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An energy-conserving scheme for dynamic crack growth using
the eXtended finite element method

J. Réthoré, A. Gravouil and A. Combescure1,∗,†

LaMCoS, Laboratoire de Mécanique des Contacts et des Solides, UMR 5514, INSA Lyon,

Bat. Jean d’Alembert, 18,20 rue des Sciences 69621 Villeurbanne, France

This paper proposes a generalization of the eXtended finite element method (X-FEM) to model 
dynamic fracture and time-dependent problems from a more general point of view, and gives a proof 
of the stability of the numerical scheme in the linear case. First, we study the stability conditions 
of Newmark-type schemes for problems with evolving discretizations. We prove that the proposed 
enrichment strategy satisfies these conditions and also ensures energy conservation. Using this approach, 
as the crack propagates, the enrichment can evolve with no occurrence of instability or uncontrolled 
energy transfer. Then, we present a technique based on Lagrangian conservation for the estimation of 
dynamic stress intensity factors for arbitrary 2D cracks. The results presented for several applications 
are accurate for stationary or moving cracks. 

KEY WORDS: dynamic fracture mechanics; numerical stability; energy balance; extended finite
element method; dynamic stress intensity factors

1. INTRODUCTION

The modelling of crack growth is a problem of great importance in the simulation of fail-

ure. Many techniques have been developed to take into account the discontinuity produced

by a crack. First, Benzley [1] presented an enrichment to finite elements using asymptotic

solutions of static fracture problems. This idea was also developed by Fleming et al. [2] for

the element-free Galerkin (EFG) method. The partition of unity method (PUM) introduced by

Babuska and Melenk [3] gives a theoretical framework to new techniques such as hp-clouds,

generalized finite elements (GEM) or eXtended finite elements (X-FEM). For static fracture

problems, Black and Belytschko [4], Moës et al. [5] and Dolbow et al. [6] developed the
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X-FEM method. This technique was used in combination with the level set method by

Gravouil et al. [7] for arbitrary 3D cracks. This method was also generalized to arbitrary

discontinuities by Belytschko et al. [8]. It was also applied, then modified, in References

[9, 10]. In the field of dynamic fracture, EFG and GEM have already been used to simulate

the propagation of arbitrary 3D cracks (see References [11, 12]). Chen et al. [13] and, more

recently, Belytschko et al. [14] developed a new enrichment technique to avoid the difficulties

encountered with the original X-FEM in time-dependent problems [4–6]. In Reference [14],
instead of a singular enrichment of the original X-FEM, the authors use a discontinuous

enrichment combined with a cohesive law and damage model. The present paper proposes a

methodology for using a singular enrichment for time-dependent problems.

A study of energy conserving methods for classical FEM with remeshing was introduced in

Reference [15]. The present paper proposes a generalization of the X-FEM to model dynamic

fracture and time-dependent problems in a general sense, and gives a proof of the stability of

the numerical scheme in the linear case. This stability study is an extension of the balance

recovery method presented in Reference [15] for a specific implementation of the X-FEM.

Our approach enables us to simulate the dynamic propagation of arbitrary 2D cracks using

an enrichment strategy for time-dependent problems. This strategy is justified by a theoretical

study of Newmark-type time integrators for problems with evolving discretizations. This study

yields stability conditions which also ensure energy conservation. Using this approach, as the

crack propagates, the enrichment can evolve with no occurrence of instability or uncontrolled

energy transfer.

A technique for the estimation of dynamic stress intensity factors for arbitrary 2D cracks,

based on the law of conservation of the Lagrangian, is also presented. This technique can

be viewed as an extension of the work by Attigui and Petit [16]. The method uses the

concept of virtual crack extension to obtain a domain-independent integral and auxiliary fields

for mixed-mode separation. Previous works can be found in References [7, 11, 17–24]. The

development presented below takes into account the capabilities of the X-FEM whereby the

implicit description of the crack’s geometry enables one to construct a virtual crack extension

field tangent to the crack’s faces everywhere. This specificity makes it possible to write a

domain-independent integral for an arbitrary crack.

In Section 2, the reference problem is presented and discretized using the X-FEM. In

Section 3, the stability of this scheme is studied in the linear case and the discretized

energy balance is written for dynamic problems with evolving discretizations. The enrich-

ment technique is also presented in this section. The approach based on the Lagrangian con-

servation law is developed in Section 4 in order to calculate dynamic energy release rates

and stress intensity factors using a domain-independent integral. In the last section, several

examples of calculations of stationary or moving cracks are presented to show the accuracy of

the method.

2. THE REFERENCE PROBLEM IN DYNAMIC FRACTURE MECHANICS

2.1. The continuous problem

Here, we present a general definition of the dynamic crack growth problem. For this type of

calculation, we add an additional unknown a(t), representing a measure of the crack (its length
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in two dimensions), to the usual displacement and stress fields. One can express the reference

problem as follows:

Reference problem: Given











u(x, 0)

u̇(x, 0)

a(0)

, find











u(x, t) ∈ U

�(x, t) ∈ S

a(t)

x ∈ �(t), t ∈ [0; T ] such that:

• ∀x ∈ ��1, ∀t ∈ [0; T ]
u(x, t) = ud (1)

• ∀t ∈ [0; T ] ∀v ∈ U0

∫

�(t)

�ü.v d� +
∫

�(t)

� : �(v) d� =
∫

�(t)

fd .v d� +
∫

��2

Fd .v dS (2)

• ∀x ∈ �(t), ∀t ∈ [0; T ]
�(x, t) = C�(u(x, t)) (3)

• ∀t ∈ [0; T ]
ȧ = ȧ(G(t, ȧ),Gc(ȧ))

� = �(K1(t, ȧ), K2(t, ȧ))
(4)

where �(t) is the domain being considered (Figure 1), ��1 the boundary along which dis-

placements ud(t) are prescribed and ��2 the boundary along which forces Fd(t) are prescribed.

fd(t) are the prescribed volume forces; u, u̇ and ü the displacement, velocity and acceleration

fields; � and � the symmetric stress and strain tensors; G and Ki the dynamic energy release

rate and stress intensity factor; C the Hooke’s tensor; � the mass density; Gc the critical energy

release rate; ȧ and �(t) the velocity of the crack’s tip and its orientation in the cylindrical

co-ordinate system of the crack’s tip; U and S the function spaces associated with the problem,

and U0 the vector space of the virtual fields defined by

U0 = {v/v(x) = 0 ∀x ∈ ��1 + regularity} (5)

In numerical simulations, the first step consists in calculating the dynamic energy release

rate and the dynamic stress intensity factors; the second step consists in taking the crack’s

extension and the new geometry into account.

+

–

1

2

Figure 1. Notations used for the different parts of domain �.
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Remarks

(i) Here, a weak form of the problem is presented. It is interesting to review its underlying

local equations in order to pinpoint the boundary conditions being considered:

u = ud on ��1

�.n = Fd on ��2

�.n = 0 on �+ and �−

div(�) + fd = �ü in �

(6)

(ii) Although the domain was defined as time-dependent (�(t)), we consider that the crack’s

length alone (a(t)) changes. We make the simplifying hypothesis that the initial and

deformed configurations are the same and we assume small perturbations.

(iii) We assume the material to be homogeneous with linear isotropic behaviour. Therefore,

the problem falls within the framework of linear dynamic fracture mechanics, in which

one can define the dynamic energy release rate G and the dynamic stress intensity

factors Ki (see References [18, 22, 25]).

2.2. The discrete problem

In our approach, we use the X-FEM first introduced in References [4, 5]. In this method,

an enrichment to the classical finite element approximation is defined using the partition of

unity method developed in Reference [3]. For a static problem (see References [5, 26]), the

displacement field can be written using an enriched basis of shape functions:

U =
∑

i∈N
Ni(x)Ui +

∑

i∈Ncut

Ni(x)H(x)ai +
∑

i∈Nbranch

∑

�
Ni(x)B�(x)bi,� (7)

where N is the set of all the nodes in the mesh, Ncut the set of the nodes which belong to

elements completely cut by the crack and Nbranch the set of the nodes which belong to elements

partially cut by the crack. Ni are the classical shape functions and H is a discontinuous function

whose value is 1 if x is above the crack’s surface, −1 otherwise. [B�] are branch functions:

[B�] =
[√

r sin

(

�

2

)

,
√

r cos

(

�

2

)

,
√

r sin

(

�

2

)

sin(�),
√

r cos

(

�

2

)

sin(�)

]

(8)

In our approach, all the fields (displacement, velocity and acceleration) are discretized using

Equation (7). Consequently, the discrete enriched problem can be written as a classical dynamic

problem formulated according to the finite element method: we define the mass matrix and the

stiffness matrix in the usual manner. The discrete momentum balance at time tn+1 is

Mn+1Ün+1 + Kn+1Un+1 = Fn+1 (9)

where Mn+1 and Kn+1 are the mass and stiffness matrices at time tn+1. Since we intend to

represent a moving crack, we have to solve a discretized problem whose number of degrees

of freedom (size of the state vector) and crack geometry are evolving. Let us consider a first-

order tensor V . Its value at time ti can be written using the set of shape functions of the
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X
n

n X
n+1

n X
n+1

n+1

Change of discretization Balance of momentum

Figure 2. Calculation strategy.

discretization either at time ti
(

denoted V i
i

)

or at time tj

(

denoted V
j

i

)

. Then, one can define

the projection operator �ij as

V i
i = �ijV

j
i (10)

For the second-order tensors, let us designate the mass and stiffness matrices by

M
j
i = �T

ijM
i
i �ij

K
j
i = �T

ijK
i
i �ij

(11)

We will now look at what happens during a time step �t from time tn to time tn+1. As

shown in Figure 2, one has to perform two basic steps: change the discretization and solve the

momentum balance equation. Changing the discretization (step a) requires the determination of

Xn+1
n (the state vector at time tn written on the set of shape functions at time tn+1), which will

be detailed in Section 3. In step b, the momentum balance equation is solved from time tn to

time tn+1 in order to obtain Xn+1
n+1 . This equation is discretized using a Newmark-type scheme

with constant � and � (Equations (13) and (14)). Working with two different discretizations

also requires that we rewrite the Newmark scheme:

Un+1
n+1 = Un+1

n + �tU̇n+1
n + �t2

(

1
2

− �
)

Ün+1
n + �t2�Ün+1

n+1

U̇n+1
n+1 = U̇n+1

n + �t (1 − �)Ün+1
n + �t�Ün+1

n+1

(12)

Now, we can define the discretized reference problem:

Discretized reference problem: Given

{

Un
n , U̇n

n , Ün
n

an, ȧn

, find















Un+1
n , U̇n+1

n , Ün+1
n

Un+1
n+1 , U̇n+1

n+1 , Ün+1
n+1

an+1, ȧn+1

such that:

Mn+1
n+1 Ün+1

n+1 + Kn+1
n+1Un+1

n+1 = F n+1
n+1 (13)

Un+1
n+1 = Un+1

n + �tU̇n+1
n + �t2

(

1
2

− �
)

Ün+1
n + �t2�Ün+1

n+1 (14)

U̇n+1
n+1 = U̇n+1

n + �t (1 − �)Ün+1
n + �t�Ün+1

n+1

ȧn+1 = ȧn+1 (G(ȧn+1),Gc(ȧn+1)) (15)

�n+1 = �(K1(ȧn+1), K2(ȧn+1)) (16)
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The quantities Un+1
n , U̇n+1

n and Ün+1
n are additional unknowns of the problem at each time

step. We will detail their calculation in Section 3.

Remark

The discretized problem presented here leads to five equations with eight unknowns, which

means that its resolution requires three projections.

3. STABILITY ANALYSIS AND DISCRETIZED ENERGY BALANCE

FOR DYNAMIC CRACK GROWTH SIMULATION

In this section, we will extend the method presented in Reference [15] to the case where

the X-FEM is used. This method enables us to study the stability and the discretized energy

balance of dynamic analyses with evolving meshes. When one uses the X-FEM for dynamic

crack growth analysis, the mesh does not change but the basis of shape functions varies as

the crack grows. Consequently, we can use the same approach and the same notations. First,

we develop the stability analysis using the energy method (see References [27, 28]). Then,

we study its application to dynamic fracture mechanics and present a method to improve the

stability and accuracy for an evolving discretization. Finally, we present the application of this

method, called the balance recovery method, in the context of the X-FEM.

3.1. Stability study

Let us now consider the case of a calculation with an evolving discretization. One can study

the stability of this scheme by extending the method presented in References [27, 28] to this

type of calculation. Let us use the notations defined in Section 2 and define the following

operators:

〈V 〉 = 1
2

(

V n+1
n+1 + V n+1

n

)

(17)

[V ] = V n+1
n+1 − V n+1

n (18)

Working with two different discretizations requires that we rewrite the equilibrium equations at

times tn and tn+1 on the same discretization. Since the scheme must be stable in the absence

of external loads, these are not considered in the stability study (see Reference [29]):

Mn+1
n Ün+1

n + Kn+1
n Un+1

n = 0

Mn+1
n+1 Ün+1

n+1 + Kn+1
n+1Un+1

n+1 = 0

(19)

Using the approach developed in Reference [27] and observing that:

[MÜ ] = Mn+1
n+1 [Ü ] + [M]Ün+1

n

[KU ] = Kn+1
n+1 [U ] + [K]Un+1

n

6



we obtain the stability equation:

〈Ü〉TAn+1
n+1[Ü ]+〈U̇〉TKn+1

n+1 [U̇ ]=−
(

�−1

2

)

[Ü ]TAn+1
n+1[Ü ]− 1

�t
[U̇ ]T

(

[M]Ün+1
n +[K]Un+1

n

)

(20)

with

An+1
n+1 = Mn+1

n+1 + �t2

2
(2� − �)Kn+1

n+1

On the right-hand side, we recognize the term in �− 1
2

which governs the stability of the scheme

for a calculation with constant discretization. However, the presence of a supplementary term

involving [M] and [K] destroys the stability conditions of the standard case. The stability

depends on the right-hand side of Equation (20).

The method presented here enables one to perform the stability study when going from

Xn+1
n to Xn+1

n+1 (step b). In order to treat the problem for the whole time step, one must study

the transition Xn
n , Xn+1

n+1 (step a followed by step b). For this purpose, one writes:

1

2

[

Ün+1T
n+1 An+1

n+1Ü
n+1
n+1 + U̇n+1T

n+1 Kn+1
n+1 U̇n+1

n+1

]

− 1

2

[

ÜnT
n An

nÜ
n
n + U̇nT

n Kn
n U̇n

n

]

= −
(

� − 1

2

)

[Ü ]TAn+1
n+1[Ü ] − 1

�t
[U̇ ]T

(

[M]Ün+1
n + [K]Un+1

n

)

(21)

3.2. The discretized energy balance

With the notations above, the energy balance can be written in the same way as the stability

study. We get:

[U̇ ]TMn+1
n+1 〈U̇〉 +

[

UT
]

Kn+1
n+1 〈U〉

= Wext − �t2

2
(2� − �)[Ü ]TMn+1

n+1 〈Ü〉 − �t2

2

(

� − 1

2

)

(2� − �)[Ü ]TMn+1
n+1 [Ü ]

−
(

� − 1

2

)

[U ]TKn+1
n+1 [U ] − (� − 1)[U ]T

(

[M]Ün+1
n + [K]Un+1

n

)

(22)

Again, these are the equations of a problem whose discretization does not evolve, with an

additional term involving [M] and [K].
Equation (22) enables one to express an energy balance between Xn+1

n and Xn+1
n+1 (step a).

Finally, one must calculate the balance between Xn
n and Xn+1

n+1 (step a followed by step b),

which is

1

2

[

U̇n+1T
n+1 Mn+1

n+1 U̇n+1
n+1 + Un+1T

n+1 Kn+1
n+1Un+1

n+1

]

− 1

2

[

U̇nT
n Mn

n U̇n
n + UnT

n Kn
nUn

n

]

7



= Wext − �t2

2
(2� − �)[Ü ]TMn+1

n+1 〈Ü〉 − �t2

2

(

� − 1

2

)

(2� − �)[Ü ]TMn+1
n+1 [Ü ]

−
(

� − 1

2

)

[U ]TKn+1
n+1 [U ] − (� − 1)[U ]T

(

[M]Ün+1
n + [K]Un+1

n

)

(23)

Wext is the work of the external loads, which can be written as follows:

Wext =
(

� − 1
2

)

[U ]T[F ] + [U ]T〈F 〉

3.3. Application to fracture mechanics: the balance recovery method

Let us now consider the case of dynamic crack growth analysis. In this particular case, we

know what physical phenomenon causes the change of geometry. Indeed, let us assume a crack

growth �a between times tn and tn+1. The state vector at time tn can be in equilibrium on this

new geometry only if a distribution of forces F+ is applied along the crack’s extension to close

it. By making the residual defined by (24) vanish, the balance recovery method guarantees that

the state vector projected onto the new discretization is in equilibrium (assuming that there are

no external forces):

R = Mn+1
n+1 Ün+1

n + Kn+1
n+1Un+1

n − F n+1
+ (24)

Thus, we have the following relations:

[U ]T
(

[M]Ün+1
n + [K]Un+1

n

)

= [U ]TF n+1
+ (25)

[U̇ ]T
(

[M]Ün+1
n + [K]Un+1

n

)

= [U̇ ]TF n+1
+ (26)

where [U ]TF n+1
+ and [U̇ ]TF n+1

+ correspond to the power and the work of the force distribu-

tion F n+1
+ , respectively. We also know that these two terms are, from a physical standpoint,

equal to −2G�a and −2Gȧ, respectively (G being the energy release rate and ȧ the crack’s

velocity, see Reference [18]). This enables us to verify the relations:

[U ]T
(

[M]Ün+1
n + [K]Un+1

n

)

= −2G�a (27)

[U̇ ]T
(

[M]Ün+1
n + [K]Un+1

n

)

= −2Gȧ (28)

Let us return to the stability study and energy balance described above. Concerning the energy

balance, we will focus on the influence of the balance recovery on the two stages performed

during the time step
[

tn, tn+1

]

. The term �
(

Xn+1
n+1, X

n
n

)

denotes the complete energy balance

defined as the difference between the left-hand side and the right-hand side of Equation (23)

taking Equation (27) into account. �
(

Xn+1
n+1, X

n+1
n

)

is defined as the difference between the

left-hand side and the right-hand side of Equation (22) taking Equation (27) into account.

Furthermore, �
(

Xn+1
n , Xn

n

)

is defined by

�
(

Xn+1
n , Xn

n

)

= 1
2

[

U̇n+1T
n Mn+1

n U̇n+1
n + Un+1T

n Kn+1
n Un+1

n

]

− 1
2

[

U̇nT
n Mn

n U̇n
n + UnT

n Kn
nUn

n

]

(29)

8



One can immediately deduce that

�
(

Xn+1
n+1, X

n
n

)

= �
(

Xn+1
n+1, X

n+1
n

)

+ �
(

Xn+1
n , Xn

n

)

(30)

One can observe (Equation (30)) that �
(

Xn+1
n+1, X

n
n

)

is the sum of �
(

Xn+1
n , Xn

n

)

, which is

the quantity of energy introduced or dissipated during the projection operations (step a), and

�
(

Xn+1
n+1, X

n+1
n

)

, which is the energy introduced or dissipated when one goes from Xn+1
n to

Xn+1
n+1 (step b).

Remarks

(i) The balance takes into account the energy required to create new crack surfaces (2G�a).

This term appears naturally because of its relation to the work of the force distribu-

tion F n+1
+ (see Reference [18]).

(ii) This method enables us to set �
(

Xn+1
n+1, X

n+1
n

)

equal to zero a priori and, therefore,

to minimize the amount of energy introduced by the successive discretization change

operations.

(iii) Using the classical FEM, the discretization change step (remeshing) cannot be controlled

and can introduce numerical energy into the simulation.

3.4. Use of the balance recovery method in the X-FEM

In the method presented above, we considered dynamic calculations with evolving discretiza-

tions. When one uses the X-FEM to simulate dynamic crack propagation (as presented in

Reference [15]), the mesh does not change between time tn and tn+1, but new space shape

functions are added to simulate the crack’s growth. Consequently, the mass and stiffness ma-

trices at times tn and tn+1 are different and one can apply the balance recovery method. If we

choose to retain all enrichments from time tn to time tn+1 (see Figure 3), the basis of shape

functions at time tn+1 is greater than that at time tn and one can choose the new degrees of

freedom to be initially zero. The projected displacement field is

[

Un+1
n

]

=















Un
n

0
...

0















(31)

The new stiffness matrix is:

[

Kn+1
n+1

]

=
[

Kn
n K̃n,n+1

K̃T
n,n+1 K̃n+1,n+1

]

(32)

The force distribution F+ needed to close the crack’s extension is replaced by setting new

degrees of freedom which represent the crack’s extension to zero. Consequently, the state

vector calculated at time tn with the discretization at time tn+1 verifies the momentum balance

on the geometry at time tn+1 (see Equation (24)). Moreover, the total energy associated with

9



tn

tn+1

a

discontinuous enrichment

singular enrichment (front    )

singular enrichment (front    )

Figure 3. Enrichment strategy when the crack propagates.

this state vector is the same for both discretizations because the initialization reduces the

contribution of the new shape functions to zero

Un+1T
n Kn+1

n+1Un+1
n =

[

Un
n | 0 . . . 0

]

[

Kn
n K̃n,n+1

K̃T
n,n+1 K̃n+1,n+1

]















Un
n

0
...

0















= UnT
n Kn

nUn
n (33)

The same proof holds for the kinetic energy term. The equilibrium recovery method for the

X-FEM is easy and consists simply in initializing properly the new degrees of freedom which

appear as the crack grows. This method guarantees that the numerical scheme is stable and

that no numerical energy is introduced when the crack propagates.

10



3.5. Enrichment strategy

The previous section showed how to introduce new degrees of freedom when using the

X-FEM. We will now develop the enrichment strategy. As shown in Figure 3, a new sin-

gular enrichment is added onto the new set Nn+1
branch. These new shape functions are associated

with the new front, i.e. the local cylindrical co-ordinate of the crack’s tip for these functions is

centered on the new crack’s tip. The old singular enrichments are kept and always associated

with the old tip. For a discontinuous enrichment, new shape functions are added only on the

set Nnew
cut = N

n+1
cut \Nn

cut. If the crack propagates but remains within an element, singular shape

functions are added onto the same set of nodes N
n+1
branch = N

n
branch, but there is no new discon-

tinuous shape function. With such an enrichment strategy, the number of degrees of freedom

increases as the crack propagates and the balance recovery method can be used.

As shown in Reference [30], for the partition of unity method with an explicit Newmark-type

scheme, the stable time step of the enriched problem is a small fraction of the stable time step

of the problem which contains no enriched shape function. For this reason, we now choose

the mean acceleration scheme, which is unconditionally stable.

4. CALCULATION OF THE DYNAMIC ENERGY RELEASE RATE

AND STRESS INTENSITY FACTORS

4.1. Interaction integral

In dynamic fracture mechanics, the dynamic energy release rate of a two-dimensional problem

can be deduced from the variation of the Lagrangian corresponding to a variation of the crack’s

length. In this section, we merely outline the method (see Appendix A for full details). We

define the Lagrangian L by the following expression, where W is the strain energy, T the

kinetic energy and Wext the external work:

L = T − (Wint − Wext) (34)

For mixed-mode separation, we will consider a problem with two fields u and uaux. u is

the actual displacement field and uaux an auxiliary displacement field, both of which are

kinetically admissible, and we can decompose the Lagrangian of the total displacement field

utot = u + uaux as

L
(

utot
)

= L(u) + L
(

uaux
)

+ Lint
(

u, uaux
)

(35)

In this equation, Lint
(

u, uaux
)

is the interaction Lagrangian, whose expression can be developed

into:

Lint
(

u, uaux
)

= −
∫

�

W int − T int d� (36)

where

W int = � : ∇uaux = �aux : ∇u =
[

�uk,k	ij + 

(

ui, j + uj,i

)]

uaux
i, j

T int = �u̇.u̇aux = �uiu
aux
i 

11
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Figure 4. Different contours for the integration of 	Lint .

Remarks

(i) In the above equation, . or ,t denote time partial derivation, whereas ,i denotes space

partial derivation.

(ii) The external work does not appear in the expression of the interaction Lagrangian

because of its linear dependency with respect to the displacement field.

Let us consider the contour and domain represented in Figure 4. Assuming that the Lagrangian

conservation law holds, that the virtual crack’s extension 	l is collinear to the tangent to the

crack’s face and that the crack’s faces are traction-free in both the actual and the auxiliary

solutions, one obtains the following path-independent integral (nj being the components of

the outward normal vector to the closed domain A(�) defined by its contour � enclosing the

crack’s tip):

�(�, 	l) =
∫

�

P int
kj 	lknj ds +

∫

A(�)

Qk	lk dS (37)

where

P int
mj =

[

(

�aux
kl uk, l − �u̇ku̇

aux
k

)

	mj −
(

�aux
ij ui,m + �iju

aux
i,m

)

]

Qm =
[

(

�aux
ij, jui,m + �ij, ju

aux
i,m

)

+
(

�u̇aux
i u̇i,m + �u̇i u̇

aux
i,m

)

]

In the case of a straight crack, ȧ denotes the velocity of the crack’s front in the direction x1

defined by the crack. In the above development, ,t denotes the time partial derivative. The

front’s velocity ȧ is obtained by applying the total time derivative in the local co-ordinates of

the crack’s tip:

(

�u̇aux
i ui, k + �u̇iu

aux
i, k

)

,t
= �

�t

(

�u̇aux
i ui, k + �u̇iu

aux
i, k

)

= d

dt

(

�u̇aux
i ui, k + �u̇iu

aux
i, k

)

− ȧ
�

�x1

(

�u̇aux
i ui, k + �u̇iu

aux
i, k

)

(38)
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Using Equations (37) and (38), we retrieve the M-integral presented in Reference [16]. Now,

if we choose the auxiliary field to be the actual field, we obtain:

�(�, 	l1) =
∫

�

[(

�kluk, l−�u̇ku̇k

)

	1j−2�ijui,1−2ȧ�u̇iui,1	1j

]

nj	l1 ds

+
∫

A(�)

2
d

dt

[

�u̇i u̇i,1

]

	l1 dS (39)

With these assumptions, taking the limit of � when � goes to the crack’s tip, the result is 2J ,

where J is Rice’s J -integral (see Reference [31]), which is equal to the dynamic energy release

rate G and, for plane strain conditions, can be related to the dynamic stress intensity factors

by the following dynamic equivalent of Irwin’s relation (see Reference [25]):

G = 1 − �2

E

(

f1(ȧ)
(

K
dyn
1

)2 + f2(ȧ)
(

K
dyn
2

)2)
(40)

In the above equation, K
dyn
i are the dynamic stress intensity factors defined by Refer-

ences [18, 22] and fi are universal functions defined (with c1 and c2, respectively, the di-

latational and shear wave velocities, k = 3 − 4� for plane strain) by

fi(ȧ) =
4�i

(

1 − �2
j

)

(k + 1)D(ȧ)
, (i, j) ∈ {1, 2} (41)

�i =
√

1 − ȧ

ci

(42)

D(ȧ) = 4�1�2 −
(

1 + �2
2

)2
(43)

The interaction integral is defined as the limit of � when �1 goes to the crack’s tip.

I int = lim
�1→0

�
(

�1, q
)

Choosing the virtual crack’s extension field q as defined above enables us to write the interaction

integral I int as a domain-independent integral. If we define q by

q =















0 on �2 and outside �2

x1	l on the crack’s tip

tangent to the crack’s faces everywhere

(44)

we obtain:

I int = −
∫

A
(

�2

)
qk,j

[

(

�aux
ml um, l − �u̇l u̇

aux
l

)

	kj −
(

�aux
ij ui, k + �iju

aux
i, k

)

]

dS

+
∫

A
(

�2

)
qk

[

(

�aux
ij, jui, k + üiu

aux
i, k

)

+
(

�u̇aux
i u̇i, k + �u̇i u̇

aux
i, k

)

]

dS (45)
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4.2. Calculation of stress intensity factors

The objective of this section is to develop a domain-independent integral enabling us to estimate

stress intensity factors. The expression obtained above does contain a domain-independent

integral. Thus, in this subsection, we will focus on the estimation of stress intensity factors

based on this integral. In the previous subsection, the virtual crack’s extension field was rewritten

in order to transform the mixed path, domain-independent integral � into a domain-independent

integral I int. In the particular case where the auxiliary fields are taken to be the real fields,

we also related � to Rice’s J -integral. Then, the J -integral was related to stress intensity

factors using the dynamic energy release rate and the dynamic equivalent of Irwin’s relation

(Equation (40)). Here, if Kaux
i denotes the Mode-i stress intensity factors corresponding to the

auxiliary fields, we can write:

I int =
2
(

1 − �2
)

E

(

f1(ȧ)K
dyn
1 Kaux

1 + f2(ȧ)K
dyn
2 Kaux

2

)

(46)

Consequently, K
dyn
1 and K

dyn
2 are calculated by choosing Kaux

1 = 1, Kaux
2 = 0 and Kaux

1 = 0,

Kaux
2 = 1, respectively.

For numerical implementation purposes, the interaction integral is calculated using a

J -domain (see Reference [24]). This J -domain is an additional mesh (see Figure 5) onto

which the fields are projected, which is used only for the numerical space integration of the

crack

frontmesh

additional mesh for J domain

Figure 5. The J -domain used to calculate G and the K
dyn
i .
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interaction integral. The virtual crack’s extension is taken to be x1 at the crack’s tip and

decreases to 0 on the boundary of the J -domain. For example:

q =
(

1 −
∣

∣

∣

x

d

∣

∣

∣

)(

1 −
∣

∣

∣

y

d

∣

∣

∣

)

x1 (47)

where x and y are the local co-ordinates of the crack’s tip and d is the size of the J -domain.

For curved cracks, q is curved with respect to the cracks’ faces according to the assumptions

made in the previous development.

5. EXAMPLES

5.1. Three-point bending

First, let us consider the problem of a stationary crack in a three-point bending specimen whose

geometry is shown in Figure 6. The loading is pure Mode-1 and the dynamic stress intensity

factor oscillates between 0 and twice the static value given in Reference [18]. This value is

K1s = 6Sl�0

4BW 2

√

�a�
( a

W

)

(48)

where S(0.04 m) is the distance between the supports, a(0.005 m) the crack’s length, L the

total length of the beam, W(0.01 m) its height and B(1.0 m) its thickness. The loading consists

in a constant stress �0 (400 Pa) applied over a length l (0.0025 m). The function � is given by

�
( a

W

)

= 1.09 − 1.735
a

W
+ 8.2

( a

W

)2

− 14.18
( a

W

)3

+ 14.57
( a

W

)4

(49)

The material’s properties are E = 200 GPa, � = 0.3 and � = 7860 kg m−3. The numer-

ical results were obtained using the mesh shown in Figure 8, which consists of 20 × 100

Figure 6. Three-point bending geometry.

Figure 7. Different domains used for the calculation of the interaction integral.
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Figure 8. The mesh and its subdivisions for the three-point bending specimen.
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Figure 9. K̄1 calculated with different J -domain sizes for the three-point bending specimen.

quadrangles. The time window was 250 �s divided into 200 time steps. In this figure, the

subdivided elements (whether cut by the crack or including the crack’s tip) are also dis-

played. Subelements were used only for the numerical integration of singular and discontinuous

shape functions (see Reference [5]). The results obtained for different sizes of the J -domain

(Figure 7) are shown in Figure 9. K1 is normalized by the static value and oscillates be-

tween 0 and 2 with good accuracy. One can also observe that the influence of the size of the

J -domain over the calculation of K1 is small.

5.2. Semi-infinite plate with a stationary edge crack under mixed-mode loading

A schema of the problem is shown in Figure 10. An analytical solution was obtained by Lee

and Freund [32]. To model this theoretical configuration, a 4 m × 6 m mesh with a crack of

length a0 = 1 m was used. Because of this mesh’s finite dimension, the analytical solution is

not valid when the compressive reflected wave arrives at the crack’s tip. The prescribed velocity

was taken to be v0 = 16.5m s−1 and symmetry boundary conditions were applied at the bottom

of the mesh. The material’s properties were E = 200 GPa, � = 0.25 and � = 7833 kg m−3. The

results were obtained with 40 time steps for a total computation time of 542 �s (i.e. time 3tc
where tc = cd/a0). Figure 11 shows the results obtained for different mesh refinements. K̄ are

the dynamic stress intensity factors normalized by −Ev0/2
(

1 − �2
)

cd(
√

�a0).
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Vo

ao

Figure 10. Semi-infinite plate with a stationary edge crack under mixed-mode loading.

Figure 11. Numerical and analytical solution K̄ for different mesh refinements.

This example was calculated using two different meshes. The coarse mesh used 40 × 60

linear quadrangular elements and the fine mesh 80 × 120 elements. The accuracy of the results

was satisfactory with both meshes. The fine mesh seemed to be more sensitive to oscillations

associated with the time integration scheme. Nevertheless, we can conclude that the method

does not depend on the mesh size.

5.3. Semi-infinite crack in an infinite plate subjected to a tensile stress wave

We choose as our third example the case of an infinite plate with a semi-infinite crack because its

theoretical solution is known (see Reference [22]). Several authors already treated this example

and, therefore, we can also compare our results with theirs. Under the given assumptions (an

infinite plate with a semi-infinite crack) and for the geometry described in Figure 12, the

analytical solution is valid only at time t � 3tc = 3H/c1 when the reflected stress wave reaches

17
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H

L

l

Figure 12. Geometry and loading for the infinite plate example.

the crack’s tip. When this situation occurs, the Mode-I stress intensity factor for a stationary

crack can be written as

K
dyn
1 (0, t) = 2�0

1 − 


√

c1t (1 − 2
)

�
(50)

For a moving crack, we can write:

K
dyn
1 (ȧ, t) = k(ȧ)K

dyn
1 (0, t) (51)

where k is a universal function of the velocity of the crack’s tip ȧ which we approximate by

k(ȧ) = 1 − ȧ/cr

1 − ȧ/2cr

(52)

Finally, we have:

K
dyn
1 (ȧ, t)= 2�0

1 − 


√

c1t (1 − 2
)

�

1 − ȧ/cr

1 − ȧ/2cr

(53)

This theoretical solution will be compared with our numerical results. We will be look-

ing at three cases: the crack does not propagate; the crack starts propagating at a prescribed

constant velocity v0 as soon as the wave reaches the crack (t = tc); and the crack propa-

gates at a prescribed constant velocity v0 after time t = 1.5tc. The following numerical results

were obtained with the plate dimensions H = 2 m, L = 10 m and l = 5 m and the material

properties E = 210 GPa, � = 0.3 and � = 8000 kg m−3. The tensile stress �0 was 500 MPa.

The dimension d of the J -domain was 0.5 m and it contained 36 elements with 16 Gauss

points each. v0 was 1500 m s−1 and the stress intensity factors were normalized by �0

√
H .

The solutions were calculated using 40 × 80 quadrangular elements with linear approxima-

tion. We stopped the computation at time T = 3tc when the stress wave reflected from the

boundary reached the crack’s tip and the analytical solution was no longer valid. For the

stationary crack case, T = 3tc was reached after 200 time steps. The results are plotted in

Figure 13. These results match the analytical solution with great accuracy. For the second case,

the number of time steps was 20 and the results are not as accurate as in the first case. Oscil-

lations appear at time t = 2.5tc. These oscillations were also observed by the authors of several

References [12, 13, 23]. We may assume that although the analytical solution was valid until
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Figure 13. Numerical and analytical solutions K̄1 for a stationary and a moving crack.
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Figure 14. Numerical and analytical solutions K̄1 for a stationary, then moving crack.

time T = 3tc the reflected wave reached the J -domain before that and affected the calculation

of K
dyn
1 .

In the third case, the crack remained stationary until time t = 1.5tc, then propagated at the

prescribed constant velocity v0. The results are presented in Figure 14. The number of time

steps was still 20; the slope was reproduced with great accuracy, after which the oscillations

previously observed appeared again. In this case, the solution was calculated using a small

time step when the crack does not propagate. This can be justified by the fact that one can

assume a steady-state situation around the crack’s tip. Consequently, the dynamic effects in this

region are less than in the rest of the structure. The crack’s velocity is approximately ten times

less than the dilatational wave speed. Moreover, as shown in Reference [15], dynamic crack

propagation can be simulated effectively using a large time step. This technique enabled us to

predict the crack’s loading prior to the initiation and, consequently, the initiation itself with
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Figure 15. Definition of the initial geometry.

good accuracy, thus avoiding the difficulties due to the high-frequency numerical solicitations

when the crack grows. Let us mention that new, enriched degrees of freedom were added and

the stiffness properties of the elements were enriched with new shape functions at each time

step. This discontinuity (in time) of the stiffness produced a high-frequency response of the

structure around the crack’s tip, which can explain the oscillations observed when a small time

step was used. Here, we are reaching the limits of Newmark-type schemes, which do not deal

with velocity or displacement discontinuities very well.

5.4. Dynamic crack propagation under prescribed displacement

In order to illustrate the effectiveness of the methods presented above from an energy point of

view, we calculated the dynamic propagation of a crack in a plate subjected to a prescribed

displacement (see Figure 15). The specimen was made of a homogeneous, isotropic, linear

elastic material. It was subjected to a prescribed vertical displacement ud = 0.0025 m at its

ends. The evolution of this loading followed the Heaviside step function with a rising time

of 0.1 ms. The additional data were c = 0.01 m, b = 0.05 m, a/b = 0.4 for the geometry and

E = 186 GPa, � = 0.3, � = 8000 kg m−3, K1c = 110 MPa
√

m for the material’s properties. The

criterion used for calculating the velocity of the crack’s tip can be written as follows:

ȧ =











0 if K1 �K1c

cr

(

1 − K1c

K1

)

otherwise
(54)

This example had already been calculated in a classical FEM framework in Reference [15].
In Figure 16, we compare the total energy introduced by the X-FEM scheme when the crack

grows (i.e. when the discretization evolves) with classical FEM simulation. Using the FEM, the

balance recovery method used to control step b (see Figure 2) was very useful in controlling

the energy, but step a still produced some numerical energy due to remeshing and projections.

Using the X-FEM and the strategy defined in Section 3, the energy balance was ensured during

both steps a and b, as shown clearly in Figure 16. The energy introduced using the X-FEM

was non-zero only because the discretized energy balance was calculated using the predicted

dynamic energy release rate (i.e. using the interaction integral presented in Section 4), which

is quite different from the dynamic energy release rate estimated with the energy definition

(see Reference [18]).
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Figure 16. Evolution of the cumulated unbalanced numerical energy.

L
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Vo

Figure 17. Geometry and loading used to model Kalthoff’s experiments.

5.5. Edge-cracked plate under mixed-mode impulse loading

This example deals with a numerical simulation of Kalthoff’s experiments presented in

Reference [33]. By modifying the projectile’s velocity, one observes a transition in the type of

failure. At low velocity, i.e. under low strain rate, brittle failure is observed with a global angle

of 70◦. The experimental configuration modelled is presented in Figure 17. The material’s prop-

erties were those of a maraging steel type 18Ni1900: E = 190 GPa, � = 0.3, � = 8000 kg m−3,

K1c = 68 MPa
√

m. For brittle failure, the characteristic velocity of the projectile was v0 =
16.5 m s−1, L was 0.1 m and the initial crack’s length was l = 0.05 m.

The results were obtained using the maximum hoop stress criterion [34] for the propagation

angle and a constant velocity ȧ = 750ms−1. The overall angle of the final crack’s path obtained

was about 65◦ (Figures 18 and 19) which agrees well with the experimental value of 70◦.

These results also agreed with those obtained by Belytschko et al. [14] when the authors used

the same criterion.
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Figure 18. Final crack’s path.

Figure 19. Evolution of the crack path for time t = 25, 50, 75 and 100 �s.
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6. CONCLUSION

The objective of the approach presented above is to simulate dynamic crack propagation using

the X-FEM. The main idea consists in using the same singular and discontinuous enrich-

ment as that presented in the scope of linear elastic fracture mechanics for static problems in

Reference [5]. First, we generalized the work of Attigui and Petit [16] to the case of propagating

arbitrary 2D cracks. Then, we studied Newmark-type schemes for problems with time-dependent

discretizations. The stability conditions obtained from this study show how time-dependent prob-

lems can be dealt with using the X-FEM in a general sense. The application to dynamic crack

propagation leads to an enrichment strategy which ensures numerical stability and energy con-

servation. The results obtained for several examples were accurate compared to theoretical or

experimental data. For stationary cracks under dynamic loading, the method has the same ad-

vantages as in the static case (see previous works about the X-FEM). For moving cracks, this

approach is proved to be stable and to conserve the energy. The comparison from an energy

point of view of the X-FEM and the FEM with remeshing provides a good illustration of the

great interest of the approach presented. This method avoids the difficulties encountered with

remeshing and projections, which sometimes generate uncontrolled energy transfers. The main

effort in our study was devoted to the improvement of the spatial representation of discontinu-

ities. A method was also provided to assess the stability and energy conservation properties of

the time integration scheme with time-dependent discretizations. This demonstration was based

on a Newmark-type scheme. In dynamic fracture mechanics, a moving crack also implies time

discontinuities which are not properly modelled by Newmark integrators. Another time inte-

gration scheme could be preferred. The enrichment strategy could be generalized to arbitrary

moving discontinuities and the method for arbitrary 2D cracks is expected to be applicable to

three-dimensional applications using the level set concept.

APPENDIX A: INTERACTION INTEGRAL

A.1. Interaction Lagrangian

Using the notations of Section 4 and considering that each displacement field (u, uaux and utot)

is kinetically admissible, the variation 	Lint of the interaction Lagrangian for a variation 	ai

of the crack’s length in each direction xi is zero. Let us define three configurations and their

associated descriptions: Lagrangian, Eulerian and arbitrary Lagrangian Eulerian (ALE). The

Lagrangian configuration �0 is the initial configuration, whose description (co-ordinates Xi0)

corresponds to the initial location of the crack’s tip. The Eulerian configuration � corresponds

to an arbitrary extension 	l of the crack and its description (co-ordinates Xi) moves along

with the crack’s tip. The ALE configuration �̄ and its description are chosen arbitrary between

the Lagrangian and Eulerian configurations. Following the notations for the variations of the

displacement field between the three configurations defined in Figure A1, one can write:

	ũ = 	u + 	û (A1)

First, the method is developed in the ALE configuration using the Eulerian description.

In Equation (A2), the variation of the interaction Lagrangian is expressed as a function of the
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Figure A1. Lagrangian, Eulerian and ALE configurations
(

�0, �, �̄
)

and

their descriptions
(

Xi0, Xi, X̄i

)

.

true and auxiliary displacement and velocity fields
(

l int = W int − T int
)

:

−	Lint =
∫

�

[

�l int

�ui, j

	ũi, j + �l int

�ui, t

	ũi, t + �l int

�uaux
i, j

	ũaux
i, j + �l int

�uaux
i, t

	ũaux
i, t

]

d� (A2)

Using the relation among the three configurations, we obtain:

−	Lint =
∫

�

[

�l int

�ui, j

	ui, j + �l int

�ui, t

	ui, t + �l int

�uaux
i, j

	uaux
i, j + �l int

�uaux
i, t

	uaux
i, t

]

d�

+
∫

�

[

�l int

�ui, j

	ûi, j + �l int

�ui, t

	ûi, t + �l int

�uaux
i, j

	ûaux
i, j + �l int

�uaux
i, t

	ûaux
i, t

]

d� (A3)

If 	 denotes the variation between the Eulerian and Lagrangian configurations, we can write

in the Eulerian description 	 = �/�xk	ak .

−	Lint =
∫

�

�l int

�xk

	ak d� +
∫

�

[

�l int

�ui, j

	ûi, j + �l int

�ui, t

	ûi, t + �l int

�uaux
i, j

	ûaux
i, j + �l int

�uaux
i, t

	ûaux
i, t

]

d�

(A4)
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Then, we can use the Gauss–Ostrogradsky theorem and the derivation rule for a product to

deduce from Equation (A4):

−	Lint =
∫

��

l intnk	ak dS +
∫

�





(

�l int

�ui, j

	ûi

)

,j

+
(

�l int

�uaux
i, j

	ûaux
i

)

,j



	ak d�

−
∫

�





(

�l int

�ui, j

)

,j

	ûi +
(

�l int

�uaux
i, j

)

,j

	ûaux
i



	ak d�

+
∫

�

[

(

�l int

�ui, t

	ûi

)

,t

+
(

�l int

�uaux
i, t

	ûaux
i

)

,t

]

	ak d�

−
∫

�

[

(

�l int

�ui, t

)

,t

	ûi +
(

�l int

�uaux
i, t

)

,t

	ûaux
i

]

	ak d� (A5)

where �� is the boundary of the closed domain � and n the outward normal to that domain.

Now, we define the ALE configuration by choosing the arbitrary configuration to be the Eulerian

configuration. Thus, we have 	ũ = 0 and 	û = −	u. If we use the Gauss–Ostrogradsky theorem

again, we obtain the following expression:

−	Lint =
∫

��

l intnk	ak dS −
∫

��

[

�l int

�ui, j

	ûi + �l int

�uaux
i, j

	ûaux
i

]

nj	ak dS

−
∫

�





(

�l int

�ui, j

)

,j

	ûi +
(

�l int

�uaux
i, j

)

,j

	ûaux
i



	ak d�

+
∫

�

[

(

�l int

�ui, t

	ûi

)

,t

+
(

�l int

�uaux
i, t

	ûaux
i

)

,t

]

	ak d�

−
∫

�

[

(

�l int

�ui, t

)

,t

	ûi +
(

�l int

�uaux
i, t

)

,t

	ûaux
i

]

	ak d� (A6)

Then, we can use the definition of l int to express the derivatives:

�l int

�ui, j

= �W int

�ui, j

= �aux
ij ,

�l int

�uaux
i, j

= �W int

�uaux
i, j

= �ij

�l int

�ui, t

= −�T int

�ui, t

= −�uaux
i, t ,

�l int

�uaux
i, t

= − �T int

�uaux
i, t

= −�ui, t
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Figure A2. Different contours for the integration of 	Lint .

Finally, we obtain the following expression:

−	Lint =
∫

��

[

(

�aux
kl uk, l − �uk, tu

aux
k, t

)

	mj −
(

�aux
ij ui,m + �iju

aux
i,m

)

]

nj	am dS

+
∫

�

[

(

�aux
ij, jui,m + �ij, ju

aux
i,m

)

+
(

�uaux
i, t ui, tm + �ui, tu

aux
i, tm

)

]

	am d� (A7)

Let us define P int and Q in order to simplify the expression of 	Lint.

P int
mj =

[

(

�aux
kl uk, l − �uk, tu

aux
k, t

)

	mj −
(

�aux
ij ui,m + �iju

aux
i,m

)

]

Qm =
[

(

�aux
ij, jui,m + �ij, ju

aux
i,m

)

+
(

�uaux
i, t ui, tm + �ui, tu

aux
i, tm

)

]

A.2. Path-independent integral

The problem is now considered to be two-dimensional, so that d� = b dS and dS = b ds. The

closed domain S represented in Figure A2 has an infinitesimal thickness and its contour is �S =
�1 ∪�2 ∪S+ ∪S−. Then, considering the contours and the domain represented in Figure A2 and

assuming that 	Lint is zero, that 	l is collinear to the tangent at the crack’s face along M+ or

M− and that the crack’s faces are traction-free in the actual and auxiliary solutions, we obtain

the following equation (where nj are the components of the outward normal vector to domain

S):
∫

�1

P int
kj 	lknj ds −

∫

�2

P int
kj 	lknj ds +

∫

A(�1)

Qk	lk dS −
∫

A(�2)

Qk	lk dS = 0 (A8)

This equation shows that �(�, 	l) =
∫

� P int
kj 	lknj ds +

∫

A(�)
Qk	lk dS does not depend on �.

Remarks

(i) Since � does not depend on �, using three independent vectors 	l, one can write a

local equation linking P int to Q:

div P int = Q (A9)
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(ii) Equation (A9) enables us to simplify the final expression and is a consequence of the

linear elastic material behaviour.

A.3. Interaction integral

In this section, the interaction integral is defined as the limit of � when � goes to the

crack’s tip.
I int = lim

�1→0
�
(

�1, q
)

Then, the virtual crack’s extension field q = 	l is chosen such that we can write the interaction

integral I int as a domain integral.

q =















0 on �2 and outside �2

x1	l at the crack’s tip

tangent to the crack’s faces everywhere

(A10)

Now, we can replace 	l by q in the expression of �:

�
(

�1, q
)

=
∫

�1

P int
kj qknj ds +

∫

A(�1)

Qkqk dS (A11)

Considering the properties of q, we obtain (with the thickness of domain S no longer being

necessarily infinitesimal):

�
(

�1, q
)

= −
∫

�S

P int
kj qknj ds +

∫

A(�1)

Qkqk dS = −
∫

S

(

P int
kj qk

)

,j
dS +

∫

A(�1)

Qkqk dS (A12)

If we denote A = A (�2), we can write the limit of the first term in the equation above as

(

−
∫

S

(

P int
kj qk

)

,j
dS

)

−→ −
∫

A

(

P int
kj qk

)

,j
dS (A13)

Now, considering that q is 0 on � − (S ∪ A (�1)), the second term becomes:
∫

A(�1)

Qkqk dS =
∫

�

Qkqk dS −
∫

S

Qkqk dS −→
∫

�

Qkqk dS −
∫

A

Qkqk dS (A14)

But q is also 0 on � − A; therefore:

∫

A(�1)

Qkqk dS −→
∫

A

Qkqk dS −
∫

A

Qkqk dS = 0 (A15)

Finally, I int is written as a domain-independent integral:

I int = −
∫

A

(

P int
kj qk

)

,j
dS (A16)
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Using the definitions of P int and Q, and the local equation (Equation (A9)), the expression of

I int becomes:

I int = −
∫

A

qk,j

[

(

�aux
ml um, l − �u̇l u̇

aux
l

)

	kj −
(

�aux
ij ui, k + �iju

aux
i, k

)

]

dS

+
∫

A

qk

[

(

�aux
ij, jui, k + üiu

aux
i, k

)

+
(

�u̇aux
i u̇i, k + �u̇i u̇

aux
i, k

)

]

dS (A17)
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