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Abstract

This paper investigates the effect of Kernel Principal Component Analy-
sis (KPCA) within the classification framework, essentially the regular-
ization properties of this dimensionality reduction method. KPCA has
been previously used as a pre-processing step before applying an SVM
but we point out that this method is somewhat redundant from a reg-
ularization point of view and we propose a new algorithm called Ker-
nel Projection Machine to avoid this redundancy, based on an analogy
with the statistical framework of regression for a Gaussian white noise
model. Preliminary experimental results show that this algorithm reaches
the same performances as an SVM.

1 Introduction

Let (xi, yi)i=1...n be n given realizations of a random variable (X,Y ) living in X ×
{−1; 1}. Let P denote the marginal distribution of X . The xi’s are often referred to as
inputs (or patterns), and the yi’s as labels. Pattern recognition is concerned with finding a
classifier, i.e. a function that assigns a label to any new input x ∈ X and that makes as few
prediction errors as possible.
It is often the case with real world data that the dimension of the patterns is very large,
and some of the components carry more noise than information. In such cases, reducing
the dimension of the data before running a classification algorithm on it sounds reasonable.
One of the most famous methods for this kind of pre-processing is PCA, and its kernelized
version (KPCA), introduced in the pioneering work of Schölkopf, Smola and Müller [8].

∗This work was supported in part by the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778.



Now, whether the quality of a given classification algorithm can be significantly improved
by using such pre-processed data still remains an open question. Some experiments have
already been carried out to investigate the use of KPCA for classification purposes, and
numerical results are reported in [8]. The authors considered the USPS handwritten digit
database and reported the test error rates achieved by the linear SVM trained on the data
pre-processed with KPCA: the conclusion was that the larger the number of principal com-
ponents, the better the performance. In other words, the KPCA step was useless or even
counterproductive.
This conclusion might be explained by a redundancy arising in their experiments: there
is actually a double regularization, the first corresponding to the dimensionality reduction
achieved by KPCA, and the other to the regularization achieved by the SVM. With that in
mind it does not seem so surprising that KPCA does not help in that case: whatever the
dimensionality reduction, the SVM anyway achieves a (possibly strong) regularization.
Still, de-noising the data using KPCA seems relevant. The aforementioned experiments
suggest that KPCA should be used together with a classification algorithm that is not regu-
larized (e.g. a simple empirical risk minimizer): in that case, it should be expected that the
KPCA is by itself sufficient to achieve regularization, the choice of the dimension being
guided by adequate model selection.
In this paper, we propose a new algorithm, called the Kernel Projection Machine (KPM),
that implements this idea: an optimal dimension is sought so as to minimize the test error
of the resulting classifier. A nice property is that the training labels are used to select the
optimal dimension – optimal means that the resulting D-dimensional representation of the
data contains the right amount of information needed to classify the inputs. To sum up, the
KPM can be seen as a dimensionality-reduction-based classification method that takes into
account the labels for the dimensionality reduction step.
This paper is organized as follows: Section 2 gives some statistical background on regular-
ized method vs. projection methods. Its goal is to explain the motivation and the “Gaussian
intuition” that lies behind the KPM algorithm from a statistical point of view. Section 3
explicitly gives the details of the algorithm; experiments and results, which should be con-
sidered preliminary, are reported in Section 4.

2 Motivations for the Kernel Projection Machine

2.1 The Gaussian Intuition: a Statistician’s Perspective

Regularization methods have been used for quite a long time in non parametric statistics
since the pioneering works of Grace Wahba in the eighties (see [10] for a review). Even
if the classification context has its own specificity and offers new challenges (especially
when the explanatory variables live in a high dimensional Euclidean space), it is good to
remember what is the essence of regularization in the simplest non parametric statistical
framework: the Gaussian white noise.
So let us assume that one observes a noisy signal dY (x) = s(x)dx+ 1√

n
dw(x) , Y (0) = 0

on [0,1] where dw(x) denotes standard white noise. To the reader not familiar with this
model, it should be considered as nothing more but an idealization of the well-known fixed
design regression problem Yi = s(i/n) + εi for i = 1, . . . , n, where εi ∼ N(0, 1), where
the goal is to recover the regression function s. (The white noise model is actually simpler
to study from a mathematical point of view). The least square criterion is defined as

γn(f) = ‖f‖2 − 2

∫ 1

0

f(x)dY (x)

for every f ∈ L2([0, 1]).
Given a Mercer kernel k on [0, 1]×[0, 1], the regularization least square procedure proposes



to minimize

γn(f) + ζn‖f‖Hk
(1)

where (ζn) is a conveniently chosen sequence and Hk denotes the RKHS induced by k.
This procedure can indeed be viewed as a model selection procedure since minimizing
γn(f) + ζn‖f‖Hk

amounts to minimizing

inf
‖f‖≤R

[
γn(f) + ζnR2

]

over R > 0. In other words, regularization aims at selecting the “best” RKHS ball
{f, ‖f‖ ≤ R} to represent our data.
At this stage, it is interesting to realize that the balls in the RKHS space can be viewed as
ellipsoids in the original Hilbert space L2([0, 1]). Indeed, let (φi)

∞
i=1 be some orthonormal

basis of eigenfunctions for the compact and self adjoint operator

Tk : f −→
∫ 1

0

k(x, y)f(x)dx

Then, setting βj =
∫ 1

0
f(x)φj(x)dx one has ‖f‖2

Hk
=

∑∞
j=1

β2

j

λj
where (λj)j≥1 denotes

the non increasing sequence of eigenvalues corresponding to (φj)j≥1. Hence

{f, ‖f‖Hk
≤ R} =





∞∑

j=1

βjφj ;
∞∑

j=1

β2
j

λj

≤ R2



 .

Now, due to the approximation properties of the finite dimensional spaces {φj , j ≤ D},
D ∈ N

∗ with respect to the ellipsoids, one can think of penalized finite dimensional projec-
tion as an alternative method to regularization. More precisely, if ŝD denotes the projection
estimator on 〈φj , j ≤ D〉, i.e. ŝD =

∑D

j=1

(∫
φjdY

)
φj and one considers the penalized

selection criterion D̂ = argmin
D

[γn(ŝD) + 2D
n

] then, it is proved in [1] that the selected

estimator ŝ bD
obeys to the following oracle inequality

E[‖s − ŝ bD
‖2] ≤ C inf

D≥1

[
E‖s − ŝD‖2

]

where C is some absolute constant.
The nice thing is that whenever s belongs to some ellipsoid

E(c) =





∞∑

j=1

βjφj :
∞∑

j=1

β2
j

c2
j

≤ 1





where (cj)j≥1 is a decreasing sequence tending to 0 as j → ∞, then

inf
D≥1

E
[
‖s − ŝD‖2

]
= inf

D≥1

[
inf

t∈SD

‖s − t‖2 +
D

n

]
≤ inf

D≥1

[
c2
D +

D

n

]

As shown in [5] infD≥1[c
2
D + D

n
] is (up to some absolute constant) of the order of magni-

tude of the minimax risk over E(c).
As a consequence, the estimator ŝ bD

is simultaneously minimax over the collection of all
ellipsoids E(c), which in particular includes the collection {E(

√
λR), R > 0}.

To conclude and summarize, from a statistical performance point of view, what we can
expect from a regularized estimator ŝ (i.e. a minimizer of (1)) is that a convenient de-
vice of ζn ensures that ŝ is simultaneously minimax over the collection of ellipsoids
{E(

√
λR), R > 0}, (at least as far as asymptotic rates of convergence are concerned ).

The alternative estimator ŝ bD
actually achieves this goal and even better since it is also

adaptive over the collection of all ellipsoids and not only the family {E(
√

λR), R > 0}.



2.2 Extension to a general classification framework

In this section we go back to classification framework as described in the introduction. First
of all, it has been noted by several authors ([6],[9]) that the SVM can be seen as a regular-
ized estimation method, where the regularizer is the squared norm of the function in Hk.
Precisely, the SVM algorithm solves the following unconstrained optimization problem:

min
f∈Hb

k

1

n

n∑

i=1

(1 − yif(xi))+ + λ‖f‖2
Hk

, (2)

where Hb
k = {f(x) + b, f ∈ Hk, b ∈ R}.

The above regularization can be viewed as a model selection process over RKHS balls,
similarly to the previous section. Now, the line of ideas developed there suggests that it
might actually be a better idea to consider a sequence of finite-dimensional estimators.
Additionally, it has been shown in [4] that the regularization term of the SVM is actually
too strong. We therefore transpose the ideas of previous Gaussian case to the classification
framework. Consider a Mercer kernel k defined on X × X and Let Tk denote the operator
associated with kernel k in the following way

Tk : f(.) ∈ L2(X ) 7−→
∫

X
k(x, .)f(x)dP (x) ∈ L2(X )

Let φ1, φ2, . . . denote the eigenvectors of Tk, ordered by decreasing associated eigenvalues
(λi)1≥1. For each integer D, the subspace FD defined by FD = span{11, φ1, . . . , φD}
(where 11 denotes the constant function equal to 1) corresponds to a subspace of Hb

k associ-
ated with kernel k, and Hb

k =
⋃∞

D=1 FD. Instead of selecting the “best” ball in the RKHS,
as the SVM does, we consider the analogue of the projection estimator ŝD:

f̂D = arg min
f∈FD

n∑

i=1

(1 − yif(xi))+ (3)

that is, more explicitly,

f̂D(.) =

D∑

j=1

β∗
j φj(.) + b∗

with

(β∗, b∗) = arg min
(β∈RD,b∈R)

n∑

i=1


1 − yi




D∑

j=1

βjφj(xi) + b







+

(4)

An appropriate D can then be chosen using an adequate model selection procedure such as
penalization; we do not address this point in detail in the present work but it is of course
the next step to be taken.

Unfortunately, since the underlying probability P is unknown, neither are the eigenfunc-
tions φ1, . . ., and it is therefore not possible to implement this procedure directly. We thus
resort to considering empirical quantities as will be explained in more detail in section 3.
Essentially, the unknown vectorial space spanned by the first eigenfunctions of Tk is re-
placed by the space spanned by the first eigenvectors of the normalized kernel Gram matrix
1
n
(k(xi, xj))1≤i,j≤n. At this point we can see the relation appear with Kernel PCA. We

next precise this relation and give an interpretation of the resulting algorithm in terms of
dimensionality reduction.



2.3 Link with Kernel Principal Component Analysis

Principal Component Analysis (PCA), and its non-linear variant, KPCA are widely used al-
gorithms in data analysis. They extract from the input data space a basis (vi)i≥1 which is, in
some sense, adapted to the data by looking for directions where the variance is maximized.
They are often used as a pre-processing on the data in order to reduce the dimensionality
or to perform de-noising.
As will be made more explicit in the next section, the Kernel Projection Machine consists
in replacing the ideal projection estimator defined by (3) by

f̂D = argmin
f∈SD

1

n

n∑

i=1

(1 − yif(Xi))+

where SD is the space of dimension D chosen by the first D principal components chosen
by KPCA in feature space. Hence, roughly speaking, in the KPM, the SVM penalization is
replaced by dimensionality reduction.
Choosing D amounts to selecting the optimal D-dimensional representation of our data
for the classification task, in other words to extracting the information that is needed for
this task by model selection taking into account the relevance of the directions for the
classification task.
To conclude, the KPM is a method of dimensionality reduction that takes into account the
labels of the training data to choose the “best” dimension.

3 The Kernel Projection Machine Algorithm

In this section, the empirical (and computable) version of the KPM algorithm is derived
from the previous theoretical arguments.
In practice the true eigenfunctions of the kernel operator are not computable. But since
only the values of functions φ1, . . . , φD at points x1, . . . , xn are needed for minimizing
the empirical risk over FD, the eigenvectors of the kernel matrix K = (k(xi, xj))1≤i,j≤n

will be enough for our purpose. Indeed, it is well known in numerical analysis (see [2])
that the eigenvectors of the kernel matrix approximate the eigenfunctions of the kernel
operator. This result has been pointed out in [7] in a more probabilistic language. More
precisely, if V1, . . . , VD denote the D first eigenvectors of K with associated eigenvalues
λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂D, then for each Vi

Vi =
(
V

(1)
i , . . . , V

(n)
i

)
≈ (φi(x1), . . . , φi(xn)) (5)

Hence, considering Equation (4), the empirical version of the algorithm described above
will first consist of solving, for each dimension D, the following optimization problem:

(β∗, b∗) = arg min
β∈RD,b∈R

n∑

i=1


1 − yi




D∑

j=1

βjV
(i)
j + b







+

(6)

Then the solution should be

f̂D(.) =
D∑

j=1

β∗
j φj(.) + b∗ . (7)

Once again the true functions φj’s are unknown. At this stage, we can do an expansion of
the solution in terms of the kernel similarly to the SVM algorithm, in the following way:

f̂D(.) =

n∑

i=1

α∗
i k(xi, .) + b∗ (8)
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Figure 1: Left: KPM risk (solid) and empirical risk (dashed) versus dimension D. Right:
SVM risk and empirical risk versus C. Both on dataset ’flare-solar’.

Narrowing both expressions ( 7) and ( 8) at points x1, . . . , xn leads the following equation:

β∗
1V1 + . . . + β∗

DVD = Kα∗ (9)

which has a straightforward solution: α∗ =
∑D

j=1

β∗

j

bλj

Vj (provided the D first eigenvalues

are all strictly positive).
Now the KPM algorithm can be summed up as follows:

1. given data x1, . . . , xn ∈ X and a positive kernel k defined on X × X , compute
the kernel matrix K and its eigenvectors V1, . . . , Vn together with its eigenvalues
in decreasing order λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n.

2. for each dimension D such that λ̂D > 0 solve the linear optimization problem

(β∗, b∗) = arg min
β,b,ξ

n∑

i=1

ξi (10)

under constraints ∀i = 1 . . . n, ξi ≥ 0 , yi




D∑

j=1

βjV
(i)
j + b


 ≥ 1 − ξi . (11)

Next, compute α∗ =
D∑

j=1

β∗
j

λ̂j

Vj and f̂D(.) =
∑n

i=1 α∗
i k(xi, .) + b∗

3. The last step is a model selection problem: choose a dimension D̂ for which
f̂

D̂
performs well. We do not address directly this point here; one can think of

applying cross-validation, or to penalize the empirical loss by a penalty function
depending on the dimension.

4 Experiments

The KPM was implemented in Matlab using the free library GLPK for solving the linear
optimization problem. Since the algorithm involves the eigendecomposition of the kernel
matrix, only small datasets have been considered for the moment.
In order to assess the performance of the KPM, we carried out experiments on benchmark
datasets available on Gunnar Rätsch’s web site [3]. Several state-of-art algorithms have
already been applied to those datasets, among which the SVM. All results are reported on
the web site. To get a valid comparison with the SVM, on each classification task, we used



Table 1: Test errors of the KPM on several benchmark datasets, compared with SVM, using
G.Rätsch’s parameter selection procedure (see text). As an indication the best of the six
results presented in [3] are also reported.

KPM (selected D) SVM Best of 6
Banana 10.73 ± 0.42 15 11.53 ± 0.66 10.73 ± 0.43
Breast Cancer 26.51 ± 4.75 24 26.04 ± 4.74 24.77 ± 4.63
Diabetis 23.37 ± 1.92 11 23.53 ± 1.73 23.21 ± 1.63
Flare Solar 32.43 ± 1.85 6 32.43 ± 1.82 32.43 ± 1.82
German 23.59 ± 2.15 14 23.61 ± 2.07 23.61 ± 2.07
Heart 16.89 ± 3.53 10 15.95 ± 3.26 15.95 ± 3.26

Table 2: Test errors of the KPM on several benchmark datasets, compared with SVM, using
standard 5-fold cross-validation on each realization.

KPM SVM
Banana 11.14 ±0.73 10.69 ± 0.67
Breast Cancer 26.55±4.43 26.68 ± 5.23
Diabetis 24.14 ±1.86 23.79 ± 2.01
Flare Solar 32.70±1.97 32.62 ± 1.86
German 23.82±2.23 23.79 ± 2.12
Heart 17.59±3.30 16.23 ± 3.18

the same kernel parameters as those used for SVM, so as to work with exactly the same
geometry.
There is a subtle, but important point arising here. In the SVM performance reported by G.
Rätsch, the regularization parameter C was first determined by cross-validation on the first
5 realizations of each dataset; then the median of these values was taken as a fixed value
for the other realizations. This was done apparently for saving computation time, but this
might lead to an over-optimistic estimation of the performances since in some sense some
extraneous information is then available to the algorithm and the variation due to the choice
of C is reduced to almost zero. We first tried to mimic this methodology by applying it, in
our case, to the choice of D itself (the median of 5 D values obtained by cross-validation
on the first realizations was then used on the other realizations).
One might then argue that this way we are selecting a parameter by this method instead of
a meta-parameter for the SVM, so that the comparison is unfair. However, this distinction
being loose, this a rather moot point. To avoid this kind of debate and obtain fair results, we
decided to re-run the SVM tests by selecting systematically the regularization parameter by
a 5-fold cross-validation on each training set, and for our method, apply the same procedure
to select D. Note that there is still extraneous information in the choice of the kernel
parameters, but at least it is the same for both algorithms.
Results relative to the first methodology are reported in table 1, and those relative the
second one are reported in table 2. The globally worst performances exhibited in the second
table show that the first procedure may indeed be too optimistic. It is to be mentionned
that the parameter C of the SVM was systematically sought on a grid of only 100 values,
ranging from 0 to three times the optimal value given in [3]. Hence those experimental
results are to be considered as preliminary, and in no way they should be used to establish
a significant difference between the performances of the KPM and the SVM. Interestingly,
the graphic on the left in Figure 4 shows that our procedure is very different from the one
of [8]: when D is very large, our risk increases (leading to the existence of a minimum)
while the risk of [8] always decreases with D.



5 Conclusion and discussion

To summarize, one can see the KPM as an alternative to the regularization of the SVM: reg-
ularization using the RKHS norm can be replaced by finite dimensional projection. More-
over, this algorithm performs KPCA towards classification and thus offers a criterion to
decide what is the right order of expansion for the KPCA.
Dimensionality reduction can thus be used for classification but it is important to keep in
mind that it behaves like a regularizer. Hence, it is clearly useless to plug it in a classifi-
cation algorithm that is already regularized: the effect of the dimensionality reduction may
be canceled as noted by [8].
Our experiments explicitly show the regularizing effect of KPCA: no other smoothness
control has been added in our algorithm and still, it gives performances comparable to the
one of SVM provided the dimension D is picked correctly. We only considered here selec-
tion of D by cross-validation; other methods such as penalization will be studied in future
works. Moreover, with this algorithm, we obtain a D-dimensional representation of our
data which is optimal for the classification task. Thus KPM can be see as a de-noising
method who takes into account the labels.
This version of the KPM only considers one kernel and thus one vectorial space by dimen-
sion. A more advanced version of this algorithm is to consider several kernels and thus
choose among a bigger family of spaces. This family then contains more than one space
by dimension and will allow to directly compare the performance of different kernels on
a given task, thus improving efficiency for the dimensionality reduction while taking into
account the labels.
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