t2

∫ �t

0
W(t)t dt

(12)

and then ẋn+1 is given by differentiating Equation (10):

�t ẋn+1 = 2(xn+1 − xn) − �t ẋn (13)

This method is equivalent to the Zienkiewicz approach and also to the Newmark method, but
once again only for appropriate �N, �N. As soon as it is formulated as a one-step method it
gives more flexibility for adaptive time-step size. Zienkienwicz et al. propose a generalization
of this approach for p-degree polynomial approximation in Reference [4].

2.3. One-step velocity-based formulation

The formulation we are presenting is velocity based. For a better understanding we change
the notation: u denotes the displacement, v the velocity and a the acceleration. Let us choose
linear shape functions to discretize the velocity in [tn; tn+1]:

v(t) = vn�n(t) + vn+1�n+1(t) (14)
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where

�n(t) =
tn+1 − t

tn+1 − tn
; �n+1(t) =

t − tn

tn+1 − tn
(15)

The displacement is then obtained by the integration of Equation (14) considering the initial
condition u(tn) = un:

u(t) = un +
∫ t

tn

v(�) d� (16)

The problem is then expressed with the weighted residual form of Equation (1) integrated from
tn to tn+1 (�t = tn+1 − tn). As this formulation is velocity based the problem becomes: given
vn and un find vn+1 such that

[m + ��t2k]vn+1 = −�tkun + [m + (� − �)�t2k]vn + �t[(1 − �)fn + �fn+1] (17)

where

�
1

�t

∫ tn+1

tn

W(t) dt =
1

�t3

∫ tn+1

tn

W(t)(t − tn)
2 dt

�
1

�t

∫ tn+1

tn

W(t) dt =
1

�t2

∫ tn+1

tn

W(t)(t − tn) dt

(18)

This equation can also be obtained from the Newmark method in the particular case 2�N = �N.
Then we obtain un+1 using Equation (16):

un+1 = un +
�t

2
(vn+1 + vn) (19)

This was obtained in the Wood approach (see Equation (13)) and can result from the Newmark
approach combining Equations (2) and (3) assuming that 2�N = �N. This one-step method
is equivalent to the Wood approach, but, as it is velocity based using linear approximation,
external loading is interpolated linearly (whereas quadratic shape functions are used in the
Wood approach). This approach will be justified in the next section.

Remarks

(i) As the velocity is piecewise linear, the acceleration is piecewise constant. Inside the
time-slab In+1 =]tn; tn+1[, using the differentiation of Equation (14), we have

a(t) = an+1 =
1

�t
(vn+1 − vn) (20)

Consequently, the acceleration is not unique at the time levels in this approach. In the
Newmark method, the assumptions are on the continuity of the displacement that enables
to define the acceleration. Using Taylor formulae, we may here expand u and v in an
excessive way, defining ü(tn) = ün and v̇(tn) = v̇n:

un+1 = un + �tvn +
�t2

2
ün (21)
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vn+1 = vn + �t v̇n (22)

To be consistent with the Newmark method, one could define ün and v̇n by

ün = (1 − 2�N)an + 2�Nan+1
(23)

v̇n = (1 − �N)an + �Nan+1

Those definitions are kinematically consistent if ün = v̇n, i.e. if 2�N = �N. Indeed, in the
Newmark method, kinematic relations between displacement velocity and acceleration are
not exactly satisfied for arbitrary �N, �N if u is quadratic and v linear in time.

(ii) Such one-step methods present the following advantages: an easy implementation and
adaptive time-step size can be used. The simplicity of the method is due to the polynomial
interpolation of the displacement and the velocity. Like the Newmark method, these
methods are consequently not well suited for the treatment of time discontinuities.

3. TIME EXTENDED FINITE ELEMENT METHOD

3.1. General formulation

In this section, we will use the partition of the unity method (PUM) (see Reference [5]). This is
motivated by the fact that polynomial interpolation cannot well approximate time discontinuities.
As the set of functions {�i}i=0..N is a partition of the unity in the interval [0; T ], we can enrich
this basis of linear shape function using the PUM:

v(t) =
N
∑

i=0
�i(t)v

c
i +

M
∑

j=0

∑

i∈Nj

�i(t)�j (t)v
e
i, j (24)

where vc
i are classical degrees of freedom, �j are enriched shape functions, ve

i, j additional
degrees of freedom and Nj the set of time levels that are enriched with �j . The �j can be
chosen to capture the non-polynomial part of the solution with good accuracy.

3.2. Heaviside enrichment

3.2.1. TX-FEM formulation. We now consider that the solution to be computed presents time
discontinuities. Consequently, we choose to enrich the basis with the Heaviside step function
H . We put one enriched function �j = H(t − tj ) centred at each time level, and Nj is reduced
to the time level tj . Because �j = H(t − tj ) is zero for all time t earlier than tj and �j has a
compact support [tj−1; tj+1], H(t − tn) is the only enriched function that is active inside the
time-slab In+1 =]tn; tn+1[ (see Figure 1). Inside In+1, the velocity and the displacement are
decomposed in a continuous and an enriched contribution:

v(t) = vc(t) + ve(t)
(25)

u(t) = uc(t) + ue(t)
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Figure 1. Linear shape function and activated Heaviside function in the time-slab In+1.

where

vc(t) = vc
n�n(t) + vc

n+1�n+1(t)
(26)

ve(t) = ve
n+1�n(t)H(t − tn)

and

�n(t) =
tn+1 − t

tn+1 − tn
; �n+1(t) =

t − tn

tn+1 − tn
(27)

We abusively denote the additional degree of freedom ve
n,n by ve

n+1 because it has to be
determined when the time slab In+1 is solved.

The kinematic constraints between displacement and velocity (u̇ = v) and the displacement
continuity at the time levels (u(t+n ) = u(t−n )) are strongly enforced. Consequently, the continuous
and enriched contributions of the displacement are

uc(t) = uc
n +

∫ t

tn

vc(�) d�

(28)

ue(t) = ue
n +

∫ t

t+n
ve(�) d�

We then write the weighted residual form of the elastodynamics equation in In+1 and enforce
the velocity continuity weakly at time level tn:

∫ t−n+1

t+n
W(t)[mv̇(t) + ku(t)] dt + W(t+n )mve

n+1 =
∫ t−n+1

t+n
W(t)f (t) dt (29)

As we added enriched degrees of freedom, two independent weight functions {Wi}i=1,2 must
be chosen to solve the problem, which is formulated as follows: given uc

n, u
e
n, v

c
n and ve

n, find
uc

n+1, u
e
n+1, v

c
n+1 and ve

n+1 such that

H1qn+1 = H0qn + Fn+1 (30a)
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where

H1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 −
�t

2
0

0 1 0 −
�t

2

0 0 m + �1�t2k (�1 − 1)m + (�1 − �1)�t2k

0 0 m + �2�t2k (�2 − 1)m + (�2 − �2)�t2k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(30b)

qn =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

uc
n

ue
n

vc
n

ve
n

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(30c)

H0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0
�t

2
0

0 1 0 0

−�tk −�tk m + (�1 − �1)�t2k 0

−�tk −�tk m + (�2 − �2)�t2k 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(30d)

Fn+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

0

�t ((1 − �1)fn + �1fn+1)

�t ((1 − �2)fn + �2fn+1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(30e)

and

�i

1

�t

∫ t−n+1

t+n
Wi(t) dt =

1

�t3

∫ t−n+1

t+n
Wi(t)(t − t+n )2 dt

�i

1

�t

∫ t−n+1

t+n
Wi(t) dt =

1

�t2

∫ t−n+1

t+n
Wi(t)(t − t+n ) dt (31)

�i

1

�t

∫ t−n+1

t+n
Wi(t) dt = Wi(t

+
n )

This formulation has the following properties: the displacement is continuous with time, the
velocity is linear inside the time slab and can have discontinuities at each time level (because
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the velocity continuity is only weakly enforced), kinematic constraint u̇ = v is always satisfied.
This time integrator is defined by six parameters {�i, �i, �i}i=1,2 which are computed from the
weight functions {Wi}i=1,2 using Equations (31). The method is now reduced to find appropriate
weight functions W1, W2 that give the time integrator the best possible properties.

Concerning the acceleration, it can be defined as a piecewise-constant function and its value
inside In+1 is obtained by differentiation of Equation (28):

a(t) = an+1 =
1

�t
(vc

n+1 − ve
n+1 − vc

n) (32)

3.2.2. A new look to the T-DGM. As it is possible to have a further look at the Newmark
method using T-FEM, XT-FEM proposes a new look at T-DGM. Let us write

v+
n = vc

n + ve
n+1 (33)

v−
n+1 = vc

n+1

and choose the weight functions to be

W1 = �n
(34)

W2 = �n+1

The parameters are

�1 = 1
12 , �1 = 1

3 , �1 = 2
(35)

�2 = 1
4 , �2 = 2

3 , �2 = 0

and the resulting system (Equations (36)) is the same as that obtained with a P3-P1 approxima-
tion in T-DGM (see for e.g. Reference [9]) or a velocity-based formulation from Reference [10]:

un+1 = un +
�t

2
(v−

n+1 + v+
n )

⎡

⎢

⎢

⎢

⎣

m +
�t2

12
k −

�t2

12
k

�t2

3
k m +

�t2

6
k

⎤

⎥

⎥

⎥

⎦

[

v+
n

v−
n+1

]

=

⎡

⎢

⎢

⎢

⎣

mv−
n +

�t2

6
(fn − fn+1)

mv−
n − �tkun +

�t2

2
(fn + fn+1)

⎤

⎥

⎥

⎥

⎦

(36)

The presented method has the same properties as the formulation proposed by Michler
et al. [10]. Both mentioned formulations [9, 10] are very close: the computed values of
velocity and displacement at the time levels are the same and the displacement continuity
is ensured. The difference concerns the displacement interpolation and the kinematic constraint:
here the displacement approximation is P2 because the kinematic constraint (u̇ = v) is strongly
enforced, P3-P1 approximation allows high order approximation but the kinematic constraint is
only weakly enforced.
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3.2.3. Stability and accuracy. All numerical results presented in this paragraph are obtained
for a mass-spring single degree of freedom system without external load but with a non-
zero initial velocity. Weight functions for the numerical results are W1 = �n, W2 = �n+1. The
results are consequently valid for this special TX-FEM and the above-mentioned T-DGM. Using
Equations (30), the single degree of freedom problem without external loads can be recast in

qn+1 = Aqn (37)

A = H−1
1 H0 is the amplification matrix and the stability depends only upon the eigenvalues

of A. They are obtained solving

det(H0 − rH1) = 0 (38)

It can be shown that this equation is equivalent to

r(r − 1)(�2r
2 − �1r + �0) = 0 (39)

where

�2 =
[

�2�t2

	2

] 〈

� −
�2�t2

	2
(1 − �	2)

〉

−
〈

�2�t2

	2

〉 [

� −
�2�t2

	2
(1 − �	2)

]

(40)

�1 =
[

�2�t2

	2

(

2 −
(

� +
1

2

)

	2
)] 〈

� −
�2�t2

	2

(

1 −
(

� −
1

2

)

	2
)〉

−
〈

�2�t2

	2

(

2 −
(

� +
1

2

)

	2
)〉 [

� −
�2�t2

	2

(

1 −
(

� −
1

2

)

	2
)]

(41)

�0 =
[

�2�t2

	2

(

1 −
(

� −
1

2

)

	2
)]

〈�〉 −
〈

�2�t2

	2

(

1 −
(

� −
1

2

)

	2
)〉

[�] (42)

with � =
√

k/m, 	2 = 1+��2�t2 and 〈b〉 = 1
2 (b2 +b1), [b] = b2 −b1 for constant parameters.

The eigenvalues 0 and 1 correspond to trivial modes of the updating equations. The interest is
now on the second order equation �2r

2 − �1r + �0. In Equations (40)–(42), one can recognize,
inside the operators 〈〉 and [], terms which govern the stability of the Newmark method. r1, r2
are the roots of this equation. The spectral radius of the amplification matrix is defined by

 = max(|r1|, |r2|). Then the stability conditions are (see Reference [12])

(i) 
 is less than 1.
(ii) The modulus of ri is strictly less than one if the order of multiplicity of ri is greater

than one.

The spectral radius of the amplification matrix is compared to the spectral radius of the
Newmark average acceleration method (�N = 1

2 , �N = 1
4 ). Those spectral radii are plotted (see

Figure 2) versus parameter ��t . The first observation is that the method is unconditionally
stable for this set of weight functions (W1 = �n, W2 = �n+1). We can observe that the spectral
radius is not equal to one and the method will show numerical damping. Two regions of ��t

(��t ≈ � and ��t�10) are particular. For these regions, we can observe bifurcations because
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Figure 2. Spectral radii for the Newmark method (�N = 1
2 , �N = 1

4 ), HHT (� = −0.3) and TX-FEM.

Figure 3. Numerical damping ratios for the Newmark method (�N = 1
2 , �N = 1

4 ),
HHT (� = −0.3) and TX-FEM.

the roots of Equation (38) separate into real distinct values (and not complex conjugate). This
implies that for such values of ��t the numerical response of the method is aperiodic:

qn =
∑

e−(n�t/�i)�i

with �i the eigenvector corresponding to the real eigenvalue ri = e−(�t/�i). A consequence of
this property is that the numerical response for a multi-degree of freedom problem will not
be disturbed by spurious numerical oscillations (in the corresponding region of ��t). This
phenomenon will be illustrated by the examples of the next section.

As mentioned above, the method gives numerical damping. Figure 3 presents the evolution
of the numerical damping ratio . As shown by Figures 4 and 5, the accuracy of the method
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Figure 4. Relative period errors for the Newmark method (�N = 1
2 , �N = 1

4 ),
HHT (� = −0.3) and TX-FEM.

Figure 5. Errors in L2 norm for the Newmark method (�N = 1
2 , �N = 1

4 ) and TX-FEM.

is not affected by this numerical damping: the relative period error is ten time less than that
for the Newmark method and the method is third order accurate.

3.2.4. Discretized energy balance. One of the interests of the TX-FEM is that the framework
gives a way to study the properties of the resulting methods (e.g. T-DGM). For example, we
can use the following notations for kinematic quantities:

〈x〉 = 1
2 (x−

n+1 + x+
n )
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[x] = x−
n+1 − x+

n

[|x|] = x+
n − x−

n (43)

Then, using the definition of v+
n and v−

n+1 from Equation (33) and multiplying the last two
equations obtained in Equation (30a) and (30d) by [u] we have

[

1

2
mv2

]

+
[

1

2
ku2
]

+
〈

� −
�

2

〉

�t2
[

1

2
kv2
]

+ 2

〈

� −
1

2

〉

1

2
k[u]2 + 〈�〉m〈v〉[|v|]

=
〈

� −
1

2

〉

[u][f ] + [u]〈f 〉 (44a)

[

� −
�

2

]

�t2
[

1

2
kv2
]

+ 2

[

� −
1

2

]

1

2
k[u]2 + [�]m〈v〉[|v|] =

[

� −
1

2

]

[u][f ] (44b)

The set of parameters for W1 = �n, W2 = �n+1 (Equation (35)) gives

〈

� −
�

2

〉

= −
1

12
,
[

� −
�

2

]

= 0

〈

� −
1

2

〉

= 0,

[

� −
1

2

]

=
1

3
(45)

〈�〉 = −2,
[

�
]

= 1

Considering a mass-spring system without external load we can have the following interpreta-
tion: in a simplified way, some energy is created at the time level (Equation (44b) and then
dissipated during the time slab (Equation (44a). As soon as the energy created m〈v〉[|v|] =
(2[� − 1

2 ]/[�]) 1
2k[u]2 comes from a dissipative term the formulation is not conservative. If

we denote W = 1
2ku2, T = 1

2mv2, N = 〈� − �
2 〉�t2 1

2kv2, the formulation would be energy
preserving if

[|W + T + N |] + [W + T + N ] = 0

Using Equation (44a), numerical energy conservation is ensured if

[|W + T + N |] = 2〈� − 1
2 〉 1

2k[u]2 + 〈�〉m〈v〉[|v|]

Using the continuity of u and Equation (44b)

[∣

∣

∣

∣

1

2
mv2

∣

∣

∣

∣

]

+
〈

� −
�

2

〉

�t2
[∣

∣

∣

∣

1

2
kv2
∣

∣

∣

∣

]

= 2

〈

� −
1

2

〉

1

2
k[u]2 −

〈�〉
[�]

(

[

� −
�

2

]

�t2
[

1

2
kv2
]

+ 2

[

� −
1

2

]

1

2
k[u]2

)

(46)
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Figure 6. Energy balance of TX-FEM discretized formulation.

Hence,

1

2

(

m +
〈

� −
�

2

〉

�t2k
)

[|v2|]

=
1

2
�t2k

(

2

(〈

� −
1

2

〉

−
〈�〉
[�]

[

� −
1

2

])

〈v〉 −
〈�〉
[�]

[

� −
�

2

]

[v]
)

〈v〉 (47)

Consequently, for this set of weight functions (W1 = �n, W2 = �n+1), looking at the discrete
energy, the method is not energy preserving as illustrated in Figures 6 and 7 and as could be
predicted by the numerical damping previously pointed out. The energy balance (normalized
by T0 the initial kinetic energy) of the discretized formulation is plotted in Figure 6. One can
observe (in Figure 7 which is a zoom of Figure 6) the energy created at the time levels and
the energy dissipated during the time slabs (results are presented for one period of the single
degree of freedom mass-spring system with ��t ≈ 0.2). As the method dissipates more energy
in average in the time slabs than it creates at the time levels, it is globally dissipative. Note
that the dissipation of the discrete energy occurs during the time slabs whereas the conservation
of the continuous energy is ensured by Equation (29).

Finally, whereas the method presents numerical damping and numerical energy dissipation,
it is third order accurate and its advantages (particularly for time discontinuities integration)
will be illustrated by the examples in the next section. As the proposed results are obtained
with W1 = �n, W2 = �n+1, they are also valid for the above-mentioned T-DGM. Such a
choice of weight functions appears quite reasonable and gives interesting properties to the time
integrator.
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Figure 7. Illustration of the numerical dissipation.

4. SPACE–TIME EXTENDED FINITE ELEMENT METHOD

Using a combined space–time X-FEM, the solution of the continuous problem U is first
approximated in space:

U(x, t) = Uh(t) (48)

This stage is detailed in the following paragraph. Then a time approximation is made using
the method proposed in Section 3 to write

U(x, t) = Uh,�t (49)

4.1. Space discretization

In the method presented, we use the extended finite element method first introduced by
Black [13]. In this method, an enrichment is added to the classical finite element approxi-
mation using the PUM developed by Babuska [5]. For the static problem, the displacement
field can be written with enriched basis of shape functions as in Reference [14]:

Uh =
∑

i∈N
Ni(x)ui +

∑

i∈Ncut

Ni(x)H(x)ai +
∑

i∈Nbranch

∑

�
Ni(x)B�(x)bi,� (50)

where N is the set of all nodes in the mesh, Ncut the set of nodes whose support is completely
cut by the crack and Nbranch the set of nodes that belong to elements partially cut by the
crack. Ni are the classical shape functions and H is a discontinuous function, whose value is
1 if x is above the crack surface and −1 if x is bellow. [B�] are branch functions ((r, �) are
local cylindrical crack tip co-ordinates):

[B�] =
[√

r sin

(

�

2

)

,
√

r cos

(

�

2

)

,
√

r sin

(

�

2

)

sin(�),
√

r cos

(

�

2

)

sin(�)

]

(51)
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In this way the approximation in space is enriched by a local partition of unity with no
particular treatment for the blending elements (see Reference [15]). In our approach, all fields
(displacement, velocity and acceleration) are discretized with Equation (50). Consequently, the
discrete enriched problem can be written as a classical dynamic problem in the scope of the
finite element method: we define the mass matrix and the stiffness matrix in the usual manner.

4.2. Time discretization

If we use the approach presented in Section 3 we can write the space discretized velocity as
follows:

V h,�t =
N
∑

i= 0
�i(t)(V

h,c
i + H(t − ti)V

h,e
i+1) (52)

4.3. Application to dynamic crack growth

New space shape functions are added to simulate the crack growth. As shown in Figure 8,
new singular enrichments are added on the new set N

n+1
branch. For discontinuous enrichment,

new shape functions are only added on the set Nnew
cut = N

n+1
cut \Nn

cut. New degrees of freedom
are initialized to zero. This strategy is stable and energy preserving (see Reference [16]) re-
ferring to theoretical studies of Newmark-type schemes for time-dependent discretization (see
Reference [17]). This strategy allows the use of singular enriched functions ([B�]) in time-
dependent problem. It has been valitated by the authors in an earlier article [16]. Other ref-
erences on dynamic crack propagation with X-FEM can be found in References [18, 19]. The
present strategy differs from Reference [18], where the stress intensity factors are considered
to be additional degrees of freedom of the enriched approximation. The main advantage of
the technique presented in Reference [18] is that the stress intensity factors are obtained di-
rectly without postprocessing of the mechanical fields. In this approach, the enriched zone
must contain the crack path (to guarantee the numercial stability of the time integrator), which
consequently has to be known in advance. Belytschko et al. [19] have proposed a new discon-
tinuous enrichment. Combined with a cohesive zone model, they avoid the use of a singular
enrichment and the difficulties encountered when it is used in time-dependent problems.

4.4. Examples

4.4.1. Brittle beam. This first example has been chosen because of its simplicity and easy
interpretation. An elastic beam is studied: it is 10 m long and its width is 0.5 m. The material
is assumed to be homogeneous and isotropic with elastic behaviour (material parameters are
E = 210 GPa and 
 = 8000 kg m−3). It is submitted to a tensile stress � = 500 MPa at one
end and fixed at the other. To simulate the brittle fracture of the beam, we suddenly introduce
an enriched discontinuous shape function. This discontinuity is located at the middle of the
beam and occurs at time t/tc = 2.5 (tc is half the period of the vibration of the entire beam).
Figure 9 compares the results obtained with the Newmark average acceleration method and the
TX-FEM. The time-step size has been chosen to obtain the same accuracy on the displacement
using both methods. For the Newmark method, it is two-third of the critical time-step size and
twice with the TX-FEM.

The results are plotted for the free end of the beam and for the node just before the created
interface of the fixed half of the broken beam. As a consequence of the choice of the time-step

16



Figure 8. Strategy for enrichment when the crack is growing.

size, the displacement is the same in both methods. Looking at the velocity, the response of
the Newmark method shows oscillations after time discontinuities. The results obtained with
the TX-FEM are more accurate and not disturbed by numerical spurious oscillations. The
difference between both methods increases at the interface because of the sudden introduction
of the discontinuity (a time discontinuous space discontinuity). The capability of the presented
method is also well illustrated by the computed acceleration that keeps a physical meaning after
the ‘rupture’. This example well illustrates the capability of the method in the treatment of time
discontinuities. Indeed, the particular property of this method (illustrated by the spectral radius
of the amplification matrix of the single degree of freedom problem) comes from the aperiodic
response for typical spurious frequency that appears with the Newmark method. The frequency
of the numerical oscillations with the Newmark method is about twice the chosen discretization
frequency: i.e. spurious numerical vibration modes whose period T = 2�t is solicited. For such
solutions, the corresponding value of the parameter ��t = 2��t/T is �. Looking at the spectral
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Figure 9. Normalized displacement, velocity and acceleration for the Newmark average
acceleration method and TX-FEM at the free end of the beam (left) and at the created

interface of the fixed half-broken beam (right).

radius of the TX-FEM, � is one of the two particular regions mentioned in Section 3, where
the response is aperiodic. Consequently, TX-FEM avoids spurious numerical high-frequency
oscillations. This gives to the TX-FEM an attractive property for structural dynamics. The
example has also been chosen because of its similarity with dynamic crack propagation, where
space discontinuities appear suddenly in the numerical model.

4.4.2. Semi-infinite crack in an infinite plate submitted to a tensile stress wave. The second
example is the infinite plate with a semi-infinite crack, where the theoretical solution is known
(see Reference [20]). Under these assumptions (infinite plate with a semi-infinite crack), for the
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Figure 10. Geometry and loading for the example of the infinite plate.

geometry described in Figure 10, the analytical solution is only valid for time t�3tc = 3H/cd
(cd is the dilatational wave speed) when the reflected stress wave arrives on the crack tip. As
the wave reaches the crack, mode I stress intensity factor can be written for a moving crack as

K
dyn
1 (0, t) =

2�0

1 − �

√

c1t (1 − 2�)

�
(53)

For a moving crack we can write

K
dyn
1 (ȧ, t) = k(ȧ)K

dyn
1 (0, t) (54)

where k is a universal function of the crack tip velocity ȧ, which can be approximated by

k(ȧ) =
1 − (ȧ/cr)

1 − (ȧ/2cr)
(55)

And finally, we have

K
dyn
1 (ȧ, t) =

2�0

1 − �

√

cdt (1 − 2�)

�

1 − (ȧ/cr)

1 − (ȧ/2cr)
(56)

To compute stress intensity factors, an interaction integral is used. It has been presented by
authors in Reference [16]. This approach is based on the Lagrangian conservation law using
auxiliary (denoted by a superscript aux) and virtual crack extension fields (q). It is valid for
arbitrary 2D moving cracks:

I int = −
∫

S

qk,j [(�aux
ml um, l − 
u̇l u̇

aux
l )�kj − (�aux

ij ui, k + �iju
aux
i, k )] dS

+
∫

S

qk[(�aux
ij,jui, k + üiu

aux
i, k ) + (
u̇aux

i u̇i, k + 
u̇i u̇
aux
i, k )] dS (57)

The interaction integral (see Equation (57)) is computed using a J -domain which consists of an
additional mesh (only used for numerical integration) following the crack tip. We are interested
in the case when the crack propagates at a prescribed constant speed v0 after time t = 1.5tc.
The following numerical results are obtained with H = 2 m, L = 10 m and l = 5 m for plate
dimensions and E = 210 GPa, � = 0.3 and 
 = 8000 kg m−3 for material properties. The tensile
stress �0 is 500 MPa. v0 is 1500 m s−1 and stress intensity factors are normalized by �0

√
H .
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Figure 11. Numerical and analytical solutions K̄1 for a stationary then moving crack.

Figure 12. Geometry and loading in the mixed mode configuration.

Solutions are computed using a 40 × 80 quadrangle element with a linear approximation. The
results are presented in Figure 11. As shown in Section 3, the convergence of the TX-FEM
allows us to use an approximately four time larger time-step size for the same accuracy. Using a
Newmark-type scheme (average acceleration method, � = 1

2 , � = 1
4 ), the slope is well captured,

but oscillations appear when the crack is growing. Such oscillations are not observed with
the TX-FEM and the solution remains satisfying. During the simulation of crack growth, new
enriched shape functions are added to model the crack extension. Consequently, the numerical
model is time discontinuous. As illustrated by the previous example, the TX-FEM is able to
treat such phenomenon and the results are not disturbed by numerical oscillations.

4.4.3. Mixed mode dynamic crack growth and arrest. With this last example, we want to show
the capabilities of combined STX-FEM to simulate the dynamic propagation of a crack under
mixed mode loading. The specimen consists of a plate with a circular hole and an off-centre
crack (see Figure 12). As the crack is off centre, it will be submitted to a mixed mode
loading. The material is assumed to be homogeneous and isotropic with elastic behaviour
(material parameters are E = 210 GPa, � = 0.25 and 
 = 8000 kg m−3). It is submitted to a
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Figure 13. Mesh and initial geometry.

compressive stress � = 500 MPa at one end and fixed at the other. The dimensions are L = 1 m,
H = 0.5 m, l = L/2 = 0.5 m, r = 0.125 and e = 0.05 m. The numerical simulation uses space
enrichment for modelling the hole and the crack. The geometry is then not explicitly defined
as shown in Figure 13.

To predict the crack path, we use the maximum hoop stress criterion for the crack propagation
direction:

�c = 2 arctan

⎡

⎣

1

4

⎛

⎝

K1

K2
− sign(K2)

√

8 +
(

K1

K2

)2
⎞

⎠

⎤

⎦ (58)

An equivalent mode 1 stress intensity factor K1eq is defined from this max hoop stress criterion
by

K1eq = cos3
(

�c

2

)

K1 −
3

2
cos

(

�c

2

)

sin (�c) K2 (59)

The crack tip speed is then obtained using the following criterion:

ȧ =

⎧

⎪

⎨

⎪

⎩

0 if K1eq�K1c

cr

(

1 −
K1c

K1eq

)

otherwise
(60)

where K1c is the dynamic fracture toughness that is assumed to be a constant whose value is
100 MPa

√
m and cr is the Rayleigh wave speed that is also the theoretical maximum crack tip

speed. More information about these criteria can be found in References [7, 20–22].
This particular configuration is very interesting because it has been experimentally observed

by Carin and Maigre (see Reference [23]) that with an in-line initial crack, the crack runs at a
constant speed after initiation, stops and reruns at the same constant speed. We suppose that in
an experimental configuration the notch faces are separated by a gap so that the faces of the
crack modelling the notch are allowed to overlap in the numerical model. As a consequence, a
negative mode I stress intensity factor is developing when the compressive stress wave arrives
on the crack tip.

The computational time is 900 �s subdivided in 130 time steps. In Figure 14, the time
history of the co-ordinate Xf of the crack front in the loading axis is plotted. The first time,
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Figure 14. Crack front co-ordinate Xf history for a circular hole.

Figure 15. Crack path when the crack arrests (circular hole).

the compressive stress wave propagates through the specimen (0 < t < 2tc = L/cd ≈ 200 �s).
During this wave propagation, a negative mode I stress intensity factor develops once the wave
reaches the crack front (t ≈ tc). The wave is then reflected on the fixed end of the specimen, the
crack faces open (2tc < t < 3tc) and the crack starts growing (t ≈ 3tc). Just after the initiation,
the crack front reaches the loading axis of the specimen. Then the crack grows following this
axis at an approximately constant speed (about 1300 ms−1). At time t ≈ 4tc, the main stress
wave is reflected on the loaded face of the specimen and the crack stops when it reaches the
crack front (t ≈ 5tc). The crack starts again at the same constant speed when the main stress
wave is reflected on the fixed face and arrives on the crack front (t ≈ 7tc). Figures 15 and 16
show, respectively, the crack path when the crack arrests and the final crack path.

This geometrical configuration with a circular hole allows a simplified interpretation of the
numerical results. As described in the previous paragraph, the propagation of the crack can
be related to the wave propagation. Indeed, the circular hole does not disturb the main wave
propagation a lot because of the shape of the free surface it produces. On the contrary, the
square hole, which produces a plane free surface (see Figures 17 and 18), makes the wave
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Figure 16. Final crack path (circular hole).

Figure 17. Crack front co-ordinate Xf history for a square hole.

Figure 18. Final crack path (square hole).
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propagation more complicated with reflexions on the free surface and its interpretation much
more difficult. The crack propagation is also completely different.

5. CONCLUSION

After a brief literature survey of the first time finite element approaches, enriched shape func-
tions in time are added to the polynomial time approximation to give a TX-FEM. A particular
case of enrichment function and choice of weight functions is studied and appears as an equiv-
alent of T-DGM. A stability study is done for this case and the particular spectral radius of the
amplification matrix of this method seems to be the key for its performances. The capabilities
of the method to model time discontinuities without spurious numerical oscillations lie in an
aperiodic response to numerical sollicitations of spurious high frequencies. The drawbacks of
this over-damped behaviour are numerical damping and energy dissipation. Nevertheless, the
method is third order accurate and gives less period error than the Newmark method. The cost
of these time integration improvements in terms of numerical implementation and CPU time
is balanced by an improved rate of convergence that allows a larger time-step size. For the
particular obtained formulation in time (choice of enrichment function and weight functions),
the method is an alternative approach of T-DGM. The framework of TX-FEM appears to be
an attractive way for time integration improvements. Indeed, one could imagine to use other
enriched functions for specific applications, to locate enrichment in the time slab and various
ways of research to be explored.

Combining space and time eXtended finite element methods gives a unified space–time dis-
cretization and accurate results when space and/or time discontinuities have to be simulated.
Applications to dynamic crack propagation are presented in this paper. Avoiding spurious nu-
merical oscillations, STX-FEM permits to simulate dynamic crack growth with a good accuracy.
In the last example, the geometrical configuration gives interesting results concerning the crack
behaviour. Results obtained using a square hole instead of a circular hole show that relating
crack growth with a simplified wave propagation is not satisfying. Experimental results on
such specimens would be interesting in order to improve crack physics knowledge. The contact
between the crack faces would also be taken into account in the numerical simulations for
more realistic models.
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