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Abstract

This paper presents a non-asymptotic statistical analysis of Kernel-
PCA with a focus different from the one proposed in previous work
on this topic ([2], [9]). Here instead of considering the reconstruc-
tion error of KPCA we are interested in approximation error bounds for
the eigenspaces themselves. We prove an upper bound depending on
the spacing between eigenvalues but not on the dimensionality of the
eigenspace. As a consequence this allows to infer stability results for
these estimated spaces.

1 Introduction.

Principal Component Analysis (PCA for short in the sequel) is a widely used tool for data
dimensionality reduction. It consists in finding the most relevant lower-dimension projec-
tion of some data in the sense that the projection should keep as much of the variance of
the original data as possible. If the target dimensionality of the projected data is fixed in
advance, say

�
– an assumption that we will make throughout the present paper – the solu-

tion of this problem is obtained by considering the projection on the span ��� of the first
�

eigenvectors of the covariance matrix. Here by ’first
�

eigenvectors’ we mean eigenvec-
tors associated to the

�
largest eigenvalues counted with multiplicity; hereafter with some

abuse the span of the first
�

eigenvectors will be called “
�

-eigenspace” for short when
there is no risk of confusion.

The introduction of the ’Kernel trick’ has allowed to extend this methodology to data
mapped in a kernel feature space, then called KPCA [8]. The interest of this extension
is that, while still linear in feature space, it gives rise to nonlinear interpretation in original
space – vectors in the kernel feature space can be interpreted as nonlinear functions on the
original space.

For PCA as well as KPCA, the true covariance matrix (resp. covariance operator) is not
known and has to be estimated from the available data, an procedure which in the case of
Kernel spaces is linked to the so-called Nyström approximation [12]. The subspace given
as an output is then obtained as

�
-eigenspace

���� of the empirical covariance matrix or
operator. An interesting question from a statistical or learning theoretical point of view is
then, how reliable this estimate is.



This question has already been studied [9, 2] from the point of view of the reconstruction
error of the estimated subspace. What this means is that (assuming the data is centered in
Kernel space for simplicity) the average reconstruction error (square norm of the distance to
the projection) of

�� � converges to the (optimal) reconstruction error of � � and that bounds
are known about the rate of convergence. However, this does not tell us much about the
convergence of � � to

�� � – since two very different subspaces can have a very similar
reconstruction error, in particular when some eigenvalues are very close to each other (the
gap between the eigenvalues will actually appear as a central point of the analysis to come).

In the present work, we set to study the behavior of these
�

-eigenspaces themselves: we
provide finite sample bounds describing the closeness of the

�
-eigenspaces of the em-

pirical covariance operator to the true one. There are several broad motivations for this
analysis. First, the reconstruction error alone is a valid criterion only if one really plans to
perform dimensionality reduction of the data and stop there. However, PCA is often used
merely as a preprocessing step and the projected data is then submitted to further process-
ing (which could be classification, regression or something else). In particular for KPCA,
the projection subspace in the kernel space can be interpreted as a subspace of functions on
the original space; one then expects these functions to be relevant for the data at hand and
for some further task (see e.g. [3]). In these cases, if we want to analyze the full proce-
dure (from a learning theoretical sense), it is desirable to have a more precise information
on the selected subspace than just its reconstruction error. In particular, from a learning
complexity point of view, it is important to ensure that functions used for learning stay in
a set of limited complexity, which is ensured if the selected subspace is stable (which is a
consequence of its convergence).

The approach we use here is based on perturbation bounds and we essentially walk in the
steps pioneered by Kolchinskii and Giné [7] (see also [4]) using tools of operator perturba-
tion theory [5]. Similar methods have been used to prove consistency of spectral clustering
[11, 10]. An important difference here is that we want to study directly the convergence of
the whole subspace spanned by the first

�
eigenvectors instead of the separate convergence

of the individual eigenvectors; in particular we are interested in how
�

acts as a complexity
parameter. The important point in our main result is that it does not: only the gap between
the

�
-th and the � ���
	��

-th eigenvalue comes into account. This means that there in no
increase in complexity (as far as this bound is concerned: of course we cannot exclude that
better bounds can be obtained in the future) between estimating the

�
-th eigenvector alone

or the span of the first
�

eigenvectors.

Our contribution in the present work is thus to adapt the operator perturbation result of [7] to
�

-eigenspaces. to get non-asymptotic bounds on the approximation error of Kernel-PCA
eigenspaces thanks to the previous tool.

In section 2 we introduce shortly the notation, explain the main ingredients used and obtain
a first bound based on controlling separately the first

�
eigenvectors, and depending on the

dimension
�

. In section 3 we explain why the first bound is actually suboptimal and derive
an improved bound as a consequence of an operator perturbation result that is more adapted
to our needs and deals directly with the

�
-eigenspace as a whole. Section 4 concludes and

discusses the obtained results. Mathematical proofs are found in the appendix.

2 First result.

Notation. The interest variable � takes its values in some measurable space � , following
the distribution � . We consider KPCA and are therefore primarily interested in the map-



ping of � into a reproducing kernel Hilbert space � with kernel function � through the
feature mapping ����� ��� ��������� � . The objective of the kernel PCA procedure is to recover a�

-dimensional subspace � � of � such that the projection of ����� � on � � has maximum
averaged squared norm.

All operators considered in what follows are Hilbert-Schmidt and the norm considered for
these operators will be the Hilbert-Schmidt norm unless precised otherwise. Furthermore
we only consider symmetric nonnegative operators, so that they can be diagonalized and
have a discrete spectrum.

Let � denote the covariance operator of variable ����� � . To simplify notation we assume
that nonzero eigenvalues  "!$#% �&'#)(�(*( of � are all simple (This is for convenience only.
In the conclusion we discuss what changes have to be made if this is not the case). Let+ !�� + &,�*(�(*( be the associated eigenvectors. It is well-known that the optimal

�
-dimensional

reconstruction space is ��� � span - + !��*(�(*(�� + �'. . The KPCA procedure approximates this
objective by considering the empirical covariance operator, denoted �$/ , and the subspace���� spanned by its first

�
eigenvectors. We denote �10,23�4�650,2 the orthogonal projectors on

these spaces.

A first bound. Broadly speaking, the main steps required to obtain the type of result we
are interested in are

1. A non-asympotic bound on the (Hilbert-Schmidt) norm of the difference between
the empirical and the true covariance operators;

2. An operator perturbation result bounding the difference between spectral projec-
tors of two operators by the norm of their difference.

The combination of these two steps leads to our goal. The first step consists in the following
Lemma:

Lemma 1 Supposing that 798;:�<>=>?@�������A� �1BDC , with probability greater than
	�EGFIHKJ

,L ��/ E � L BNM CO P Q 	��SR T MVU (
As for the second step, [7] provides the following perturbation bound (see also e.g. [11]):

Theorem 2 (Simplified Version of [7], Theorem 5.2 ) Let W be a symmetric positive
Hilbert-Schmidt operator of the Hilbert space � with simple positive eigenvalues  ! # �&'#X(*(�( For an integer Y such that  KZ[#%\ , let ]^_Z � ^_Z�`a^_Z H ! where ^_Z � !& �b ;Z E  ;ZAc�! � .
Let dfeDgh���i� � be another symmetric operator such that

L d Lkj ]^ Z,l M and ��W � d � is
still a positive operator with simple nonzero eigenvalues.

Let � Z ��W � (resp. � Z ��W � d � ) denote the orthogonal projector onto the subspace spanned
by the Y -th eigenvector of W (resp. ��W � d � ). Then, these projectors satisfy:L �"ZI��W �mE ��Z>��W � d � L BnM L d L]^ Z (
Remark about the Approximation Error of the Eigenvectors: let us recall that a con-
trol over the Hilbert-Schmidt norm of the projections onto eigenspaces imply a control on
the approximation errors of the eigenvectors themselves. Indeed, let

+ Zo�4p�Z denote the (nor-
malized) Y -th eigenvectors of the operators above with signs chosen so that q + Z �4p Z�r #s\ .
Then L �utIv E ��wKv L & � M � 	�E q + Z>�Ap�Z r & ��x M � 	�E q + ZI�4p�Z r ��� L + Z E p�Z L & (



Now, the orthogonal projector on the direct sum of the first
�

eigenspaces is the sumy �Z4z�! ��Z . Using the triangle inequality, and combining Lemma 1 and Theorem 2, we
conclude that with probability at least

	�EGFIHKJ
the following holds:{{{ �u0,2 E � 50,2 {{{ B Q �|ZAz�! ] ^ H !Z Us} CO P Q 	��~R T MVU �

provided that
P x�	��>C &[� 	��%� J&,� & ��7�8;: !A��Z_�K� ]^ H &Z �

. The disadvantage of this bound

is that we are penalized on the one hand by the (inverse) gaps between the eigenvalues, and
on the other by the dimension

�
(because we have to sum the inverse gaps from 1 to D).

In the next section we improve the operator perturbation bound to get an improved result
where only the gap ^ � enters into account.

3 Improved Result.

We first prove the following variant on the operator perturbation property which better cor-
responds to our needs by taking directly into account the projection on the first

�
eigen-

vectors:

Theorem 3 Let W be a symmetric positive Hilbert-Schmidt operator of the Hilbert space� with simple nonzero eigenvalues  �!@#� K&�#�(*(�( Let
� #�\ be an integer such that ���#%\ , ^�� � !& �b ;� E  ���c�! � . Let d�ehgh���i� � be another symmetric operator such thatL d L@j ^ ��l M and ��W � d � is still a positive operator. Let � � ��W � (resp. � � ��W � d � )

denote the orthogonal projector onto the subspace spanned by the first
�

eigenvectors W
(resp. ��W � d � ). Then these satisfy:L � � ��W �uE � � ��W � d � L B L d L^_� ( (1)

This then gives rise to our main result on KPCA:

Theorem 4 Assume that 798;:�<I=>?@�������4� �kB�C
. Let � � � �� � be the subspaces spanned

by the first
�

eigenvectors of � , resp. � / defined earlier. Denoting  ! #� & #�(*(*( the
eigenvalues of � , if

� #%\ is such that  ���#�\ , put ^�� � !& �� �� E  ���c�! � andd�� � M C^ � Q 	��~R T MVU (
Then provided that

P x d &� , the following bound holds with probability at least
	�E�F�H�J

:{{{ �u0,2 E � 50 2 {{{ B d��O P ( (2)

This entails in particular�� �~�X��� ��� � � eh� � � � e��1�� � L � L_��� B d � P H'�� L � L_���;� ( (3)

The important point here is that the approximation error now only depends on
�

through
the (inverse) gap between the

�
-th and � �~�%	�� -th eigenvalues. Note that using the results

of section 2, we would have obtained exactly the same bound for estimating the
�

-th
eigenvector only – or even a worse bound since ]^_� � ^_��`�^�� H ! appears in this case.
Thus, at least from the point of view of this technique (which could still yield suboptimal



bounds), there is no increase of complexity between estimating the
�

-th eigenvector alone
and estimating the span of the first

�
eigenvectors.

Note that the inclusion (3) can be interpreted geometrically by saying that for any vector in�� � , the tangent of the angle between this vector and its projection on � � is upper bounded
by d3� l O P , which we can interpret as a stability property.

Comment about the Centered Case. In the actual (K)PCA procedure, the data is actu-
ally first empirically recentered, so that one has to consider the centered covariance operator� and its empirical counterpart � / . A result similar to Theorem 4 also holds in this case
(up to some additional constant factors). Indeed, a result similar to Lemma 1 holds for the
recentered operators [2]. Combined again with Theorem 3, this allows to come to similar
conclusions for the “true” centered KPCA.

4 Conclusion and Discussion

In this paper, finite sample size confidence bounds of the eigenspaces of Kernel-PCA (the�
-eigenspaces of the empirical covariance operator) are provided using tools of operator

perturbation theory. This provides a first step towards an in-depth complexity analysis of
algorithms using KPCA as pre-processing, and towards taking into account the randomness
of the obtained models (e.g. [3]). We proved a bound in which the complexity factor for
estimating the eigenspace ��� by its empirical counterpart depends only on the inverse gap
between the

�
-th and � �)�s	*� -th eigenvalues. In addition to the previously cited works,

we take into account the centering of the data and obtain comparable rates.

In this work we assumed for simplicity of notation the eigenvalues to be simple. In the case
the covariance operator � has nonzero eigenvalues with multiplicities ¡�!¢�A¡£&¤��(*(�( possibly
larger than one, the analysis remains the same except for one point: we have to assume that
the dimension

�
of the subspaces considered is of the form ¡ ! � ���*� � ¡ Z for a certainY . This could seem restrictive in comparison with the results obtained for estimating the

sum of the first
�

eigenvalues themselves [2] (which is linked to the reconstruction error
in KPCA) where no such restriction appears. However, it should be clear that we need
this restriction when considering

�kE
eigenspaces themselves since the target space has to

be unequivocally defined, otherwise convergence cannot occur. Thus, it can happen in
this special case that the reconstruction error converges while the projection space itself
does not. Finally, a common point of the two analyses (over the spectrum and over the
eigenspaces) lies in the fact that the bounds involve an inverse gap in the eigenvalues of the
true covariance operator.

Finally, how tight are these bounds and do they at least carry some correct qualitative infor-
mation about the behavior of the eigenspaces? Asymptotic results (central limit Theorems)
in [6, 4] always provide the correct goal to shoot for since they actually give the limit distri-
butions of these quantities. They imply that there is still important ground to cover before
bridging the gap between asymptotic and non-asymptotic. This of course opens directions
for future work.

A Appendix: proofs.

Proof of Lemma 1. This lemma could be deduced from the proof of Theorem 1 of [2]
but we provide a simpler proof for the sake of clarity and completness.L ��/ E � L � L !/ y /¥ z�! ��¦�§ E©¨�ª ��¦'« L with

L ��¦ L � L ����� �,¬ ����� �9 L � �����h�9� ��B%C .
We can apply the bounded difference inequality to the variable

L �$/ E � L , so that with

probability greater than
	3EDFIHKJ

,
L ��/ E � L B%¨�ª L ��/ E � L « � M C � J&�/ ( Moreover, by



Jensen’s inequality
¨hª L �6/ E � L « B~¨D® L !/ y /¥ z�! ��¦�§ E�¨hª ��¦�« L &�¯ �� � and simple calcu-

lations leads to
¨ ® L !/ y /¥ z�! ��¦�§ E�¨°ª ��¦�« L & ¯ � !/ ¨ ® L ��¦ E�¨hª ��¦�« L & ¯ B�±A² �/ ( This

concludes the proof of lemma 1. ³
Proof of Theorem 3. The key property of Hilbert-Schmidt operators allowing to work
directly in a infinite dimensional setting is that gh���i� � is a both right and left ideal of´�µ �¶���·� � , the Banach space of all continuous linear operators of � endowed with the
operator norm

L ( L�¸4¹ . Indeed, º$»�e)gh���i� � �oº���e ´�µ �i���¼� � ��»$� and ��» belong togh���i� � with L »$� L B L » L�L � L_¸A¹ and
L ��» L B L » L�L � L_¸A¹ ( (4)

The spectrum of an Hilbert-Schmidt operator » is denoted ½[��» � and the sequence of eigen-
values in non-increasing order is denoted  ���» ��� �� �!¢��» ��x  �&I��» ��x (*(*( � . In the follow-
ing, � � ��» � denotes the orthogonal projector onto the

�
-eigenspace of » .

The Hoffmann-Wielandt inequality in infinite dimensional setting[1] yields that:L  ���W �uE  "��W � d � LA¾ � B L d L B ^ �M ( (5)

implying in particular thatº�¿u#%\;� À  ¥ ��W ��E  ¥ ��W � d � À B ^��M ( (6)

Results found in [5] p.39 yield the formula� � ��W �uE � � ��W � d ���
E 	M ¿bÁÃÂ�Ä �bÅ'Æ���Ç �uE Å$Æ c�È ��Ç �9��É ÇÊe ´ µ �i���¼� � ( (7)

where Å Æ ��Ç �Ë� ��W E Ç�Ì Éo�AH ! is the resolvent of W , provided that Í is a simple closed
curve in Î enclosing exactly the first

�
eigenvalues of W and ��W � d � . Moreover, the same

reference (p.60) states that for T in the complementary of ½[��W � ,L Å$Æ�� T � L ¸A¹ ��É ¿bÏAÐ�� T �9½[��W �9� H ! ( (8)

The proof of the theorem now relies on the simple choice for the closed curve Í in (7),
drawn in the picture below and consisting of three straight lines and a semi-circle of radiusÑ

. For all
Ñ #ÓÒ 2& , Í intersect neither the eigenspectrum of W (by equation (6)) nor the

eigenspectrum of W � d . Moreover, the eigenvalues of W (resp. W � d ) enclosed by Í are
exactly  ! ��W � �*(�(*(��4 � ��W � (resp.  ! ��W � d � ��(*(�(��A � ��W � d � ).
Moreover, for ÇSenÍ , » ��Ç ��� Å Æ �bÇ �'E Å Æ c�È$�bÇ �h�ÔE Å Æ c�È��bÇ � d©Å Æ ��Ç � belongs togh���i� � and depends continuously on Ç by (4). Consequently,L � � ��W �uE � � ��W � d � L B 	M Á£ÂÊÕÖ L ��Å'Æ E Å'Æ c�È � ��Í"�iÐ ��� L À Í;×��iÐ � À É Ð"(
Let ��Ø � y Ø/oz�Ù � E 	�� / ��Å'Æ��bÇ � d � / Å$Æ���Ç � . Å'Æ c�È ��Ç �©� ��Ì É©� Å'Æ3��Ç � d �ÚH ! Å$Æ3�bÇ � and,
for Ç©ehÍ and

Ñ #�^�� ,L Å Æ �bÇ � d L_¸A¹ B L Å Æ ��Ç � L�¸4¹;L d L B ^ �M É ¿�ÏÚÐ���Ç��9½[��W �9� B 	M �
imply that ��ØÜÛAÝÞÛ¼ßbàE�á Å'Æ c�È �bÇ � (uniformly for Ç�e)Í ). Using property (4), since dÔegh���i� � , ��Øâd©Å$Æ3�bÇ � ÛAÝÞÛE�á Å'Æ c�È ��Ç � d Å'Æ$�bÇ ��� Å'Æ c�È ��Ç �uE Å'Æ3��Ç � ( Finally,Å Æ �bÇ �mE Å Æ c�È��bÇ ��� |/;ã"! � E 	�� / ��Å Æ ��Ç � d � / Å Æ ��Ç �
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where the series converges in gh���¶� � , uniformly in Ç°eGÍ . Using again property (4) and
(8) impliesL ��Å'Æ E Å'Æ c�È � ��Í"�¶Ð �9� L B |/�ã"! L Å'Æ���Í��iÐ �9� L /oc�!¸A¹ L d L / B |/;ã�! L d L /É ¿�ÏÚÐ /�c�! ��Í"�¶Ð � ��½���W ���
Finally, since for

Ñ #D^�� ,
L d L B Ò 2& Bnä ¥�å·æ·ç Ä çèæ�éëê ì�ç Æ é�é& ,L � � ��W �mE � � ��W � d � L B L d LÁíÂ ÕÖ 	É ¿bÏAÐ & ��Í"�¶Ð � ��½���W ��� À Í;×��¶Ð � À É ÐV(

Splitting the last integral into four parts according to the definition of the contour Í , we
obtain

ÂÊÕÖ 	É ¿bÏÚÐ & ��Í"�¶Ð � ��½���W ��� À Í × �iÐ � À É Ð B M>î¤ï9ð_ñAî,ò �uóÒ9ô �^_� � ÁÑ � M�õ !,��W �mE � õ � ��W �mE ^_� �Ñ & �
and letting

Ñ
goes to infinity leads to the result. ³

Proof of Theorem 4. Lemma 1 and Theorem 3 yield inequality (2). Together with as-
sumption

P x d &� it implies
L � 0 2 E � 50 2 L B !& . Let ö�e �� � : ö � � 0 2���ö ��� � 0�÷2 �bö � � ;

Lemma 5 below with ø�� � ��� and ù[��ú � ���� implies thatL � 0�÷2 �bö � L &� � B } û L � 0 2 E � 50 2 L & L � 0 23��ö � L &� � (
Gathering the different inequalities, Theorem 4 is proved. ³
Lemma 5 Let ø�� and ù[��ú be two vector subspaces of � such that ü�ýÿþ@��øm� ��� �

andü;ýiþ@��ù[��ú ����� × . Provided that
L � � 2 E ��� 2 ú L B !& , the following bound holds:º�ö@ehù[� ú � L � � ÷2 ��ö � L &� B } û L � � 2 E ��� 2 ú L & L � � 2���ö � L &� (



Proof of Lemma 5. Let � !,��(*(*(K� � � ú be an orthonormal basis of ù � ú .º�ö e�ù ��ú , L � � ÷2 �bö � L &� ����� y � ú� ê � ú z�! qëö�� � � r q·ö�� � � úÿr q·� � ÷2 � � � � �4� � ÷2 � � � ú � r ��� ( Thus, using

twice the Cauchy-Schwarz inequality,L � � ÷2 �bö � L &� B L ö L &� �	 � × E � ú|� z�! L � � 2�� � � � L &��
� (
Since

L � � 2 L & �~� , this yieldsL � � ÷2 ��ö � L &� B L ö L &� �	 � × �D�
E M � ú|� z�! L � � 2�� � � � L &��
� (
Finally,

L � � ÷2 ��ö � L &� B L ö L &� L � � 2 E ��� 2 ú L & and considering the Pythagoras decomposi-
tion

L ö L &� � L � � 2��bö � L &� � L � � ÷2 ��ö � L &� , this concludes the proof. ³
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